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Abstract

Objectives: The non-linear relationship between gadolinium concentration and the signal
in perfusion cardiac magnetic resonance (CMR) poses a significant challenge for accurate
quantification of pharmacokinetic parameters. This phenomenon primarily impacts the ar-
terial input function (AIF), causing it to appear saturated in comparison to the temporal
concentration profile. This study aims to leverage a blind deconvolution strategy through
a deep-learning approach to address the saturation in the AIF.
Methods: We propose the utilization of a convolutional neural network (CNN) architecture
with the saturated AIF and a set of myocardial tissue signals as inputs, generating the
corrected AIF as the output. To train the network, a dataset comprising over 3× 106 sim-
ulated AIFs with associated signals from five simulated tissues response for each instance
was employed. To assess the effectiveness of the approach, the trained network was evalu-
ated using a dual-saturation sequence to compare the corrected AIF with the unsaturated
version. The clinical dataset encompassed scans from 43 patients.
Results: The mean square error (MSE) for the testing subset of the simulated database was
0.69% of the peak. In the in vivo dataset, the coefficient of determination R2 was 0.26 and
0.86 for the saturated and corrected AIF, respectively, in comparison to the unsaturated
AIF.
Conclusion: The proposed network successfully corrects the acquisition-induced effects on
the AIF. Moreover, the extensive simulated database, featuring diverse acquisition param-
eters, facilitates the robust generalization of the network’s application.
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1. Introduction

The intravenous administration of gadolinium-based contrast agent (CA) in cardiovascular
magnetic resonance (CMR) during its initial vascular transit has become a clinical standard
for assessing myocardial perfusion states (Jerosch-Herold et al., 2006). Specifically, dynamic
contrast enhanced (DCE) imaging in the cardiac domain has demonstrated its efficacy
in evaluating various diseases (Montalescot et al., 2013; Nagel et al., 2019). Perfusion
quantification typically involves employing a deconvolution approach based on a parametric
tracer-kinetic model and an arterial input function (AIF) (Sourbron and Buckley, 2011;
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Daviller et al., 2021). The AIF is commonly derived from time-signal profiles within a
region of interest (ROI) placed in the left ventricular (LV) blood pool.

However, the signal obtained is not linearly dependent on the concentration of the CA.
Such a linearity can only be assumed for the lowest CA concentrations, which, in practice,
can be expected for myocardial signals. The cardiac image acquisition sequence introduces
effects often described as saturation. Typically, common sequences involve a saturation
preparation followed by multiple acquisition pulses of spoiled gradient-recalled echo (SPGR)
(Barkhausen et al., 2004; Slavin et al., 2001). The long recovery time (∼90-110ms) used in
CMR perfusion sequence to improve the contrast between remote to ischemic region in first-
pass imaging lead non-linear attenuation of the AIF. Relying on signals from the LV blood
pool could consequently lead to the misestimation of pharmacokinetic (PK) parameters.
The signals acquired in such sequences can be theoretically described by acquisition and
tissue parameters, including T1, T2, repetition time (TR), and flip angle (Hänicke et al.,
1990; Hsu et al., 2008).

One can utilize a derived equation for the inverse problem to estimate the concentration
profile from the LV blood pool signal (Hsu et al., 2008). However, this approach relies on a
detailed description of the sequence used for acquisition, which may not always be available.
Additionally, certain model limitations, such as the water exchange effect, can complicate
the methodology (Landis et al., 2000).

Various solutions have been proposed to address these limitations. One popular ap-
proach involves using a population-based Arterial Input Function (AIF). This entails deriv-
ing a constant AIF by averaging AIFs from a population of volunteers or patients who share
characteristics similar to those of the current patient under analysis (Parker et al., 2006).
However, this method has the obvious drawback of not capturing individual variations,
which can be substantial.

Some authors have suggested modifying the acquisition scheme or sequence. The dual-
bolus method involves two injections: one, dedicated to the AIF acquisition, with a lower
dose of contrast agent (CA) to limit saturation effects and another with a higher dose to
maximize tissue response (Christian et al., 2004). However, the dual-bolus protocol remains
complicated to implement for clinical routine with extensive care to be taken to ensure the
reproducibility of the boluses, especially during stress.

The dual-saturation acquisition proposes obtaining two types of images during the same
breath-hold (Gatehouse et al., 2004; Kim and Axel, 2006). The first image, with a short
recovery time (∼10ms), aims to limit the acquisition’s impact on the signal, promoting
linearity in the signal-concentration relationship but with low resolution. The second image
follows common parameters of a perfusion sequence in CMR. The dual-imaging approach
is still proposed as prototype sequence by most vendors. Hence, this solution is limited
to research areas, and its clinical routine application requires specific training. Both dual-
bolus and dual-saturation methods are constrained to their own acquisitions and cannot
be generalized to the extensive dataset of perfusion acquisitions over time. Most of the
perfusion acquired data in routine clinical practices are still obtained without satisfying
solution and considering the potential pitfalls of using various elaborated perfusion pulse
sequences in research studies, an attenuation resilient AIF estimation method based on
conventional perfusion imaging protocols with high-dosage gadolinium boluses is of high
interest.
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Other research has focused on estimating the correct AIF directly from acquired images
using a blind deconvolution approach (Schabel et al., 2010). This assumes a shared AIF
among various tissues with different tissular responses, with the redundancy of information
allowing simultaneous estimation of tissular pharmacokinetic parameters and the corre-
sponding AIF. However, the practical application of such a method requires a sufficiently
diverse range of tissue responses to ensure stability. One frequently suggested approach
is to constrain the AIF to a specific parametric time-course model, such as Parker’s AIF.
Bayesian approaches have shown also promising results (Schmid et al., 2007). Despite the
stability limits, these methods can be computationally intensive due to the conventional
iterative resolution of the deconvolution problem for tissue response and AIF.

To overcome these limitations, recent studies propose using a deep learning approach to
correctly estimate the AIF from the acquisition. One approach involves using unsaturated
AIFs from dynamic susceptibility contrast (DSC) acquisitions and their corresponding DCE
profiles to train a conditional generative adversarial network for correcting DCE saturated
AIFs (Choi et al., 2020). Another approach uses a similar method based on unsaturated
AIFs obtained using the dual-saturation sequence to train a 1D U-Net for correcting input
DCE AIFs (Scannell et al., 2023). Although both methods present promising results, their
generalization is limited by the variability in their databases, primarily due to differences
in magnetic field strength (1.5 vs. 3T) and MRI machine characteristics.

To the best of our knowledge, the latest proposition introduces a form of blind decon-
volution into a physics-informed neural network (PINN) to constrain AIF estimation (van
Herten et al., 2022). Despite the extensive dataset and the absence of the need for labeled
data, the main limitation is the considerable computation time required for this approach
(1 hour per slice for a standard personal computer).

In this study, we propose a deep learning solution to estimate the AIF while maximizing
generalization, based on simulations and blind deconvolution principle, taking saturated AIF
and tissue signals as inputs to return the estimation of the unsaturated AIF. The objective
is to develop a user-friendly and efficient solution that circumvents the need for complex
modeling of acquisition sequences and can be extended to diverse acquisition parameter
settings.

2. Methods

2.1. Simulated database

A large simulated database of AIFs and their corresponding tissue responses of over 3×106

cases is used to train the network. We adopted Parker’s simplified form to generate the
unsaturated AIFs, as described in (Parker et al., 2006).

AIFunsat = A0
exp(−kt)

1 + exp(−s(t− τ))
+

2∑
n=1

An exp

(
− t− Tn

2θn

)
(1)

Five different tissue responses were generated for each AIF using the Toft-Kety model
(Tofts and Kermode, 1991; Tofts et al., 1999). The concentration observed for each case
can be computed as follows:
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Ctissue(t) = AIF(t) ⋆ R(t)

R(t) = Ktrans × exp (−kept) (2)

A uniform, independent, and identically distributed random sampling of the parameters
in Equation (1) and Equation (2) enabled the generation of 3,906,250 unique cases, with
the upper and lower bounds described in Annex A. Eventually, the simulated AIF is con-
verted into a saturated signal using a simplified set of Bloch equations tailored for cardiac
perfusion acquisition, involving perfect saturation followed by SPGR pulses (equation 1.2.7
in (Rebbah, 2019)). Annex B provides details on the conversion process. Tissue concentra-
tions were converted by assuming a linear approximation with their corresponding signals,
employing a proportionality coefficient set arbitrarily to 1.

Due to the simulation aspect, time step units were used rather than absolute time length,
employing a signal length of 40 steps for both AIF and tissue responses. Additionally, to
avoid any scaling issues, we normalized all inputs and outputs—accurate AIF, saturated
AIF, and tissue signals—to the [0, 1] range.

2.2. In vivo database

The evaluation of the network was conducted using in vivo data obtained from a set of 43
patients/volunteers with dual-saturation acquisitions extracted from the in vivo database
described in (Daviller et al., 2021). The perfusion sequences were acquired on a 3T MAG-
NETOM Prisma (Siemens Healthineers, Erlangen, Germany) at 3 to 5 short-axis locations
for every heartbeat with a bolus injection (6 ml/s) of gadoterate meglumine (0.2 mmol/kg)
(Dotarem, Guerbet, Paris, France).

The unsaturated AIF was computed by avering blood time curves derived from ROIs
positionned in the cavity on the short recovery time acquisition series of the dual perfusion
sequence acquisition. For the saturated acquisitions, an automatic registration was provided
by the manufacturer (MOCO series, Siemens Healthcare). LV blood pool time curves,
and myocardial time curves were obtained from ROIs manually delineated at the optimal
contrast perfusion image to obtain the saturated AIF for correction and a set of myocardial
signals. A linear interpolation is used if necessary to match inputs length of the proposed
model. A K-means algorithm was employed to select 5 main signals, computed as the
average signal of each cluster. To match the simulated signal length, all time profiles were
linearly interpolated to obtain signals with a length of 40 time steps.

2.3. Network architechture and training

The proposed network is illustrated in Figure 1. It consists of a two-branch Convolutional
Neural Network (CNN): a 1D branch for the saturated Arterial Input Function (AIF) and a
2D branch for the 5 tissue signals. The outputs of the two branches are flattened, combined,
and processed through dense layers. The final output is a correction of the input saturated
AIF. Annex D provides a comparison with a fully blind deconvolution model (without
saturated AIF input).

The randomly allocated subdivision of the simulated dataset between training and val-
idation follows an 80/20% ratio, corresponding to 3,198,093/781,250 cases. Training was
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Figure 1: Deep blind AIF: CNN model. the model consists in two branches of CNN: 1D for
the saturated AIF and 2D for the 5 main myocardial signals. The output is the
estimated unsaturated AIF. Inputs and outputs are normalized in [0, 1].

conducted using the ADAM optimizer with a learning rate of 0.001 and Mean Squared Error
(MSE) loss between the proposed corrected AIF and the unsaturated simulated one. This
training process spanned 30 epochs, with each epoch consisting of 20,000 cases per batch.
The study was implemented using Python and the TensorFlow 2 framework.

The model is completed with a scale correction process. The output of blind deconvolu-
tion typically yields an estimate of the AIF that is scalefree, as all multiples of the proposed
AIF satisfy the deconvolution problem, allowing the flow or Ktrans to absorb the variation.
To estimate the correct scale factor, we followed recommendations in the literature and
chose to match the area under the curve (AUC) of the tail of the correct AIF with the AUC
of the tail of the saturated one (Schabel et al., 2010). Specifically, we selected the last 10
time points to represent the tail of the AIF.

3. Results

3.1. Training results

After 30 epochs, the model converged with a MSE of 0.69× 10−2 for both the training and
validation subsets. Figure 2 showcases a few randomly selected results from the validation
dataset. The unsaturated AIF (green line) is barely discernible, hidden by the prediction
of the proposed algorithm (blue line).

However, we observed a peculiar phenomenon where, in each training iteration, certain
temporal positions of the corrected AIF consistently exhibited values of zero. These specific
temporal positions varied with each new training process but remained constant within
the same iteration, independent of the input conditions. The cause of this behavior is
unclear, but a straightforward solution was implemented. Following a successful training,
the temporal positions where the corrected AIF exhibited zeros were identified and a post-
processing step to interpolate the values at those time points was added. In the algorithm
presented here, there were two instances of zero values. Refer to Annex E for further details.
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Figure 2: Training results. Few randomly selected examples from the validation dataset.
The green line representing the unsaturated AIF when it is not apparent, is under
the blue line, representing an accurate prediction. The orange arrows highlight
the zeros points.

3.2. In vivo results

The comprehensive evaluation of the entire algorithm (comprising the network and the
post-processing correction for scale and zero values) using dual-saturation sequences was
conducted by comparing discrepancies in the unsaturated AIF (AIFunsat) with the satu-
rated one (AIFsat) and the discrepancies of the AIFunsat and the corrected AIF estimated
by our algorithm (AIFdb for deep blind). The discrepancies were evaluated as MSE and
coefficient of determination R2. Moreover, myocardial blood flow (MBF) was estimated
using a deconvolution algorithm with a free-form residue function (Olea Medical), for each
AIF along with the extracted main myocardial signals.

Figure 3: In vivo results. To compare the accuracy of the saturated AIFsat and the correc-
tion proposed in this study AIFdb. The accuracy is tested against the AIFunsat

in case of dual-saturation sequences, in term of MSE and coefficient of determi-
nation R2. The upper right plot presents the relative error (in comparison to
AIFsat) of the estimated MBF using the AIFdb against the AIFunsat.
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The results presented in Figure 3 and Figure 4 showcase some selected cases. The
median MSE for the AIFsat was 0.15 +/- 0.05 compared to 0.07 +/- 0.03 for the AIFdb.
The median R2 was 0.27 +/- 0.12 for the AIFsat compared to 0.86 +/- 0.45 (+/- 0.10 with
outlier exclusion for two cases) of the AIFdb. The median relative error of MBF estimations
was 3.78 +/- 1.99 for the AIFsat compared to the AIFdb was 0.34 +/- 0.57. More in vivo
results are gathered in Annex C.

Figure 4: Selected in vivo results. Each case is represented by a cropped image around the
heart with its associated AIFs at the right. For each case the MSE and R2 of the
AIFdb against the AIFunsat is provided. The AIFs are scaled such as the peak
value of AIFsat is 1.

4. Discussion

The proposed approach demonstrated its capability to estimate the unsaturated version
of the AIF accurately. Training the model with simulated data allows to easily explore
perfusion parameters, enhancing its robustness and generalizability compared to strategies
using limited number of in vivo data to train the network (Annex D). Figure 2 highlights
that some simulated AIFs differ from real acquired AIFs. However, this variability promotes
learning the underlying convolution operation between the AIF and tissue responses to
derive tissue signals.

While the principle of deconvolution in perfusion imaging traditionally involves only
tissue signals, our approach deviates from this by incorporating the saturated AIF, thereby
constraining the deconvolution. In conventional literature (Schabel et al., 2010), this is
achieved by choosing a parametric time-course model; however, our approach constrains
the solution through the effect of the acquisition. The challenge then becomes finding
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an AIF that can explain both the tissue signals and the transformation induced by the
acquisition leading to the observed saturated AIF. Previous research suggested that ignoring
tissue signals and using only the saturated AIF could accurately predict its unsaturated
version (Choi et al., 2020; Scannell et al., 2023). However, we argue that such results
primarily reflect the low variability of the datasets used for training in those studies, as they
utilized perfusion acquisitions from very few centers with limited variations in acquisition
parameters. Incorporating both the saturated AIF and tissue signals in our approach allows
for better constraint of the solution. Moreover, choosing simulation with high parameter
variations supports the validity of the results.

The solution presented here is preliminary work intended to demonstrate the network’s
ability to correct acquisition effects. However, the model proposed generates fixed zeros
whose origin cannot be currently explained. Preliminary tests with the addition of multiple
dropouts seem to address this issue effectively (Annex E), warranting further investigation.
Nevertheless, the proposed post-processing successfully passed the evaluation test with real
acquisition data. Notably, we did not introduce noise to the training data. This choice is
derived from the practical pipeline induced by our method. Indeed, all inputs are averaged
from a group of signals, using ROIs of the LV blood pool for the saturated AIF and myocar-
dial signal classification for the five main tissue signals. This process significantly enhances
the signal-to-noise ratio. Future work will focus on refining this aspect to enable the use of
direct signals. However, the successful evaluation on real acquired data supports our initial
intuition.

An intriguing open question concerns the performance dependency on input tissue sig-
nals. Specifically, the decision to solely utilize myocardial signals for deriving the five
principal signals warrants consideration. Notably, a homogeneous myocardium may likely
decrease the algorithm’s performances, as evidenced by the outlier results observed in vivo.
Furthermore, the adoption of K-means clustering to extract the main signals as cluster cen-
troids is noteworthy. If the chosen number of clusters is restricted relative to the variability
of the acquired signals, erroneous main signals may be generated through the averaging of
disparate signals within the same cluster. Subsequent efforts will predominantly concen-
trate on precisely quantifying thus constraints and exercising greater discretion in selecting
inputs.

5. Conclusion

A CNN model was proposed to correct the impact of acquisition on the signal to concen-
tration relationship in perfusion CMR. The suggested model simulates blind deconvolution
while imposing constraints on the desired AIF based on the concentration-to-signal con-
version derived from simplified Bloch equations. The proposed strategy only needs a satu-
rated AIF and myocardial signals to estimate an unsaturated AIF. Training the algorithm
with simulated data allows testing a wide range of acquisition parameters. The evaluation
against AIF derived from short recovery time acquisitions of dual-saturation acquisition
demonstrates the validity of the approach.

8



deep blind aif

References

Jörg Barkhausen, Peter Hunold, Markus Jochims, and Jörg F. Debatin. Imaging of my-
ocardial perfusion with magnetic resonance. J Magn Reson Imaging, 19(6):750–757, June
2004. ISSN 1053-1807. doi: 10.1002/jmri.20073.

Alexandru Cernicanu and Leon Axel. Theory-Based Signal Calibration with Single-Point T1
Measurements for First-Pass Quantitative Perfusion MRI Studies. Academic Radiology,
13(6):686–693, June 2006. ISSN 1076-6332. doi: 10.1016/j.acra.2006.02.040.

Kyu Sung Choi, Sung-Hye You, Yoseob Han, Jong Chul Ye, Bumseok Jeong, and Se-
ung Hong Choi. Improving the Reliability of Pharmacokinetic Parameters at Dynamic
Contrast-enhanced MRI in Astrocytomas: A Deep Learning Approach. Radiology, 297
(1):178–188, October 2020. ISSN 0033-8419. doi: 10.1148/radiol.2020192763.

Timothy F. Christian, Dan W. Rettmann, Anthony H. Aletras, Steve L. Liao, Joni L.
Taylor, Robert S. Balaban, and Andrew E. Arai. Absolute Myocardial Perfusion in
Canines Measured by Using Dual-Bolus First-Pass MR Imaging. Radiology, 232(3):677–
684, September 2004. ISSN 0033-8419. doi: 10.1148/radiol.2323030573.
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Appendix A. Simulations description

A.1. AIF simulation

The AIFs were generated using a fixed time length (94s) with 40 evenly spaced samples.
The equation 1 was rewrite in the following form:

AIFunsat(t) = p0 exp

(
− t− tmax(p3 + .1)

2p6

)
+p1(1−p2) exp

(
− t− (p3 + tmax(1 + p4)/10)

2p6p7

)
+

p1p2
exp(−t/p8)

1 + exp (−(t− tmax(p4 + (1 + p4p5)/10))/p9)

with the following values:

p0 = 1

p1 ∈ {x ∈ R | 0.1 ≤ x ≤ 0.75,∆x = 0.13}
p2 ∈ {x ∈ R | 0.1 ≤ x ≤ 0.9,∆x = 0.16}
p3 ∈ {x ∈ R | 0.05 ≤ x ≤ 0.3,∆x = 0.05}
p4 ∈ {x ∈ R | 0.05 ≤ x ≤ 1.5,∆x = 0.15}
p5 ∈ {x ∈ R | 0.75 ≤ x ≤ 1,∆x = 0.05}
p6 ∈ {x ∈ R | 2 ≤ x ≤ 7,∆x = 1} × 103

p7 ∈ {x ∈ R | 1 ≤ x ≤ 2,∆x = 0.2}
p8 ∈ {x ∈ R | 1000 ≤ x ≤ 106,∆x = 106/5}
p9 ∈ {x ∈ R | 100 ≤ x ≤ 104,∆x = 104/5}

Generating AIFs from all the combinations leads to a dataset of 3,906,250 unique cases.

A.2. Delay simulation

As described in (Schabel et al., 2010), we simulated the delay using a convolution with a
gaussian by randomly sampling the following parameters:

disperssion = 0.5

delay ∈ {x ∈ R | 0 ≤ x ≤ 10,∆x = 2}

A.3. Tissue signal simulation

We simulated the tissues signals using the Toft-Ketty model, by randomly sampling the
following parameters:

kep ∈ {x ∈ R | 1 ≤ x ≤ 5,∆x = 1} × 10−2

Ktrans ∈ {x ∈ R | 1 ≤ x ≤ 3,∆x = 0.4} × 10−2
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A.4. Conversion simulation

Using the equation 3 in Annex B, we simulated the conversion of AIFunsat to AIFsat by
randomly sampling the following parameters:

M0 = 1

T1 ∈ {x ∈ R | 1400 ≤ x ≤ 2000,∆x = 120}
T2 ∈ {x ∈ R | 200 ≤ x ≤ 300,∆x = 1}
r1 ∈ {x ∈ R | 3 ≤ x ≤ 6,∆x = 3/5} × 10−3

r2 ∈ {x ∈ R | 4 ≤ x ≤ 7,∆x = 3/5} × 10−3

TI ∈ {x ∈ R | 80 ≤ x ≤ 200,∆x = 24}
TR ∈ {x ∈ R | 1 ≤ x ≤ 3,∆x = 2/5}
TE ∈ {x ∈ R | 1 ≤ x ≤ 3,∆x = 2/5}
α ∈ {x ∈ R | 10 ≤ x ≤ 35,∆x = 5}
N ∈ {64, 65, 66, 128, 129, 130}

Appendix B. Conversion concentration to signal

To convert concentration to signal for generating saturated AIF, the following equation was
used:

S([C]) = PT2 × [(Mz,1 − Peq)× PT1 +N × Peq] (3)

PT2 = sin(α) exp(−TE/T2)

Mz,1 = M0 × [1− exp(−TI/T1)]

E1 = exp(−TR/T1)

Peq = M0
1− E1

1− E1 cosα

PT1 =
1− (E1 cosα)

N

1− E1 cosα

The link with concentration used the usual relaxivities equations:

R1 = 1/T1 = 1/(T10) + r1 × [C]

R2 = 1/T2 = 1/(T20) + r2 × [C]

To obtain this equation, we assumed a perfect saturation, followed by a series of SPGR
pulses after a recovery time of TI. The process can be reconstructed following the method-
ology of (Hänicke et al., 1990). More detailed, step by step, approach is available in chapters
1.2.a. and 1.2.b. of (Rebbah, 2019).
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Parameter Description

M0 Steady state magnetization
T (1/2)0 Initial T (1/2) before bolus arrival
r(1/2) relaxivities of T (1/2)

TI Recovery time between saturation pulse and acquisition
TR Repetition time
TE Echo time
α Flip angle
N Number of acquired line in k-space

Appendix C. Quantitative perfusion analysis

All the analysis use the dual saturation acquisition described in the in vivo database section.
The quantitative perfusion analysis was performed using a deconvolution algorithm with a
free-form residue function (Olea Medical).

C.1. Main myocardial signals

The analyze were performed using the different AIFs and the 5 main myocardial signals.
The results were evaluated through:

� Comparison with the extracted main signals: MSE and R2 of the estimated recon-
structed myocardial signals

� Comparison with the residue function derived from AIFunsat: MSE of the estimated
residue function with AIFsat and AIFdb

� Comparison with the residue function derived from AIFunsat: relative error of the
estimated MBF using AIFsat and AIFdb

All results are depicted in Figure 5. It is observed that the estimation achieved with AIFdb

demonstrates greater concordance with AIFunsat compared to AIFsat. Specifically, there is
a factor 10 improvement favoring AIFdb in terms of relative error of the estimated MBF.

C.2. Mapping results

We selected one volunteer from the in vivo database to present the mapping results that
are gathered in Figure 6.

The mapping results reinforce the earlier observations, indicating stronger agreement
between AIFunsat and AIFdb than between AIFunsat and AIFsat. Notably, the error associ-
ated with AIFdb is lower compared to the findings observed for the main myocardial signals
dataset. This variance might stem from the extraction procedure of the main signals, po-
tentially introducing erroneous signals through the averaging of divergent signals within the
same cluster. This aspect warrants further investigation.
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Figure 5: Quantification of the extracted in vivo main myocardial signals obtained with
AIFunsat, AIFsat and AIFdb. The results are presented in term of MSE, R2 and
relative error of the estimated MBF. The table presents the average and the
standard deviation of the results.
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Figure 6: Mapping results: quantification of MBF using AIFunsat, AIFsat and AIFdb. AIFsat

and AIFdb are compared to AIFunsat in term of relative error of MBF (last row),
and the distributions of MBF in the selected bounding box are plotted for each
AIF. R2 was computed between the acquired and estimated signals.
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Appendix D. Building model and comparison of training strategies

D.1. Full blind deconvolution model

Theoretically, the blind deconvolution problem could be performed solely using the main
signals. We propose here to compare the results of the full blind deconvolution model
with the proposed model. The full blind deconvolution model is constructed using the
same architecture as the proposed model, except that the layers associated with AIFsat

are omitted, utilizing only the main signals as input. The model is trained using the
same simulated database as the proposed model. Dropout layers with a rate of 0.2 are
incorporated to prevent zero values in the output. Both models are trained with a maximum
of 150 epochs, with a stopping criterion based on the loss of the validation dataset.

Figure 7: Comparison between the proposed model and the full blind deconvolution model.
The MSE is computed using the validation dataset.

The results are presented in Figure 7. Notably, we observe a higher MSE for the full blind
deconvolution model compared to our proposed model. Such behavior is anticipated, as the
input signals may exhibit limitations such as low variability or significant delay. Introducing
an initial AIFsat constraint in our proposed model helps mitigate these limitations.

In (Choi et al., 2020) and (Scannell et al., 2023), the authors advocated for using only
the AIFunsat as input to train the network, demonstrating the feasibility of such an ap-
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proach. However, these results are likely influenced by the limited dataset variability, as
these studies utilized perfusion acquisitions from a few centers with restricted protocol pa-
rameter variations. Additional inputs such as the main signals or the AIFsat can provide
constraints to enhance the solution. One could also experiment with fewer primary signals,
theoretically achieving accurate AIFunsat estimation. Nevertheless, such approaches will
expose the process to a higher risk of error.

D.2. Comparison of training strategies

In this section, we compare the same proposed model (with dropout rate of 0.2) trained
with:

� The simulated database as described in the main text

� The dual saturation acquisitions from the in vivo database

� The dual saturation acquisitions from the in vivo database to fine tune the model
trained with the simulated database

The performances of the models were evaluated using 10 cases from in vivo database
and 10,000 cases of the simulation training dataset. To train with in vivo data, we split
them in two sets: 26 for training and 7 for testing and managing the training process.
The performances were evaluated in terms of MSE and R2. The results are presented in
Figure 8.

The results highlight the advantage of the models trained with the simulated database.
The fine-tuned model exhibits a slight improvement in terms of MSE and R2 compared to
the model trained solely with the in vivo database. However, the model trained with the
simulated database outperforms the fine-tuned model for in vivo and simulation dataset.
These results lend support to the proposed strategy and its ability to generalize.
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Figure 8: Comparison of the proposed model trained with different datasets. The fine-tuned
approach is initially trained with the simulated database and then fine-tuned with
the in vivo database. MSE and R2 are computed using subsets of the in vivo (last
row) and testing simulation (upper row) datasets.
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Appendix E. Analyze of zeros outputs

The proposed model exhibits a peculiar phenomenon where certain temporal positions of
the corrected AIF consistently display zero values in each training iteration. These specific
temporal positions vary with each new training seed, which is a variation of the randomly
selected cases for training. The cause of this behavior remains unclear; however, we propose
to investigate the impact of the dropout layers on a such behavior.

The model was trained with different dropout rate (0 and 0.2) with two different seeds.
The results are presented in Figure 9.

Figure 9: Impact of the dropout layers on the zero outputs. The sub-figures represent the
average AIFs across the testing dataset for two models trained with different
seeds. The orange arrows highlight some zeros points. 1: The positions with zero
values are excluded from the MSE computation

The positions with zero values vary with the selected seeds, and the addition of dropout
layers effectively addresses the issue. However, the MSE computed without considering the
zero positions is higher for the case with dropout layers. Such results suggest that if a
robust post-processing step is implemented to handle the zero points, the dropout layers
could potentially be removed. In the algorithm presented in the main text, we proposed
detecting these zero positions and interpolating the values at those time points.
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