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Abstract

The BigCode community, an open-scientific collaboration working on the responsible de-
velopment of Large Language Models for Code (Code LLMs), introduces StarCoder and
StarCoderBase: 15.5B parameter models with 8K context length, infilling capabilities and fast
large-batch inference enabled by multi-query attention. StarCoderBase is trained on 1 trillion
tokens sourced from The Stack (Kocetkov et al., 2022), a large collection of permissively
licensed GitHub repositories with inspection tools and an opt-out process. We fine-tuned
StarCoderBase on 35B Python tokens, resulting in the creation of StarCoder. We perform
the most comprehensive evaluation of Code LLMs to date and show that StarCoderBase
outperforms every open Code LLM that supports multiple programming languages and
matches or outperforms the OpenAI code-cushman-001 model. Furthermore, StarCoder
outperforms every model that is fine-tuned on Python and still retains its performance on
other programming languages. We take several important steps towards a safe open-access
model release, including an improved PII redaction pipeline and a novel attribution tracing
tool, and make the StarCoder models publicly available under a more commercially viable
version of the Open Responsible AI Model license.
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1 Introduction

Generative AI and large language models (LLMs; Brown et al., 2020; Chen et al., 2021; Chowdhery et al.,
2022; Zhang et al., 2022; OpenAI, 2023a) are predicted to significantly impact the workforce in the coming
years (Eloundou et al., 2023; Bommasani et al., 2021; World Economic Forum, 2023) by boosting worker
productivity. LLMs trained on code (Code LLMs) have seen particularly fast adoption: Microsoft’s Copilot
has attracted over 1 million professional developers (Euronews, 2023) and GitHub reports that Copilot
users rely on it to produce 35% of the code they write for some languages (Thompson, 2022). However, the
development and use of LLMs has raised concerns of copyright, privacy, and openness.

Copyright concerns arise in many jurisdictions, including the U.S. and E.U. , regarding the rights of content
creators whose public data is used to train language models. It has been questioned whether machine learning
models trained on such data fall under fair-use doctrine in the U.S. (Kuhn, 2022; Butterick, 2022; Rothchild
& Rothchild, 2022), with fair use being most likely when the model generates novel content dissimilar
to any copyrighted training data (Lemley & Casey, 2020; Levendowski, 2018). Henderson et al. (2023),
therefore, suggest LLM developers should provide additional tools to ensure these models comply with current
copyright laws. It is important to mention that these legal issues are not only the subject of scholarly debates:
lawsuits have already been filed against GitHub Copilot (DOE 1 v. and GitHub, Inc., 2022) as well as Stable
Di�usion (Andersen et al v. Stability AI et al, 2023).

Concerns about personal information led Italy to temporarily ban ChatGPT and launch an ongoing investi-
gation into OpenAI’s compliance with the E.U.’s General Data Protection Regulation (GDPR) (BBC, 2023).
According to these regulations (European Council, 2018; Lomas, 2022), organizations that process personal
information must have a valid legal basis. These laws could potentially a�ect LLM developers who gather
vast amounts of public data from the internet, which may include personal information. Obtaining explicit
consent from data creators is di�cult at this scale, and it is uncertain whether other legal grounds exist for
processing this personal information. Moreover, even with a valid legal basis, GDPR mandates that data
processors inform individuals as to how their data is being processed and provide data access controls, such
as the right to have data deleted or to modify erroneous data. This would require LLM providers to be
transparent about the data they have collected and provide tooling for individuals to inspect their data and
have the possibility to delete it.

The lack of transparency and openness surrounding the development processes of generative AI models
has also raised concerns in the scientific community. Many models are closed-access to varying degrees:
from being available only within the organization that developed them (Chowdhery et al., 2022; Ho�mann
et al., 2022) to being accessible publicly through a paid API but with many details on their development
process hidden (Brown et al., 2020; OpenAI, 2023a). While API access allows researchers to experiment with
these models, it limits their ability to research LLM safety (Perez et al., 2022), inspect the models’ inner
workings (Olsson et al., 2022), and contribute to model improvements (Togelius & Yannakakis, 2023).

We use “open-access” to refer to models whose weights are public. Although other open-access models
exist, the level of openness still varies across these projects; and some models with released weights have
restrictions on model distribution (Touvron et al., 2023), or do not release their training datasets (Nijkamp
et al., 2023; Zhang et al., 2022; Fried et al., 2022). Even in cases when models and training data are both
released permissively (Ra�el et al., 2020; Tay et al., 2022), external researchers typically do not have an
opportunity to participate in guiding the development of industry-produced models. In contrast, other
LLM development projects have taken a fully open approach which aims to allow for community inputs
into model development, release training data, and enable external audits throughout the full development
process (Solaiman, 2023). One example is the BigScience research workshop (BigScience Workshop, 2022),
an open scientific collaboration (Akiki et al., 2022) comprising hundreds of researchers collaborating to
release BLOOM, a multi-lingual LLM (Scao et al., 2022; Muennigho� et al., 2022). Similarly, EleutherAI, a
grassroots-turned-nonprofit research initiative, has released open-access LLMs including GPT-NeoX (Black
et al., 2022), GPT-J (Wang & Komatsuzaki, 2021), and Pythia (Biderman et al., 2023), as well as the
associated training data (Gao et al., 2021a).

In this paper, we describe StarCoder and StarCoderBase, open-access code LLMs developed and released by
the BigCode community, with a focus on respecting copyright, privacy, transparency, and community-driven
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model development. The project is an open-scientific collaboration focusing on the responsible development
of LLMs for code. It is co-stewarded by two industry research labs and comprises more than 600 members
from diverse academic institutes and industry labs. The Stack (Kocetkov et al., 2022) is a publicly available
pre-training dataset for Code LLMs with a transparent data governance framework. The Stack consists of
6.4 TB of permissively licensed source code in 384 programming languages, and includes 54 GB of GitHub
issues and repository-level metadata in the v1.2 version of the dataset. The dataset comes with “Am I in The
Stack”, a governance tool for developers to check whether their source code is part of the dataset, and an
opt-out process for those who wish to have their code removed from the dataset.

StarCoder and StarCoderBase are both 15.5B parameter models trained on permissively licensed data from
The Stack. We trained StarCoderBase on 1 trillion tokens sourced from 80+ programming languages, GitHub
issues, Git commits, and Jupyter notebooks. We fine-tuned StarCoderBase on another 35B Python tokens,
leading to the StarCoder model. Both StarCoder models come with a novel combination of architectural
features, such as an 8K token context length (Dao et al., 2022), infilling capabilities through Fill-in-the-
Middle (FIM; Bavarian et al., 2022), and fast large-batch inference through Multi-Query-Attention (MQA;
Shazeer, 2019). We present an extensive evaluation of the StarCoder models and release a demo along with
an integrated attribution tool that can help users locate model generations that may have been copied from
the training set. Overall, our contributions can be summarized as follows.

• We release StarCoderBase and StarCoder, open-access Code LLMs trained on 80+ programming
languages that support a novel combination of capabilities and architectural features unavailable in
other open Code LLMs.

• We perform the most comprehensive evaluation of Code LLMs to date using a diverse set of
benchmarks (Lai et al., 2022; Cassano et al., 2023; Pearce et al., 2022; Fried et al., 2022; Yee & Guha,
2023; Austin et al., 2021; Chen et al., 2021; Ben Allal et al., 2022; Hendrycks et al., 2020; Reddy
et al., 2019; Cobbe et al., 2021; Nadeem et al., 2021; Gehman et al., 2020; Liang et al., 2022), and
show that:

– StarCoder outperforms every open LLM for code that supports multiple programming lan-
guages (Nijkamp et al., 2023; Zheng et al., 2023);

– StarCoder matches or outperforms the OpenAI code-cushman-001 model; and
– When fine-tuned on Python, StarCoder substantially outperforms existing LLMs that are also

fine-tuned on Python.

• We take important steps towards a safe open model release:

– We release StarCoder under an OpenRAIL-M license agreement, which enables royalty-free access,
use, and distribution of the model while embedding a set of use restrictions in identified critical
scenarios. We have worked on a version of the license agreement that: (i) is more commercially
viable for companies wishing to use and distribute the model and (ii) promotes transparency and
understanding through the sharing of AI documentation such as model cards (Mitchell et al.,
2019);

– We incorporate a new attribution tool into the VSCode demo that can help users detect and locate
model generations that may have been copied from the training set. This is achieved through a
two-step process that involves a lightweight membership check followed by a search over a BM25
index (Section 9); and

– We have significantly improved the PII redaction pipeline by collecting a PII dataset containing
12,000 files with 22,950 annotated entities. We fine-tuned our own encoder model (StarEncoder)
on this dataset, resulting in a robust PII detection model (Section 4).

2 Related Work

Language models Early e�orts to build large-scale language models used n-grams and simple smoothing
techniques (Brants et al., 2007; Heafield et al., 2013; Buck et al., 2014). Other approaches applied various
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types of neural networks architectures, such as feedforward networks (Bengio et al., 2000) and recurrent
networks (Mikolov et al., 2010; Jozefowicz et al., 2016), to the language modeling task. The Transformer
architecture (Vaswani et al., 2017) led to the development of highly scalable language models (Radford et al.,
2019; Brown et al., 2020), which have shown a predictable relationship between language modeling loss and
scaling factors such as the model size, number of training tokens, and compute budget (Kaplan et al., 2020;
Ho�mann et al., 2022).

Language Models for Code Language models were initially applied to code by Hindle et al. (2012), but
relied on n-gram models trained at comparatively small scale. Many neural architectures developed in NLP
were also applied successfully to code, including encoder-only models for producing code representations (Feng
et al., 2020; Kanade et al., 2020) and encoder-decoder models for translation, editing, summarization, and
language-to-code tasks (Wang et al., 2021; Ahmad et al., 2021; Li et al., 2022). Decoder-only Transformer
architectures have produced strong generative models of code, typically by training on mixtures of text
and code from GitHub (Chen et al., 2021; Austin et al., 2021; Fried et al., 2022; Zheng et al., 2023;
Nijkamp et al., 2023). Most of these models have not been fully open, but PolyCoder (Xu et al., 2022) and
SantaCoder (Ben Allal et al., 2023) are notable exceptions and have both open models and training data.
However, these models are relatively small (2.7B and 1.1B parameters, respectively) and are trained on less
data (< 300GB of code) than we explore in this work.

Closed-access LLMs Several large tech companies have developed top-performing LLMs without releasing
them. Examples include Google’s PaLM (Chowdhery et al., 2022) and LaMDA (Thoppilan et al., 2022),
DeepMind’s Chinchilla (Ho�mann et al., 2022) and Gopher (Rae et al., 2021), and NVIDIA’s Megatron-Turing
NLG (Smith et al., 2022). OpenAI and other AI startups, including Cohere1, Anthropic2, and Aleph Alpha3,
o�er LLMs as a paid API service. These companies did not release model weights nor provide comprehensive
information on the methodology used to create these models. OpenAI has published several technical
reports of the GPT family of models (Brown et al., 2020; Chen et al., 2021; OpenAI, 2023a), showcasing the
capabilities of their models.

Open-access LLMs Numerous open-access LLMs have been released to the AI community, although
they are generally not as strong as closed-access ones. In this paper, we use the term “open-access LLM”
when the model weights are publicly available. We still note that there are significant di�erences between
open-access models in how transparent they have been about the training data and filtering techniques. For
instance, EleutherAI released GPT-NeoX-20B (Black et al., 2022) and GPT-J-6B (Wang & Komatsuzaki,
2021), as well as the dataset these models were trained on (Gao et al., 2021a). Google released UL2-20B (Tay
et al., 2022), an encoder-decoder model trained on the publicly available C4 (Ra�el et al., 2020). Tsinghua
University released the weights of GLM-130B (Zeng et al., 2022), a Chinese-English LLM, and CodeGeeX-
13B (Zheng et al., 2023), a LLM for coding applications, without releasing the training sets. Salesforce
released CodeGen-Mono-16B (Nijkamp et al., 2023) without disclosing a proprietary Python dataset. Meta
released the OPT (Zhang et al., 2022), LLaMA (Touvron et al., 2023), and InCoder models (Fried et al.,
2022) under a non-commercial license and only provided high-level details about the data collection and
filtering process.

3 Data Curation and Cleaning

This section describes how we processed the training data of StarCoderBase. We restrict the training set to
The Stack v1.2 (Kocetkov et al., 2022), which exclusively contains data from permissively licensed4 GitHub
repositories. At the time of the data processing, 44 people opted out of The Stack. Below, we describe how
we further cleaned the data by combining heuristic filtering and manual inspection.

1https://cohere.com/
2https://www.anthropic.com/
3https://www.aleph-alpha.com/
4
See https://blueoakcouncil.org/ to learn more about permissive licenses and access a comprehensive collection of such

licenses.
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3.1 Programming Languages

Selection of programming languages From the 358 programming languages in The Stack, we selected
86 languages. The assignment of data to programming languages was performed based solely on file extension
(Kocetkov et al., 2022). We included all programming languages with more than 500 MB of data, as well as
languages that were ranked in the top 50 on Githut 2.0 or the December 2022 TIOBE Index of programming
language popularity. In addition, we included dialects of already selected programming languages (e.g.,
Racket and Scheme for Lisp). We excluded configuration languages (Nix, Puppet, etc.) and languages that
are no longer actively supported (ActionScript). We also included data formats like JSON and YAML but
limited its data volume (see “JSON and YAML” paragraph for details). The full list of selected programming
languages can be found in Tables 1 and 2. Out of the languages present in MultiPL-E (Cassano et al., 2023),
only D and Swift were not included in the training set. For D, language misclassification of the files led to less
than 2MB of data in The Stack (Kocetkov et al., 2022). Swift was excluded from the final list of languages
due to human error.

Visual inspection We performed a visual inspection to ensure that we only retain data of high quality. To
achieve this, we randomly selected 30,000 files from The Stack for each programming language, categorized
them by extension, and kept a maximum of 1,000 files for each extension. We then reached out to our
community for assistance with data inspection. We instructed the annotators to go through 50–100 files
and confirm if the data appeared to be normal code written by humans, as opposed to text, data, or a
single long line of autogenerated code. We also asked annotators to determine whether we should use our
default alpha-numeric filter (which requires over 25% alpha-numeric symbols) and long-line filter (which
requires lines to be less than 1,000 characters) for a given file extension. Eighteen community annotators
evaluated 300 programming language extensions. After inspection, we excluded 36 extensions and eliminated
the long-line filter for 27 extensions. The complete outcomes of the data inspection, including annotator
remarks, can be found in this Google sheet.

XML filter As we inspected the data, we noticed that certain extensions often consisted of XML files. For
example, the .sld extension had more than 50% of its files in XML format. To address this, we implemented
a simple XML filter that checked for the presence of “<?xml version=” within the first 100 characters of
the file. This filter proved to be e�ective and produced few false positives. Hence, we applied it to all
programming languages except for XSLT, which uses XML syntax.

Alpha filter During our investigation, we discovered that certain extensions, such as MATLAB, contained
numerous data files that frequently stored large tensors. To identify these files, we developed an alpha filter
that removed files with fewer than 25% alphabetic characters. However, when we tested this filter on a small
subset of data, we observed a high rate of false positives for certain programming languages, such as Assembly.
To address this issue, we focused on the 25 extensions with the highest number of detections and manually
verified whether or not the alpha filter should be applied.

HTML We designed a custom HTML filter that targets excessive HTML boilerplate and links. We took
into account the ratio of visible text in each file and only kept those files where the visible text makes up at
least 20% of the HTML code and has a minimum length of 100 characters.

JSON and YAML JSON and YAML files are naturally more data-heavy than other languages in The
Stack. To remove most of the data files, we applied the following filters. For YAML, we kept files with
50–5000 characters, an average line length smaller than 100, a maximum line length smaller than 1000, and
more than 50% alphabetic characters. These filters remove around 20% of the files and 90% of the volume.
For JSON, we kept files with 50–5000 characters and more than 50% alphabetic characters, which removes
around 70% of the files and 98% of the volume.
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Language After dedup After filters and decont. Weight Percentage
Num. files Volume (GB) Num. files Volume (GB)

ada 31,291 0.30 30,934 0.26 0.26 0.034
agda 17,608 0.07 17,554 0.07 0.07 0.009
alloy 5,374 0.01 5,368 0.01 0.01 0.001
antlr 7,983 0.05 7,917 0.05 0.05 0.007
applescript 4,906 0.01 4,737 0.01 0.01 0.001
assembly 248,396 1.58 247,919 1.56 1.56 0.203
augeas 195 0.00 180 0.00 0.00 0
awk 10,430 0.02 10,289 0.02 0.02 0.003
batchfile 252,514 0.29 239,568 0.23 0.23 0.03
bluespec 5,940 0.03 5,928 0.03 0.03 0.004
c 8,625,559 57.43 8,536,791 53.89 53.89 7.027
c-sharp 10,839,399 46.29 10,801,285 44.66 44.66 5.823
clojure 126,191 0.49 125,163 0.46 0.46 0.06
cmake 186,517 0.45 186,375 0.45 0.45 0.059
co�eescript 227,889 0.69 226,209 0.64 0.64 0.083
common-lisp 101,370 1.68 98,733 1.40 1.40 0.183
cpp 6,377,914 50.89 6,353,527 48.92 48.92 6.379
css 2,994,829 22.61 2,721,616 11.93 3.00 0.391
cuda 58,355 0.59 58,151 0.56 0.56 0.073
dart 932,583 3.86 928,415 3.66 3.66 0.477
dockerfile 572,186 0.42 571,506 0.42 0.42 0.055
elixir 282,110 0.74 281,016 0.71 0.71 0.093
elm 62,861 0.34 62,033 0.30 0.30 0.039
emacs-lisp 54,768 0.43 52,838 0.41 0.41 0.053
erlang 99,368 0.73 98,447 0.70 0.70 0.091
f-sharp 127,161 0.90 124,066 0.61 0.61 0.08
fortran 165,446 1.84 158,792 1.78 1.78 0.232
glsl 175,576 0.57 167,701 0.40 0.40 0.052
go 4,730,461 25.74 4,700,526 23.78 23.78 3.101
groovy 251,627 0.94 250,834 0.91 0.91 0.119
haskell 544,969 2.36 541,454 2.23 2.23 0.291
html 9,533,367 146.76 3,299,965 29.36 29.36 3.828
idris 8,060 0.03 8,042 0.03 0.03 0.004
isabelle 5,086 0.09 5,001 0.08 0.08 0.01
java 20,151,565 89.30 20,071,773 86.94 86.94 11.336
java-server-pages 214,133 1.03 210,816 0.98 0.98 0.128
javascript 21,108,587 141.65 19,544,285 64.71 64.71 8.437
json 17,012,912 338.34 4,751,547 5.62 1.00 0.13
julia 298,672 1.54 295,364 1.31 1.31 0.171
kotlin 2,242,771 5.77 2,239,354 5.68 5.68 0.741
lean 16,891 0.10 16,870 0.09 0.09 0.012
literate-agda 523 0.01 523 0.01 0.01 0.001
literate-co�eescript 1,138 0.01 1,133 0.01 0.01 0.001
literate-haskell 6,135 0.05 6,104 0.05 0.05 0.007
lua 558,861 3.28 549,459 2.87 2.87 0.374
makefile 661,424 1.49 657,349 1.31 1.31 0.171
maple 1,259 0.01 1,152 0.01 0.01 0.001
markdown 21,045,171 75.25 21,029,287 74.93 74.93 9.77
mathematica 26,895 1.72 22,653 1.25 1.25 0.163
matlab 967 0.04 93 0.00 0.00 0

Table 1: Overview of the training data for StarCoder. For the selected programming languages, we show the
number of files and data volume after near-deduplication, as well as after filtering. See also Table 2.
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Language After dedup After filters and decont. Weight Percentage
Num. files Volume (GB) Num. files Volume (GB)

ocaml 159,734 1.11 158,356 1.03 1.03 0.134
pascal 118,675 1.71 110,981 1.68 1.68 0.219
perl 392,108 2.63 365,491 2.23 2.23 0.291
php 15,904,518 66.84 15,683,017 60.89 60.89 7.939
powershell 271,487 1.25 267,627 1.12 1.12 0.146
prolog 1,023 0.01 968 0.01 0.01 0.001
protocol-bu�er 98,246 0.44 97,167 0.31 0.31 0.04
python 12,962,249 64.30 12,866,649 60.40 60.40 7.875
r 39,194 0.30 39,042 0.30 0.30 0.039
racket 4,201 0.04 3,688 0.03 0.03 0.004
restructuredtext 905,679 3.42 896,880 3.32 3.32 0.433
rmarkdown 5,389 0.06 5,386 0.06 0.06 0.008
ruby 3,405,374 7.14 3,390,320 6.81 6.81 0.888
rust 1,386,585 9.53 1,380,468 9.11 9.11 1.188
sas 9,772 0.13 9,226 0.12 0.12 0.016
scala 1,362,426 4.86 1,355,788 4.69 4.69 0.612
scheme 44,261 0.30 41,890 0.20 0.20 0.026
shell 2,236,434 3.38 2,206,327 3.09 3.09 0.403
smalltalk 592,999 0.74 587,748 0.58 0.58 0.076
solidity 164,242 1.21 153,194 0.85 0.85 0.111
sparql 14,173 0.04 13,716 0.04 0.04 0.005
sql 994,019 12.22 975,420 11.09 11.09 1.446
stan 5,441 0.01 5,429 0.01 0.01 0.001
standard-ml 48,995 0.52 19,630 0.19 0.19 0.025
stata 31,282 0.41 24,208 0.33 0.33 0.043
systemverilog 46,915 0.41 46,270 0.39 0.39 0.051
tcl 50,579 0.40 49,335 0.35 0.35 0.046
tcsh 4,911 0.02 4,806 0.02 0.02 0.003
tex 547,888 5.44 522,778 5.20 5.20 0.678
thrift 4,663 0.01 4,661 0.01 0.01 0.001
typescript 10,637,070 28.82 10,547,331 26.52 26.52 3.458
verilog 77 0.001 75 0.001 0.001 0
vhdl 60,027 1.12 58,208 0.94 0.94 0.123
visual-basic 163,291 1.49 161,239 1.42 1.42 0.185
xslt 43,095 0.56 6,513 0.05 0.05 0.007
yacc 25,775 0.41 7,451 0.11 0.11 0.014
yaml 5,282,081 28.36 3,995,948 3.76 1.00 0.13
zig 15,913 0.18 15,850 0.18 0.18 0.023
GitHub issues ≥ 30,900,000 54.40 54.40 7.093
Git commits 7,674,345 64.00 32.00 4.172
notebook scripts 914,000 7.12 7.12 0.928
notebook structured 668,743 6.00 6.00 0.782

305,929,658 815.68 799.37 100

Table 2: Overview of the training data for StarCoder. For the selected programming languages, we show the
number of files and data volume after near-deduplication, as well as after filtering. See also Table 1.

3.2 Jupyter notebooks

All Jupyter notebooks were retrieved from the Stack. We transformed Jupyter notebooks into two di�erent
datasets: Jupyter – scripts and Jupyter – structured.
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Language Num files Percentage
python 1,392,432 97.170
julia 16,730 1.167
r 11,034 0.77
scala 1,899 0.133
bash 1,441 0.101
java 1,319 0.092
q-sharp 1,273 0.089
cpp 1,081 0.075
c-sharp 1,048 0.073
matlab 908 0.063
powershell 769 0.054
javascript 592 0.041
haskell 535 0.037
scheme 484 0.034
groovy 432 0.03
f-sharp 385 0.027
ocaml 279 0.019
rust 134 0.009
clojure 96 0.007
typescript 72 0.005
maxima 31 0.002
coconut 6 0
markdown 5 0
wolfram language 4 0
tcl 3 0
Total 1,432,992 100

Table 3: Overview of the initially collected Jupyter scripts, with the number of files and the percentage.

Jupyter – scripts We utilize Jupytext5 to convert notebooks to scripts. It is an actively maintained
software that currently supports 31 programming languages. To initiate the conversion process, Jupytext
requires the identification of the specific programming languages within each notebook. We extracted this
information from the metadata of each respective notebook. However, more than 30,000 notebooks lacked
any programming language information, making it di�cult to convert them to the script format. To address
this issue, we incorporated the use of Guesslang,6 an open-source library that employs machine learning
techniques to identify the programming languages of source code. By applying a probability threshold
greater than or equal to 0.5, we successfully reduced the number of unidentified notebooks to 6,400 using
Guesslang. Ultimately, we amassed 1,432,992 scripts through the utilization of Jupytext. The distribution of
programming languages among these scripts is presented in Table 3. We evaluated language coverage by
randomly selecting 100 files from the transformed scripts, ensuring that all programming languages were
represented within this sample.

Jupyter – structured To create this dataset, we first filtered out notebooks that did not contain any
Python code or Markdown text. The information on the programming language in the metadata of each
notebook was used as the criterion to filter out non-Python notebooks. Only notebooks explicitly marked as
‘Python’ in the metadata were kept. Then for each notebook, consecutive Markdown blocks or code blocks
were merged into a large Markdown or code block respectively. Eventually, we ended up with consecutive
code-text pairs in temporal order grouped by each notebook. In general, each Jupyter code-text pair contained
the Markdown text immediately preceding the code block and the Python code, which forms a natural

5https://jupytext.readthedocs.io/
6https://guesslang.readthedocs.io/
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instruction pair. We also included the formatted output of a code block if the output cell was non-empty;
otherwise, it was marked by a special <empty_output> token. If consecutive code blocks have multiple output
cells before merging, we only retain the output of the last code block. After these preprocessing steps, we
ended up with 1,045,605 structured Jupyter notebooks.

3.3 GitHub issues

We used natural language conversations from GitHub issues and pull requests, which were collected as a
component of The Stack v1.2. Each conversation consists of a series of events with actions, such as opening
the issue, creating a comment, or closing the issue. Each event includes the author’s username, a message, an
action, and a creation date. We filtered this data as follows: 1) First, we removed auto-generated text when
users replied to issues via email. See Appendix A for the regular expression we used. We also deleted issues
with a short message (less than 200 characters) and truncated long comments in the middle to a maximum of
100 lines while retaining the last 20 lines. This removed 18% of the volume. 2) Next, we excluded comments
from bots. To do so, we searched for bot keywords in the username of the comment’s author (for more
information, see Appendix A). This step eliminates 17% of the total events and results in 14.7% of the issues
being emptied. We have observed that bot-generated issues tend to be lengthy and contain numerous logs and
links. 3) We used the number of users engaged in the conversation as an indicator of quality. Our criterion
was to include conversations that have two or more users. However, we also preserved conversations that
involved a single user if the total text within comments was less than 7,000 characters (96th percentile).
Additionally, we excluded issues authored by a single user if they contained more than ten events, as they
tended to be of poor quality or originate from overlooked bots. By implementing these filters, we removed an
additional 14% of issues. 4) Finally, we used a model from the fasttext library7 to filter out non-English issues.
This step was necessary to enable accurate redaction of names using a PII detection model (see Section 4.3).

Lastly, we would like to point out that we anonymized the usernames in the conversations by replacing them
with a participant counter within the conversation. See more details in Section 4.3 and 5.1.

3.4 Git commits

The Git commit data was gathered from BigQuery8 and includes only single-file commits of repositories with
the same licenses and file extension as used in The Stack (Kocetkov et al., 2022). We removed all repositories
from users that opted out of The Stack. The raw dataset is around 4 TB in size. We sampled 50% of the files
and filtered the remaining data with heuristics to build a high-quality dataset. We list and describe all filters
in Table 4.

The number of line changes in a commit can be very low compared to the file size. To avoid spending too
much compute budget on learning to copy the file content, we only used the full file 20% of the time, and for
the remaining 80%, sampled a window between 0 and 32 lines around the first and last changed line. The
resulting dataset contains 64 GB of commit data.

3.5 Deduplication

We followed the deduplication pipeline from Ben Allal et al. (2023), which consists of calculating the
MinHashes (Broder, 2000) of all source code files, followed by Locally Sensitive Hashing (LSH) to map similar
code files to the same bucket. We used 5-grams and a Jaccard similarity of 0.7. See this blogpost for more
details regarding the pipeline.

We applied this near-deduplication process to all programming languages and the Jupyter notebooks. However,
due to time constraints, we could not apply this procedure to Git commits. Additionally, we deemed it
unlikely to discover duplicates in Github issues, so we didn’t apply the process to them.

7
The lid.176.bin version of this language identification model: https://fasttext.cc/docs/en/language-identification.html

8https://cloud.google.com/bigquery/public-data/
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Description Details
Maximum characters Remove code files with >100k characters.
Small changes Subsample changes with Æ 2 lines with 50% probability.
Long-range refactorings Subsample changes spanning Ø 200 lines with 10% proba-

bility.
Empty commit message Remove commits with empty commit subject.
Automatic commits Remove commits that either contain or are equal to a list

of stop words.
Hash messages Remove commits with whitespace-separated words-to-

character ratio >20.
Data files Subsample data formats (JSON, YAML, XML, HTML) with

50% probability.

Table 4: Git commit filters.

3.6 Weighting of data sources

There were several discussions within the community about whether to up-sample or down-sample certain
programming languages, as the amount of compute budget allocated to a data source in a given language can
significantly a�ect the model’s performance in that language. However, we realized that the largest amount
of available data comes from popular programming languages and would, therefore, benefit a larger group
of end-users. Moreover, after the deduplication process, we found that several high-resource programming
languages, such as C, C++, C#, Java, Javascript, Python, and PHP, had a similar amount of data ranging
from 44–87 GB. This further reinforced our belief that we did not need to drastically re-weigh the existing
data distribution. Thus, in this work, we followed the natural distribution of data during training and sampled
data sources proportionally to their volume. However, we did make an exception for JSON, YAML, and
CSS, as we only want the LLM to learn the data format without wasting compute resources on memorizing
the data in such files. For that reason, we re-weighed the volume of the data source to 1 GB for JSON and
YAML and 3GB for CSS.

4 PII redaction

This section outlines our e�orts to remove Personally Identifiable Information (PII) from the training data.
In Section 4.1, we first describe how we collected a large set of PII annotations. We used these annotations
to explore various techniques to train a PII detection model in Section 4.3, building on top of the encoder
model we developed in Section 4.2.

4.1 Data collection

We utilized the Toloka platform9 to engage 1,399 crowd-workers from 35 countries in annotating a dataset
for PII in source code. On average, participants completed 206 tasks, earned about $27, and worked 3.1
hours. Our goal was to identify PII in various forms, such as names, usernames, emails, IP addresses, keys,
passwords, and IDs. To ensure that crowd-workers received fair compensation, we established an hourly pay
rate of $7.30, taking into consideration di�erent minimum wage rates across countries and their corresponding
purchasing power. We limited annotation eligibility to countries where the hourly pay rate of $7.30 was
equivalent to the highest minimum wage in the US ($16.50) in terms of purchasing power parity. A complete
list of countries that participated in the annotation can be found in Table B.1 of Appendix B. Crowd workers
in Toloka can do tasks whenever or wherever; there is no obligation to complete a certain task or spend a
fixed amount of time on it. Thus, they utilize free choice when working on the tasks. Out of 1,399 crowd
workers, 695 filled a survey on task quality, and 519 completed the survey. The average score for the question
asking whether the participant would like to contribute to another project like this is 4.92 on a scale 1–5.

9https://toloka.ai/
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Figure 1: Distribution of programming languages in the annotated PII dataset.

The dataset comprises 12,000 files, each containing approximately 50 lines of code written in 31 programming
languages. Figure 1 shows the distribution of programming languages in the dataset. To increase the
representation of rare PII types, such as keys and IP addresses, 7,100 files were pre-filtered from a larger
sample. We utilized the detect-secrets tool10 with all default plugins activated, along with the regular
expressions by Ben Allal et al. (2023) for detecting emails, IPv4 and IPv6 addresses. To prevent biasing the
annotation too much towards these detection tools, the remaining 5,100 files were randomly selected from the
dataset without pre-filtering.

During annotation, we di�erentiated between various types of PII based on the specific context in which
it appeared. Specifically, we distinguished whether the PII was present in the code’s license header, was
used as a placeholder, or constituted confidential data. This categorization was necessary because the PII in
license headers is usually provided voluntarily by authors for code attribution and may not require masking.
Similarly, placeholders are not real secrets and do not need to be masked. We applied this categorization to
names, emails, and usernames. See Table 5 for an overview of all PII entities.

The annotators detected a total of 22,950 PII entities in the dataset. To evaluate the quality of the dataset,
we manually inspected 300 files that contained various PII types and calculated the recall and precision for
each type, as shown in Table 5. We found that annotating secret IDs was particularly challenging, as the
annotators tended to produce many false positives and negatives. As a result, we decided to exclude this
category from the PII detection model training.

4.2 StarEncoder

As part of our PII detection e�orts, we trained an encoder-only model (i.e., bi-directionally self-attentive
Transformers) that can be e�ciently fine-tuned for both code- and text-related tasks. We used the Masked
Language Modelling (MLM) and Next Sentence Prediction (NSP) objectives from BERT (Devlin et al., 2019;
Liu et al., 2019) and predicted masked-out tokens from an input sentence and whether a pair of sentences
occur as neighbors in a document.

We separate code snippets in the input as follows: [CLS] Snippet-1 [SEP] Snippet-2, where the two code
snippets are selected randomly, either from the same source file or from two distinct documents. For the
MLM loss, we mask tokens in the input independently with an probability of 15%. For the NSP loss, we use
a linear classifier applied to the representation output at the [CLS] token. We train for 100,000 steps with a
global batch size of 4,096 sequences of a maximum length of 1,024 so that approximately 400B tokens are

10https://github.com/Yelp/detect-secrets
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PII type Count Recall Precision
IP_ADDRESS 2526 85% 97%
KEY 308 91% 78%
PASSWORD 598 91% 86%
ID 1702 53% 51%
EMAIL 5470 99% 97%
EMAIL_EXAMPLE 1407
EMAIL_LICENSE 3141
NAME 2477 89% 94%
NAME_EXAMPLE 318
NAME_LICENSE 3105
USERNAME 780 74% 86%
USERNAME_EXAMPLE 328
USERNAME_LICENSE 503
AMBIGUOUS 287

Table 5: Overview of the PII types and the number of collected annotations. We investigate the annotation
quality by reporting the precision and recall of a manual inspection on 300 files. Each subcategory was
mapped back to its corresponding PII type for the inspection.

Hyperparameter Value
Hidden size 768
Intermediate size 3072
Max. position embeddings 1024
Num. of attention heads 12
Num. of hidden layers 12
Attention Multi-head
Num. of parameters ¥125M

Table 6: Model architecture of StarEncoder.

observed. This takes roughly two days using 64 NVIDIA A100 GPUs. Details about the model architecture
are reported in Table 6.

4.3 PII detection model

We fine-tuned StarEncoder on the annotated PII dataset for the Named Entity Recognition (NER) task. We
added a linear layer as a token classification head on top of the model, with 6 target classes: names, emails,
keys, passwords, IP addresses, and usernames. We excluded IDs due to low annotation quality and did not
di�erentiate between the categorization of PII entities (license headers, placeholders) because of the model’s
poor performance in distinguishing them. We split the dataset into a training set of 7,878 examples and a test
set of 4,000 examples, ensuring that both splits have a balanced representation of the di�erent PII types. See
Table 7. We make the training and evaluation splits available under gated access at https://hf.co/BigCode.

Fine-tuning baseline We fine-tune StarEncoder on the PII training set, and 400 annotated files from
Ben Allal et al. (2023). We achieve F1 scores of more than 90% on names, emails, and IP addresses and
73.39% on passwords. The model’s performance is comparatively low on keys and usernames, with F1 scores
of only 56.66% and 59.39%, respectively. We attribute the low performance on keys to the limited number of
labels for this type of PII, as only 308 instances were available. For usernames, we observed the model often
confused them with decorators and values in paths. This is most likely because we annotated usernames
inside links for social media platforms.
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Entity type Train Test
EMAIL 4721 1742
NAME 3847 1298
IP_ADDRESS 1941 521
USERNAME 1320 346
PASSWORD 390 148
KEY 171 118

Table 7: Train-test split of the annotated PII dataset.

Method Email address IP address Key
Prec. Recall F1 Prec. Recall F1 Prec. Recall F1

Regex 96.20% 97.47% 96.83% 71.29% 87.71% 78.65% 3.62% 49.15% 6.74%
NER 94.01% 98.10% 96.01% 88.95% 94.43% 91.61% 60.37% 53.38% 56.66%
+ pseudo labels 97.73% 98.94% 98.15% 90.10% 93.86% 91.94% 62.38% 80.81% 70.41%

Table 8: Comparing PII detection performance: Regular Expressions, NER Pipeline with Annotated Data,
and NER Pipeline with Annotated Data + Pseudo-Labels

Pseudo-labels To improve the detection of key and password entities, we employed a pseudo-labeling
technique as described by Lee (2013). This method involves training a model on a small set of labeled
data and subsequently generating predictions for a larger set of unlabeled data. Specifically, we annotated
18,000 files using an ensemble of two encoder models, which were fine-tuned on the 400-file PII dataset from
Ben Allal et al. (2023). To identify reliable pseudo-labels, we calculated the average probability logits from
our models and applied filtering criteria. Specifically, we set a minimum threshold of 0.5 for all entities,
except for names and usernames, for which we used a higher threshold of 0.6. However, upon reviewing the
results, we found a significant number of false positives for keys and passwords. As a result, we decided to
only retain entities that were preceded by a trigger word, such as key, auth, or pwd, within the preceding 100
characters. Training on this synthetic dataset before fine-tuning on the annotated one yielded superior results
for all PII categories, as demonstrated in Tables 8 and 9. Only the performance for detecting usernames did
not show significant improvement, so we decided to exclude it from the PII redaction process.

Comparison against regex baseline We compared our PII detection models against the regular expres-
sions (regexes) employed in Ben Allal et al. (2023). The regexes only support the detection of emails, IP
addresses, and keys. Note that we enhanced the email regex, as explained in the Appendix, to address false
positives we found during the evaluation on this benchmark. This modification boosted the F1 score of the
regex from 81.8% to 96.83%. Nevertheless, our PII detection models still surpassed the regex approach in
detecting all three entities, as shown in Table 8. We note that the performance di�erence was especially large
on keys and found that the detect-secrets tool generated many false positives, especially in specific pro-
gramming languages like Go and C-sharp that weren’t well represented in the regex evaluation. Consequently,
the overall precision of the tool was below 4%.

Post-processing Before applying the best PII detection model to the full dataset, we observed a couple of
frequent detection errors. We added the following post-processing techniques to reduce the number of false
positives:

• Ignore secrets with fewer than 4 characters.

• Detect full names only by requiring at least one space within the name.
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Method Name Username Password
Prec. Recall F1 Prec. Recall F1 Prec. Recall F1

NER 83.66% 95.52% 89.19% 48.93% 75.55% 59.39% 59.16% 96.62% 73.39%
+ pseudo labels 86.45% 97.38% 91.59% 52.20% 74.81% 61.49% 70.94% 95.96% 81.57%

Table 9: Comparison of PII detection performance: NER Pipeline with Annotated Data vs. Annotated Data
+ Pseudo-Labels

• Ignore detected keys with fewer than 9 characters or that are not gibberish using a
gibberish-detector.11

• Ignore IP addresses that aren’t valid or are private (non-Internet facing) using the ipaddress python
package. We also ignore IP addresses from popular DNS servers. We use the same list as in Ben Allal
et al. (2023).

PII placeholders We replaced the detected PII entities with the following tokens:

<NAME>, <EMAIL>, <KEY>, <PASSWORD>

To mask IP addresses, we randomly selected an IP address from 5 synthetic, private, non-internet-facing IP
addresses of the same type that can be found in Appendix C.

Github issues We already employed a regex approach to detect keys, IP addresses, and emails in the
Github issues, so we only used the PII detection model to redact names. We anonymized the usernames
of the authors by replacing them with a participant counter within the conversation, e.g. username_1 to
refer to second participant (see Section 5.1 for formatting details). We prepend these pseudonyms to the
beginning of each comment such that we preserve the speaker identity of the author. In addition, we redact
all mentions of these usernames in the messages. Note that we only mask the usernames of active participants
in the conversation and mentions of non-participating users are not anonymized.

Compute resources We used the PII detection model to identify PII across all programming languages
in the training dataset, including GitHub issues (names only), Git commits, and Jupyter notebooks. The
total dataset amounts to 815 GB in size. We ran inference on multiple NVIDIA A100 80 GB GPUs, which
required 800 GPU-hours.

5 Model training

This section presents information on the training process of the StarCoder models. Before we proceed, we
first clarify the di�erences between the two models:

StarCoderBase is the first model trained on 1 trillion tokens sourced from the curated dataset described
in Section 3.

StarCoder is the fine-tuned version of StarCoderBase, trained on another 35B Python tokens (roughly 2
epochs).

Throughout the following, we show how we formatted the training data (Section 5.1), decontaminated the
training data (Section 5.2), and provide details regarding the tokenizer (Section 5.3), the model architecture
(Section 5.4), the training process (Section 5.5), multi-node GPU setup (Section 5.6), and CO2 emissions
(Section 5.7).

11https://github.com/domanchi/gibberish-detector
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5.1 Data formatting

We present the formatting guidelines for each of the data sources below. We provide the templates below
in which <token> refers to a sentinel token, and metadata and data refer to placeholders for data fields,
respectively.

Code We prepend the repository name, file name, and the number of stars to the context of the code file.
To not overfit on the exact number of stars, we categorized GitHub stars into five buckets: 0, 1–10, 10–100,
100–1000, 1000+. To enable the model to operate without this metadata during inference, we prefixed the
repository name, filename, and stars independently at random, each with a probability of 0.2.

<reponame>reponame<filename>filename<gh_stars>stars\ncode<|endoftext|>

To the source code in this template (i.e. code), we apply the fill-in-the-middle transformation (FIM;
Bavarian et al., 2022). More precisely, we apply FIM at the character-level to the source code files with a
FIM-rate of 0.5, and use PSM mode with probability .5 and SPMv2 mode with probability .5.

Issues We use sentinel tokens to mark the opening of an issue and subsequently include its title. We
separate the sequence of comments by a <issue_comment> token and include a anonymized speaker identifier
before the comment. Specifically, we refer to authors by their participant counter within the conversation,
e.g. username_1 to refer to second participant in the issue. To distinguish between the di�erent turns, we
use comment1, id1 to refer to the second comment and its anonymized speaker id, respectively.

<issue_start>Title: title\nusername_id0:comment0<issue_comment>username_id1:comment1
... <issue_closed (optional)><|endoftext|>

Jupyter – scripts Jupyter scripts were formatted in the same manner as code.

Jupyter – structured Parsed Jupyter notebooks come in chains of text, code, and outputs, and we
separated them with sentinel tokens. Note that we use text2, code2, output2 to refer to the 3rd triplet in the
notebook.

<jupyter_start><jupyter_text>text0<jupyter_code>code0
<jupyter_output>output0<jupyter_text> ... <|endoftext|>

Git commits We separate the code before the commit, the commit message, and the code after the commit
with sentinel tokens. As explained in Section 3.4, we use the full files with 20% probability and otherwise use
a small window (0-32 lines) around the changed lines.

<commit_before>code_before<commit_msg>message<commit_after>code_after<|endoftext|>

We summarize all sentinel tokens in Table 10.

5.2 Training data decontamination

The code training data was decontaminated by removing files that contained docstrings or solutions from
HumanEval and MBPP, docstrings from APPS, questions from GSM8K, or prompts from DS1000. (These
benchmarks are further described in Section 6.) To give an indication of the amount of data removed by
decontamination, Python is the language with the highest number of matches, with 558 files removed.
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Token Description
<|endoftext|> end of text/sequence
<fim_prefix> FIM prefix
<fim_middle> FIM middle
<fim_suffix> FIM su�x
<fim_pad> FIM pad
<reponame> repository name
<filename> file name
<gh_stars> GitHub stars
<issue_start> start of GitHub issue
<issue_comment> start of GitHub issue comment
<issue_closed> GitHub issue closed event
<jupyter_start> start of Jupyter notebook
<jupyter_text> start of Jupyter text cell
<jupyter_code> start of Jupyter code cell
<jupyter_output> start of Jupyter output cell
<empty_output> output cell without content
<commit_before> code snippet before commit
<commit_msg> commit message
<commit_after> code snippet after commit

Table 10: Overview of the sentinel tokens.

5.3 Tokenizer

The model’s tokenizer follows our insights presented in Ben Allal et al. (2023) and uses those same design
choices: we use the Hugging Face Tokenizers library (MOI et al., 2022) to train a byte-level Byte-Pair-Encoding
with a vocabulary size of 49,152 tokens—including the sentinel tokens from table 10. The pre-tokenization
step includes a digit-splitter and the regex splitter from the GPT-2 pre-tokenizer.

5.4 Model Architecture

We trained a 15.5B parameter model with the same architecture as SantaCoder (Ben Allal et al., 2023). It is a
decoder-only Transformer with Multi-Query-Attention (MQA; Shazeer, 2019), and learned absolute positional
embeddings. We also apply Fill-in-the-Middle (FIM; Bavarian et al., 2022) transformations to the training
data, see Section 5.1. We used FlashAttention (Dao et al., 2022) to speed up the attention computation and
reduce its memory footprint, allowing us to scale to a 8K context length. To make FlashAttention work
with MQA during training, we simply expand the key and value before calling the attention kernel. The
architecture hyper-parameters are given in Table 11. In addition, we have included the hyperparameters of
SantaCoder(Ben Allal et al., 2023) for comparison.

5.5 Training details

StarCoderBase The model was trained for 250k iterations, with a batch size of 4M tokens, for a total of
one trillion tokens. We used Adam (Kingma & Ba, 2015) with —1 = 0.9, —2 = 0.95, ‘ = 10≠8 and a weight
decay of 0.1. The learning rate followed a cosine decay from 3 ◊ 10≠4 to 3 ◊ 10≠5 after a linear warmup of
2,000 iterations.

StarCoder Starting from StarCoderBase, we fine-tuned a Python variant of the model for 2 epochs on the
Python subset of the training data. We used the same settings as StarCoderBase, except that we used a
learning rate of 5 ◊ 10≠5 and decayed it to 5 ◊ 10≠6 after 1,000 iterations of linear warmup. We trained for
8,500 steps.
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Hyperparameter SantaCoder StarCoder
Hidden size 2048 6144
Intermediate size 8192 24576
Max. position embeddings 2048 8192
Num. of attention heads 16 48
Num. of hidden layers 24 40
Attention Multi-query Multi-query
Num. of parameters ¥ 1.1B ¥15.5B

Table 11: Model architecture of StarCoder. We also include SantaCoder (prior work by the community).

5.6 Multi-Node GPU Setup

We trained our model on a GPU cluster with 512 A100 80 GB GPUs distributed across 64 nodes. We
partitioned the model with a 3D-parallel layout that shards the model with both tensor and pipeline parallelism
rank 4, requiring 16 GPUs (two nodes) for one replica. To fully leverage the cluster’s capabilities, we used
32-fold data parallelism. To optimize GPU utilization and reduce idle compute bubbles, we maintained a
micro-batch size of 1 and accumulated for 16 steps, resulting in a global batch size of 512 (equivalent to
4M tokens). We used Megatron-LM’s distributed optimizer because we found that it leads to slightly higher
throughput in this configuration. Since it requires the gradient reduction step in FP32, the training in BF16
leads to 10% lower throughput than FP16, but we used it anyway to avoid training instabilities.

Except for a few restarts, we did not experience significant training instabilities.

5.7 CO2 emissions

StarCoderBase We report the carbon footprint (Lacoste et al., 2019) of training StarCoderBase. Based
on the total number of GPU hours that training took (320,256) and an average power usage of 280W per
GPU, this adds up to 89671.68 kWh of electricity consumed during the training process. Multiplied by the
carbon intensity of the energy of the us-west-2 AWS location (0.15495 kgCO2e per kWh) and the average
Power Usage E�ectiveness of 1.2 across AWS datacenters, this results in 16.68 tonnes of CO2eq emitted.

StarCoder The fine-tuned model adds 3.5% of training time, which translates to an additional estimated
emission of 0.58 tonnes of CO2eq.

6 Evaluation

In this section, we first outline the models we evaluated in addition to StarCoder and StarCoderBase. Then we
report on the Python language performance of all models on the HumanEval (Chen et al., 2021), MBPP (Austin
et al., 2021), and DS-1000 (Lai et al., 2022) evaluation benchmarks. Then we cover multi-language evaluation
using a variety of benchmarks and tasks.

A Code LM Evaluation Harness To enable reproducible and centralized evaluation of StarCoder and
other Code LLMs, we developed a Code LM Evaluation Harness (Ben Allal et al., 2022), inspired by the LM
Evaluation-Harness (Gao et al., 2021b). This harness provides a framework for the e�cient evaluation of
code models, utilizing data parallelism and docker containers for execution. It supports several benchmarks,
including HumanEval, MultiPL-E, and DS-1000.

Other Models Evaluated We compare StarCoder and StarCoderBase to the following models.

1. CodeGen-16B-Multi (Nijkamp et al., 2023) is an open-access, 16B parameter model that is trained
on the Pile (Gao et al., 2021a), and then on additional code written in C, C++, Go, Java, JavaScript,
and Python from the GitHub BigQuery dataset (Smith, 2016).
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Model Size HumanEval MBPP
Open-access
LLaMA 7B 10.5 17.7
LLaMA 13B 15.8 22.0
SantaCoder 1.1B 18.0 35.0
CodeGen-Multi 16B 18.3 20.9
LLaMA 33B 21.7 30.2
CodeGeeX 13B 22.9 24.4
LLaMA-65B 65B 23.7 37.7
CodeGen-Mono 16B 29.3 35.3
StarCoderBase 15.5B 30.4 49.0
StarCoder 15.5B 33.6 52.7
Closed-access
LaMDA 137B 14.0 14.8
PaLM 540B 26.2 36.8
code-cushman-001 12B 33.5 45.9
code-davinci-002 175B 45.9 60.3

Table 12: Comparing StarCoder’s performance (pass@1) on the HumanEval and MBPP Python with several
other models. StarCoder and StarCoder base obtain the highest performance of open-access models, and
comparable performance to the code-cushman-001 closed access model.

2. CodeGen-16B-Mono is a version of CodeGen-16B-Multi that is fine-tuned on additional Python
code from GitHub, though the dataset is not publicly available.

3. CodeGeeX (Zheng et al., 2023) is an open-access 13B parameter model trained on 23 programming
languages selected from the Pile, the CodeParrot dataset (Wolf et al., 2020), and additional data
for Python, Java, and C++. CodeGeeX also includes its own multi-language benchmark suite,
HumanEval-X, which we discuss below.

4. code-cushman-001 is a 12B parameter model by OpenAI and was the initial model for GitHub
Copilot (Chen et al., 2021). The details of its training set are unknown. This model has been
deprecated by OpenAI but was available from the Microsoft Azure OpenAI Service at the time of
writing.12

5. Finally, although they are not specifically trained for code generation, we include some results from
the LLaMA (Touvron et al., 2023), PaLM (Chowdhery et al., 2022), and LaMDA (Thoppilan et al.,
2022) papers. LLaMA’s license prohibits commercial use, and PaLM and LaMDA are not publicly
available.

6.1 StarCoder: Python Evaluation

In this section, we evaluate the performance of StarCoder on Python, comparing it to both open-access and
closed-access models. We first report performance on HumanEval (Chen et al., 2021) and MBPP (Austin
et al., 2021), which are two widely used benchmarks of Python performance. However, we also measure
performance on DS-1000 (Lai et al., 2022), a code completion benchmark of 1,000 Python data science
problems based on StackOverflow questions.

6.1.1 The HumanEval and MBPP Benchmarks

HumanEval (Chen et al., 2021), and MBPP (Austin et al., 2021) are widely-used benchmarks for Code LLMs
consisting of hundreds of Python programming problems that use test cases to validate the code produced by

12
There had been a code-cushman-002, but it is not available at the time of writing.
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Format Model Matplotlib

NumPy

Pandas
PyTorch

SciPy
Scikit-

Learn TensorFlow

Overall

Number of problems: 155 220 291 68 106 115 45 1,000
Completion SantaCoder-1B 21.6 4.6 0.9 2.6 2.4 4.8 3.1 5.7
Completion InCoder-6B 28.3 4.4 3.1 4.4 2.8 2.8 3.8 7.4
Completion CodeGen-16B-Mono 31.7 10.9 3.4 7.0 9.0 10.8 15.2 11.7
Completion code-cushman-001 40.7 21.8 7.9 12.4 11.3 18.0 12.2 18.1
Completion StarCoderBase 47.0 27.1 10.1 19.5 21.7 27.0 20.5 23.8
Completion StarCoder 51.7 29.7 11.4 21.4 20.2 29.5 24.5 26.0
Insertion SantaCoder-1B 21.6ú 13.8 2.0 3.8 5.7 6.9 14.8 9.3
Insertion InCoder-6B 28.3ú 4.6 2.9 4.4 2.8 3.1 7.8 7.5
Insertion StarCoderBase 47.0ú 26.3 10.9 16.6 20.2 30.2 22.3 24.0
Insertion StarCoder 51.7* 30.8 10.3 21.0 20.2 27.4 20.0 25.4

Table 13: Performance of open-access and closed-access models on DS-1000. Benchmarks are as follows. All
models evaluated at temperature=0.2, top_p=0.5, max_length=1024. Scores reflect mean pass@1 accuracy
averaged over 40 samples. ú: Matplotlib task does not have right sided context, so insertion and completion
formats are identical.

a Code LLM. Code LLMs generate code by sampling from their output distribution. We report performance
using the pass@k metric (Chen et al., 2021): the total fraction of benchmark problems solved, where a
problem is considered solved if any one of k code samples passes every test case. Like Chen et al. (2021),
we use sampling temperature 0.2 for pass@1, and temperature 0.8 for k > 1. We generate n = 200 samples
for all experiments with open-access models. For API models, we use n = 20 samples, which is enough to
estimate pass@1. We focus on the simplest version of pass@k, which is pass@1: the likelihood that a problem
is solved in a single attempt by the model.

Table 12 compares StarCoder (and StarCoderBase) on HumanEval and MBPP to several open-access and
closed-access models:

1. StarCoder is the highest-performing open-access model on both benchmarks.

2. StarCoder outperforms the largest models, including PaLM, LaMDA, and LLaMA, despite being
significantly smaller.

3. StarCoderBase is also very capable on Python and is competitive with CodeGen-16B-Mono, a
similarly-sized open-access model that was fine-tuned on Python.

4. StarCoder outperforms OpenAI’s code-cushman-001 (12B) model.

6.1.2 The DS-1000 Python Data Science Benchmarks

A major limitation of HumanEval and MBPP is that they are simple programming puzzles that are not
representative of the code that most programmers write. In contrast, the DS-1000 benchmark (Lai et al.,
2022) has a suite of 1,000 realistic and practical data science workflows across seven libraries and evaluates
generations in execution against test cases.

DS-1000 supports two evaluation modes: completion and insertion (via FIM). We report completion scores for
all models but insertion scores only for models that support it: the StarCoder models and InCoder-6B (Fried
et al., 2022). DS-1000 also categorizes problems based on the libraries used: Matplotlib, NumPy, Pandas,
SciPy, Scikit-Learn, PyTorch, and TensorFlow. We report pass@1 for each library and an overall score in
Table 13 and draw the following conclusions:

1. StarCoder substantially outperforms all other models on data science problems from the DS-1000
benchmark. Moreover, this is true across every kind of data science library.
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2. StarCoderBase also outperforms every other model, but is slightly behind StarCoder on DS-1000.

3. We confirm the finding by Lai et al. (2022): model performance on HumanEval and MBPP benchmarks
does not always correlate with performance on the more realistic DS-1000 benchmarks. For example,
CodeGen-Mono slightly outperforms code-cushman-001 and the StarCoder models on HumanEval
and MBPP, but is significantly worse on DS-1000. This demonstrates the importance of evaluating
models on a range of benchmarks.

6.1.3 The ODEX Open-Domain Coding Benchmark

Our previous evaluations focus either on closed domains (i.e., primarily built-in Python functions, as in
MBPP and HumanEval) or specific domains (e.g., data science, as in DS-1000). To evaluate model ability
to generate code on a broader set of Python libraries, we use the ODEX benchmark (Wang et al., 2022)
containing 505 open-domain and 440 closed-domain Python coding queries, in four natural languages —
English, Spanish, Japanese, and Russian — with test-case-based execution evaluation.

We report the pass@1 metric for StarCoder and baseline models, including Codex (code-davinci-001), CodeGen-
16B-Mono, and SantaCoder. In addition to the overall execution accuracy, we also categorize problems by
languages and domains, which are: (1) queries in the closed-domain (using only built-in Python functions)
and open-domain (using functions from imported libraries), and (2) queries with instructions written in
English, Spanish, Japanese, and Russian, respectively. We report overall scores and scores in di�erent domains
and languages in Table 14 and draw the following conclusions:

1. StarCoder substantially outperforms all other models on open-domain coding queries from the ODEX
benchmark.

2. StarCoderBase also outperforms every other model, even better than StarCoder in the ODEX English
subset, but slightly behind in other languages.

3. Both StarCoder and StarCoderBase models generally exhibit smaller gaps between open- and closed-
domain queries than other baseline models, despite the higher overall execution accuracy. This result
indicates that StarCoder models acquire more generalized skills about coding queries in the open
domain (i.e., concerning diverse Python libraries), while other models exhibit larger performance
drops when moving from the closed to open domain.

Model English Spanish Japanese Russian
overall open closed overall open closed overall open closed overall open closed

CodeGen-16B-Mono 33.7 25.2 43.1 30.0 25.0 43.1 37.8 26.6 62.8 46.8 30.4 60.1
code-cushman-001 31.9 24.4 40.2 31.9 27.7 36.7 25.7 21.2 35.5 40.0 26.0 51.6
code-davinci-001 33.6 26.9 41.0 36.9 31.7 42.9 31.0 23.7 47.3 43.2 28.9 55.1
SantaCoder 37.7 30.9 45.1 32.1 26.0 39.1 28.1 23.0 39.4 36.9 23.0 48.3
StarCoderBase 46.5 40.7 53.0 30.1 25.4 35.5 41.2 37.6 49.2 46.1 34.0 56.1
StarCoder 44.7 37.0 53.1 37.6 32.9 42.9 44.2 39.6 54.5 50.4 33.8 64.1

Table 14: Performance on the ODEX benchmark by instruction languages and code domains: open problems
use libraries, while closed use only built-in Python functions.

6.2 StarCoder and StarCoderBase: Multi-Language Evaluation

In this section, we focus primarily on StarCoderBase, and evaluate its performance on a variety of programming
languages and programming tasks, including producing code from natural language descriptions, documenting
code, predicting type annotations, and more. This section also shows that StarCoder, despite being fine-tuned
on Python, remains a very capable multi-language Code LLM and even outperforms StarCoderBase on some
languages.
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Language CodeGen-16B-Multi CodeGeeX code-cushman-001 StarCoder StarCoderBase
cpp 21.00 16.87 30.59 31.55 30.56
c-sharp 8.24 8.49 22.06 21.01 20.56
d 7.68 9.15 6.73 13.57 10.01
go 13.54 11.04 19.68 17.61 21.47
java 22.20 19.14 31.90 30.22 28.53
julia 0.00 0.29 1.54 23.02 21.09
javascript 19.15 16.92 31.27 30.79 31.70
lua 8.50 10.96 26.24 23.89 26.61
php 8.37 13.51 28.94 26.08 26.75
perl 3.42 8.09 19.29 17.34 16.32
python 19.26 21.62 30.71 33.57 30.35
r 6.45 3.92 10.99 15.50 10.18
ruby 0.00 3.34 28.63 1.24 17.25
racket 0.66 3.31 7.05 0.07 11.77
rust 4.21 7.88 25.22 21.84 24.46
scala 2.37 8.95 27.62 27.61 28.79
bash 0.61 2.75 11.74 10.46 11.02
swift 1.25 7.26 22.12 22.74 16.74
typescript 20.07 10.11 31.26 32.29 32.15

Table 15: Comparing StarCoder to multi-language open-access (e.g., CodeGen-16B-Multi) and closed-access
models (e.g., code-cushman-001) on 19 programming languages. We report pass@1 on HumanEval (Chen
et al., 2021), which we translate from Python to the other languages using MultiPL-E (Cassano et al., 2023).

6.2.1 Evaluation on 19 Programming Languages with MultiPL-E

We evaluate the ability of StarCoder to turn natural language into working code in multiple programming
languages using MultiPL-E (Cassano et al., 2023), which translates the HumanEval (Chen et al., 2021) and
MBPP (Austin et al., 2021) Python benchmarks into 18 other programming languages as follows.

MultiPL-E has a set of rule-based compilers that translate Python benchmarks to each target programming
language. Each compiler expects a benchmark in the HumanEval format: 1) a natural language description
(in a docstring), 2) a function signature (name, arguments, and, potentially, types), and 3) a set of hidden
assertions. The MultiPL-E compilers translate the function signature, assertions, and docstring (which may
have doctests) into a target language. Thus, MultiPL-E gives us a parallel set of benchmarks derived from
HumanEval and MBPP to compare model performance across programming languages.13 The MultiPL-E
languages include both high and low-resource languages, statically and dynamically typed languages, and a
variety of other programming language features.

Table 15 shows how these models perform on 19 programming languages, and from it, we draw the following
conclusions:

1. Across all 19 programming languages, StarCoderBase outperforms other open-access models, some-
times showing more than 2◊ performance.

2. StarCoderBase is competitive with code-cushman-001 on most languages that we evaluate. There
are a few exceptions. For example, code-cushman-001 outperforms StarCoderBase by more than 5%
on C++, Java, Ruby, and Swift, and StarCoder outperforms code-cushman-001 by more than 5% on
Julia.

13
The MultiPL-E prompts are slightly di�erent from the original HumanEval and MBPP prompts. For example, in HumanEval,

some ad hoc examples in docstrings are reformatted to be doctests so that they can be translated into examples in each target

language. MultiPL-E also omits three HumanEval benchmarks that do not fit the above format. These changes have a small

impact on pass rates.
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Format Model Valid (ø) Insecure (¿)
Completion StarCoderBase 855/1000 (85.50%) 340/855 (39.77%)
Insertion StarCoderBase 987/1000 (98.70%) 354/987 (35.87%)
Completion InCoder-6B 871/1000 (87.10%) 309/871 (35.48%)
Insertion InCoder-6B 854/1000 (85.40%) 293/854 (34.31%)
Completion CodeGen-16B-Multi 955/1000 (95.50%) 413/955 (43.25%)
Completion code-cushman-001 964/1000 (96.40%) 408/964 (42.32%)

Table 16: Performance on the Asleep at the Keyboard security benchmark (Pearce et al., 2022).

3. Despite fine-tuning on Python, StarCoder remains competitive on most languages, and also out-
performs other open models. What is more surprising is that StarCoder slightly outperforms
StarCoderBase on certain languages, despite being fine-tuned on Python. At this time, we can only
speculate on why this is the case, and further investigation of the open training data is likely to help
shed light on this finding.

There are several other conclusions that we can draw from the table. For example, CodeGen-16B-Multi
performs better than one might expect on some languages that are reportedly not in its training set, including
C#, Lua, PHP, and TypeScript. Its performance on TypeScript is less surprising since simple JavaScript
functions often type-check with TypeScript by design. Similarly, StarCoder shows high performance on Swift,
even though it was not included in its training set, as explained in Section 3.1.

6.2.2 The “Asleep at the Keyboard” Security Benchmark

A limitation of Code LLMs is that they can generate code with security vulnerabilities (Pearce et al., 2022).
The Asleep at the Keyboard benchmark by Pearce et al. (2022) has 89 security-sensitive scenarios across
three evaluation axes: (1) Diversity of Weakness (DoW) covers 18 di�erent vulnerability classes in MITRE’s
Common Weakness Enumeration (CWE) taxonomy, with scenarios drawn from the 2021 CWE Top 25 Most
Dangerous Software Weaknesses list published by MITRE; (2) Diversity of Prompt (DoP) evaluates the
model’s sensitivity to variations in the prompt for a single vulnerability class (SQL injection); (3) Diversity
of Domain (DoD) contains security scenarios in the hardware description language Verilog. We focus on the
DoW, which contains 54 scenarios (25 in C and 29 in Python) across 18 CWEs. We exclude scenarios that
lack an automated test, leaving 40 scenarios (23 in C and 17 in Python).

Pearce et al. (2022) had previously evaluated the security of GitHub Copilot (as of August 2021), and in
this paper, we use the same methodology to evaluate StarCoderBase, InCoder-6B, CodeGen-16B-Multi, and
OpenAI’s code-cushman-001. We use the original benchmarking methodology: generating 25 completions
per scenario at temperature 0.2 (1,000 completions per model). The dataset supports fill-in-the-middle, so
we include this configuration on models that support it. The results are shown in Table 16; Valid gives
the percentage of solutions that were syntactically valid (using py_compile for Python and gcc for C), and
Insecure shows the percentage of valid solutions that contained the vulnerability the scenario tests for. From
this table, we draw the following conclusions.

1. StarCoderBase has the highest rate of valid code.

2. InCoder-6B has a slightly lower rate for insecure code generation, but this may be due to its lower
rate of valid completions.

3. Among the models with more than 95% valid code, StarCoder has the lowest rate of insecure
completions.

6.2.3 Fill in the Middle Benchmarks

The StarCoder models support fill in the middle (FIM) or infilling, which allows the model to generate
code conditioned on prefix and su�x code surrounding the insertion point. Only a handful of recent models
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Model Java JavaScript Python
InCoder-6B 0.49 0.51 0.31
SantaCoder 0.62 0.60 0.44
StarCoder 0.73 0.74 0.62

Table 17: Performance on single-line fill-in-the-middle on the FIM benchmark by Ben Allal et al. (2023).

Model Non-None F1 All F1
InCoder-6B 59.1 46.8
SantaCoder 66.9 78.5
StarCoderBase 77.4 86.6
StarCoder 77.1 86.4

Table 18: Accuracy of Python return type prediction, using Fried et al. (2022)’s adaptation of the Pradel
et al. (2020) benchmarks. We report both the overall F1 scores, which include trivial None-type prediction,
and the F1 score for non-None types.

support FIM: from OpenAI (Bavarian et al., 2022), InCoder (Fried et al., 2022), and our prior work on
SantaCoder (Ben Allal et al., 2023). FIM opens up the possibility of a variety of tasks that go beyond
left-to-right code completion. We evaluate StarCoderBase on four established FIM benchmarks below.

Single-Line Infilling for Python, Java, and JavaScript Fried et al. (2022) present a single-line fill-in-
the-middle task for Python that masks one line of code from a HumanEval solution and scores the model’s
ability to complete the function. They turn every HumanEval solution into several fill-in-the-middle problems
by masking each non-blank, non-comment line of code in the solution body into a fill-in-the-middle task.
Ben Allal et al. (2023) generalizes this benchmark to also support Java and JavaScript, using model-generated
solutions from MultiPL-E’s translations. We compare the performance of StarCoderBase, SantaCoder, and
InCoder on this task, evaluating using line exact match (Table 17). StarCoderBase significantly outperforms
the two smaller models.

Python Return Type Prediction Pradel et al. (2020) introduce methods and datasets for evaluating
Python type annotations. Fried et al. (2022) adapt and filter one dataset from this work, consisting of Python
functions from GitHub, and use it to evaluate infilling models on function return type prediction. We use
this dataset to compare StarCoder, StarCoderBase, and SantaCoder to InCoder on function return type
prediction. Our setup follows Fried et al. (2022): each model uses greedy generation to infill return types
while conditioning on the imports, body, and signature for each function. We report exact match accuracy on
normalized annotations for all functions in the evaluation set and only those with non-None annotations,
following Fried et al. (2022). We find that StarCoder and StarCoderBase outperform existing approaches at
Python return type prediction (Table 18). However, we note that as the functions in this evaluation set were
taken from GitHub repositories, they may overlap with the training data for SantaCoder and the StarCoder
models.

TypeScript Type Prediction Yee & Guha (2023) evaluate approaches to neural type prediction for
TypeScript. However, instead of measuring accuracy, they argue that benchmarks should measure how many
projects or files do not have type errors with predicted types. This approach makes it possible to evaluate
type prediction for JavaScript programs that have never been translated to TypeScript, which reduces the
likelihood of dataset contamination. We add StarCoderBase to their evaluation framework and compare it to
InCoder, which performs best at type prediction in the original work. Table 19 shows that StarCoderBase
outperforms InCoder: (1) it produces more packages that type check, (2) across all packages, it produces
more files that type check, and (3) it produces fewer trivial type annotations than InCoder.
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Packages type check Files with no errors Trivial annotations
X Total % X Total % X Total %

InCoder 30 128 23.4 571 760 75.1 56 117 47.9
StarCoderBase 49 128 38.3 593 760 78.0 135 299 45.2

Table 19: TypeScript type prediction performance using the dataset and metholody from Yee & Guha (2023).
We only evaluate JavaScript packages that have never been translated to TypeScript and compare StarCoder
to InCoder, the best-performing model by Yee & Guha (2023). StarCoder outperforms InCoder in several
ways.

Model BLEU
InCoder-6B 18.27
SantaCoder 19.74
StarCoderBase 21.38
StarCoder 21.99

Table 20: Performance on the Python portion of the CodeXGLUE Code Summarization task, evaluating
function docstring generation. Models are evaluated zero-shot using their infilling capability.

Python Docstring Generation To evaluate models’ ability to generate documentation for functions, we
use the Python subset of the CodeXGLUE code summarization benchmark (Lu et al., 2021). This benchmark
is constructed from the CodeSearchNet dataset (Husain et al., 2019), containing functions from public GitHub
repositories. Models infill the documentation string (docstring) for each function using greedy decoding,
conditioned on the function signature and body. We follow the evaluation scheme of past work: docstrings
are evaluated using smoothed 4-gram BLEU (Papineni et al., 2002) against the reference docstring from
the original function, using only the first lines of the generated and reference docstrings (removing, e.g.,
descriptions of function arguments and return types that may appear in later lines). In Table 20, we see that
StarCoder and StarCoderBase obtain higher performance than past work on docstring generation. However,
we note that there may be an overlap between this evaluation dataset and the data used to train SantaCoder
and the StarCoder models.

6.3 Performance Improvement Through the Training Process

We evaluate the performance of StarCoderBase at several training checkpoints after every 200B tokens
seen out of the total 1000B. Figure 2 (right) shows how performance (pass@1) changes during training
for each programming language supported by MultiPL-E. The performance curve for several high-resource
programming languages suggests that training longer is likely to improve their performance further.

However, some of the low-resource languages see limited improvement during training or even have a pass@1
decline. For example, R’s pass@1 rate drops significantly between the 800B and 1000B (final) checkpoints.
The dependence of pass@1 on data size (Figure 2, left) further supports the hypothesis that this is related to
the amount of data available. The slope of the linear fit increases between 800B and 1000B checkpoints while
the intercept decreases, i.e., performance improves only for languages with large enough amounts of data
(& 1 GB).

We manually inspected the completions generated by R over several checkpoints to better understand model
performance. One might hypothesize that some problems are harder than others, and so the model gains and
loses the ability to solve them in R over the 600B, 800B, and 1000B checkpoints, but we find that this is not
the case. Instead, we find significant variance in per-problem success rates for several problems (Table D.3).
For these problems, the pass rate between di�erent checkpoints varies in what appears to be a completely
uncorrelated manner. Moreover, manual inspection shows that the failures are caused by minor mistakes,
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Figure 2: Performance (pass@1) of StarCoderBase at several training checkpoints by data size (left) and by
programming language (right). The lines in the left plot are a linear fit between pass@1 and log-dataset-size
for all the points except the leftmost one, where we expect the linear dependence to break due to transfer
learning (dashed line). The goodness of fit ranges between R2 = 0.399 for the 600B checkpoint to R2 = 0.510
for the 1000B checkpoint.

e.g., not taking the absolute value when computing GCD, not converting a string to a character array, or not
checking edge cases.

6.4 Perplexity With Long Contexts

StarCoderBase was trained with an 8K token window, allowing conditioning on and generating long code
files. To evaluate the ability of the model to benefit from this larger context, we compare its perplexity (Bahl
et al., 1983) when using a full window size of 8K tokens versus a window size of 2K tokens (as used in many
prior code models).

To ensure no overlap between the training data for StarCoderBase and the perplexity computation data, we
downloaded 10 GNU Public License (GPL) repositories from GitHub in each of the languages in Table 21.
We compiled all files from the repositories into a single document for each language. We then divided these
documents into 8K token chunks and computed perplexity on the last 1K tokens in each chunk14 in two
conditions: (1) the model window only contains the final 2K tokens in the chunk (i.e., the 1K being predicted
and the previous 1K), and (2) the model window contains all 8K tokens in the chunk (i.e., the 1K tokens
being predicted and the previous 7K). This evaluates the ability of the model to benefit from additional
file- and repo-level context when predicting code. In Table 21, we report the average perplexity of the 1K
token regions across all chunks. We see that StarCoderBase indeed benefits from the extra token conditioning
a�orded by its 8K context window, with substantially lower perplexities across all languages.

7 Natural Language Evaluation

Although the StarCoder models are principally developed to be Code LLMs, they have also been trained
on a significant amount of natural language text. Roughly 20% of its training tokens are natural language
data: 7% GitHub issues, 10% Markdown, 2% Jupyter notebooks, and 4% HTML. In this section, we evaluate

14
We evaluate perplexity on the final 1K tokens in each 8K chunk so that both conditions have the same evaluation tokens,

and to avoid overly penalizing the 2K condition, as tokens at the beginning of a window tend to have higher perplexity as there

is less context available to predict them.

25



Published in Transactions on Machine Learning Research (12/2023)

Window Size Language
cpp c-sharp c go java javascript php r ruby rust

2K tokens 2.01 1.90 1.71 1.35 1.65 1.98 1.73 1.72 2.16 1.84
8K tokens 1.79 1.66 1.61 1.21 1.54 1.68 1.43 1.48 2.02 1.65

Table 21: Perplexity of StarCoderBase on evaluation regions (of size 1K tokens) when using a window size
of 2K or 8K tokens across repositories from 10 languages. The larger window size substantially reduces
perplexity, demonstrating a benefit of StarCoder’s 8K token window.

Model Size GSM8K CoT +maj1@100 GSM8K PAL +maj1@40

StarCoderBase 15.5B 8.4 — 21.5 31.2
CodeGen-Multi 16B 3.18 — 8.6 15.2
CodeGen-Mono 16B 2.6 — 13.1 22.4

7B 11.0 18.1 10.5 16.8
13B 17.8 29.3 16.9 28.5

LLaMA 33B 35.6 53.1 38.7 50.3
65B 50.9 69.7 — —

Table 22: 8-shot accuracy on the GSM8K math-reasoning benchmark. Samples are generated with greedy
decoding. maj1@k denotes a majority vote over k generations. For the majority vote, we instead generate
samples using nucleus sampling with p = 0.95 and temperature 0.7, following Gao et al. (2022). We use
“—” when a model was not evaluated on a given metric, or the metric is not supported in Language Model
Evaluation Harness. The LLaMA CoT numbers are from Touvron et al. (2023).

StarCoderBase on several natural language tasks: natural language reasoning and understanding tasks that
might benefit from the combination of code and text training data; and natural language generation tasks
that evaluate the model’s tendencies to produce undesirable text outputs, e.g., in a documentation generation
or interactive assistant setting.

7.1 Math Reasoning

Recent work has shown that Code LLMs can be e�ective arithmetic and symbolic reasoners by using a
technique called Program-Aided Language models (PAL; Gao et al., 2022). With PAL, the LLM reads
the reasoning problem and generates Python programs as the intermediate reasoning steps, which are then
executed by the Python interpreter to produce the answer. In contrast, the Chain-of-Thought method (CoT;
Wei et al., 2022) prompts the LLM to produce the reasoning steps in natural language before generating the
answer.

We investigate the reasoning capabilities of StarCoderBase on GSM8K (Cobbe et al., 2021), a set of middle-
school math word problems. We compare with the two CodeGen-16B models (Nijkamp et al., 2023) and the
family of LLaMA models (Touvron et al., 2023). The results of our evaluation are presented in Table 22,
where we provide both CoT and PAL results for StarCoderBase and LLaMA.

In line with previous results comparing PAL to CoT on Code LLMs (Gao et al., 2022), we find that StarCoder-
Base performs better with PAL (21.5%) than with CoT (8.4%). StarCoderBase substantially outperforms
CodeGen-16B-Mono and CodeGen-16B-Multi, which achieve 13.1% and 8.6% with PAL, respectively. These
di�erences carry over to the setting where majority voting is applied. The di�erence between CoT and PAL
is much smaller for the LLaMA models, although we observe that CoT performs slightly better for the 7B
and 13B LLaMA models. Interestingly, we find that StarCoderBase outperforms LLaMA-13B (17.8%) on
this reasoning benchmark. However, its performance still lags behind LLaMA-33B (38.7%).
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Model Size MMLU 5-shot
acc, %

CodeGen-Multi 16B 27.8
GPT-NeoX 20B 32.9
StarCoder 15.5B 33.9

StarCoderBase 15.5B 34.2
LLaMA 7B 35.1
LLaMA 13B 46.9

Table 23: 5-shot accuracy on the MMLU language understanding benchmark.

Model Size CoQA zero-shot
F1 score

CodeGen-Multi 16B 0.59
StarCoderBase 15.5B 0.67

StarCoder 15.5B 0.67
LLaMA 7B 0.71
LLaMA 13B 0.73

GPT-NeoX 20B 0.73

Table 24: Zero-shot accuracy on the CoQA question answering challenge.

7.2 World Knowledge and Reading Comprehension

MMLU (Hendrycks et al., 2020) is a massive multitask language understanding benchmark, covering multiple-
choice questions in 57 knowledge domains, including the humanities, STEM, and social sciences. CoQA (Reddy
et al., 2019) is a large-scale dataset for Conversational Question Answering systems, measuring the model’s
ability to process a text passage and answer a series of interconnected questions. We compare StarCoderBase
and StarCoder with CodeGen-16B-Multi (Nijkamp et al., 2023), GPT-NeoX (Black et al., 2022), LLaMA-7B,
and LLaMA-13B (Touvron et al., 2023).

We present the 5-shot accuracy for MMLU in Table 23, and the zero-shot F1 scores for CoQA in Table 24. On
MMLU, StarCoderBase outperforms CodeGen-16B-Multi significantly (34.2% to 27.8%), and even outperforms
GPT-NeoX by a small margin (32.9%). Nevertheless, both LLaMA models outperform StarCoderBase. On
CoQA, StarCoderBase performs better than CodeGen-16B-Multi but is outperformed by LLaMA and
GPT-NeoX.

7.3 Measuring Harmful Generation

When generating open-ended text such as code documentation or technical dialogue, a Code LLM (similarly
to text-only LLMs) might produce harmful outputs. We compare StarCoderBase to previous Code LLMs on
benchmarks that measure social bias and toxicity in model-produced text.15

7.3.1 Social Bias

Recent work has highlighted that LLMs often capture social biases and stereotypes from their pre-training
corpora (Kurita et al., 2019; May et al., 2019; Hutchinson et al., 2020; Meade et al., 2023). To quantify social
bias within our model, we use StereoSet (Nadeem et al., 2021).

StereoSet consists of a collection of fill-in-the-blank-style tests for measuring social biases within language
models.16 Each example in StereoSet consists of an incomplete sentence (e.g., our housekeeper is BLANK)

15
Code for the evaluations is available here: https://github.com/McGill-NLP/StarCoderSafetyEval

16
We only evaluate against the intrasentence task in this work.
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Model Stereotype Score Language Model Score ICAT Score
Gender

LLaMA-13B 66.54 88.09 58.95
CodeGen-Multi-16B 67.34 86.41 56.44
StarCoderBase 58.76 86.82 71.60

Profession
LLaMA-13B 60.95 86.74 67.74
CodeGen-Multi-16B 60.67 85.67 67.38
StarCoderBase 53.24 84.70 79.21

Race
LLaMA-13B 64.94 87.97 61.68
CodeGen-Multi-16B 60.58 88.60 69.85
StarCoderBase 56.48 86.82 75.58

Religion
LLaMA-13B 57.95 90.26 75.91
CodeGen-Multi-16B 56.16 88.91 77.96
StarCoderBase 55.69 90.67 80.36

Overall
LLaMA-13B 63.40 87.62 64.14
CodeGen-Multi-16B 61.29 87.25 67.55
StarCoderBase 55.53 86.18 76.65

Table 25: StereoSet intrasentence results for gender, professional, racial, and religious bias. Stereotype scores
close to 50% are best. Language modeling scores and ICAT scores close to 100% are best.

alongside three possible completions. Of these completions, one is stereotypical (e.g., Mexican), another is
anti-stereotypical (e.g., Italian) and a third is unrelated (e.g., computer). StereoSet defines three metrics: a
stereotype score, a language modeling score, and an ICAT score. The stereotype score is the percentage of
examples for which a model prefers the stereotypical completion for a sentence over the anti-stereotypical
completion. The language modeling score is the percentage of examples for which a model prefers a meaningful
completion (stereotype or anti-stereotype) over an unrelated completion. Finally, Nadeem et al. (2021) define
an idealized context association test (ICAT) score that combines these two metrics:

ICAT = lms · min(ss, 100 ≠ ss)
50 (1)

where lms and ss denote the language model score and stereotype score, respectively.

We report StereoSet results for StarCoderBase, alongside LLaMA-13B and CodeGen-Multi-16B, in Table 25.
Across all four bias domains, we find StarCoderBase obtains the lowest stereotype scores, but also has
competitive language modeling scores. This suggests that StarCoderBase’s lower stereotype scores are not
simply due to worse language modeling (Meade et al., 2022), and also as indicated by the high ICAT score.

We also evaluate StarCoderBase against Crowdsourced Stereotype Pairs (CrowS-Pairs; Nangia et al. 2020)
and refer readers to Table D.4 for results.

7.3.2 Toxicity

To evaluate toxicity in responses generated from our model, we use RealToxicityPrompts (Gehman et al.,
2020), a collection of sentence-level prompts that often elicit undesirable responses from language models.
We generate responses to 10K examples from RealToxicityPrompts using StarCoderBase with a minimum
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Model Classifier Word List
LLaMA-13B 0.74 1.43
CodeGen-Multi-16B 0.21 0.82
StarCoderBase 0.42 1.12

Table 26: RealToxicityPrompts response toxicity results. We report the percentage of responses flagged as
toxic using a toxicity classifier and an o�ensive word list. Lower scores are indicative of less toxic generations.

Model Size Open
Access

Synth.
Reason.

(AS)

Synth.
Reason.

(NL)
bAbI Dyck GSM8K MATH MATH

(CoT) LSAT Legal
Support

code-davinci-002 175B 54.0 68.4 68.6 80.5 56.8 41.0 43.3 — —

text-davinci-003 175B 50.2 73.4 65.3 75.1 50.6 39.0 44.9 23.3 62.2
Luminous

Supreme

70B 31.2 — 50.4 72.9 11.2 14.9 5.7 21.2 53.0

StarCoderBase 15.5B X 44.0 21.0 50.4 85.4 8.4 15.1 7.0 19.0 53.2

Cohere Command

Beta

52.4B 24.3 24.5 47.3 42.1 13.8 13.3 7.5 22.9 60.6

J1-Jumbo v1 178B 26.3 17.4 54.3 44.5 5.4 8.9 3.3 23.2 48.4

J1-Grande v2 beta 17B 28.6 13.9 47.0 61.7 9.6 12.7 6.8 19.1 56.2

code-cushman-001 12B 34.1 16.4 48.1 45.1 4.9 9.9 7.2 — —

OPT 175B X 22.5 24.8 50.7 49.4 4.0 6.5 2.6 22.0 53.2

GPT-NeoX 20B X 20.4 16.7 46.8 74.7 5.3 14.1 7.1 19.1 51.5

BLOOM 176B X 30.4 19.7 44.7 54.5 9.5 4.3 5.5 20.9 54.3

GLM 130B X 25.2 25.4 44.3 54.9 6.1 0 5.9 19.3 45.1

UL2 20B X 20.5 21.7 50.1 14.0 2.4 0 0 20.7 50.6

OPT 66B X 19.3 21.3 40.8 47.1 1.8 4.8 2.9 17.5 52.7

YaLM 100B X 5.6 6.1 34.6 63.3 0 0 0 2.3 48.4

T5 11B X 19.6 10.1 41.2 34.7 2.3 0 0 15.9 55.8

Table 27: Model results on natural language reasoning tasks in the HELM benchmark, with models ordered
by their average rank on the tasks. We use “—” when a model was not evaluated on a given metric, or has
runtime errors logged in HELM (e.g., “unmapped prediction” for the code-davinci-002 and code-cushman-001
models on LSAT and Legal Support). StarCoder generally substantially outperforms other open-access
models, and often outperforms much larger models.

length of one token and a maximum length of 128 tokens. We use nucleus sampling (Holtzman et al., 2020)
with p = 0.95 to generate all of our responses.

We use two methods for automatically evaluating toxicity in responses: (i) a RoBERTa-based (Liu et al.,
2019) toxicity classifier (Vidgen et al., 2021) and (ii) a list of potentially o�ensive words.17 For the toxicity
detector, we report the percentage of responses flagged toxic using a threshold of 0.5. For the o�ensive word
list, we report the percentage of responses which contain an o�ensive word. We note that while the o�ensive
word list can potentially falsely flag responses, it may provide a crude measure of blatant toxicity. We report
our results in Table 26.

In general, we observe that CodeGen-16B-Multi and StarCoderBase both appear to generate less toxic
responses than LLaMA-13B. For instance, 1.43% of LLaMA-13B’s responses contain potentially o�ensive
tokens compared to the 1.12% of StarCoderBase. We also note that CodeGen-16B-Multi appears to generate
less toxic responses than StarCoderBase.

7.4 Reasoning Tasks in HELM

We evaluate StarCoderBase with HELM (Liang et al., 2022), an evaluation suite aiming to increase the
transparency of LLMs by reporting their performance on a wide range of tasks. We evaluate the ability of
the model to leverage its natural language and code pretraining for natural language reasoning tasks from
HELM (excluding code tasks, because of our own extensive code evaluations). At the time of writing, the

17https://github.com/LDNOOBW/List-of-Dirty-Naughty-Obscene-and-Otherwise-Bad-Words
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HELM benchmark does not include the CodeGen, CodeGeex, and LLaMA models. Therefore, we compare
StarCoderBase with the largest and/or most recent model from each family of “limited” or “open” access
models, as classified on the HELM model list,18 that had been evaluated on a majority of these HELM
reasoning tasks as of May 1, 2023. In Table 27 we report the results. We compute each model’s ranking
on each task, and order models in the table by their average ranking across tasks. StarCoderBase generally
obtains substantially stronger performance than all other models with released weights and often performs
comparably to or better than much larger models. We speculate that the mixture of code and natural
language in the training data contributes to the model’s strong performance on these reasoning tasks.

8 Qualitative Evaluation

In Appendix E, we highlight several interesting interactions we had with StarCoderBase. We hope these
serve as a starting point for researchers and developers interested in further exploring the model’s capabilities.
We provide examples of how to elicit interesting model behavior using the templates for Git commits, GitHub
issues, and Jupyter notebooks in Section E.1. In Section E.2, we demonstrate how to prompt StarCoder to act
as a technical assistant without any instruction-tuning. In Section E.3 we find that it is also possible to prompt
the model using a combination of meta-data and natural language to obtain higher pass@1 performance on
the HumanEval benchmark.

9 Attribution Tools

As generative language tools become more ubiquitous and data-intensive, the need to understand and inspect
the massive amounts of text they were trained on becomes more pressing, both to understand the failure
modes of models as well as provide transparent data governance feedback in the form of attribution tracing and
provenance management of a model’s generated output. This pressing need for understanding data (Mitchell
et al., 2022) is being increasingly recognized and operationalized in the form of dataset inspection tools and
toolkits (Akiki et al., 2023; Marone & Van Durme, 2023; Piktus et al., 2023). It is from this vantage point
that we are releasing two such data inspection tools: a membership-checking tool and a BM25 search index.
These complement the existing “Am I in The Stack” tool which operates at the level of GitHub repository
names. The two new tools index only the files used for training and allow for matches on file content. These
tools are available as standalone sites but are also integrated into our VSCode demo. This helps users identify
parts of the model output that may have been copied from the training data. By utilizing the search index,
users can locate the corresponding source file and repository of the copied snippets.

9.1 Membership Checking

Marone & Van Durme (2023) propose documenting datasets with membership testing artifacts deemed Data
Portraits. They provide one specific implementation, based on Bloom Filters (Bloom, 1970), that o�ers
fast and lightweight membership inference. We build a Bloom-filter-based portrait on strings of length 50
characters from the training data. This artifact takes 26 GB, ≥ 3% of the data size. The inference tool is
hosted publicly to complement other documentation artifacts. 19

Generations from the model can be quickly checked to approximately assess the degree of overlap with
the training corpus. The VSCode extension supports using this as a rapid, first-pass attribution method.
However, this requires that matching strings are longer than a minimum size and does not attempt to filter
common or generic code snippets. After the first pass check, users can use the full search index to further
assess attribution.

18https://crfm.stanford.edu/helm/latest/?models=1
19http://stack.dataportraits.org/
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9.2 Search Index

We index the training dataset using Elasticsearch 7.1720 and provide two search tools to query it: one focused
on the Python subset and one covering the entire dataset. The code itself is preprocessed using a lowercase
filter and Lucene’s ASCIIFoldingFilter, tokenized using a 3-gram tokenizer, and indexed using the default
Lucene implementation of BM25 as a similarity function. We further index the username and license fields as
keyword fields allowing for easy filtering and lookup based on these specific metadata fields. Both indexes are
currently running in single-node mode on one virtual machine.

10 Social Impact and Limitations

10.1 Project approach

Open-science and open-governance StarCoder is an output of a community research project. The
project is conducted in the spirit of Open Science (Woelfle et al., 2011), focused on the responsible development
and use of Code LLMs. Through open-governance practices conducted throughout the project, priority in
decision-making has always yielded to the more responsible option even if this meant introducing limitations
that might impact adoption or future research. For example, the Legal, Ethics, Governance Working Group
decided to remove and not release a dataset of identified malicious code, even though this data might be
useful for future security research.

Openness and safety risks Solaiman (2023) explains how the degree of openness in the LLM development
process is connected to the potential risks associated with a model release. When systems are developed in a
fully closed manner, it is more likely for power to become concentrated among high-resourced organizations,
and the small development team may not fully comprehend the impact and long-term consequences of the
model being deployed. In addition, closed-development systems are often less auditable by external experts
and can impede scientific progress since researchers cannot build upon each other’s work. On the other hand,
fully open development allows for community research, democratizes access to the models, and enables audits
throughout the whole development process. However, without appropriate guardrails, open LLM development
poses a higher risk of misuse, as increased model access also increases the likelihood of harm caused by the
model. Even though a released API can be shut down, once the model weights are released, it is nearly
impossible to retract them. Discussing and implementing responsible AI practices has, therefore, been front
and center during the development of our project’s LLMs.

10.2 Limitations

Dataset and data licensing StarCoder was trained on a subset of The Stack v1.2 dataset. This dataset
has been filtered using a license detector to only include permissively licensed source code. Nevertheless, the
license detector might have incorrectly classified a number of repositories. See Kocetkov et al. (2022) for
more details on this license detection process.

Opt-out process Although The Stack o�ers a way to remove developer code, its opt-out process only
applies to individual repositories and could benefit from further enhancements. For example, when code
is licensed under a permissive or copy-left license, it can be duplicated to another repository, making it
challenging to eliminate such copies if the copyright owner chooses to opt out. More work is necessary to
create better data control and consent mechanisms for large-scale training sets of LLMs.

PII detection Despite our best e�orts to remove PII (Section 4), StarCoder may still produce PII (however,
note that the model license restricts use that aims to generate or disseminate PII with the purpose of harming
others). As mentioned in Section 4.2, we trained an encoder-only model to detect PII for both code- and
text-related tasks and noted that there is a possibility of false positives and negatives, which could lead to
unintended consequences when processing sensitive data. Moreover, the PII detection model’s performance

20https://www.elastic.co/guide/en/elasticsearch/reference/7.17
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may vary across di�erent data types and programming languages, necessitating further validation and fine-
tuning for specific use cases. The PII annotations are only available to approved individuals, and researchers
and developers who are granted access are expected to uphold ethical standards and data protection measures.
By making it accessible, our aim is to encourage further research and development of PII redaction technology.

Malicious code On the Hugging Face platform, where the Stack is hosted, a malicious code detection
tool identified 654 files as unsafe. With the help of our community, we removed these files ahead of the
release of The Stack v1.2. Nevertheless, The Stack may contain undetected malicious code, and StarCoder
might be able to generate malware. The StarCoder OpenRAIL-M license, therefore, includes a use restriction
against generating and/or disseminating malware (including — but not limited to — ransomware) or any
other content that can be used to harm electronic systems.

Model limitations StarCoder is subject to typical limitations of LLMs, including the potential to generate
content that is inaccurate, o�ensive, misleading, discriminatory towards age or gender, or reinforces other
stereotypes. Please refer to Section 7.3 for an investigation into such safety concerns. Deployments of
StarCoder need to further challenge and adapt the model to prevent such behavior, e.g., through red-
teaming (Perez et al., 2022), adversarial testing (Wan et al., 2023), and/or by adding a robust safety
layer (OpenAI, 2023b). The model is released with an OpenRAIL-M license that places enforceable use
restrictions that apply to the model and its modifications, and to applications using the model.

English-only evaluations We evaluated the performance of StarCoder solely on English-based benchmarks
to understand its coding capabilities and natural language understanding. To make these models more
accessible to a wider audience, future research should investigate the performance and limitations of Code
LLMs on other natural languages.

Code attribution tools The StarCoder membership-checking tool and BM25 search index are limited
to dataset inspection against the subset of The Stack that was used for training and, as such, will not
find matches to code that was not included or that was removed from the dataset for this project. The
Portraits-based membership testing tool uses hash matching and thus may have false positives. It also has a
minimum resolution and requires a certain amount of context to trigger a match. Both attribution tools do
not attempt to distinguish between generic code (e.g., boilerplate) or protected content. However, we hope
that these tools will support ongoing research on the responsible development of LLMs.

10.3 Social impact

Code LLMs We expect Code LLMs to enable people from diverse backgrounds to learn to write higher-
quality code and develop low-code applications (Leinonen et al., 2023). Mission-critical software could become
easier to maintain as professional developers are guided by code-generating systems on how to write more
robust and e�cient code. However, the security implications should also be carefully considered (Sandoval
et al., 2023). While the social impact is intended to be positive, the increased accessibility of Code LLMs
comes with certain risks such as over-reliance on the generated code and long-term e�ects on the software
development job market. We refer the reader to Chen et al. (2021, Section 7) for a broader impact analysis
of Code LLMs, as well as Khlaaf et al. (2022) for an in-depth risk assessment and hazard analysis of this
emerging technology.

Data annotation It was important for the project to only use reputable data annotation services. It was
also important to balance the constraints of costs (fair compensation), time (the timing and time to complete
the work were on the critical path for the project), and quality (to ensure that PII Detection Model training
was not impacted). While traditional data annotation services using salaried employees were considered,
the decision to work with Toloka crowd-workers was taken after a review of service providers and their
compensation practices — most would not provide su�cient transparency and guarantees about worker
compensation. Our determination of compensation took into consideration di�erent minimum wage rates
across countries and their corresponding purchasing power. We limited annotation eligibility to countries
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where the hourly pay rate of $7.30 was equivalent to the highest minimum wage in the US ($16.50) in terms
of purchasing power parity.

Feedback opt-out form During the first stage of the opt-out process, individuals were asked to specify
the reasons for wanting their code to be excluded from the dataset. The recurring concerns we heard from
the individual who wished to opt out are:

• Preference for an opt-in approach instead of opt-out.

• Perception that it is unfair to use their code without compensation

• Concerns about the current limitations of AI and the potential for model generations to be traced
back to their work, resulting in potential legal liability.

• Belief that their code is of poor quality and unsuitable for AI training.

• Presence of PII in their code, which they do not wish to be publicly exposed.

The opt-out form thus provided an opportunity to directly engage with content creators and learn about the
impact of our work on them.

Community feedback on opt-out process We conducted community research with individuals at
specific organizations whose data is used in The Stack (The Alan Turing Institute and The Turing Way) and
contributed to two open, international workshops (Open Data Day 2023 and Mozilla Festival 2023 with a
session titled ‘Designing for Data Rights in the AI Production Pipeline’). These qualitative interviews and
participatory co-design workshops included 50 participants, primarily from North America and Europe, with
roles including research scientist, community manager, software engineer, and principal investigator (PI).

The outcomes from the community research can be summarized as follows: when it comes to governance of
LLM datasets, participants feel that it is both better to know and better to have a choice. Most participants
had neutral to positive feelings about their permissively licensed data being used to train LLMs. While all
had positive impressions of the “Am I in The Stack” tool, not one interviewed expressed a desire to actually
opt out. The main takeaway seemed to be that participants found the most value in the project’s governance
tools for their ability to raise awareness of data practices and to empower individuals and communities to
take action based on their specific needs. These initial conversations also highlighted the importance of
bringing governance discussions and decisions directly to impacted communities, an important direction of
future work that should extend community research beyond North America and Europe. Participants in the
workshops also raised examples of new groups to center in data rights considerations, including artists, data
miners, and future generations. The co-created outputs can be viewed on this MozFest Miro Board.

11 Conclusion

In this technical report, we described the e�orts of the BigCode community in creating StarCoderBase and
StarCoder, open-access 15.5B parameter large language models trained on code. We provided full transparency
on all aspects of the research and development process, including the training data, the data curation process,
the PII redaction pipeline, and the model training. We conducted the most extensive evaluation of Code
LLMs to date, finding that StarCoder outperforms other Code LLMs like CodeGen (Nijkamp et al., 2023)
and CodeGeeX (Zheng et al., 2023), and matches or outperforms the closed-access code-cushman-001 model
from OpenAI. By releasing the StarCoder models with an Open Responsible AI Model license, and by open-
sourcing all code repositories for building the model on GitHub, we aim to increase access, reproducibility,
and transparency of Code LLMs in the research and developer communities. The model license includes
use restrictions to ensure that modifications of the model and applications using the model adhere to our
principles of responsible AI. In addition, we released a novel set of attribution tools to help end-users of
Code LLMs to detect and locate model generations that may have been copied from the training set. We
hope these measures contribute towards a safe model release, ensuring that the strong-performing StarCoder
models remain a force for good.
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