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Abstract
This work explores transfer learning from sev-001
eral synthetic languages to English. We investi-002
gate the structure of the embeddings in the fine-003
tuned models, the information they contain, and004
the capabilities of the fine-tuned models on sim-005
ple linguistic tasks. We also introduce a new006
synthetic language that leads to better transfer007
to English than the languages used in previ-008
ous research. Finally, we introduce Tiny-Cloze009
Benchmark — a new synthetic benchmark for010
natural language understanding that is more in-011
formative for less powerful models. We use012
Tiny-Cloze Benchmark to evaluate fine-tuned013
models in several domains demonstrating that014
fine-tuning on a new synthetic language allows015
for better performance on a variety of tasks.016

1 Introduction017

Large language models (LLMs) are becoming in-018

creasingly powerful and useful. However, the role019

of data properties in model training and what ex-020

actly models learn from the training data remains021

to a large extent out of the scope of most LLM022

papers. Yet surprisingly pre-training a model on a023

simple algorithmic task can lead to improvements024

in natural language modelling (Min et al., 2023).025

Such insights can be used to improve the construc-026

tion of data sets for language models. Therefore,027

exploring the mechanisms of knowledge transfer is028

an important open question.029

Scaling language models is a popular way to030

improve their performance1. However, as the de-031

tailed analysis in (Villalobos et al., 2022) shows,032

the amount of data, especially high-quality text033

data, is limited and will become the main bottle-034

neck in the coming years.035

Such circumstances motivate research into more036

data-efficient learning algorithms and a better un-037

derstanding of the mechanisms of generalization038

1For a detailed review of other way to increase LLM gen-
eralization potential we address the reader to (Budnikov et al.,
2024)

and transfer learning (?). After all, humans, despite 039

being exposed to the orders of magnitude less data 040

than modern frontier models, show non-trivial per- 041

formance across many domains and even manage 042

to outperform machines in some of them, despite 043

all the recent algorithmic advances. 044

Inspired by this, Huebner et al. (2021) demon- 045

strate that training RoBERTa (Liu et al., 2019) 046

on language acquisition data, together with some 047

tweaks to model architecture and training, leads to 048

6000× gains in data efficiency. Similarly, Eldan 049

and Li (2023) achieve significant model compres- 050

sion while retaining the ability to produce fluent 051

and coherent English by using a generated dataset 052

of stories for children, i.e. with small vocabulary 053

and simple plots. And Gunasekar et al. (2023) find 054

that filtering for or generating data with higher ed- 055

ucational value is also very helpful. 056

Thus, there is a growing body of evidence that 057

the choice of data matters a lot and simply scrap- 058

ing the data from the web is suboptimal. However, 059

there is a limited understanding of what properties 060

of the data are important in different training stages. 061

Papadimitriou and Jurafsky (2020) show that pre- 062

training the LSTM (Hochreiter and Schmidhuber, 063

1997) on structured but not linguistic data, such as 064

MIDI music, Java code, or even nested parenthe- 065

ses, reduces its perplexity when testing on Spanish. 066

Sinha et al. (2021) find that removing all word or- 067

der information from the pre-training phase does 068

not significantly affect the final performance, given 069

a fine-tuning phase with the correct word order. Kr- 070

ishna et al. (2021) sample the training data from a 071

completely artificial language consisting of random 072

n-grams and observe that pre-training objectives 073

that require processing this information somehow, 074

such as copying sentences in the right order, still 075

improve the performance of the model on summa- 076

rization tasks compared to a randomly initialized 077

version. 078

However, research in this area currently tends to 079
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focus on reporting surprising observations rather080

than explaining them. Papadimitriou and Jurafsky081

(2020) illustrate such observations using Figure ??.082

Figure 1: Perplexity on various types of input, (Papadim-
itriou and Jurafsky, 2020).

This work attempts to build up on those obser-083

vations and make a small further step studying the084

mechanisms of transfer learning.085

First, as can be seen in the diagram above, dif-086

ferent pre-training datasets, even if they all are087

unrelated to the target task, lead to different final088

performance. This suggests that some datasets are089

inherently more complex or more similar to the090

target language. We introduce a new synthetic "lan-091

guage" by combining ideas from the previous work092

and use it, as well as two existing synthetic datasets,093

to pre-train the models. We then fine-tune them on094

English using three different fine-tuning pipelines.095

We also provide an algorithm to assess the impact096

of the pretraining data on the resulting model pa-097

rameters.098

Second, since one of the settings for transfer099

learning involves fine-tuning only the embeddings,100

they are the natural target for investigation. We101

investigate the structure of the learned embeddings,102

namely the spectrum of their singular values to un-103

derstand the effective dimensionality of the data,104

and the KMeans clustering of to check how uni-105

formly the embeddings are distributed. To check106

what information is contained in the embeddings,107

we train linear probes to predict certain features of108

the words given their embeddings. Linear probes109

are a popular interpretability technique, but to our110

knowledge they have not been used to study the111

embeddings of models pre-trained on different112

datasets and fine-tuned to the same task.113

Finally, we evaluate the performance of these114

models in natural language understanding. Since 115

existing NLU datasets such as GLUE (Wang et al., 116

2018) and MMLU (Hendrycks et al., 2020) are 117

designed for more powerful models, we use GPT-4 118

(OpenAI, 2023) to generate a similar benchmark 119

consisting of 12 different subtasks2. 120

2 Related work 121

One way of understanding the pre-training of lan- 122

guage models is that we transfer some linguistic 123

knowledge from a task with lots of available data 124

to a downstream task (Han et al., 2021). The recent 125

findings suggest that this is not the only relevant 126

effect, and sometimes not even the most important 127

one. 128

Papadimitriou and Jurafsky (2020), mentioned 129

above, pre-trained an LSTM on structured but 130

not linguistic data and found that adapting such a 131

model to Spanish by fine-tuning only its input and 132

output embeddings gave better perplexity than start- 133

ing with a randomly initialised model. Their results 134

and experimental setup established a framework 135

that has been used in subsequent work, including 136

this one. Ri and Tsuruoka (2022) improved these 137

results replacing LSTM with a Transformer and 138

changing the synthetic pre-training languages. Pa- 139

padimitriou and Jurafsky (2023) used GPT-2 (Rad- 140

ford et al., 2019). Chiang and Lee (2022) introduce 141

a family of Shuffle languages. Artetxe et al. (2019) 142

used a similar technique to combine a task-specific 143

corpus in English with a corpus in the target lan- 144

guage unrelated to the task. 145

Such transfer also works in the opposite direc- 146

tion, from natural language to other domains. Lu 147

et al. (2021) get performance comparable to train- 148

ing from scratch on different modalities by fine- 149

tuning only the input and output embeddings of 150

the pre-trained GPT-2. They also try different fine- 151

tuning approaches, tuning the layer norm parame- 152

ters and the last Transformer block in addition to 153

the input and output embeddings. 154

Mehta et al. (2021) show that pre-training moves 155

the model parameters into a flat basin of the loss 156

landscape and suggest it as a reason why pre- 157

trained models are less prone to catastrophic for- 158

getting during fine-tuning. Neyshabur et al. (2020) 159

also observe this and also show that models fine- 160

tuned from the same checkpoint stay in the same 161

basin. However, past data alone is almost never 162

2To facilitate reproducibility and further research, we pub-
lish our code and data omittedtopreserveanonymity
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enough to predict unseen data, unless one makes163

some assumptions, i.e. "inductive bias". A useful164

inductive bias can be injected into the model by165

pre-training on data that has it. McCoy et al. (2020)166

use pre-training on natural languages with certain167

properties by model-agnostic meta-learning (Finn168

et al., 2017) to find which biases are needed to169

quickly acquire these languages. Wu et al. (2021)170

design synthetic datasets requiring deduction, in-171

duction, and abduction and pre-train on them to172

extract inductive bias for general mathematical rea-173

soning. Lindemann et al. (2023) pre-train models174

to simulate finite state transducers given their de-175

scription and achieve better generalization in NLP176

tasks with similar structure.177

3 Synthetic Languages178

In this paper we report a series of experiments with179

several synthetic languages. Following hyperpa-180

rameter choices from (Papadimitriou and Jurafsky,181

2023), for each of the languages described below,182

we use a sequence length of 512, a vocabulary size183

of 500, and generate 2 · 106 sequences so the total184

size of the dataset is approximately 109 tokens in185

each case.186

3.1 nested187

(Papadimitriou and Jurafsky, 2020) used a stack-188

based grammar to generate sequences, where each189

token occurs twice and two pairs of tokens either190

do not intersect or one is nested in another. In other191

words, a balanced bracket sequence with multiple192

types of brackets.193

(Ri and Tsuruoka, 2022) suggested using differ-194

ent tokens for opening and closing brackets, and195

found improved performance. We chose to imple-196

ment this version, and save a synthetic language197

with 250 tokens for open brackets and 250 tokens198

for closing ones.199

Tokens are generated sequentially, and on each200

step, a random decision is made whether to open a201

new bracket or to close an existing one. If the stack202

of open brackets is empty or there is not enough203

space before the end of the sequence, there is only204

one option. In other cases, an opening bracket is205

chosen with a probability of 0.4, and then the type206

of bracket is sampled uniformly.207

Example word from nested:208

<23 <42 <15 15> 42> 23> <56 56>209

3.2 flat 210

This language is similar to the previous one. The 211

only difference is that the nesting property can be 212

violated. 213

In terms of sampling, it means that when a 214

bracket should be closed, now there is more than 215

one possibility. We select the bracket to close uni- 216

formly from all currently open ones. 217

Example word: 218

<23 <42 <15 42> 23> <56 15> 56> 219

3.3 flat_shuffle 220

The languages described above are each based on a 221

single rule. While such simplicity certainly makes 222

analysis easier, we hypothesize that adding more 223

complexity into the data can improve model perfor- 224

mance. 225

We suggest to use an idea of shuffle languages 226

from (Chiang and Lee, 2022) as an extra pattern 227

because it was orthogonal to the bracket balancing 228

essence of the previous datasets. The combined 229

dataset is based on flat, but each consecutive 230

group of 16 tokens has a range of 8 bracket types 231

assigned to it, and all brackets on this segment 232

are sampled only from these types. That is, each 233

such group is a permutation of the corresponding 234

brackets. 235

It adds two interesting properties to the task of 236

next token prediction. First, in the middle of the 237

line the model has to look at previous tokens to 238

guess the range of bracket types to predict the next 239

token. Second, the model can guess increasingly 240

more accurately by remembering which tokens 241

were already used if we are close to the end of 242

the permutation. In particular, the last token in 243

each permutation can be predicted with certainty. 244

Surprisingly, even small Transformer models were 245

able to capture this pattern and indeed predicted 246

the last token with close to zero loss. 247

Example word (purple and green parts represent 248

two blocks, [16, 20) and [36, 40)): 249

<16 <18 16> <17 <19 18> 17> <38 38> <36 19> 250

16> <39 39> <37 36> 37> 251

4 Methodology 252

Some languages, both synthetic and natural, are 253

more complex than others. For example, it is 254

much easier to understand the concept of balanced 255

bracket sequences than to learn Assyrian language. 256

Moreover, some languages can be understood more 257
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easily if the learner already knows another lan-258

guage. For instance, humans need less effort to259

learn a language from the same language family,260

and large language models can be fine-tuned for a261

similar downstream task using much less data than262

was used for their pre-training.263

One approach to formalize this intuition of com-264

plexity and similarity is the Chomsky hierarchy of265

languages (Chomsky, 1956). It formally defines266

several classes of grammars, each one strictly more267

general than the previous one, and the properties268

of these classes are very well understood. For ex-269

ample, nested is a context-free language, while270

flat is context-dependent. However, for languages271

from the same class, we need some other tool to272

find more fine-grained differences. We propose a273

transfer-learning based approach to quantify those.274

An important observation is that transfer learn-275

ing between languages is not symmetric, and it276

allows us to estimate both (relative) complexity277

and similarity of two languages. If languages are278

similar, transfer learning should go well in both279

directions. However, if one language is more com-280

plex than another, at least in the sense of having281

strictly more patterns, one would expect transfer282

learning to be much easier from the hard language283

to the easy one. So, assuming that we have some284

operationalization f(A,B) of "difficulty of transfer285

learning from language A to language B", we can286

take 1
2(f(A,B) + f(B,A)) to mean dis-similarity287

of A and B and 1
2(f(A,B) − f(B,A)) to mean288

complexity of A relative to B.289

Our proposed way to operationalize this notion290

of "difficulty" is to just use perplexity of the model291

pre-trained on language A and then fine-tuned to292

language B, with some of the weights frozen. By293

varying the subset of the weights allowed to be fine-294

tuned we can get a more complete picture, i.e. for295

some pair of languages just tuning the embeddings296

might already be enough, which would mean that297

they share most of the structure.298

A more practically-oriented way to compare syn-299

thetic languages is to see which of them better300

prepare models to learning English. To test this301

we take models pre-trained on each of the syn-302

thetic languages, fine-tune them to English, and303

check their language understanding capabilities304

with cloze questions.305

Finally, we study the structure of the embeddings306

in terms of effective dimensionality and number307

of clusters, and then explore what English word308

features are learned by models fine-tuned from each 309

of the synthetic languages. 310

5 Experiments 311

For all experiments, we used the TinyStories-8M 312

model (Eldan and Li, 2023). 313

5.1 Transfer Learning 314

We used three levels of trainable weight subsets: 315

E: Only input and output embeddings are tuned; 316

EL: E plus the affine parameters of LayerNorms; 317

ELT: EL plus the entire last Transformer layer; 318

For pre-training, we waited until convergence 319

that was close to the theoretical lower bounds of 320

loss or just long stagnation, which took 40K to 321

100K steps. The batch size was 8, and the sequence 322

length was 512 tokens, so we used 160M to 400M 323

tokens for pre-training. For fine-tuning, at each 324

stage, we used a fixed amount of 12500 steps, the 325

batch size was again 8, and the sequence length 326

was 512 for bracket datasets and 128 for English 327

(TinyStories), which means 51M and 13M tokens 328

correspondingly. The learning rate was 10−3 for 329

pre-training and [10−2, 2 ·10−2, 10−3] for the three 330

stages of fine-tuning. 331

Table 1 below presents the results of fine-tuning 332

in both directions on certain pairs of languages. 333

The first row shows that flat is more complex 334

than "nested". The second row demonstrates that 335

flat_shuffle is more complex than flat. Indeed, 336

fine-tuning in the direction flat_shuffle→ flat 337

→ nested achieves relatively good performance 338

already with the first stage of fine-tuning. The other 339

experiments show that English is more complex 340

than all synthetic languages used here, but it is also 341

quite different, as the model needs more flexibility 342

to adapt from English to flat or flat_shuffle. 343

5.2 Cloze Tests 344

To assess how well the models understand language 345

in general, a different benchmark is needed. Since 346

the models studied are too small for reliable ques- 347

tion answering, reasoning, and other high-level 348

cognitive skills, the test should be as simple as 349

possible, ideally just measuring perplexity on some 350

texts. There are existing datasets for natural lan- 351

guage understanding, such as GLUE (Wang et al., 352

2018) and MMLU (Hendrycks et al., 2020), but 353

they focus on more complex tasks. 354

Instead, we used GPT-4 (OpenAI, 2023) to gen- 355
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Language pair L1 → L2 →
L1 L2 L2E L2EL L2ELT L2Full L1E L1EL L1ELT L1Full

nested flat 4.4 4.1 4.1 3.8 3.5 3.3 3.3 3.3

flat flat_shuffle 2.5 2.4 2.2 2.0 3.8 3.8 3.7 3.8

flat_shuffle English 2.4 2.3 2.0 1.2 2.8 2.6 2.1 2.0

nested English 2.8 2.7 2.4 1.2 3.8 3.5 3.3 3.3

flat English 2.7 2.6 2.4 1.2 4.3 4.2 3.8 3.8

Table 1: Pretraining on L1 and transferring to L2 and vice versa. Values are negative log-likelihoods in nats.
"E", "L", and "T" indicate which layers were fine-tuned and stand for embeddings, LayerNorms, and (the last)
Transformer block respectively. We use the absolute difference of 0.2 nats per token as a threshold for "close
performance".

erate Tiny Cloze Benchmark — a set of cloze3356

infilling questions in simple English. There are the357

following 12 subtasks, each with 10 cloze ques-358

tions: ’synonyms and antonyms’ — the model359

chooses one of two antonyms to correctly fill the360

gap in the sentence; ’Logical relations’ — the361

model chooses a correct conjunction between two362

parts of the sentence; ’Subject-verb agreement’ —363

the model chooses one of two verbs that corre-364

sponds to the given subject in the sentence; ’Prepo-365

sitions’ — the model chooses a correct preposition366

in the sentence; ’Conjunctions’ — a task similar to367

’Logical relations’ but with different conjunctions;368

’Temporal understanding’ — filling in a correct369

temporal conjunction; ’Spatial understanding’ —370

filling in a word based on spatial understanding of371

the sentence; ’Quantitative reasoning’ — filling in372

the number into the sentence; ’Emotions’ — filling373

the correct emotional adjective into the sentence;374

’Narrative understanding’ — filling one noun rele-375

vant for the narrative sentence; ’Ethics’ — filling a376

noun for an ethical statement. You can find detailed377

examples of the tasks in Appendix.378

Each cloze question consists of a prompt with379

a cloze marker, a correct answer, and an incor-380

rect answer4. For each question, the difference381

between log-probabilities of the correct and in-382

correct answers is measured and then averaged383

across each subtask. We measure the difference384

in log-likelihoods rather than accuracy, because385

it provides more information per sample, which386

is important given the relatively small size of our387

benchmark.388

Here is an example question from the temporal389

3https://en.wikipedia.org/wiki/Cloze_test
4The synthetic cloze dataset can be found here

omittedtopreserveanonymity

understanding subtask: 390

[ "She ate breakfast # she went to 391

school", "before", "after", ] 392

For each of the synthetic languages, we used 393

two models, one in which only the fine-tunings 394

were adapted to English (E) and another with all 395

three stages (ELT). We compared them with the 396

model of the same architecture (8M parameters) 397

trained on English from scratch and also to a four 398

times larger model with 33M parameters trained 399

on English from scratch to see which metrics can 400

be improved. 401

In terms of general trends, there are two interest- 402

ing observations. First, models with all three stages 403

of fine-tuning are better, predictably, than their 404

counterparts having only the embeddings tuned, 405

but this difference is more pronounced in flat and 406

flat_shuffle. Second, a familiar pattern appears 407

again, nested <flat <flat_shuffle <scratch, 408

which proves the superiority of the introduced 409

flat_shuffle dataset. 410

5.3 Dimensionality and Clusters 411

The embedding dimension of the model used is 412

d = 256, and human intuition, as well as many 413

visualization techniques, work poorly for 256- 414

dimensional vectors. Therefore, we employ two 415

quantitative approaches. 416

First, for an n× d matrix of embeddings E, we 417

consider its singular values (after zeroing out the 418

mean of each column), or equivalently, the spec- 419

trum of the covariation matrix A = ETE. The 420

motivation behind this is that if all embeddings 421

were contained in a k-dimensional subspace, and 422

E had a rank k, then only k of the singular val- 423

ues would be nonzero. For real data, it is not the 424

case, as all singular values are nonzero, but still, 425
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nested E nested

ELT

flat E flat ELT flat

shuffle

E

flat

shuffle

ELT

scratch

8M

scratch

33M

synonyms and antonyms 0.24 0.18 0.22 0.13 0.31 0.25 0.25 0.28
single - plural 0.08 0.15 0.19 0.50 0.03 0.33 0.58 0.71
logical relations -0.08 -0.30 -0.44 -0.18 -0.13 -0.08 -0.04 0.09
subject-verb agreement 0.54 0.45 0.46 0.36 0.14 0.26 0.83 0.98
prepositions 0.43 0.52 0.51 0.53 0.40 0.48 0.94 1.12
conjunctions 0.46 0.43 0.45 0.38 0.36 0.49 0.63 0.82
temporal understanding -0.13 -0.02 -0.14 0.04 0.09 0.36 0.44 0.73
spatial understanding 0.13 0.30 0.40 0.48 0.06 0.37 0.64 0.71
quantitative reasoning -0.06 0.00 -0.14 -0.01 -0.14 -0.04 -0.04 -0.06
emotions -0.08 0.03 0.05 0.07 0.20 -0.01 0.61 0.77
narrative understanding -0.07 -0.04 0.03 0.07 0.04 0.04 0.17 0.27
ethics 0.32 0.17 0.34 0.22 0.27 0.30 0.25 0.51
Average 0.15 0.16 0.16 0.22 0.14 0.23 0.44 0.58

Table 2: Results on the Tiny-Cloze benchmark. Values show differences in log-likelihoods (in nats) between
correct and incorrect answers. Fine-tuning on flat_shuffle gives the highest average score across three synthetic
languages.

some directions have much larger variance than426

others, and the model is more likely to use features427

corresponding to those dimensions.428

As we see in Figure 2, in models pre-trained on429

synthetic datasets, the spectrum is dominated by430

the first few dimensions. In particular, before fine-431

tuning, most of the interesting information about432

brackets is described by two axes: open-close and433

low-to-high bracket type id. While they learn more434

diverse features during fine-tuning on English, as435

described in the next sections, they still don’t use436

the embedding space very efficiently. An inter-437

esting observation is how the tail of the spectrum438

behaves for models trained on different datasets:439

the spectrum of flat decays to zero slower than the440

one of nested, but the shape is similar, while the441

spectrum of flat_shuffle crosses flat at some442

point and behaves more similarly to the spectrum443

of the model trained on English from scratch.444

Another interesting property is how the embed-445

dings are clustered. To quantify it, we run k-means446

clustering for the embeddings varying the number447

of clusters and compare the plots of unexplained448

variance (Figure 3). Again, after pre-training on449

a synthetic language, the models have only two450

clusters: open and close brackets, and even after451

fine-tuning, the first few splits explain the major-452

ity of variance. Looking at the tail behavior, we453

observe a similar pattern: English is followed by454

flat_shuffle, then by flat and nested.455

Figure 2: Spectrum of bracket embeddings

The scratch provides a reference for the em- 456

beddings on English. We can clearly see that 457

flat_shuffle embeddings are characteristically 458

different from flat and nested embeddings both 459

in terms of the spectrum and in terms of the clusters 460

they form. 461

5.4 Linear Probes for Word Features 462

Now that we know something about the structure 463

of the embedding space, a natural question to ask 464

is how this structure is used. In other words, what 465
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Figure 3: Clustering of bracket embeddings

information about a word can one extract from the466

embedding of the corresponding token?467

Preliminary experiments showed that clusters of468

features correspond to properties like "noun", "3rd469

person verb", "adjective or adverb", etc. Therefore,470

we decided to use part-of-speech tags provided by471

the NLTK library as targets. Initially, there were472

more than 30 unique tags in the dataset, but many473

of them were very rare. After filtering out all tags474

with less than 200 occurrences, the following tags475

remained: CD — cardinal digit; IN — preposi-476

tion or subordinating conjunction; JJ — adjective;477

NN - singular noun; NNP – proper noun; NNS –478

plural noun; RB – adverb; VB – base form verb;479

VBD - past tense verb; VBG - gerund; VBN - past480

participle. We use this notation in Table 3.481

We added a feature indicating the frequency of482

the token in the training corpus because typically483

the direction with the most variance in the embed-484

ding space roughly corresponded to frequency. We485

also added another boolean feature that is one if the486

token starts with a whitespace and zero otherwise.487

For each of the models and each of the features,488

we trained a ridge regression (for frequency) or a489

logistic regression (for all other variables, as they490

are Boolean) on 80% of the embeddings and then491

evaluated their R2 score or ROC-AUC on the re-492

maining 20%. See Table 3 for the results.493

All probes in all models perform better than ran-494

dom, so every model learns at least something re-495

lated to these word features. The embeddings of the496

model trained on English from scratch predictably497

outperformed the others, but the quality of other 498

embeddings turned out to be on average the same. 499

Perhaps the difference in effective dimension be- 500

tween the models is used not for these relatively 501

simple single-word features, but for more complex 502

ones. 503

6 Conclusion 504

We introduced a new synthetic language 505

flat_shuffle, and the model pre-trained on it 506

was shown to outperform the models based on the 507

languages from previous work. 508

Investigation of the structure of the embeddings 509

leads to a hypothesis that the reason behind the 510

superior performance of some synthetic languages 511

is that they require more structured embeddings, 512

which causes the intermediate layers to be adapted 513

to work with such embeddings, and in turn allows 514

effectively using a higher dimension subspace of 515

the embedding space during fine-tuning, which 516

gives more flexibility. 517

Also, we haven’t observed direct transfer of 518

structure from synthetic languages to English, i.e. 519

English tokens weren’t splitted by the model into 520

"opening" and "closing" ones. So it seems that 521

models are working in a reservoir computing style 522

where the computations for an unrelated task are 523

adapted to the task at hand in arbitrary ways. At 524

the same time, it means that the models are not 525

strictly limited by the complexity or structure of 526

the original task in transfer learning, and as long 527

as they have enough complexity of computations, 528

they can use it to adapt to the new task. 529

7 Limitations 530

The experiments reveal several interesting patterns 531

about transfer learning between synthetic and nat- 532

ural languages. However, our approach has some 533

important limitations. 534

First, we only used English as the target natural 535

language. It would be interesting to see if the pat- 536

terns we observed hold for other natural languages, 537

especially those with different grammatical struc- 538

tures. 539

Second, even our most complex synthetic lan- 540

guage, flat_shuffle, was simple enough to be 541

learned by a model with 8 million parameters. Per- 542

haps with better synthetic data and correspondingly 543

more capable models we would observe qualita- 544

tively new phenomena. 545
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nested flat flat_shufflescratch

frequency 0.84 0.85 0.85 0.93
start_space 0.70 0.70 0.70 0.89
pos_tag_CD 0.66 0.63 0.63 0.80
pos_tag_IN 0.76 0.79 0.71 0.87
pos_tag_JJ 0.60 0.58 0.60 0.73
pos_tag_NN 0.63 0.62 0.63 0.76
pos_tag_NNP 0.64 0.65 0.63 0.79
pos_tag_NNS 0.67 0.67 0.68 0.84
pos_tag_RB 0.69 0.63 0.64 0.84
pos_tag_VB 0.71 0.69 0.68 0.79
pos_tag_VBD 0.75 0.71 0.67 0.89
pos_tag_VBG 0.71 0.70 0.73 0.89
pos_tag_VBN 0.72 0.68 0.72 0.87
Average 0.70 0.68 0.68 0.84

Table 3: ROC-AUC for the linear probes.
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A Appendix 664

Here are the examples of the Tiny Cloze benchmark 665

for particular tasks. One example for each task: 666

• ’synonyms and antonyms’: 667

"The box was incredibly light, almost 668

as if it were #.", "empty", "full" 669

• ’single plural’: 670

They # to the store every Saturday.", 671

"go", "goes" 672

• ’logical relations’: 673

"The dog barked loudly, # everyone 674

woke up", "and", "but" 675

• ’subject-verb agreement’: 676

"The cat on the fence # quietly", 677

"sits", "burns" 678

• ’prepositions’: 679

"The cat is sleeping # the 680

chair","under","above" 681
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• ’conjunctions’:682

"She went to the store # she needed683

milk.", "because", "although"684

• ’temporal understanding’:685

"It’s usually dark outside # the sun686

rises", "before", "while"687

• ’spatial understanding’:688

"The cat is under the #.", "table",689

"sky"690

• ’quantitative reasoning’:691

"There are 5 apples. If I eat 2, there692

will be # left", "3", "4"693

• ’emotions’:694

"When he lost his keys, he was really695

#.", "frustrated", "excited"696

• ’narrative understanding’:697

"After the long journey, the traveler698

was # and fell asleep quickly.",699

"tired", "hungry"700

• ’ethics’:701

"Cheating to win a game is #702

acceptable", "never", "always"703
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