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Abstract

Depth-based 3D hand pose estimation is an important but
challenging research task in robotics and autonomous driv-
ing community. Recently, dense regression methods have
attracted increasing attention in 3D hand pose estimation
task, which provide a low computational burden and high
accuracy regression way by densely regressing hand joint
offset maps. However, large-scale regression offset values
are often affected by noise and outliers, leading to a signif-
icant drop in accuracy. To tackle this, we re-formulate 3D
hand pose estimation as a dense ordinal regression prob-
lem and propose a novel Dense Ordinal Regression 3D Pose
Network (DOR3D-Net). Specifically, we first decompose
offset value regression into sub-tasks of binary classifica-
tions with ordinal constraints. Then, each binary classifier
can predict the probability of a binary spatial relationship
relative to joint, which is easier to train and yield much
lower level of noise. The estimated hand joint positions
are inferred by aggregating the ordinal regression results
at local positions with a weighted sum. Furthermore, both
joint regression loss and ordinal regression loss are used
to train our DOR3D-Net. Extensive experiments show that
our design improves the SOTA methods by a large margin
on popular benchmarks. The source code will be released.

1. Introduction

As intelligent machines like robots and autonomous ve-
hicles strive to be socially aware in human-centric environ-
ments, accurately perceiving human hands and their inten-
tions becomes vital for robotics [8, 19] and autonomous
driving [32, 34]. High-quality hand pose estimation is an
important prerequisite for accurately perceiving and inter-
preting human hand movements. With the development
of deep learning, hand pose estimation from RGB im-
ages [1, 14, 24, 35] and depth images [3, 21, 23, 30] have
attracted much attention. This paper focuses on improving
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Figure 1. Visualization of final and intermediate results for com-
parison between SOTA methods and our method. Row 1 and 2
show predictions from A2J [30] and JGR-P20 [6] respectively and
row 3 shows our predictions. For each row, column 1 shows the
final result of prediction for an exemplar hand joint (superimposed
on input depth image) and column 2 and 3 show the x-offset and
y-offset maps respectively. For better comparison, bright and light
yellow dots surrounded by red circles show the predict joint and
ground truth respectively. Notice that several error areas present in
the offset maps from A2J and JGR-P20 (highlighted with red and
yellow boxes). In contrast, our probability map is clean. This is
brought by our dense ordinal regression design and empowers our
DOR3D-Net to surpass SOTA methods in public benchmarks.

depth-based 3D hand pose estimation, which aims to output
joint coordinates in 3D space from an input depth image.
Existing hand pose estimation methods with dominant
performance employ deep learning models of different
structures. Some models [4, 33] extract deep representa-
tions and then directly regress the joint coordinates or other
forms of hand model parameters. Differently, more recent
models explore dense predictions. They usually use a dense
grid and for each grid position predict an offset vector that



points to a joint. The densely predicted offset vectors form
an offset map and then are used to infer joint coordinates.
For example, A2J [30] proposes dense anchors and aggre-
gates the offsets of these anchors to estimate each joint in
the image plane. JGR-P20 [6] regresses joints by weighted
averaging over all pixels’ offsets in both image plane and
depth space. For these methods, depending on the distance
between a grid position and its target joint, the offset value
varies in a large interval, especially for high-resolution im-
ages. However, large-scale regression offset values are of-
ten affected by noise and outliers. These flaws are diffi-
cult to completely remove and will propagate to subsequent
steps resulting in degradation in the estimated joint accu-
racy. In this paper, we explore ordinal constraints to im-
prove dense prediction methods for hand pose estimation.
Specifically, as a point traverses in space along the scan-
line, the spatial relationship between the point’s position to
a target joint should vary smoothly with strict ordinal con-
straints. A closely related previous work [17] is ordinal re-
gression which converts a regression task into a series of
binary classifies with ordinal constraints. The ordinal re-
gression has been proven to be useful for several tasks such
as age estimation [17] and depth estimation [7].

To our best knowledge, we are the first re-formulate 3D
hand pose estimation as a dense ordinal regression prob-
lem and propose a novel Dense Ordinal Regression 3D
Pose Network (DOR3D-Net). Specifically, the design of
DOR3D-Net includes: (1) The problem of hand joint re-
gression in 3D is decomposed into sub-tasks of binary clas-
sifications. Each binary classifier is associated to a grid in
3D with different interval distributions in image and depth
dimensions. Each binary classifier predicts probability of a
binary spatial relationship between the position and a joint
point. (2) The ordinal regression results at different lo-
cal positions are aggregated to infer joint positions with
weighted sum. This allows us using a joint position loss
together with the ordinal regression loss to supervise our
DOR3D-Net. (3) Three branches of networks are used for
each of the three dimensions respectively.

The experiments show that the binary classifiers in our
design are easy to train and yield much lower level of noise.
Fig. 1 visualizes the offset maps predicted by A2J [30],
JGR-P20 [6] and our probability map in image plane re-
spectively. The first row shows the offset maps of A2J.
Anchor offset values are wrong in several local areas (high-
lighted by red boxes). The boundary of zero offset value ap-
pears as a curve, which severely deviates from its ideal form
as a straight line. For JGR-P20, the learned offset maps
also include apparent errors (highlighted by yellow boxes).
In contrast, the probability maps generated by DOR3D-Net
are much cleaner and well approximate those of their ideal
forms. The main contributions are summarized as follows:

* We are the first to re-formulate the 3D hand pose estima-

tion as a dense ordinal regression problem and propose a
novel Dense Ordinal Regression 3D Pose Network.

* Specifically, we propose Ordinal Regression (OR) mod-
ule to decompose offset regression into sub-tasks of bi-
nary classifications with less noises and outliers. Fur-
thermore, both joint regression loss and ordinal regres-
sion loss are used to train DOR3D-Net in an end-to-end
manner.

* DOR3D-Net is remarkably superior to SOTAs on existing
methods, revealing the effectiveness of our approach.

2. Related Work

2.1. Depth Image Based Hand Pose Estimation

This paper focuses on the depth image-based 3D hand pose
estimation task. According to summary of a large-scale
public challenge HANDS2017 [31], state-of-the-art hand
pose estimation methods can be roughly divided into two
categories: regression-based methods and detection-based
methods. Regression-based method directly regress hand
joint parameters with extracted global feature representa-
tion. DenseRecurrent [4] uses PointNet network to ex-
tract features and iteratively refines the estimated hand pose
with a point cloud representation. Detection-based meth-
ods generate dense pixel-wise estimations with heatmaps
or offset vectors from local features. V2V-PoseNet [16]
uses 3D CNN network to extract a feature-based volu-
metric representation and estimates volumetric heatmaps.
DenseReg [29] decompose 3D hand pose as 3D heatmaps
and 3D joint offsets and estimates these parameters by
dense pixel-wise regression. Compared with heatmap-
based method with relatively high computational burden,
offset-based methods achieve a better trade-off between
accuracy and efficiency and can be adapted in resource-
constrained platforms. A2J [30] predicts per-joint pixel-
wise offset through a dense set of anchor points on the in-
put image. JGR-P20 [6] proposes a pixel-to-offset predic-
tion network to address the trade-off between accuracy and
efficiency for hand pose estimation. HandFoldingNet [3]
inputs 3D hand point cloud and acquires the hand joint lo-
cations based on point-wise regression. SRN [20] regresses
the joint position through multiple stacked network modules
to capture spatial information. TriHorn-Net[23] computes
two complementary attention maps of each joint and uses
appearance-based data augmentation to improve the accu-
racy of hand pose estimation.

2.2. Ordinal Regression

The ordinal regression method maps direct regression into
multiple binary classifiers and learns to predict ordinal la-
bels. By preserving the natural order and supervising
with multiple rank labels, the ordinal regression meth-
ods [7, 12, 13] have been proven to achieve much higher
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Figure 2. The pipeline of our transformer-based feature extractor. It contains patch partition and four Swin Transformer stages. Patch
partition splits the image into multiple 4 x 4 patches and each patch is considered as a token. Then tokens pass through each stage to learn
long-range feature interactions through Swin Transformer blocks. The final two feature maps from the last stage are sent into the dense

ordinal regression module for 3D hand pose prediction.

accuracy and faster convergence than the direct regression.
DORN [7] converts the depth prediction into an ordinal re-
gression problem, which discretizes depth value into sev-
eral intervals and obtains ordinal labels to improve depth
estimation accuracy. Furthermore, [18] also proposes the
definitions of ordinal depth, which are based on comparing
the relative depth between different joints. However, [18]is
different from our DOR3D-Net. In this paper, we reformu-
late the pose estimation problem into an ordinal regression
problem and compare binary spatial relationships between
a sampling position with respect to a joint point. Our pro-
posed dense ordinal supervision guarantees the probability
maps are ordinal, which reduces the depth noise effect and
improves 3D joint pose estimation accuracy.

3. Methods

In this section, we first introduce the feature extractor mod-
ule, which use a transformer-based feature extractor to learn
dense local feature representations for capturing long-range
relationships. Then, we elaborate on the details of dense or-
dinal regression module, which design to output pixel-wise
probability maps and regress hand joints. Finally, we intro-
duce the overall training procedure.

3.1. Feature Extractor

In the transformer-based feature extractor module (Fig. 2),
the input image plane is split into multiple 4 x 4 patches
with the patch partition module. Each patch is treated as
a ‘token’. Four Swin Transformer stages are used to learn
attention among patch tokens for capturing long-range con-
textual information. These stages consist of linear embed-
ding layers, patch merging layers, and Swin Transformer
blocks with their structure details specified in [15].

Since the Swin Transformer structure contains only rel-
ative positional embedding, we modify the input by adding
U, V coordination maps (UVMap) and concat them to-
gether with the depth map to provide global absolute spatial
information. U and V' maps are generated by linear scaling

in Eq. 1, which corresponds to the in-plain coordinate map
of each pixel.

U(i7j>:j/Waie [07H),j€ [O,W),

V(i,j)=1i/H,i€[0,H),j€[0,W). &

Considering the in-plane xy regression and depth-plane
z regression are quite different, following the design of
A2] [30], two feature maps F,, and F, are output from
‘Stage-4’ with the same dimensions 3% X % x 8C. Then,
both decoded feature maps are regressed with the dense or-
dinal regression module for 3D joint prediction.

3.2. Dense Ordinal Regression Module

Fig. 3 illustrates the pipeline for the dense ordinal regres-
sion module. With input as the learned feature maps, we
utilize separate branches to estimate the three-dimensional
coordinates of hand joints independently and output the pre-
dicted hand joint pose.

Normal Discretization. Since the hand joints reside in
three dimensional space, we decouple the 3D solution space
and quantize it by representative discrete values along each
of the three dimensions. In image plane x-axis and y-axis
directions, the intervals are [0, W) and [0, H) respectively.
Uniform discretization (UD) is adopted to divide the im-
age plane. Assuming that the intervals are discretized into
K., K, sub-intervals along x-axis and y-axis directions re-
spectively, the UD can be formulated as:

v =ixW/K,, y;=j*H/K,, @)

where z;, y; are sampling points and then form well-
ordered sets Sy = T0,.., T, 1, Sy = Y0, YK, —1-
Here, we set K, = W/2, K, = H/2.

In the z-axis direction, we analyze statistics of the joints
z coordinate distribution and notice that it is close to normal
distribution. Following this, the sampling interval of normal
discretization (ND) becomes smaller as the sampling posi-
tion becomes closer to the distribution center. In our specific
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Figure 3. The pipeline of our proposed dense ordinal regression module. The inputs are two feature maps. With the reshape and softmax
operators, we obtain binary probability maps. With weighted sum, the binary probabilities at local positions are aggregated to infer hand
keypoints along each of the three dimensions respectively. Supervised by dense ordinal regression loss, these binary classifiers are easier
to train and yield much lower level of noise, which helps to estimate accurate 3D hand joint poses.
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Figure 4. Visualization of the proposed x- and z-discretization process. z-axis uses uniform discretization and z-axis applies normal
discretization. For the z-probability map, each column represents the probability that the keypoint is larger than the corresponding dis-
cretization threshold. For the z-probability map, each map represents the probability that the keypoint is larger than the corresponding

discretization threshold.

implementation, we first divide the z-axis [0, D) into sev-
eral sub-intervals evenly, and then increase the frequency
of sampling points by the exponential power of 2 for the
consecutive sub-intervals to the midpoint D /2. Sampling
points for the other half of the z-interval can be obtained
by symmetry. These sampling points form a well-ordered
set S, = 29, ..., 2k, —1. Here, we set K, = D/4, D refers
to the depth range of the cropped image. Fig. 4 (a) and (c)
visualize the distributions along x and z respectively.

Ordinal Regression. After obtaining the discrete or-
dered classification sets S, Sy, S;, we cast the hand pose
estimation problem into an ordinal regress problem to learn
the network. These well-ordered sampling points along
X-axis, y-axis, and z-axis directions construct multiple bi-

nary classification sub-problems. For each predicted coor-
dinate of joint a, these binary classifiers are used to pre-
dict whether the hand joint location is larger than these dis-
cretization thresholds respectively and then form probabil-
ity map Prob,, Prob,, and Prob,. Here, coordination is
represented as J* = (Jg, Jg, J2).

Prob, (i, j,a) = P(Jy > z;), Vi
PTOby(i7j7a’) = P(J;L > yz)7 V] (3)
Prob,(i,j,k,a) = P(J3 > z). Vi, j
Fig. 3 illusgate;s the probability map generation process.
Let F,, € R32*32*8C denote the feature maps in the im-

age plane, after convolution, reshape and softmax opera-
tors, the feature map I, is converted into the probability



map Prob, € Rs2*5:*4 and Prob, € R¥v*s >4, For
the feature map F, € R35 %55 x8C " after convolution and
softmax operators, it is mapped into the probability map
Prob, € R32*32%K:%A A s the number of joints. To
guarantee the accuracy of classification, all these proba-
bility maps are densely supervised with the ground truth
(GT) probability maps and introduced in section 3.3. Ob-
viously, the ordinal regression solution only compares the
binary spatial relationship between the keypoint and every
discretization threshold. In comparison with dense offset
regression methods, the solution space is reduced from a
large interval to binary values which is easy to get the opti-
mal solution and insensitive to the noise and outliers.

After getting the reliable probability maps Prob,, we
fuse the probability with its corresponding classification in-
terval length and get the hand joint prediction vector in
Eq. 4. The final predicted coordinate value & is the mean
value of T (¢). In the same way, we obtain the coordination
¢ and % from § (§), Z (¢, ) in Eq. 4, respectively.

z (i7a) = Z_j PrObl (ia.j7 CL) ' (‘rj-‘rl - ‘rj)v
y(j,a) = >2; Proby (i, j,a) - (yi+1 — vi), “4)
Z(iaj7 a) = Zk P?”Obz(i7j, kva) : (Zk+1 - Zk)

Here, x;, y; and z;, are sampling points. We concatenate the
coordinations Z, ¢ and Z as the final results.

3.3. Loss Function

The network is jointly supervised by two loss: joint re-
gression loss and dense ordinal regression loss. The binary
probability maps along x-axis, y-axis and z-axis are super-
vised to guarantee that the learned features are robust to the
low-quality depth image and have a reliable representation.
Joint Regression Loss. The GT hand pose supervises
the neural network to generate an accurate hand pose local-
ization at the final stage. The loss function is formulated as
below Eq. 3.3. The endpoint error with smooth L, is used
to compute the joint regression loss.Here, Ljointioss =
> acalismootn (J* — J) ,, where J* and .J** are the pre-
dicted coordinate and the GT of joint a, respectively.
Dense Ordinal Regression (DOR) Loss. To supervise
the binary classifiers, we generate the GT of middle results
(GT binary probability maps Proby’, Probj" and Probd"):

1, if J3* >z, Vi
Prob? (i,7,a) =
0, otherwise.Vi
gt (s s ]-7 Zf Jya* 2 Yi, V]
Proby’ (i,j,a) = (5)
0, otherwise.V j
]-7 Zf Jg* > 2k V'L,]
Prob?" (i, 4, k,a) =
0, otherwise.Vi,j

where Jz*, J;* and JZ* are the GT coordinates of joint a.

Take the Prob, € R3z*W*4 for an example, the DOR
loss is defined as the cross-entropy loss to densely supervise
all binary classification probability maps.

o

ZxA

Z(Probgt log (Prob,) + (1 — Proby") log (1 — Prob,)).
(6)

The DOR losses in three dimensions are defined in Eq.7.

Lora (Proby, Probd') = —

Lord.ioss = Lora (PTOb:m PTObgt)

+ Lora (Proby7 Probzt) + Lora (Probz7 Probgt) .

(N

Total Loss Function. The loss is defined as: L =

Aleoint,loss + )\2L0Td,lossa where A1 and )\2 are hyper—

parameters for balancing these terms. Here, A\; = 3 and )\,
=2.

4. Experiments
4.1. Experimental Setting

Datasets. There are four widely adopted datasets for 3D
hand pose estimation task, including HANDS2017 [31],
MSRA [26], ICVL [27], and NYU [28]. HANDS2017
dataset is composed of Big Hand 2.2M dataset [31] and
the First-person Hand Action Dataset (FHAD) [9]. It con-
tains 957K training and 295K testing depth images. MSRA
dataset contains 9 subjects with each subject performs 17
hand gestures, and each hand gesture contains about 500
frames. ICVL dataset contains 22K training and 1.5k test-
ing depth images with 3D annotations for 16 joints. The raw
images with annotations are augmented to 330K samples by
in-plane rotations. NYU dataset contains 72K training and
8.2K testing depth images labeled with 3D annotations for
36 joints. Following A2J [30], we only use 14 of the 36
joints from frontal view for both training and testing. Since
the number of raw images in HANDS2017 dataset is over
ten times bigger than any of the rest three datasets, we con-
duct ablation study on the HANDS2017 dataset.

Implementation Details. DOR3D-Net is trained with 2
NVIDIA V100 GPUs. We adopt the AdamW optimizer for
all our experiments during training. In all experiments, the
learning rate is 3.5 x 10~* with a weight decay of 10™%.
The batch size for MSRA, ICVL and NYU datasets is 32,
and the batch size for HANDS2017 is 64. For all datasets,
the learning rate decays by 0.2 every 7 epoches. Similar to
A2J [30] and V2V-PoseNet [16], we use hand center point
to crop the hand region from an depth image and resize the
image to 224 x 224. For MSRA, ICVL and Hands2017, the
hand center points are released by V2V-PoseNet [16]. For
NYU, we follow DenseRecurrent [4] and use the average
location of the ground truth joints.
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Figure 5. Comparison with the state-of-the-art methods on MSRA, ICVL, and NYU dataset. Top: The per-joint mean error for all the test
examples. Bottom: Percentage of frames in the testing examples under different error thresholds.

Table 1. Comparison with the state-of-the-art methods.

Methods

Mean Error [mm] |

MSRA NYU ICVL HANDS17

HandPointNet [10] 8.51 10.54 6.94 -
DenseReg [29] 7.23 10.21 7.30 -
V2V-PoseNet [16] 7.59 8.42 6.28 9.95
Point-to-Point [11] 7.71 8.99 - 9.82
CrossInfoNet [5] 7.86 10.08 6.73

A2] [30] - 8.61 6.46 8.57
JGR-P20 [6] 7.55 8.29 6.02 -
HandFoldingNet [3] 7.34 8.58 5.95 -
SRN [20] 7.16 7.78 6.26 8.39
DenseRecurrent [4] 7.01 6.85 6.05 -
TriHorn-net [23] 7.13 7.68 5.73 -
IPNet [22] - 7.17 - -
HandR?N? [2] 6.54 727 571 -
DOR3D-Net (Ours) ‘ 6.93 6.71 5.87 6.99

Table 2.
dataset [28].

Comparison of heatmap-based methods on NYU

Mean Error

Method Backbone
[mm]
DOR3D-Net (w/ Heatmap Regression) ~ Resnet50 8.63
DOR3D-Net (w/ Ordinal Regression)  Resnet50 8.25

Evaluation Metric.

We use two standard metrics to
evaluate 3D hand pose estimation performance. The first

one is the mean 3D Euclidean distance error (Mean Er-
ror) [30]. The second one is the percentage of success
frames in which the worst joint 3D distance error is below
a threshold [30]. Note that, the results of our method in this
paper are all predicted by a single model.

4.2. Comparison with the State-of-the-art Methods

We compare our method with the state-of-the-art depth
image-based hand pose estimation methods, i.e., Hand-
PointNet [10], DenseReg [29], V2V-PoseNet [16], Point-
to-Point [11], CrossInfoNet [5], A2J [30], JGR-P20 [6],
HandFoldingNet [3], SRN [20], DenseRecurrent [4],
TriHorn-net [23], IPNet [22], and HandR2N? [2]. Fig. 5
shows the result of 3D per-joint mean error and the per-
centages of success frames over different error thresh-
olds. Meanwhile, Tab. 1 shows the overall performance
of DOR3D-Net and all the methods on four datasets, re-
spectively. It can be seen that our method outperforms all
the other methods on the NYU and HANDS17 datasets.
On the ICVL dataset, our method is ranked third, with
a slightly lower accuracy than the TriHorn-net [23] and
HandR2N? [2]. TriHorn-net [23] uses an innovative data
agumentation approach and HandR?N? [2] uses five iter-
ative corrections. As noted in DenseRecurrent [4] and IP-
Net [22], some of the 3D joint annotations in MSRA dataset
contained significant errors. Therefore, the evaluation on
the MSRA dataset may be less meaningful.



Table 3. Effectiveness of dense ordinal regression module.

Mean Error [mm] |

Method
X y z all

DOR3D-Net (w/ offset-based regression) 331 333 432 734
DOR3D-Net (w/ ordinal-based regression) 3.12 3.19 4.13 6.99

Table 4. Effectiveness of normal discretization.

Table 5. Effectiveness of feature extractor module.

Method  Module Mean Error| Params| Speed?

[mm] [MB] [FPS]
Input DOR3D-Net (w/o UVMap) 7.10 86.9 50
P DOR3D-Net(w/ UVMap) 6.99 86.9 47
Backbone DOR3D-Net (Resnet50-based) 7.67 32.7 110
DOR3D-Net (Transformer-based) 6.99 86.9 47
Design DOR3D-Net (W/ Fy,. ) 7.04 86.9 47
g DOR3D-Net (w/ F,, &) 6.99 86.9 47

Mean Error [mm] |

Method
X y 4 all

DOR3D-Net (w/ uniform distribution) 3.14 3.19 4.18 7.06
DOR3D-Net (w/ normal distribution) 3.12 3.19 4.13 6.99
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Figure 6. The depth distribution of joints on HANDS2017,

MSRA, NYU, and ICVL, which are close to normal distribution.

Moreover, to further valid the effectiveness of the dense
ordinal regression module, we compare it with the heatmap-
based method [25] with the same backbone Resnet50 on
NYU dataset [28]. Tab. 2 shows that our ordinal regression
module surpasses the heatmap-based method. In a nutshell,
DOR3D-Net shows significant superiority over other exist-
ing methods, indicating the benefit of the dense ordinal re-
gression module.

4.3. Ablation Study

To demonstrate the effectiveness of each module in our
method, we conduct extensive ablation studies on the
HANDS2017 dataset. Tab. 3, Tab. 4, Tab. 5, Tab. 6 and
Fig. 6 show the experimental results in detail.

Effectiveness of dense ordinal regression module.
To verify the effectiveness of the dense ordinal regres-
sion module, we replace the regression module with an
offset-based regression module and show the results in the
Tab. 3. Specifically, we design the following model vari-
ants: (1) DOR3D-Net (w/ offset-based regression) : we
train the model with the offset-based regression module; (2)
DOR3D-Net (w/ ordinal-based regression) : we train the
model with the dense ordinal regression module; For a fair
comparison, we uses the same backbone and experimental

configuration. As shown in Tab. 3, our ordinal-based re-
gression method significantly outperforms the offset-based
regression method, and the 3D mean error is reduced by
4.77% on HANDS2017 dataset. There are two main rea-
sons: (1) Offset-based regression module regresses the hand
joints in a large 3D solution space, which is hard to obtain
the optimal solution. (2) The dense ordinal regression mod-
ule predicts probability maps that vary smoothly with ordi-
nal constraints and are insensitive to noise and outliers.

Effectiveness of normal discretization. To verify the
effectiveness of normal discretizatione, we verified two dis-
cretization strategies to quantize the z-axis interval and
show the results in Tab. 4. Specifically, DOR3D-Net (w/
uniform distribution) uses uniform distribution strategy.
Similarly, DOR3D-Net (w/ normal distribution) uses nor-
mal distribution strategy. The results of DOR3D-Net (w/
uniform distribution) is worse than DOR3D-Net (w/ normal
distribution), demonstrating verifying the effectiveness of
normal distribution strategy. Moreover, we analyze statis-
tics of the hand z coordinate distribution in public four
datasets (Fig. 6) and notice that it is close to normal dis-
tribution (ND).

Effectiveness of feature extractor module. In Sec. III-
A, we proposes transformer-based feature extractor with
three designs: (1) UVMap: since the transformer structure
contains only relative positional embedding, we design to
include UVMap in the input to provide global absolute spa-
tial information; (2) Introduce transformer structure: it has
the powerful capability to learn the long-range relationship
of dense features; (3) Output feature design: considering
the in-plane xy regression and depth-plane z regression are
quite different, we output two features F, and F, from
transformer structure to regress the xy and z coordinates,
respectively. We conduct an ablation study on the compo-
nents in feature extractor and summarize our results in Tab.
5. The ablation study results show that each of designs in
transformer-based feature extractor provides a meaningful
contribution to improving model performance.

Effectiveness of DOR Loss. In this ablation, we investi-
gate the effectiveness of dense ordinal regression loss (DOR
loss) in our method. We design the following model vari-
ants: (1) DOR3D-Net (w/o DOR loss) : we train the model
without the dense ordinal regression loss; (2) DOR3D-Net
(w/o DOR 1loss) : we train the model with the dense ordi-
nal regression loss; As can be seen from the Tab. 6, without
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Figure 7. Joints prediction on NYU, MSRA, and ICVL. Bright colors represent predicted results and dark colors show ground truth. The
visualization results superimpose the predicted results on the ground truth. Both successful and bad cases are displayed.

Table 6. Effectiveness of DOR Loss. 'DOR loss’ refers to the
dense ordinal regression loss.

Method Module Mean Error| Params| Speedf

[mm] [MB] [FPS]
Loss DOR3D-Net (w/o DOR loss) 7.31 86.9 47
DOR3D-Net (w/ DOR loss) 6.99 86.9 47

DOR loss, the error increased by 0.32mm. This also vali-
dates that dense probability supervision plays an important
role in our DOR3D-Net to learn representative features and
improve hand pose accuracy.

Speed and Parameters. We test our model on a sin-
gle NVIDIA V100 GPU. The speed of the Resnet50-based
backbone and transformer-based backbone is 110 FPS and
47 FPS, respectively. The full model meets the real-time
requirement for practical applications. The parameters
of Resnet50-based backbone and Transformer-based back-
bone are 32.7MB and 86.9MB, respectively.

Qualitative Results. Fig. 7 visualizes the successful
and failure cases of our full model performance on MSRA
dataset [26], NYU dataset [28] and ICVL dataset [27]. It
can be seen that our method predicts well in most cases,
while fails in cases of severe occlusion, large areas of miss-
ing pixels, and challenging viewpoint.

Moreover, in order to intuitively verify our method, we
make some changes to the full model: (1) Replace the trans-
former with Resnet50; (2) Replace the ordinal regression
with offset-based regression. Fig. 8 visualizes and com-
pares the hand pose estimation results. In each image, the
color in yellow, red, green, blue, and pink represents five
fingers respectively. The bright colors denote estimated
joints and the dark are the ground truth. It can be seen that
our full model has better performance on edge blur, back-
ground noise and occlusion cases, while the other two vari-
ants predict worse joints’ position which may suffer from
outliers and low-level feature representation.

E ;
E .
. Bright colors for
predicted joints

Figure 8. Qualitative comparison results on HANDS2017. Top:
DOR3D-Net (Resnet50-based). Middle: DOR3D-Net (w/ offset-
based regression). Bottom: DOR3D-Net (full).

Mixed colors
for display

Dark colors for
ground truth

5. Conclusion

In this paper, we propose a DOR3D network that refor-
mulates the 3D hand pose estimation as a dense ordinal
regression problem. In comparison with offset-based
regression methods, this formulation simplifies the solu-
tion space from a large interval to binary values which
enables the network to learn easily and find out the op-
timal solution. Furthermore, a transformer-based feature
extractor is utilized to enhance dense feature presentation
and additional UV coordination maps are generated to
provide absolute spatial information. Our DOR3D-net
has achieved the SOTA performance on the HANDS2017,
MSRA, NYU and ICVL datasets. This method provides
robots and autonomous vehicles with the ability to accu-
rately perceive human hand movements. Therefore, this
technology is crucial for social-aware intelligent machines
to function effectively in human-populated environments.
In the future, we will improve the depth-based 3D hand
pose estimation by improving the samples with the chal-
lenging scenes, such as extreme occlusions or very fast
hand movements. Moreover, we will to improve the
model efficiency for porting to robots or autonomous
driving platforms for low-latency user interaction.
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