

CL-DPS: A CONTRASTIVE LEARNING APPROACH TO BLIND NONLINEAR INVERSE PROBLEM SOLVING VIA DIFFUSION POSTERIOR SAMPLING

006 **Anonymous authors**

007 Paper under double-blind review

027 Figure 1: Results of blind rotational deblurring, a challenging *nonlinear* inverse problem: (a) ground
 028 truth, (b) rotation-blurred measurement, and restored images using (c) BlindDPS (Chung et al.,
 029 2023a), (d) FastEM (Laroche et al., 2024), (e) GibbsDDRM (Murata et al., 2023), and (f) CL-DPS
 030 (ours). All methods fail catastrophically except for CL-DPS.

ABSTRACT

035 Diffusion models (DMs) have recently become powerful priors for solving inverse problems. However, most work focuses on non-blind settings with known
 036 measurement operators, and existing DM-based blind solvers largely assume *linear* measurements, which limits practical applicability where operators are frequently *nonlinear*. We introduce **CL-DPS**, a contrastive learning framework
 037 for diffusion posterior sampling that requires no knowledge of the operator parameters at inference. To the best of our knowledge, **CL-DPS is the first DM-based framework capable of solving blind nonlinear inverse problems**. Our
 038 key idea is to train an *auxiliary encoder* offline, using a MoCo-style contrastive
 039 objective over randomized measurement operators, to learn a surrogate for the
 040 conditional likelihood $p(\mathbf{y}|\mathbf{x}_t)$. During sampling, we inject the surrogate's
 041 gradient as a guidance term along the reverse diffusion trajectory, which enables
 042 posterior sampling without estimating or inverting the forward operator. We
 043 further employ overlapping patch-wise inference to preserve fine structure and
 044 a lightweight color-consistency head to capture color statistics. The guidance
 045 is *sampler-agnostic* and pairs well with modern solvers (e.g., *DPM-Solver++*
 046 (*2M*)). Extensive experiments show that CL-DPS effectively handles challenging
 047 *nonlinear* cases, such as rotational and zoom deblurring, where prior DM-based
 048 methods fail, while remaining competitive on standard linear benchmarks. Code:
 049 <https://anonymous.4open.science/r/CL-DPS-4F5D>.

1 INTRODUCTION

Inverse problems are pervasive across many fields, with applications in medical imaging (McCann et al., 2017; Jin et al., 2017), computational photography (Tonolini et al., 2020; Ongie et al., 2020), and seismic imaging (Hosseini & Plataniotis, 2020; Zhdanov, 2002). The goal is to recover the original signal x_0 from a corrupted measurement y produced by a forward operator $\mathcal{A}_\psi(\cdot)$. Depending on whether this operator is available, inverse problems are categorized as (i) non-blind, where \mathcal{A}_ψ is known, or (ii) blind, where \mathcal{A}_ψ is unknown and must be estimated jointly with x_0 , making the problem substantially more challenging.

Inverse problems are inherently ill-posed, often relying heavily on data priors $p(\mathbf{x}_0)$ for accurate computation. Recently, diffusion models (DMs) have emerged as powerful tools for solving inverse problems due to their remarkable ability to capture complex data distributions $p(\mathbf{x}_0)$ (Song et al., 2023; Chung et al., 2023b; Dou & Song, 2024). A straightforward approach to leveraging DMs for solving inverse problems involves training a conditional DM to directly estimate the posterior $p(\mathbf{x}_0|\mathbf{y})$ via supervised learning. However, this method can be computationally intensive, as it requires training separate DMs for each distinct measurement operator \mathcal{A}_ψ .

To overcome this limitation, a practical alternative uses a pretrained, unconditional DM as a prior for $p(\mathbf{x}_0)$ and combines it with a likelihood term inside a diffusion posterior sampling (DPS) scheme. During sampling, the DM maintains a latent variable \mathbf{x}_t that represents the current state along the reverse diffusion process at step t . Posterior guidance needs a surrogate for the intractable likelihood $p(\mathbf{y}|\mathbf{x}_t)$, which recent work approximates in various ways (Chung et al., 2023b; Song et al., 2023).

Nevertheless, most DM-based inverse solvers remain limited to non-blind settings where the measurement operator \mathcal{A}_ψ is assumed known (Chung et al., 2023b; Song et al., 2023). However, accurately obtaining the measurement operator is often difficult or infeasible in real-world applications (Chung et al., 2023a; Laroche et al., 2024; Ji et al., 2024). Recently, efforts have emerged in the literature to address blind inverse problems using DMs. In particular, Chung et al. (2023a) introduced BlindDPS, a method that trains a DM specifically for the blur operator. While this approach benefits from widely available pretrained DMs for signals such as images and audio, it requires additional training of a DM for the parameters of the relevant linear operators, significantly limiting its practical applicability. Murata et al. (2023) proposed GibbsDDRM, which constructs a joint distribution over the data, measurements, and linear operator, addressing the problem through posterior sampling using a variant of the Gibbs sampler. Similarly, Sanghvi (2024) estimated the kernel parameters to tackle deconvolution problems. However, these methods are fundamentally restricted to addressing *only* linear inverse problems, as they **assume that \mathcal{A}_ψ is a convolution operator** (Chihaoui et al., 2024; Sanghvi, 2024; Murata et al., 2023; Chung et al., 2023a). In practice, however, many blind inverse problems involve operators that are nonlinear, rendering these approaches inadequate for such cases.

To address the aforementioned limitation, we propose **CL-DPS**, a method based on contrastive learning for solving blind inverse problems via diffusion posterior sampling. To the best of our knowledge, CL-DPS is the *first* DM-based method that can solve *blind nonlinear* inverse problems, without requiring knowledge or estimation of the operator parameters. Concretely, in CL-DPS, an auxiliary encoder is first trained *offline* using a modified version of MoCo (He et al., 2020), a contrastive learning (CL) technique. The role of this auxiliary encoder is to estimate the likelihood $p(\mathbf{y}|\mathbf{x}_t)$ without knowing the measurement \mathcal{A}_ψ . Then, during inverse problem solving, we perform inference with this auxiliary encoder to estimate $p(\mathbf{y}|\mathbf{x}_t)$, which is then used to guide the reverse path of the diffusion process. To further improve the auxiliary encoder’s accuracy in estimating $p(\mathbf{y}|\mathbf{x}_t)$, we introduce a novel overlapping patch-wise inference method that divides the images into patches during the inference stage.

We evaluate CL-DPS on FFHQ (Karras et al., 2021), AFHQ (Choi et al., 2020), and ImageNet (Deng et al., 2009) under blind linear and nonlinear measurements. In the *nonlinear* setting (e.g., rotation blur), prior DM-based methods fail, while CL-DPS restores high-quality images (see Figure 1). In the *linear* setting, CL-DPS is competitive with state of the art. Our main contributions are:

- We introduce CL-DPS, a diffusion posterior sampling framework that learns a contrastive likelihood surrogate offline and plugs it in as guidance at test time. The auxiliary encoder is trained with a MoCo-style framework over randomized measurements, so CL-DPS applies to both linear and

108 nonlinear blind settings without knowing the measurement parameters at inference. In addition, a
 109 lightweight color-consistency head is deployed to capture color information.
 110

- 111 • We establish a lemma (Lemma 1) showing that, under an energy-based formulation, the gradient of
 112 the contrastive log probability coincides with the desired likelihood gradient and becomes consistent
 113 as the dictionary size grows. We further present a denominator-aware variant, which yields results
 114 comparable to the simpler numerator-only update but incurs higher computational cost.
- 115 • We introduce an overlapping patch-wise inference strategy with an information-theoretic guarantee
 116 (Theorem 1): stacking more overlapping patch features increases the mutual information between the
 117 signal and its encoded features, $I(\mathbf{x}; f(\{\mathbf{p}_j^x\}))$.
- 118 • Across blind linear and nonlinear tasks, including rotation blur, CL-DPS delivers strong quantitative
 119 and qualitative results. Ablations isolate the impact of patch-wise inference, color regularization, and
 120 dictionary size, and confirm the efficiency of the numerator-only guidance.

122 2 RELATED WORK AND NOTATION

- 124 • **Diffusion models for inverse problems:** The use of DMs to solve inverse problems through poste-
 125 rior sampling has recently attracted considerable attention across various domains, including image
 126 denoising (Kawar et al., 2022), compressed sensing (Bora et al., 2017; Kadkhodaie & Simoncelli,
 127 2021), magnetic resonance imaging (MRI) (Jalal et al., 2021), score-based stochastic differential
 128 equations (SDEs) (Song et al., 2022), and variational methods (Mardani et al.; Feng & Bouman, 2023).
 129 For non-blind inverse problems, methods such as diffusion posterior sampling (DPS) (Chung et al.,
 130 2023b) and pseudo-guided diffusion models (PIGDM) (Song et al., 2023) leverage Tweedie’s formula
 131 (Efron, 2011) to approximate the smoothed likelihood. Similarly, singular-value decomposition based
 132 techniques (Kawar et al., 2021) are applied for related purposes.

133 On the other hand, for blind inverse problems, alongside the approaches discussed in Section 1 (Chung
 134 et al., 2023a; Murata et al., 2023; Sanghvi, 2024), Alkan et al. (2023) introduced Blind RED-Diff, an
 135 extension of the RED-Diff framework (Mardani et al.). This method employs variational inference to
 136 jointly estimate both the latent image and the unknown forward model parameters, addressing the
 137 challenges of unknown measurement operators. Recent work applies diffusion priors to amortized
 138 variational inference for inverse problems (Lee et al., 2024), training a network end to end to map \mathbf{y}
 139 to posterior parameters under a specified forward model. Our setting is different: *blind nonlinear*
 140 *operators (no operator estimates)*. We keep the diffusion prior frozen and use a contrastive plug in
 141 likelihood surrogate to guide sampling from $(\mathbf{x}_t, \mathbf{y})$.

142 We defer the discussion of contrastive learning to Appendix A.

- 143 • **Notation:** For a positive integer C , let $[C] \triangleq \{1, \dots, C\}$. Scalars are denoted by non-bold letters
 144 (e.g. u and U), vectors by boldface lowercase letters (e.g. \mathbf{u}). Denote by $\mathbf{u}[i]$ the i -th element of
 145 vector \mathbf{u} . For two vectors \mathbf{u} and \mathbf{v} , denote by $\langle \mathbf{u}, \mathbf{v} \rangle$ their inner product. We use $|\mathcal{C}|$ to denote the
 146 cardinality of a set \mathcal{C} . $(\cdot)^\top$ denotes the transpose operation. The mutual information between two
 147 random variables X and Y is denoted by $I(X; Y)$.

149 3 BACKGROUND AND PRELIMINARIES

151 3.1 DIFFUSION MODELS

153 DMs generate data by reversing a forward noising process. We adopt the variance preserving SDE
 154 (VP-SDE) (Song et al., 2020), which is equivalent to DDPM (Ho et al., 2020)

$$155 \quad d\mathbf{x} = -\frac{\beta_t}{2} \mathbf{x} dt + \sqrt{\beta_t} d\mathbf{w}, \quad (1)$$

157 with noise schedule $\beta_t > 0$ and standard Wiener process \mathbf{w} . The data distribution is at $t = 0$ with
 158 $\mathbf{x}_0 \sim p_{\text{data}}$ and at $t = T$ the state is $\mathbf{x}_T \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$.

159 The reverse time SDE (Anderson, 1982) is
 160

$$161 \quad d\mathbf{x} = \left[-\frac{\beta_t}{2} \mathbf{x} - \beta_t \nabla_{\mathbf{x}_t} \log p(\mathbf{x}_t) \right] dt + \sqrt{\beta_t} d\bar{\mathbf{w}}, \quad (2)$$

162 where dt flows backward and $d\bar{w}$ is reverse time Wiener noise. The score $\nabla_{\mathbf{x}_t} \log p(\mathbf{x}_t)$ is approxi-
 163 mated by a neural network s_θ trained with denoising score matching (Vincent, 2011)
 164

$$165 \theta^* = \arg \min_{\theta} \mathbb{E}_{t \sim U(\varepsilon, 1)} \mathbb{E}_{\mathbf{x}_0 \sim p_{\text{data}}} \mathbb{E}_{\mathbf{x}_t \sim p(\mathbf{x}_t | \mathbf{x}_0)} \left[\|s_\theta(\mathbf{x}_t, t) - \nabla_{\mathbf{x}_t} \log p(\mathbf{x}_t | \mathbf{x}_0)\|_2^2 \right]. \quad (3)$$

167 After training we use $s_{\theta^*}(\mathbf{x}_t, t)$ as an estimate of the score in Equation (2). Discretizing Equation (2)
 168 yields the DDPM sampler. We use $\alpha_i \triangleq 1 - \beta_i$ and $\bar{\alpha}_i \triangleq \prod_{j=1}^i \alpha_j$ for the discrete schedule.
 169

170 3.2 DIFFUSION MODELS FOR SOLVING INVERSE PROBLEMS

171 We observe $\mathbf{y} \in \mathbb{R}^m$ from an unknown $\mathbf{x}_0 \in \mathbb{R}^d$ via

$$174 \mathbf{y} = \mathcal{A}_\psi(\mathbf{x}_0) + \mathbf{n}, \quad (4)$$

176 where \mathcal{A}_ψ is a linear or nonlinear measurement with unknown parameters ψ and \mathbf{n} is Gaussian with
 177 zero-mean and covariance $\sigma^2 \mathbf{I}$. The regime $m < d$ is ill-posed and requires a prior on \mathbf{x}_0 .

178 Using a diffusion prior we sample from the posterior by modifying the reverse SDE to include the
 179 likelihood term

$$181 d\mathbf{x} = \left[-\frac{\beta_t}{2} \mathbf{x} - \beta_t (\nabla_{\mathbf{x}_t} \log p(\mathbf{x}_t) + \nabla_{\mathbf{x}_t} \log p(\mathbf{y} | \mathbf{x}_t)) \right] dt + \sqrt{\beta_t} d\bar{w}, \quad (5)$$

183 which follows from

$$185 \nabla_{\mathbf{x}_t} \log p(\mathbf{x}_t | \mathbf{y}) = \nabla_{\mathbf{x}_t} \log p(\mathbf{x}_t) + \nabla_{\mathbf{x}_t} \log p(\mathbf{y} | \mathbf{x}_t). \quad (6)$$

187 The prior score $\nabla_{\mathbf{x}_t} \log p(\mathbf{x}_t)$ is given by the pretrained network s_{θ^*} . The bottleneck is the likelihood
 188 term $\nabla_{\mathbf{x}_t} \log p(\mathbf{y} | \mathbf{x}_t)$ which is time dependent and intractable when ψ is unknown.

189 Prior work often assumes a known operator for likelihood evaluation (Chung et al., 2022a; 2023b). We
 190 address the blind case by learning a contrastive likelihood surrogate offline and using it as guidance
 191 inside the sampler, as detailed in Section 4.

193 3.3 MOMENTUM CONTRAST LEARNING

195 Contrastive learning learns representations by pulling together positives and pushing apart negatives
 196 (Hadsell et al., 2006; Tian et al., 2020). MoCo (He et al., 2020) implements this as dictionary lookup
 197 with two components: a large *queue* of keys that serves as a dynamic dictionary and a *momentum*
 198 *encoder* that produces stable keys. Let f_q be the query encoder with parameters θ_q and f_k the key
 199 encoder with parameters θ_k updated as $\theta_k \leftarrow m\theta_k + (1 - m)\theta_q$, where $m \in [0, 1]$ is the momentum
 200 coefficient. Given a query $q = f_q(\cdot)$ a positive key $k_+ = f_k(\cdot)$ and K negative keys $\{k_i\}_{i=1}^K$ from
 201 the queue MoCo minimizes the InfoNCE loss (Oord et al., 2018)

$$202 \mathcal{L}_q = -\log \frac{\exp(\langle q, k_+ \rangle / \tau)}{\sum_{i=1}^K \exp(\langle q, k_i \rangle / \tau)}, \quad (7)$$

205 with temperature $\tau > 0$. In our method we set $q = f(\mathbf{x}_t)$ the positive key to $k_+ = f(\mathbf{y}_{\text{syn}})$ and use
 206 the MoCo queue to approximate the dictionary Y of negatives.
 207

208 4 METHODOLOGY

211 As discussed in Section 3, diffusion posterior sampling relies on the likelihood term $p(\mathbf{y} | \mathbf{x}_t)$ and its
 212 gradient with respect to \mathbf{x}_t . We approximate this term with an auxiliary encoder f , trained *offline* to
 213 provide a surrogate across a range of measurement operators since the parameters ψ are unknown
 214 at inference. During reverse diffusion, f supplies the likelihood gradient to guide the sampling
 215 trajectory. Section 4.1 details the contrastive learning procedure used to train f , Section 4.2 shows
 how it is applied at inference, and Section 4.3 presents the full CL-DPS algorithm.

216 4.1 TRAINING THE AUXILIARY ENCODER
217218 4.1.1 CONTRASTIVE LEARNING AS LIKELIHOOD ESTIMATION
219220 Using Bayes' formula, the likelihood $p(\mathbf{y} | \mathbf{x}_t)$ can be written as

221
$$p(\mathbf{y} | \mathbf{x}_t) = \frac{p(\mathbf{y}, \mathbf{x}_t)}{p(\mathbf{x}_t)} = \frac{p(\mathbf{y}, \mathbf{x}_t)}{\int p(\tilde{\mathbf{y}}, \mathbf{x}_t) d\tilde{\mathbf{y}}}. \quad (8)$$

223

224 To compute Equation (8), we first obtain a numerical representation of its numerator, $p(\mathbf{y}, \mathbf{x}_t)$.
225 Specifically, following (Oord et al., 2018; Li et al., 2021), we approximate it with an energy score
226 learned by a neural encoder f as: $p(\mathbf{y}, \mathbf{x}_t) \propto \exp(\langle f(\mathbf{x}_t), f(\mathbf{y}) \rangle / \tau)$, where $\tau > 0$ is a temperature.
227228 The denominator in Equation (8), $\int p(\tilde{\mathbf{y}}, \mathbf{x}_t) d\tilde{\mathbf{y}}$, is generally intractable. Thus, we rely on an
229 approximation method, using a finite sum as follows: $\int p(\tilde{\mathbf{y}}, \mathbf{x}_t) d\tilde{\mathbf{y}} \approx \sum_{\tilde{\mathbf{y}} \in Y} p(\tilde{\mathbf{y}}, \mathbf{x}_t)$, where Y is a
230 sufficiently large set. This allows us to numerically approximate $p(\mathbf{y} | \mathbf{x}_t)$ as:
231

232
$$p(\mathbf{y} | \mathbf{x}_t) \approx \frac{\exp(\langle f(\mathbf{x}_t), f(\mathbf{y}) \rangle / \tau)}{\sum_{\tilde{\mathbf{y}} \in Y} \exp(\langle f(\mathbf{x}_t), f(\tilde{\mathbf{y}}) \rangle / \tau)}. \quad (9)$$

233

234 This suggests training f by maximizing the log of Equation (9). Equivalently we minimize the
235 negative log likelihood surrogate

236
$$\mathcal{L}_{p(\mathbf{y} | \mathbf{x}_t)} = -\log \frac{\exp(\langle f(\mathbf{x}_t), f(\mathbf{y}) \rangle / \tau)}{\sum_{\tilde{\mathbf{y}} \in Y} \exp(\langle f(\mathbf{x}_t), f(\tilde{\mathbf{y}}) \rangle / \tau)}. \quad (10)$$

237

238 Comparing Equation (10) with the InfoNCE loss in Equation (7) shows that the standard contrastive
239 objective is a direct estimator of this surrogate when the query is $q = f(\mathbf{x}_t)$ and the keys are
240 $\{k_i\}_{i \in [K]} \subset Y$. With a large dictionary as in MoCo, the queue of size K provides a practical
241 approximation to the population Y .
242243 To justify that this contrastive surrogate serves as the likelihood term required by diffusion posterior
244 sampling, we state the following Lemma that links the contrastive log probability to the conditional
245 likelihood gradient. The full version with assumptions and the proof are provided in Appendix B.246 **Lemma 1** (Contrastive likelihood gradient, *short version*). *Let $\tau > 0$ and define*

247
$$s_t(\mathbf{x}_t | \mathbf{y}) \triangleq \langle f(\mathbf{x}_t), f(\mathbf{y}) \rangle / \tau. \quad (11)$$

248

249 For a finite dictionary Y with $\mathbf{y} \in Y$ define the softmax surrogate

250
$$\hat{p}_{t,Y}(\mathbf{y} | \mathbf{x}_t) = \frac{\exp\{s_t(\mathbf{x}_t | \mathbf{y})\}}{\sum_{\tilde{\mathbf{y}} \in Y} \exp\{s_t(\mathbf{x}_t | \tilde{\mathbf{y}})\}}. \quad (12)$$

251

252 Then,

253
$$\nabla_{\mathbf{x}_t} \log \hat{p}_{t,Y}(\mathbf{y} | \mathbf{x}_t) = \nabla_{\mathbf{x}_t} s_t(\mathbf{x}_t | \mathbf{y}) - \sum_{\tilde{\mathbf{y}} \in Y} \hat{p}_{t,Y}(\tilde{\mathbf{y}} | \mathbf{x}_t) \nabla_{\mathbf{x}_t} s_t(\mathbf{x}_t | \tilde{\mathbf{y}}), \quad (13)$$

254

255 Moreover, under the energy model $p(\mathbf{y} | \mathbf{x}_t) \propto \exp\{s_t(\mathbf{x}_t | \mathbf{y})\}$ with mild integrability conditions
256 stated in Appendix B and with Y_n drawn i.i.d. and augmented so that $\mathbf{y} \in Y_n$

257
$$\nabla_{\mathbf{x}_t} \log \hat{p}_{t,Y_n}(\mathbf{y} | \mathbf{x}_t) \xrightarrow[n \rightarrow \infty]{a.s.} \nabla_{\mathbf{x}_t} \log p(\mathbf{y} | \mathbf{x}_t). \quad (14)$$

258

261 4.1.2 TRAINING THE AUXILIARY ENCODER FOR DPS
262263 To optimize Equation (10) we ideally need pairs $(\mathbf{x}_t, \mathbf{y})$ drawn from the true measurement process
264 since inference will condition on the observed \mathbf{y} . During training the measurement parameters ψ of
265 the operator family \mathcal{A}_ψ are unknown and vary at test time, so we replace \mathbf{y} by a surrogate synthetic
266 measurement \mathbf{y}_{syn} generated by sampling ψ from a prior P_ψ . This trains the encoder to approximate
267 the likelihood across a range of operator parameter settings. To this end, given a clean image \mathbf{x}_0 we
268 synthesize the training pair $(\mathbf{x}_t, \mathbf{y}_{\text{syn}})$ at a randomly chosen time t as

269
$$\mathbf{y}_{\text{syn}} = \mathcal{A}_\psi(\mathbf{x}_0), \quad \mathbf{x}_t = \sqrt{\bar{\alpha}_t} \mathbf{x}_0 + \sqrt{1 - \bar{\alpha}_t} \mathbf{n}, \quad (15)$$

270 where $\psi \sim P_\Psi$ and $\mathbf{n} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$. The diffusion schedule satisfies $\bar{\alpha}_t = \prod_{j=1}^t \alpha_j$ with $0 < \alpha_j < 1$.
271 Examples of \mathcal{A}_ψ include Gaussian, motion, rotation, and zoom blur, where the operator parameters ψ
272 are sampled from the prior P_Ψ , which is commonly chosen as a uniform distribution over a specified
273 range of blur intensities. At each training iteration, we construct a distinct pair $(\mathbf{x}_t, \mathbf{y}_{\text{syn}})$. Note that
274 although f does not take t explicitly, its input \mathbf{x}_t is drawn at timestep t , so the surrogate $p(\mathbf{y} | \mathbf{x}_t)$
275 (and its gradient) are implicitly t -dependent.

276 The contrastive dictionary Y is formed by the current mini-batch's embeddings (EBDs) together with
277 a queue of EBDs from previous batches; the EBDs are produced by a momentum-updated encoder,
278 as in MoCo. We train the encoder with an InfoNCE-style objective $\mathcal{L}_p(\mathbf{y}_{\text{syn}} | \mathbf{x}_t)$.
279

280 In practice, the contrastive objective can become insensitive to color
281 information, often resulting in hue
282 or brightness shifts in reconstructions.
283 To mitigate this issue, we
284 add a lightweight color-consistency
285 head (CCH), denoted by H_c , on top
286 of the auxiliary encoder. The CCH
287 is trained to predict the global color
288 statistics of the input. Formally, let
289 $\mathbf{x}_t \in \mathbb{R}^{C \times N_1 \times N_2}$ and define its spatial average
290

$$[\text{AP}(\mathbf{x}_t)]_c = \frac{1}{N_1 N_2} \sum_{i=1}^{N_1} \sum_{j=1}^{N_2} \mathbf{x}_{t, cij}.$$

294 The color-consistency head
295 $H_c(\mathbf{x}_t) \in \mathbb{R}^C$ is implemented as
296 a two-layer convolutional module with
297 global pooling followed by a
298 sigmoid activation. We define the
299 color-consistency loss as

$$\mathcal{L}_{CC}(\mathbf{x}_t) = \|H_c(\mathbf{x}_t) - \text{AP}(\mathbf{x}_t)\|_2^2.$$

300 To train the auxiliary encoder f to
301 approximate the likelihood and cap-
302 ture color information, we optimize the following combined loss:
303

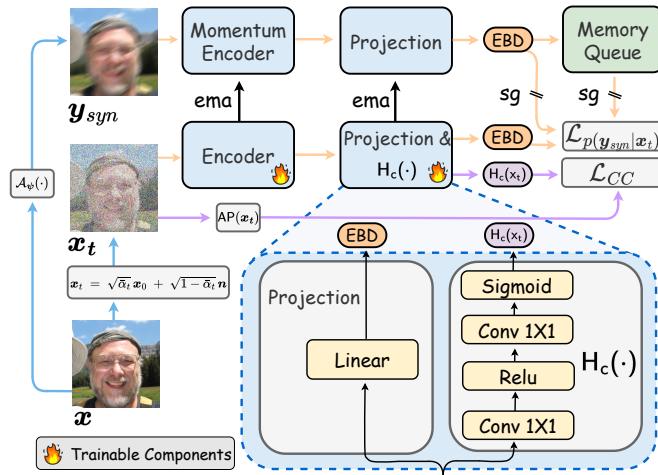
$$\mathcal{L}_{\text{CL-DPS}} = \mathcal{L}_p(\mathbf{y}_{\text{syn}} | \mathbf{x}_t) + \lambda \mathcal{L}_{CC}(\mathbf{x}_t), \quad (16)$$

305 where $\lambda > 0$ balances likelihood estimation and color preservation. The loss in Equation (16) is
306 averaged over the mini-batch. The CCH is used only during training and discarded at inference. At
307 test time, \mathbf{y}_{syn} is replaced by the observed measurement \mathbf{y} , and the pretrained encoder f provides
308 surrogate likelihood guidance within CL-DPS. The framework for CL-DPS is depicted in Figure 2.

309 **Remark 1.** *CL-DPS adds a small, one time auxiliary training stage to enable the blind nonlinear
310 setting. This stage is lightweight, and the encoder is trained once for a given forward setting and
311 then reused for all measurements and noise realizations. The procedure remains zero shot for the
312 downstream task because it uses only synthetic pairs generated from the diffusion prior and the
313 measurement simulator, no extra labels or human annotations are needed. In practice this offline cost
314 is far smaller than pretraining or fine tuning a DM or training a supervised reconstructor, and per
315 image inference remains on the same order as standard DPS (see Appendix K). The added training
316 enables, to our knowledge, the first DM-based solution to blind nonlinear inverse problems without
317 estimating operator parameters, which prior training free methods do not handle.*

318 4.2 LIKELIHOOD ESTIMATION USING AUXILIARY ENCODER

320 After training with Equation (16), the encoder f provides a surrogate for $p(\mathbf{y} | \mathbf{x}_t)$ that we use inside
321 diffusion posterior sampling. However, the convolutional encoders often compress low level details
322 (Yu et al., 2020; Chan et al., 2022; Yang et al., 2025; Tishby & Zaslavsky, 2015), which can reduce
323 the granularity needed for inverse problems. We therefore use an overlapping patch-wise **inference**
324 scheme that increases how much information the encoder output retains about its input.



325 Figure 2: Overview of the training process for the auxiliary
326 encoder. The figure also illustrates the structure of the linear
327 projection head and the color-consistency head (CCH). The
328 CCH is a two-layer convolutional network that encourages the
329 model to preserve the color information of the input during
330 training. indicates trainable components, sg
331 stands for stop gradient, and ema for exponential moving average.

324 4.2.1 OVERLAPPING PATCH-WISE INFERENCE
325

326 Given an image $\mathbf{x} \in \mathbb{R}^{N_1 \times N_2}$ we partition it into L_s overlapping $n \times n$ patches with stride $s < n$
327 denoted by $\{\mathbf{p}_j^x\}_{j \in [L_s]}$, where $L_s = \left\lfloor \frac{N_1 - n}{s} + 1 \right\rfloor \left\lfloor \frac{N_2 - n}{s} + 1 \right\rfloor$. Then, we run f on each patch and
328 stack the features

$$329 \quad f(\{\mathbf{p}_j^x\}_{j \in [L_s]}) = [f^\top(\mathbf{p}_1^x) \dots f^\top(\mathbf{p}_{L_s}^x)]^\top. \quad (17)$$

330 To quantify retained information we use mutual information $I(\mathbf{x}; f(\mathbf{x}))$. The next result shows that
331 stacking more overlapping patch features increases this quantity.

333 **Theorem 1.** Let $\mathbf{x} \in \mathbb{R}^{N_1 \times N_2}$ be any random image. Fix a patch size $n \times n$ and a stride $s < n$. Let
334 $f : \mathbb{R}^{n \times n} \rightarrow \mathbb{R}^d$ act patch-wise. For integers $1 \leq U < V$ extract U and V overlapping patches and
335 form stacked features as above. Then,

$$336 \quad I(\mathbf{x}; f(\{\mathbf{p}_j^x\}_{j \in [U]})) \leq I(\mathbf{x}; f(\{\mathbf{p}_j^x\}_{j \in [V]})). \quad (18)$$

337 The proof is deferred to Appendix C. In words, denser overlapping patching makes the encoder output
338 more informative about \mathbf{x} .

339 **Corollary 1.** Adopt the notation of Theorem 1. For a single extracted patch ($U = 1$), write $f(\mathbf{x}) \triangleq$
340 $f(\{\mathbf{p}_1^x\}) \in \mathbb{R}^d$. Then for every integer $U \geq 1$, we have $I(\mathbf{x}; f(\mathbf{x})) \leq I(\mathbf{x}; f(\{\mathbf{p}_j^x\}_{j \in [U]}))$.

343 We further complement Theorem 1
344 and Corollary 1 with a variance-
345 reduction analysis for the guidance
346 estimator, simple design rules, and
347 an empirical study in Appendix D.

348 During likelihood estimation we apply
349 the same patchification to the
350 measurement \mathbf{y} and use the stacked
351 features to score consistency.

352 **Remark 2.** Patch-wise ideas exist
353 in prior work. Hu et al. (2024) train
354 a patch-based diffusion prior and
355 aggregate patch scores with position-
356 al encoding to form a whole-
357 image prior score. Wang et al. propose
358 DDNM, a zero-shot restoration
359 method that uses an off-the-
360 shelf diffusion prior and enforces
361 data consistency by modifying only
362 the null-space component for linear
363 measurements, without auxiliary training.
364 In contrast, our overlapping patch-wise step is neither a prior nor a null-space projector. It extracts stacked local features that are fed to an auxiliary encoder learning a contrastive likelihood surrogate for DPS guidance.

365 4.3 ALGORITHM FOR CL-DPS
366

367 After training with Equation (16), we keep only the encoder f and use it as a likelihood surrogate
368 inside diffusion posterior sampling. We integrate f into DPS (Chung et al., 2023b) with overlapping
369 patch-wise features from Section 4.2. The only change relative to unconditional sampling is a
370 contrastive guidance step that adds an estimate of $\nabla_{\mathbf{x}_t} \log p(\mathbf{y} \mid \mathbf{x}_t)$ at each time t . The procedure is
371 summarized in Algorithm 1. In line 12 of Algorithm 1, we adopt an energy-guidance view: treat the
372 contrastive score as an unnormalized likelihood and use only the numerator gradient, following prior
373 unnormalized-energy guidance (Lu et al., 2023; Du et al., 2023). A denominator-aware alternative is
374 provided in Appendix E, where we show that it yields essentially the same reconstruction quality but
375 with higher computational cost.

376 **Remark 3.** We note that CL-DPS can be seamlessly combined with alternative diffusion sampling
377 processes. For example, in Appendix F, we pair CL-DPS with DPM-Solver++ (2M) (Lu et al., 2025),
378 providing the algorithm, implementation details, and representative results.

Algorithm 1: CL-DPS (ours)

1: **Input** number of steps T , measurement \mathbf{y} , noise schedule $\{\tilde{\sigma}_t\}$,
pretrained encoder $f(\cdot)$, step size $\eta > 0$, number of overlapping
patches U .
2: $\mathbf{x}_T \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$. // initialize with Gaussian noise
3: Extract U overlapping patches from \mathbf{y} once.
// cache measurement features
4: $\{\mathbf{p}_j^y\}_{j \in [U]} \leftarrow \mathbf{y}$.
5: **for** $t = T-1 \dots 0$ **do**
6: $\hat{\mathbf{s}} \leftarrow \mathbf{s}_\theta(\mathbf{x}_t, t)$. // score model estimate of $\nabla_{\mathbf{x}_t} \log p(\mathbf{x}_t)$
7: $\tilde{\mathbf{x}}_0 \leftarrow \frac{1}{\sqrt{\tilde{\alpha}_t}} (\mathbf{x}_t + (1 - \tilde{\alpha}_t) \hat{\mathbf{s}})$. // Tweedie posterior mean
8: $\mathbf{z} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$.
9: $\mathbf{x}'_{t-1} \leftarrow \frac{\sqrt{\alpha_t(1 - \alpha_{t-1})}}{1 - \alpha_t} \mathbf{x}_t + \frac{\sqrt{\tilde{\alpha}_{t-1}} \beta_t}{1 - \tilde{\alpha}_t} \tilde{\mathbf{x}}_0 + \tilde{\sigma}_t \mathbf{z}$.
// DDPM update
10: Extract U overlapping patches from \mathbf{x}_t .
11: $\{\mathbf{p}_j^{x_t}\}_{j \in [U]} \leftarrow \mathbf{x}_t$.
12: $\mathbf{x}_{t-1} \leftarrow \mathbf{x}'_{t-1} - \eta \nabla_{\mathbf{x}_t} \langle f(\{\mathbf{p}_j^{x_t}\}_{j \in [U]}), f(\{\mathbf{p}_j^y\}_{j \in [U]}) \rangle$.
// contrastive guidance
13: **end for**
14: **Output** \mathbf{x}_0 .

378 Table 1: **Nonlinear** blind inverse problems: Blind rotation and zoom deblurring results on the FFHQ,
 379 AFHQ and ImageNet datasets. Only CL-DPS achieves high-quality image restoration; other methods
 380 fail. **Bold** and underlined values denote the best and second-best results, respectively.

381	382	383	384						385				
			386			387			388				
389	390	391	392			393			394				
			Method	PSNR \uparrow	FID \downarrow	LPIPS \downarrow	Method	PSNR \uparrow	FID \downarrow	LPIPS \downarrow	Method		
Rotation													
FFHQ (256 \times 256)			AFHQ (256 \times 256)			ImageNet							
CL-DPS (SPE)	22.74	<u>33.66</u>	0.302	CL-DPS (UNI)	<u>22.27</u>	<u>36.55</u>	<u>0.315</u>	FastEM WACV 2024	15.96	268.4	0.597		
									11.57	289.2	0.684		
									13.90	337.8	0.721		
BlindDPS CVPR 2023a	16.87	343.8	0.552	GibbsDDRM ICML 2023	18.43	236.6	0.565	Pan- ℓ_0 TPAMI 2017	14.63	327.7	0.629		
									13.41	227.8	0.895		
									11.52	340.7	0.862		
Zoom													
FFHQ (256 \times 256)			AFHQ (256 \times 256)			ImageNet							
CL-DPS (SPE)	20.68	<u>42.61</u>	0.435	CL-DPS (UNI)	<u>20.31</u>	<u>46.83</u>	<u>0.448</u>	FastEM WACV 2024	17.68	303.4	0.623		
									15.69	310.1	0.797		
									12.76	331.4	0.754		
BlindDPS CVPR 2023a	16.39	292.9	0.784	GibbsDDRM ICML 2023	15.45	327.4	0.802	Pan- ℓ_0 TPAMI 2017	11.52	392.2	0.715		
									12.41	292.8	0.851		
									9.452	347.2	0.743		

395 5 EXPERIMENTS

396 5.1 EXPERIMENTAL SETUP

397 **• Implementation details.** Implementation details for CL-DPS, including training the auxiliary
 398 encoder, and implementation details for baseline methods are provided in Appendix G.

401 **Datasets.** We use Flickr-faces-HQ (FFHQ) 256 \times 256 dataset (Karras et al., 2021) and animal
 402 faces-HQ (AFHQ) 256 \times 256 dataset (Choi et al., 2020) and ImageNet (Deng et al., 2009).

404 **• Pretrained diffusion models.** We leverage pretrained score functions from Chung et al. (2022b).

405 **• Evaluation metrics.** We use Fréchet inception distance (FID) (Heusel et al., 2017), learned
 406 perceptual image patch similarity (LPIPS) (Zhang et al., 2018) and peak signal-to-noise ratio (PSNR)
 407 between the original image and the reconstructed image as the evaluation metrics.

409 **• Choice of benchmarks.** For the *blind nonlinear* setting, to the best of our knowledge there are no
 410 prior DM-based methods; we therefore compare against the strongest *blind linear* DM-based solvers
 411 (FastEM (Laroche et al., 2024), BlindDPS (Chung et al., 2023a), GibbsDDRM (Murata et al., 2023))
 412 and include one classical non-DM baseline, Pan- ℓ_0 (Pan et al., 2017). For the *blind linear* setting, we
 413 evaluate against the full set of seven baselines: SelfDeblur (Ren et al., 2020), DeblurGANv2 (Kupyn
 414 et al., 2019), Pan- ℓ_0 (Pan et al., 2017), BlindDPS (Chung et al., 2023a), FastEM (Laroche et al.,
 415 2024), LatentDEM (Bai et al., 2025), and GibbsDDRM (Murata et al., 2023). The last four methods
 416 use DMs. **CL-DPS is not the only method that uses synthetic degradations for training. In particular,**
 417 **BlindDPS and FastEM train operator priors on synthetic blur kernels, while DeblurGANv2 is trained**
 418 **on synthetic degraded-clean image pairs.**

419 For CL-DPS, we evaluate two training regimes: (i) *Universal* (CL-DPS (UNI)), using a single
 420 encoder trained jointly across all operator families; and (ii) *Specialist* (CL-DPS (SPE)), training
 421 a separate encoder offline for each family \mathcal{A}_ψ (e.g., distinct encoders for rotation and zoom blur).
 422 At inference, we select the encoder for the detected family while still treating ψ as unknown. See
 423 Appendix H for justification.

424 5.2 RESULTS

425 **Nonlinear deblurring.** We consider rotation blur and zoom deblurring tasks as nonlinear inverse
 426 problems. For rotation blur, we randomly choose a rotation center per image, set the rotation angle in
 427 $[10^\circ, 30^\circ]$, and apply a random weight to the rotation trajectory. For zoom blur, we set the center of
 428 the image as the focal point of the zoom, then apply a zoom factor in $[1, 3]$.

430 The qualitative results for the rotational deblurring task using benchmark methods and CL-DPS are
 431 shown in Figure 1. As observed, CL-DPS is the *only* method capable of successfully recovering the
 432 ground truth images, while all benchmark methods fail to do so. Qualitative results for the zoom

432 Table 2: **Linear** blind inverse problems: blind motion and Gaussian deblurring results. **Bold** and
 433 underlined values denote the best and second-best results, respectively.

434 435 436 437 438 439 440 441 442	Motion									
	Method	FFHQ (256 × 256)			AFHQ (256 × 256)			ImageNet		
		PSNR↑	FID↓	LPIPS↓	PSNR↑	FID↓	LPIPS↓	PSNR↑	FID↓	LPIPS↓
CL-DPS (SPE)	26.33	27.44	<u>0.117</u>	24.06	<u>26.25</u>	0.186	22.27	40.35	0.131	
CL-DPS (UNI)	<u>26.17</u>	28.90	0.124	<u>23.72</u>	28.90	<u>0.191</u>	<u>21.88</u>	43.20	0.135	
SelfDeblur CVPR 2020	10.83	270.0	0.717	9.082	300.5	0.768	9.542	320.1	0.775	
DeblurGANv2 ICCV 2019	17.75	220.7	0.571	17.64	186.2	0.597	18.40	260.2	0.561	
Pan- ℓ_0 TPAMI 2017	15.53	242.6	0.542	15.34	235.3	0.627	14.92	275.2	0.585	
BlindDPS CVPR 2023a	22.24	29.49	0.281	20.92	23.89	0.338	19.59	51.25	0.341	
FastEM WACV 2024	24.68	34.52	0.340	21.60	50.80	0.315	18.03	<u>38.24</u>	0.345	
LatentDEM arXiv 2025	22.65	37.10	0.167	20.32	45.61	0.285	18.55	42.53	0.295	
GibbsDDRM ICML 2023	25.80	38.71	0.115	22.01	48.48	0.197	17.10	43.22	0.240	
Gaussian										
443 444 445 446 447 448 449 450 451	Method	FFHQ (256 × 256)			AFHQ (256 × 256)			ImageNet		
		PSNR↑	FID↓	LPIPS↓	PSNR↑	FID↓	LPIPS↓	PSNR↑	FID↓	LPIPS↓
	CL-DPS (SPE)	26.42	26.65	0.218	21.76	20.16	0.225	22.05	34.11	0.255
CL-DPS (UNI)	<u>26.35</u>	27.05	0.228	<u>24.40</u>	<u>22.25</u>	<u>0.237</u>	<u>21.85</u>	36.90	0.268	
SelfDeblur CVPR 2020	11.36	235.4	0.686	11.53	172.2	0.662	10.22	280.5	0.740	
DeblurGANv2 ICCV 2019	19.69	185.5	0.529	20.29	86.87	0.523	21.56	60.31	0.393	
Pan- ℓ_0 TPAMI 2017	19.94	92.70	0.415	21.41	62.76	0.395	18.52	110.7	0.462	
BlindDPS CVPR 2023a	24.77	27.36	0.233	23.63	20.54	0.287	19.59	51.25	0.341	
FastEM WACV 2024	23.15	30.25	0.375	22.95	32.15	0.295	17.51	<u>36.01</u>	0.285	
LatentDEM arXiv 2025	22.75	30.53	0.365	21.57	38.24	0.296	19.31	38.25	0.273	
GibbsDDRM ICML 2023	26.34	34.12	0.426	23.12	42.75	0.314	19.63	38.10	0.355	

452 deblurring task are provided in Appendix N. Also, the quantitative results are presented in Table 1.
 453 The results on all three datasets show the significant superiority of CL-DPS over benchmark methods.
 454 Using a Universal encoder for all measurements leads to a slight performance drop compared to
 455 the family-operator setting, yet CL-DPS (UNI) still remains far ahead of all baselines.

456 All DM-based benchmark methods fail in nonlinear settings because they **assume that** \mathcal{A}_ψ **is**
 457 **a convolutional operator**, an assumption that cannot be remedied with a simple modification.

459 **Linear deblurring.** For linear deblurring, we consider Gaussian and motion deblurring. Specifically,
 460 following (Bai et al., 2025; Laroche et al., 2024; Murata et al., 2023), we apply the Gaussian blur
 461 kernel with the size of 61×61 and standard deviation of 3.0. Also, the motion blur kernel is generated
 462 randomly using an open-source code¹, with kernel size of 61×61 and intensity of 0.5. These kernels
 463 are convolved with the ground truth image to produce the measurement.

464 Table 2 summarizes the quantitative results for Gaussian and motion deblurring tasks. Compared to
 465 state-of-the-art methods, CL-DPS achieves competitive performance across various metrics under
 466 blind linear inverse settings. Notably, CL-DPS outperforms all the other methods in terms of PSNR
 467 and FID score on the FFHQ and AFHQ datasets when subjected to Gaussian blur. Further Qualitative
 468 results are provided in Appendix O.

469 Comprehensive ablations on contrastive hyperparameters, overlapping patch-wise inference, and the
 470 color-consistency head are provided in Appendix M. Wall-clock run times are reported in Appendix K.
 471

472 6 TOY LIKELIHOOD GRADIENT CHECK

475 We validate that the surrogate guidance aligns with the true likelihood gradient in a controlled
 476 synthetic setting (full setup and hyperparameters are in Appendix I.). For a fixed diffusion schedule,
 477 we subsample $T_{\text{diag}} = 50$ timesteps that are equally spaced in $\log \sigma_t$. At each t we form a toy
 478 observation \mathbf{y}_t with a linear operator H_ψ and Gaussian noise, then compare the closed-form gradient

$$479 \quad g_{\text{true}}(t) = \nabla_{\mathbf{x}_t} \log p(\mathbf{y}_t \mid \mathbf{x}_t) = \sigma_t^{-2} H_\psi^\top (\mathbf{y}_t - H_\psi \mathbf{x}_t) \quad (19)$$

480 to the gradient of our contrastive softmax surrogate

$$482 \quad g_{\text{sur}}(t) = \nabla_{\mathbf{x}_t} \langle f(\{\mathbf{p}_j^{\mathbf{x}_t}\}_{j \in [U]}), f(\{\mathbf{p}_j^{\mathbf{y}}\}_{j \in [U]}) \rangle. \quad (20)$$

484 We report the angle $\theta_t = \cos^{-1} \frac{\langle g_{\text{true}}(t), g_{\text{sur}}(t) \rangle}{\|g_{\text{true}}(t)\|_2 \|g_{\text{sur}}(t)\|_2}$ and the norm ratio $\rho_t = \frac{\|g_{\text{sur}}(t)\|_2}{\|g_{\text{true}}(t)\|_2}$.
 485

¹<https://github.com/LeviBorodenko/motionblur>.

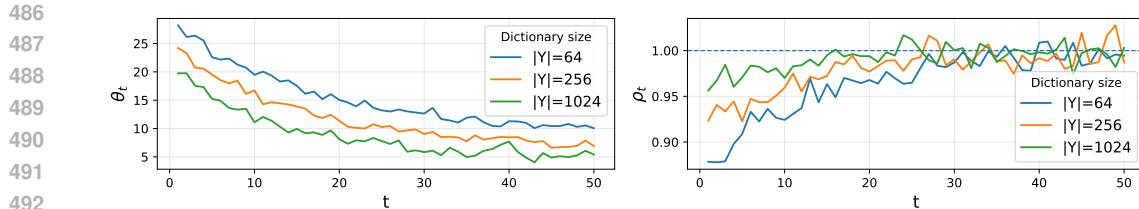


Figure 3: Toy gradient check on a subsampled grid of 50 timesteps. Left, angle between g_{true} and g_{sur} . Right, norm ratio $\|g_{\text{sur}}\|_2 / \|g_{\text{true}}\|_2$. Larger $|Y|$ yields better alignment. Details are in Appendix I.

Figure 3 shows that θ_t decreases and ρ_t approaches one as t increases. Larger dictionary sizes $|Y|$ further improve alignment.

7 CONCLUSION AND FUTURE WORK

We proposed CL-DPS, a diffusion-based method for blind inverse problems with unknown measurement parameters. By training an auxiliary encoder via a modified MoCo framework, CL-DPS estimates $p(y|x_t)$ without access to the measurement operator and guides the reverse diffusion process accordingly. We further improved estimation accuracy by using color consistency head and deploying overlapping patch-wise inference. Experiments show that CL-DPS handles both linear and complex nonlinear settings, including tasks like rotational deblurring, where prior methods fail. **One potential direction for future work is to design a more efficient auxiliary encoder to further reduce inference cost.**

LLM USAGE STATEMENT

LLM used only for grammar and wording edits; no generation of ideas, methods, analyses, results, or citations. Authors reviewed all edits and accept full responsibility.

REPRODUCIBILITY STATEMENT

We have taken steps to ensure our results are reproducible. All model and algorithmic details, training procedures, hyperparameters, evaluation protocols, and metrics are specified in the main text. The appendix provides complete proofs, implementation notes, ablations, and additional qualitative results. An anonymized GitHub repository contains the source code and configuration files, and pre-trained checkpoints. All datasets used in our experiments are publicly available.

REFERENCES

Cagan Alkan, Julio Oscanoa, Daniel Abraham, Mengze Gao, Aizada Nurdinova, Kawin Setsompop, John M Pauly, Morteza Mardani, and Shreyas Vasanawala. Variational diffusion models for blind mri inverse problems. In *NeurIPS 2023 Workshop on Deep Learning and Inverse Problems*, 2023.

Brian DO Anderson. Reverse-time diffusion equation models. *Stochastic Processes and their Applications*, 12(3):313–326, 1982.

Weimin Bai, Siyi Chen, Wenzheng Chen, and He Sun. Blind inversion using latent diffusion priors, 2025. URL <https://openreview.net/forum?id=jMfffIWHic>.

Ashish Bora, Ajil Jalal, Eric Price, and Alexandros G Dimakis. Compressed sensing using generative models. In *International conference on machine learning*, pp. 537–546. PMLR, 2017.

Kwan Ho Ryan Chan, Yaodong Yu, Chong You, Haozhi Qi, John Wright, and Yi Ma. Redunet: A white-box deep network from the principle of maximizing rate reduction. *Journal of machine learning research*, 23(114):1–103, 2022.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for contrastive learning of visual representations. In *International conference on machine learning*, pp. 1597–1607. PMLR, 2020a.

540 Ting Chen, Simon Kornblith, Kevin Swersky, Mohammad Norouzi, and Geoffrey E Hinton. Big
 541 self-supervised models are strong semi-supervised learners. *Advances in neural information*
 542 *processing systems*, 33:22243–22255, 2020b.

543

544 Hamadi Chihoui, Abdelhak Lemhenter, and Paolo Favaro. Blind image restoration via fast diffusion
 545 inversion. In *The Thirty-eighth Annual Conference on Neural Information Processing Systems*,
 546 2024. URL <https://openreview.net/forum?id=HfSJ1BRkJ>.

547

548 Yunjey Choi, Youngjung Uh, Jaejun Yoo, and Jung-Woo Ha. Stargan v2: Diverse image synthesis for
 549 multiple domains. In *Proceedings of the IEEE/CVF conference on computer vision and pattern*
 550 *recognition*, pp. 8188–8197, 2020.

551

552 Hyungjin Chung, Byeongsu Sim, Dohoon Ryu, and Jong Chul Ye. Improving diffusion models for
 553 inverse problems using manifold constraints. *Advances in Neural Information Processing Systems*,
 554 35:25683–25696, 2022a.

555

556 Hyungjin Chung, Byeongsu Sim, and Jong Chul Ye. Come-closer-diffuse-faster: Accelerating
 557 conditional diffusion models for inverse problems through stochastic contraction. In *Proceedings*
 558 *of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 12413–12422,
 559 2022b.

560

561 Hyungjin Chung, Jeongsol Kim, Sehui Kim, and Jong Chul Ye. Parallel diffusion models of operator
 562 and image for blind inverse problems. In *Proceedings of the IEEE/CVF Conference on Computer*
 563 *Vision and Pattern Recognition*, pp. 6059–6069, 2023a.

564

565 Hyungjin Chung, Jeongsol Kim, Michael Thompson Mccann, Marc Louis Klasky, and Jong Chul Ye.
 566 Diffusion posterior sampling for general noisy inverse problems. In *The Eleventh International*
 567 *Conference on Learning Representations*, 2023b. URL <https://openreview.net/forum?id=OnD9zGAGT0k>.

568

569 Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hier-
 570 archical image database. In *2009 IEEE Conference on Computer Vision and Pattern Recognition*,
 571 pp. 248–255, 2009. doi: 10.1109/CVPR.2009.5206848.

572

573 Zehao Dou and Yang Song. Diffusion posterior sampling for linear inverse problem solving: A
 574 filtering perspective. In *The Twelfth International Conference on Learning Representations*, 2024.

575

576 Yilun Du, Conor Durkan, Robin Strudel, Joshua B Tenenbaum, Sander Dieleman, Rob Fergus, Jascha
 577 Sohl-Dickstein, Arnaud Doucet, and Will Sussman Grathwohl. Reduce, reuse, recycle: Composi-
 578 tional generation with energy-based diffusion models and mcmc. In *International conference on*
 579 *machine learning*, pp. 8489–8510. PMLR, 2023.

580

581 Bradley Efron. Tweedie’s formula and selection bias. *Journal of the American Statistical Association*,
 582 106(496):1602–1614, 2011.

583

584 Berthy T Feng and Katherine L Bouman. Efficient bayesian computational imaging with a surrogate
 585 score-based prior. *arXiv preprint arXiv:2309.01949*, 2023.

586

587 Jie Gui, Tuo Chen, Jing Zhang, Qiong Cao, Zhenan Sun, Hao Luo, and Dacheng Tao. A survey
 588 on self-supervised learning: Algorithms, applications, and future trends. *IEEE Transactions on*
 589 *Pattern Analysis and Machine Intelligence*, pp. 1–20, 2024. doi: 10.1109/TPAMI.2024.3415112.

590

591 Raia Hadsell, Sumit Chopra, and Yann LeCun. Dimensionality reduction by learning an invariant
 592 mapping. In *2006 IEEE computer society conference on computer vision and pattern recognition*
 593 (*CVPR’06*), volume 2, pp. 1735–1742. IEEE, 2006.

594

595 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
 596 recognition. In *Proceedings of the IEEE conference on computer vision and pattern recognition*,
 597 pp. 770–778, 2016.

598

599 Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum contrast for
 600 unsupervised visual representation learning. In *Proceedings of the IEEE/CVF conference on*
 601 *computer vision and pattern recognition*, pp. 9729–9738, 2020.

594 Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter. Gans
 595 trained by a two time-scale update rule converge to a local nash equilibrium. *Advances in neural*
 596 *information processing systems*, 30, 2017.

597

598 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. *Advances in*
 599 *neural information processing systems*, 33:6840–6851, 2020.

600 Mahdi S. Hosseini and Konstantinos N. Plataniotis. Convolutional deblurring for natural imaging.
 601 *IEEE Transactions on Image Processing*, 29:250–264, 2020. doi: 10.1109/TIP.2019.2929865.

602

603 Jason Hu, Bowen Song, Xiaojian Xu, Liyue Shen, and Jeffrey A Fessler. Learning image pri-
 604 ors through patch-based diffusion models for solving inverse problems. *Advances in Neural*
 605 *Information Processing Systems*, 37:1625–1660, 2024.

606

607 Ajil Jalal, Marius Arvinte, Giannis Daras, Eric Price, Alexandros G Dimakis, and Jon Tamir. Robust
 608 Compressed Sensing MRI with Deep Generative Priors. In *Advances in Neural Information*
 609 *Processing Systems*, volume 34, pp. 14938–14954, 2021.

610 Liya Ji, Zhefan Rao, Sinno Jialin Pan, Chenyang Lei, and Qifeng Chen. A diffusion model with
 611 state estimation for degradation-blind inverse imaging. In *Proceedings of the AAAI Conference on*
 612 *Artificial Intelligence*, volume 38, pp. 2471–2479, 2024.

613

614 Kyong Hwan Jin, Michael T McCann, Emmanuel Froustey, and Michael Unser. Deep convolutional
 615 neural network for inverse problems in imaging. *IEEE transactions on image processing*, 26(9):
 616 4509–4522, 2017.

617 Zahra Kadkhodaie and Eero Simoncelli. Stochastic solutions for linear inverse problems using the
 618 prior implicit in a denoiser. *Advances in Neural Information Processing Systems*, 34:13242–13254,
 619 2021.

620

621 Tero Karras, Samuli Laine, and Timo Aila. A Style-Based Generator Architecture for Generative
 622 Adversarial Networks . *IEEE Transactions on Pattern Analysis & Machine Intelligence*, 43
 623 (12):4217–4228, December 2021. ISSN 1939-3539. doi: 10.1109/TPAMI.2020.2970919. URL
 624 <https://doi.ieee.org/10.1109/TPAMI.2020.2970919>.

625 Bahjat Kawar, Gregory Vaksman, and Michael Elad. Snips: Solving noisy inverse problems stochas-
 626 tically. *Advances in Neural Information Processing Systems*, 34:21757–21769, 2021.

627

628 Bahjat Kawar, Michael Elad, Stefano Ermon, and Jiaming Song. Denoising diffusion restoration
 629 models. *Advances in Neural Information Processing Systems*, 35:23593–23606, 2022.

630

631 Orest Kupyn, Tetiana Martyniuk, Junru Wu, and Zhangyang Wang. Deblurgan-v2: Deblurring
 632 (orders-of-magnitude) faster and better. In *Proceedings of the IEEE/CVF international conference*
 633 *on computer vision*, pp. 8878–8887, 2019.

634

635 Charles Laroche, Andres Almansa, and Eva Coupete. Fast Diffusion EM: a diffusion model for
 636 blind inverse problems with application to deconvolution . In *2024 IEEE/CVF Winter Conference*
 637 *on Applications of Computer Vision (WACV)*, pp. 5259–5269, Los Alamitos, CA, USA, January
 638 2024. IEEE Computer Society. doi: 10.1109/WACV57701.2024.00519. URL <https://doi.ieee.org/10.1109/WACV57701.2024.00519>.

639

640 Sojin Lee, Dogyun Park, Inho Kong, and Hyunwoo J Kim. Diffusion prior-based amortized variational
 641 inference for noisy inverse problems. In *European Conference on Computer Vision*, pp. 288–304.
 642 Springer, 2024.

643

644 Junjie Li, Yixin Zhang, Zilei Wang, Keyu Tu, and Saihui Hou. Probabilistic contrastive learning for
 645 domain adaptation. *arXiv preprint arXiv:2111.06021*, 2021.

646

647 Cheng Lu, Huayu Chen, Jianfei Chen, Hang Su, Chongxuan Li, and Jun Zhu. Contrastive energy
 648 prediction for exact energy-guided diffusion sampling in offline reinforcement learning. In
 649 *International Conference on Machine Learning*, pp. 22825–22855. PMLR, 2023.

648 Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu. Dpm-solver++: Fast
 649 solver for guided sampling of diffusion probabilistic models. *Machine Intelligence Research*, pp.
 650 1–22, 2025.

651

652 Morteza Mardani, Jiaming Song, Jan Kautz, and Arash Vahdat. A variational perspective on solving
 653 inverse problems with diffusion models. In *The Twelfth International Conference on Learning
 654 Representations*.

655 Michael T McCann, Kyong Hwan Jin, and Michael Unser. Convolutional neural networks for inverse
 656 problems in imaging: A review. *IEEE Signal Processing Magazine*, 34(6):85–95, 2017.

657

658 Naoki Murata, Koichi Saito, Chieh-Hsin Lai, Yuhta Takida, Toshimitsu Uesaka, Yuki Mitsuji, and
 659 Stefano Ermon. Gibbsddrm: A partially collapsed gibbs sampler for solving blind inverse
 660 problems with denoising diffusion restoration. In *International conference on machine learning*, pp.
 661 25501–25522. PMLR, 2023.

662 Gregory Ongie, Ajil Jalal, Christopher A Metzler, Richard G Baraniuk, Alexandros G Dimakis, and
 663 Rebecca Willett. Deep learning techniques for inverse problems in imaging. *IEEE Journal on
 664 Selected Areas in Information Theory*, 1(1):39–56, 2020.

665

666 Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predictive
 667 coding. *arXiv preprint arXiv:1807.03748*, 2018.

668

669 Jinshan Pan, Zhe Hu, Zhixun Su, and Ming-Hsuan Yang. l_0 -regularized intensity and gradient
 670 prior for deblurring text images and beyond. *IEEE Transactions on Pattern Analysis and Machine
 671 Intelligence*, 39(2):342–355, 2017. doi: 10.1109/TPAMI.2016.2551244.

672

673 Dongwei Ren, Kai Zhang, Qilong Wang, Qinghua Hu, and Wangmeng Zuo. Neural blind decon-
 674 volution using deep priors. In *Proceedings of the IEEE/CVF conference on computer vision and
 675 pattern recognition*, pp. 3341–3350, 2020.

676

677 Yash Sanghvi. *Kernel Estimation Approaches to Blind Deconvolution*. PhD thesis, Purdue University
 Graduate School, 2024.

678

679 Jiaming Song, Arash Vahdat, Morteza Mardani, and Jan Kautz. Pseudoinverse-guided diffusion
 680 models for inverse problems. In *International Conference on Learning Representations*, 2023.

681

682 Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
 683 Poole. Score-based generative modeling through stochastic differential equations. *arXiv preprint
 684 arXiv:2011.13456*, 2020.

685

686 Yang Song, Liyue Shen, Lei Xing, and Stefano Ermon. Solving inverse problems in medical imaging
 687 with score-based generative models. In *International Conference on Learning Representations*,
 688 2022. URL <https://openreview.net/forum?id=vaRCHVj0uGI>.

689

690 Yonglong Tian, Chen Sun, Ben Poole, Dilip Krishnan, Cordelia Schmid, and Phillip Isola. What
 691 makes for good views for contrastive learning? *Advances in neural information processing systems*,
 692 33:6827–6839, 2020.

693

694 Naftali Tishby and Noga Zaslavsky. Deep learning and the information bottleneck principle. In *2015
 695 ieee Information Theory Workshop (ITW)*, pp. 1–5. IEEE, 2015.

696

697 Francesco Tonolini, Jack Radford, Alex Turpin, Daniele Faccio, and Roderick Murray-Smith. Vari-
 698 ational inference for computational imaging inverse problems. *Journal of Machine Learning
 699 Research*, 21(179):1–46, 2020.

700

701 Pascal Vincent. A connection between score matching and denoising autoencoders. *Neural computa-
 702 tion*, 23(7):1661–1674, 2011.

703

704 Xinlong Wang, Rufeng Zhang, Chunhua Shen, Tao Kong, and Lei Li. Dense contrastive learning
 705 for self-supervised visual pre-training. In *Proceedings of the IEEE/CVF conference on computer
 706 vision and pattern recognition*, pp. 3024–3033, 2021.

702 Yinhuai Wang, Jiwen Yu, and Jian Zhang. Zero-shot image restoration using denoising diffusion
703 null-space model. In *The Eleventh International Conference on Learning Representations*.
704

705 Zhirong Wu, Yuanjun Xiong, Stella X Yu, and Dahua Lin. Unsupervised feature learning via non-
706 parametric instance discrimination. In *Proceedings of the IEEE conference on computer vision*
707 and pattern recognition, pp. 3733–3742, 2018.

708 En-Hui Yang, Shayan Mohajer Hamidi, Linfeng Ye, Renhao Tan, and Beverly Yang. Conditional
709 mutual information constrained deep learning for classification. *IEEE Transactions on Neural*
710 *Networks and Learning Systems*, 36(8):15436–15448, 2025. doi: 10.1109/TNNLS.2025.3540014.
711

712 Yaodong Yu, Kwan Ho Ryan Chan, Chong You, Chaobing Song, and Yi Ma. Learning diverse and
713 discriminative representations via the principle of maximal coding rate reduction. *Advances in*
714 *neural information processing systems*, 33:9422–9434, 2020.

715 Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The unreasonable
716 effectiveness of deep features as a perceptual metric. In *Proceedings of the IEEE conference on*
717 *computer vision and pattern recognition*, pp. 586–595, 2018.

718 Michael S Zhdanov. *Geophysical inverse theory and regularization problems*, volume 36. Elsevier,
719 2002.
720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756 A RELATED WORK
757758 A.1 CONTRASTIVE LEARNING
759

760 As a versatile semi-supervised learning framework, contrastive learning learns a useful feature
761 representation by clustering positive samples and dispersing negative samples. It achieves great
762 success since instance discrimination has been proposed in (Wu et al., 2018). Since then (Chen et al.,
763 2020a;b) advanced the field by leveraging diverse data augmentation methods and using projection
764 head during the contrastive learning process. (He et al., 2020) used a momentum update mechanism
765 to maintain a negative sample queue to reduce the memory consumption. Later (Wang et al., 2021)
766 further proposed a dense contrastive loss for dense downstream task, specifically, (Wang et al.,
767 2021) can consistently outperform its baseline methods like (He et al., 2020), when transferring to
768 downstream dense prediction tasks including object detection. For interested readers seeking further
769 information, please refer to the survey paper (Gui et al., 2024).
770

771 B FULL VERSION OF LEMMA 1 AND ITS PROOF
772773 **Lemma 1, Full Version.**

774 Let f be differentiable in \mathbf{x}_t and let $\tau > 0$. Define

$$775 \quad s_t(\mathbf{x}_t | \mathbf{y}) \triangleq \langle f(\mathbf{x}_t), f(\mathbf{y}) \rangle / \tau. \quad (21)$$

777 For a finite dictionary Y with $\mathbf{y} \in Y$ define

$$778 \quad \widehat{p}_{t,Y}(\mathbf{y} | \mathbf{x}_t) = \frac{\exp\{s_t(\mathbf{x}_t | \mathbf{y})\}}{\sum_{\tilde{\mathbf{y}} \in Y} \exp\{s_t(\mathbf{x}_t | \tilde{\mathbf{y}})\}}. \quad (22)$$

781 Then,

$$782 \quad \nabla_{\mathbf{x}_t} \log \widehat{p}_{t,Y}(\mathbf{y} | \mathbf{x}_t) = \nabla_{\mathbf{x}_t} s_t(\mathbf{x}_t | \mathbf{y}) - \sum_{\tilde{\mathbf{y}} \in Y} \pi_{t,Y}(\tilde{\mathbf{y}} | \mathbf{x}_t) \nabla_{\mathbf{x}_t} s_t(\mathbf{x}_t | \tilde{\mathbf{y}}), \quad (23)$$

785 where

$$786 \quad \pi_{t,Y}(\tilde{\mathbf{y}} | \mathbf{x}_t) = \frac{\exp\{s_t(\mathbf{x}_t | \tilde{\mathbf{y}})\}}{\sum_{\mathbf{z} \in Y} \exp\{s_t(\mathbf{x}_t | \mathbf{z})\}}. \quad (24)$$

789 Assume the energy model

$$790 \quad p(\mathbf{y} | \mathbf{x}_t) = \exp\{s_t(\mathbf{x}_t | \mathbf{y})\} / Z_t(\mathbf{x}_t), \quad (25)$$

791 with base measure on Y and partition function

$$792 \quad Z_t(\mathbf{x}_t) = \int \exp\{s_t(\mathbf{x}_t | \mathbf{z})\} d\mu(\mathbf{z}). \quad (26)$$

795 Let Y_n be i.i.d. samples from μ augmented so that $\mathbf{y} \in Y_n$. If $\exp\{s_t(\mathbf{x}_t | \cdot)\}$ and
796 $\exp\{s_t(\mathbf{x}_t | \cdot)\} \|\nabla_{\mathbf{x}_t} s_t(\mathbf{x}_t | \cdot)\|$ are μ integrable then for fixed \mathbf{y} and \mathbf{x}_t

$$797 \quad \nabla_{\mathbf{x}_t} \log \widehat{p}_{t,Y_n}(\mathbf{y} | \mathbf{x}_t) \xrightarrow[n \rightarrow \infty]{a.s.} \nabla_{\mathbf{x}_t} \log p(\mathbf{y} | \mathbf{x}_t). \quad (27)$$

800 *Proof.* Define the empirical partition function

$$802 \quad Z_{t,Y}(\mathbf{x}_t) = \sum_{\mathbf{z} \in Y} \exp\{s_t(\mathbf{x}_t | \mathbf{z})\} \quad (28)$$

804 . Then,

$$806 \quad \log \widehat{p}_{t,Y}(\mathbf{y} | \mathbf{x}_t) = s_t(\mathbf{x}_t | \mathbf{y}) - \log Z_{t,Y}(\mathbf{x}_t). \quad (29)$$

807 Differentiating with respect to \mathbf{x}_t gives

$$809 \quad \nabla_{\mathbf{x}_t} \log \widehat{p}_{t,Y}(\mathbf{y} | \mathbf{x}_t) = \nabla_{\mathbf{x}_t} s_t(\mathbf{x}_t | \mathbf{y}) - \frac{1}{Z_{t,Y}(\mathbf{x}_t)} \nabla_{\mathbf{x}_t} Z_{t,Y}(\mathbf{x}_t). \quad (30)$$

810 The gradient of $Z_{t,Y}$ is
 811

$$812 \quad \nabla_{\mathbf{x}_t} Z_{t,Y}(\mathbf{x}_t) = \sum_{\tilde{\mathbf{y}} \in Y} \exp\{s_t(\mathbf{x}_t | \tilde{\mathbf{y}})\} \nabla_{\mathbf{x}_t} s_t(\mathbf{x}_t | \tilde{\mathbf{y}}). \quad (31)$$

814 Therefore,
 815

$$816 \quad \frac{1}{Z_{t,Y}(\mathbf{x}_t)} \nabla_{\mathbf{x}_t} Z_{t,Y}(\mathbf{x}_t) = \sum_{\tilde{\mathbf{y}} \in Y} \pi_{t,Y}(\tilde{\mathbf{y}} | \mathbf{x}_t) \nabla_{\mathbf{x}_t} s_t(\mathbf{x}_t | \tilde{\mathbf{y}}) \quad (32)$$

818 which proves the gradient identity.
 819

820 For consistency consider the true partition function
 821

$$822 \quad Z_t(\mathbf{x}_t) = \int \exp\{s_t(\mathbf{x}_t | \mathbf{z})\} d\mu(\mathbf{z}). \quad (33)$$

824 Let $g(\mathbf{z}) = \nabla_{\mathbf{x}_t} s_t(\mathbf{x}_t | \mathbf{z})$. By the strong law of large numbers and the integrability assumptions
 825

$$826 \quad \frac{1}{|Y_n|} \sum_{\mathbf{z} \in Y_n} \exp\{s_t(\mathbf{x}_t | \mathbf{z})\} \xrightarrow{a.s.} \int \exp\{s_t(\mathbf{x}_t | \mathbf{z})\} d\mu(\mathbf{z}) \quad (34)$$

$$829 \quad \frac{1}{|Y_n|} \sum_{\mathbf{z} \in Y_n} \exp\{s_t(\mathbf{x}_t | \mathbf{z})\} g(\mathbf{z}) \xrightarrow{a.s.} \int \exp\{s_t(\mathbf{x}_t | \mathbf{z})\} g(\mathbf{z}) d\mu(\mathbf{z}), \quad (35)$$

831 Hence
 832

$$833 \quad \sum_{\tilde{\mathbf{y}} \in Y_n} \pi_{t,Y_n}(\tilde{\mathbf{y}} | \mathbf{x}_t) g(\tilde{\mathbf{y}}) \xrightarrow{a.s.} \frac{\int \exp\{s_t(\mathbf{x}_t | \mathbf{z})\} g(\mathbf{z}) d\mu(\mathbf{z})}{\int \exp\{s_t(\mathbf{x}_t | \mathbf{z})\} d\mu(\mathbf{z})}. \quad (36)$$

835 The right hand side equals $\mathbb{E}_{\mathbf{z} \sim p(\cdot | \mathbf{x}_t)}[g(\mathbf{z})]$. Finally
 836

$$837 \quad \nabla_{\mathbf{x}_t} \log p(\mathbf{y} | \mathbf{x}_t) = \nabla_{\mathbf{x}_t} s_t(\mathbf{x}_t | \mathbf{y}) - \mathbb{E}_{\mathbf{z} \sim p(\cdot | \mathbf{x}_t)}[\nabla_{\mathbf{x}_t} s_t(\mathbf{x}_t | \mathbf{z})]. \quad (37)$$

839 Combining the empirical identity with this limit shows
 840

$$841 \quad \nabla_{\mathbf{x}_t} \log \hat{p}_{t,Y_n}(\mathbf{y} | \mathbf{x}_t) \xrightarrow{a.s.} \nabla_{\mathbf{x}_t} \log p(\mathbf{y} | \mathbf{x}_t), \quad (38)$$

842 which completes the proof. \square
 843

844 C PROOF OF THEOREM 1

846 *Proof.* Define the additional patch collection
 847

$$848 \quad G(\mathbf{x}) \triangleq \{\mathbf{p}_j^{\mathbf{x}}\}_{j=U+1}^V, \quad \text{so that} \quad f(\{\mathbf{p}_j^{\mathbf{x}}\}_{j \in [V]}) = \left[f(\{\mathbf{p}_j^{\mathbf{x}}\}_{j \in [U]})^{\top}, f(G(\mathbf{x}))^{\top} \right]^{\top}.$$

849 Using the definition of mutual information and the chain rule for entropy,
 850

$$851 \quad \begin{aligned} I\left(\mathbf{x}; f(\{\mathbf{p}_j^{\mathbf{x}}\}_{j \in [V]})\right) &= H(\mathbf{x}) - H\left(\mathbf{x} | f(\{\mathbf{p}_j^{\mathbf{x}}\}_{j \in [V]})\right) \\ 852 &= H(\mathbf{x}) - H\left(\mathbf{x} | f(\{\mathbf{p}_j^{\mathbf{x}}\}_{j \in [U]}), f(G(\mathbf{x}))\right), \end{aligned}$$

855 where $H(\cdot)$ denotes the entropy function. Since conditioning cannot increase conditional entropy,
 856

$$857 \quad H\left(\mathbf{x} | f(\{\mathbf{p}_j^{\mathbf{x}}\}_{j \in [U]}), f(G(\mathbf{x}))\right) \leq H\left(\mathbf{x} | f(\{\mathbf{p}_j^{\mathbf{x}}\}_{j \in [U]})\right).$$

858 Substituting gives
 859

$$860 \quad I\left(\mathbf{x}; f(\{\mathbf{p}_j^{\mathbf{x}}\}_{j \in [V]})\right) \geq H(\mathbf{x}) - H\left(\mathbf{x} | f(\{\mathbf{p}_j^{\mathbf{x}}\}_{j \in [U]})\right) = I\left(\mathbf{x}; f(\{\mathbf{p}_j^{\mathbf{x}}\}_{j \in [U]})\right).$$

862 The argument uses only that the patch extractor and f are deterministic functions of \mathbf{x} and that the
 863 entropies are well defined. No independence or distributional assumptions on \mathbf{x} are required. This
 proves the claim. \square

864 **D FROM MUTUAL- INFORMATION MONOTONICITY TO PRACTICAL PATCH**
 865 **DESIGN**
 866

867 Theorem 1 concerns the clean image \mathbf{x} and the stacked patch-wise features $f(\{p_j^x\})$. During sampling
 868 we operate on diffusion states \mathbf{x}_t and form a surrogate likelihood guidance using patch-wise features.
 869 In this appendix we relate the monotonicity guarantee to the stability of that guidance and derive
 870 practical patch-selection rules.
 871

872 **D.1 VARIANCE CONTRACTION OF THE SURROGATE GUIDANCE**
 873

874 At reverse step t , let the per-patch contribution to the surrogate likelihood gradient be $\phi_j(\mathbf{x}_t) \in \mathbb{R}^D$,
 875 computed from the j -th overlapping patch feature. Define the averaged guidance
 876

$$877 \quad \mathbf{g}_U(\mathbf{x}_t) = \frac{1}{U} \sum_{j=1}^U \phi_j(\mathbf{x}_t). \quad (39)$$

878

880 Assume the following mild regularity conditions: (i) bounded second moments, $\text{Var}(\phi_j) \preceq \sigma^2 \mathbf{I}$ for
 881 all j , and (ii) weak dependence across overlapping patches, $\sum_{k \geq 1} \|\text{Cov}(\phi_j, \phi_{j+k})\|_{\text{op}} < \infty$.
 882

883 **Proposition 1** (Variance contraction). *Under the conditions above,*

$$884 \quad \text{Var}(\mathbf{g}_U(\mathbf{x}_t)) \preceq \frac{c}{U} \mathbf{I} \quad (40)$$

885

886 for a constant c that depends on σ^2 and the dependence sum. Consequently, the signal-to-noise ratio
 887 of \mathbf{g}_U increases with U , and the expected cosine similarity between \mathbf{g}_U and its mean increases toward
 888 one at a rate that saturates on the order of $1/U$.
 889

890 *Proof.* Write $\phi_j = \phi_j(\mathbf{x}_t)$ for brevity and let $\tilde{\phi}_j = \phi_j - \mathbb{E} \phi_j$. For any unit vector $\mathbf{u} \in \mathbb{S}^{D-1}$
 891 define the scalar sequence $\xi_j = \mathbf{u}^\top \tilde{\phi}_j$. Then
 892

$$893 \quad \text{Var}(\mathbf{u}^\top \mathbf{g}_U) = \text{Var}\left(\frac{1}{U} \sum_{j=1}^U \xi_j\right) = \frac{1}{U^2} \left(\sum_{j=1}^U \text{Var}(\xi_j) + 2 \sum_{k=1}^{U-1} \sum_{j=1}^{U-k} \text{Cov}(\xi_j, \xi_{j+k}) \right). \quad (41)$$

894

895 Bound the diagonal terms using $\text{Var}(\xi_j) = \mathbf{u}^\top \text{Var}(\phi_j) \mathbf{u} \leq \sigma^2$. For the off-diagonal terms, note
 896 that
 897

$$898 \quad |\text{Cov}(\xi_j, \xi_{j+k})| = |\mathbf{u}^\top \text{Cov}(\phi_j, \phi_{j+k}) \mathbf{u}| \leq \|\text{Cov}(\phi_j, \phi_{j+k})\|_{\text{op}} \leq \rho_k. \quad (42)$$

899

900 Therefore

$$901 \quad \text{Var}(\mathbf{u}^\top \mathbf{g}_U) \leq \frac{1}{U^2} \left(U\sigma^2 + 2 \sum_{k=1}^{U-1} \sum_{j=1}^{U-k} \rho_k \right) = \frac{1}{U^2} \left(U\sigma^2 + 2 \sum_{k=1}^{U-1} (U-k)\rho_k \right) \quad (43)$$

902

$$903 \quad = \frac{1}{U} \left(\sigma^2 + 2 \sum_{k=1}^{U-1} \left(1 - \frac{k}{U} \right) \rho_k \right) \leq \frac{1}{U} \left(\sigma^2 + 2 \sum_{k=1}^{\infty} \rho_k \right). \quad (44)$$

904

905 Since the bound holds for every unit vector \mathbf{u} , by the variational characterization of the operator
 906 norm we obtain the matrix inequality in equation 40, that is
 907

$$908 \quad \text{Var}(\mathbf{g}_U(\mathbf{x}_t)) \preceq \frac{1}{U} \left(\sigma^2 + 2 \sum_{k=1}^{U-1} \left(1 - \frac{k}{U} \right) \rho_k \right) \mathbf{I} \preceq \frac{1}{U} \left(\sigma^2 + 2 \sum_{k=1}^{\infty} \rho_k \right) \mathbf{I}. \quad (45)$$

909

910 This completes the proof. \square

911 **Corollary 2** (Design implication). *Increasing the number of overlapping patches U yields
 912 diminishing-returns improvements in guidance stability. This explains why small to moderate overlaps
 913 deliver most of the gain while very dense overlaps plateau.*

918 D.2 A COMPUTE-AWARE PATCH POLICY
919

920 Let n be the patch size and s the stride. We use Theorem 1 as a safety guarantee and choose
921 granularity by the following rule. (i) Choose n so that salient structures span multiple patches, (ii)
922 choose s in the range $n/4$ to $n/2$ so that each pixel participates in several overlapping contexts, (iii)
923 increase U until a held-out validation metric (for example PSNR or FID) saturates, then stop. This
924 policy turns the monotonicity guarantee into a practical selection strategy without over-allocating
925 compute to excessive overlap.

926
927 E DENOMINATOR TERM: THEORY, DIAGNOSTICS, AND IMPLEMENTATION
928

929 In the main sampler we apply the contrastive guidance using a numerator-only update at line 12
930 of Algorithm 1. This section justifies that choice, reports an empirical magnitude diagnostic of the
931 softmax denominator term, and provides the full denominator-aware variant for completeness. Let
932 the logits be $s_j = \langle f(\mathbf{x}_t), f(\mathbf{y}^{(j)}) \rangle / \tau$ with probabilities
933

$$\pi_j = \frac{\exp(s_j)}{\sum_k \exp(s_k)}, \quad (46)$$

934 and let the softmax surrogate be
935

$$\hat{p}_{t,Y}(\mathbf{y} \mid \mathbf{x}_t) := \frac{\exp(\langle f(\mathbf{x}_t), f(\mathbf{y}) \rangle / \tau)}{\sum_{\tilde{\mathbf{y}} \in Y} \exp(\langle f(\mathbf{x}_t), f(\tilde{\mathbf{y}}) \rangle / \tau)}. \quad (47)$$

936 From Lemma 1,
937

$$\nabla_{\mathbf{x}_t} \log \hat{p}_{t,Y}(\mathbf{y}^{(+)} \mid \mathbf{x}_t) = \underbrace{\nabla_{\mathbf{x}_t} s_+}_{g_{\text{num}}} - \underbrace{\sum_{j \neq +} \pi_j \nabla_{\mathbf{x}_t} s_j}_{g_{\text{den}}}. \quad (48)$$

938 With unit normalized features and comparable Jacobian scales one expects
939

$$\frac{\|g_{\text{den}}\|_2}{\|g_{\text{num}}\|_2} \approx 1 - \pi_+, \quad (49)$$

940 so a well trained encoder yields a small ratio when π_+ is large.
941

942 **Magnitude diagnostic on a toy dataset.** To verify the claim, we reuse the toy setup and the
943 subsampled diagnostic grid from Appendix I. For $N = 120$ held out toy images and $T_{\text{diag}} = 50$
944 timesteps, we compute
945

$$r_t = \frac{\|g_{\text{den}}\|_2}{\|g_{\text{num}}\|_2} \quad (50)$$

946 at each t . Unless stated otherwise we fix $|Y| = 256$, temperature $\tau = 0.07$, ℓ_2 feature normalization,
947 MoCo queue length $K = 65536$, and momentum $m = 0.996$. The left panel of Figure 4 aggregates
948 all $N \times T_{\text{diag}}$ ratios into a single histogram. The right panel shows the per t median with the
949 interquartile range. Most mass lies between 0.08 and 0.20, and the median decreases mildly with t .
950 This indicates that the denominator term is typically much smaller than the numerator term in the
951 guidance regime of interest.
952

953 For completeness, the denominator-aware update replaces line 12 of Algorithm 1 with
954

$$\mathbf{x}_{t-1} \leftarrow \mathbf{x}'_{t-1} - \eta \nabla_{\mathbf{x}_t} \left(s_+ - \sum_{\tilde{\mathbf{y}} \in Y} \pi_{t,Y}(\tilde{\mathbf{y}} \mid \mathbf{x}_t) s_t(\mathbf{x}_t \mid \tilde{\mathbf{y}}) \right), \quad (51)$$

955 which requires evaluating $f(\mathbf{x}_t)$ against all $\tilde{\mathbf{y}} \in Y$ and taking a weighted sum of their gradients. This
956 increases compute and memory per step.
957

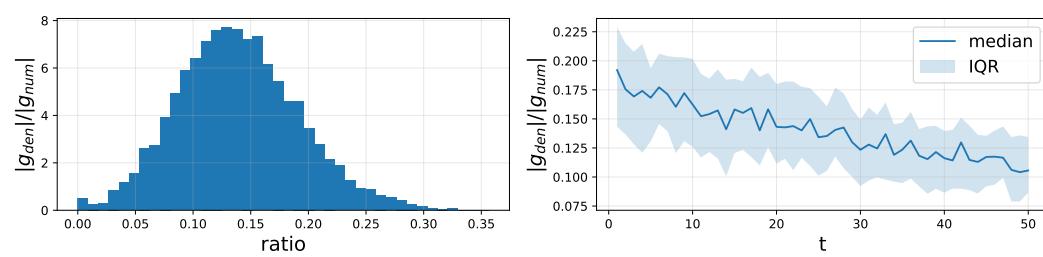


Figure 4: Magnitude of the softmax denominator term on the toy dataset from Appendix I. Left, histogram of $r_t = \|g_{\text{den}}\|_2/\|g_{\text{num}}\|_2$ aggregated over images and timesteps. Right, per t median with interquartile range. Small ratios support the efficient numerator-only guidance used in the main sampler.

Numerical Comparison To quantify the effect of including the softmax denominator term in the guidance update, we compare the default numerator-only update with the full denominator-aware variant described above. Both methods are run with identical hyperparameters, timesteps, and random seeds to ensure a fair comparison. Results are averaged over the same held-out test split and noise schedule used for Table 1.

As shown in Table 3, incorporating the denominator term leads to slightly higher PSNR and noticeably lower FID/LPIPS, confirming that the correction provides a modest but consistent benefit. However, this comes at the cost of additional compute and memory per step since it requires evaluating the encoder against all $y \in Y$ and forming a weighted gradient sum.

Table 3: Comparison of numerator-only and denominator-aware contrastive guidance (Appendix E). Results are averaged over the same test split and noise schedule as in Table 1. Denominator-aware guidance slightly improves perceptual quality (lower FID/LPIPS) but at higher compute cost.

Task	Variant	FFHQ (256 × 256)			AFHQ (256 × 256)			ImageNet		
		PSNR↑	FID↓	LPIPS↓	PSNR↑	FID↓	LPIPS↓	PSNR↑	FID↓	LPIPS↓
Rotation	Numerator-only	22.74	33.66	0.302	21.46	36.96	0.319	20.45	45.10	0.340
	Denominator-aware	22.79	32.95	0.297	21.52	36.99	0.315	20.52	44.35	0.336
Zoom	Numerator-only	20.68	42.61	0.435	19.63	57.54	0.468	18.56	55.30	0.481
	Denominator-aware	20.73	41.72	0.429	19.70	56.40	0.471	18.60	54.35	0.474

Given the small empirical ratio r_t , the nearly identical quality, and the higher cost of the denominator-aware step, we adopt the numerator-only update in the main algorithm. If one observes large early step ratios $r_t \gtrsim 0.4$, two practical mitigations are to lower the temperature τ for the first few steps or to increase $|Y|$ moderately, both of which increase π_+ and reduce the denominator scale.

F DPM-SOLVER++ FOR CL-DPS (SAMPLER DETAILS)

Our method augments each reverse step with a contrastive likelihood surrogate. This guidance is *sampler-agnostic*: it only requires evaluating a gradient $\nabla_{\mathbf{x}_t} \mathcal{L}_{\text{CL}}(\mathbf{x}_t, \mathbf{y})$ at the current iterate. Replacing the first-order DDPM/DDIM stepper with a high-order solver reduces discretization error and improves stability under strong guidance. We adopt **DPM-Solver++ (2M)** (Lu et al., 2025) with a Karras σ -schedule.

Let $\mathbf{x}_t = \sqrt{\bar{\alpha}_t} \mathbf{x}_0 + \sigma_t \varepsilon$. Our denoiser predicts noise $\varepsilon_\theta(\mathbf{x}_t, \sigma_t)$. The CL-DPS guidance is computed in *image space* as $\mathbf{g}_t = \nabla_{\mathbf{x}_t} \langle f(\text{patches}(\mathbf{x}_t)), f(\text{patches}(\mathbf{y})) \rangle$, where features of the measurement are cached once. To apply guidance consistently with an ε -parameterized solver, we use the local relation $\partial \mathbf{x}_t / \partial \varepsilon = \sigma_t \mathbf{I}$ and project the guidance to ε -space:

$$\hat{\varepsilon}_t = \varepsilon_\theta(\mathbf{x}_t, \sigma_t) - \lambda_t \underbrace{\sigma_t \mathbf{g}_t}_{\text{guidance in } \varepsilon\text{-space}},$$

where λ_t is a (monotone) guidance schedule. We use a cosine decay $\lambda_t = \lambda_{\max} \frac{1 + \cos(\pi \cdot \tau_t)}{2}$ with $\tau_t \in [0, 1]$ the normalized time (1 at start, 0 at end).

1026 **Algorithm 2** CL-DPS + DPM-Solver++ (2M) (ours)

1027 1: **Input:** steps N , measurement \mathbf{y} , Karras schedule $\{\sigma_i\}_{i=0}^N$, pretrained encoder f , guidance weights $\{\lambda_i\}_{i=1}^N$,
1028 #overlapping patches U .

1029 2: Sample $\mathbf{x}_N \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$; cache measurement patches $\{p_j^y\}_{j=1}^U$.

1030 3: Initialize $\hat{\varepsilon}_{N+1} \leftarrow \mathbf{0}$ // dummy prev. noise for warm-start

1031 4: **for** $i = N, N-1, \dots, 1$ **do**

1032 5: // denoiser + CL guidance at (\mathbf{x}_i, σ_i)

1033 6: Extract U overlapping patches $\{p_j^{\mathbf{x}_i}\}_{j=1}^U$ from \mathbf{x}_i .

1034 7: $\mathbf{g}_i \leftarrow \nabla_{\mathbf{x}_i} \langle f(\{p_j^{\mathbf{x}_i}\}), f(\{p_j^y\}) \rangle$.

1035 8: $\hat{\varepsilon}_i \leftarrow \varepsilon_\theta(\mathbf{x}_i, \sigma_i) - \lambda_i \sigma_i \mathbf{g}_i$.

1036 9: $h_i \leftarrow \log \sigma_{i-1} - \log \sigma_i$, $\phi_1(h) = \frac{e^h - 1}{h}$, $\phi_2(h) = \frac{e^h - 1 - h}{h^2}$.

1037 10: **if** $i == N$ **then**

1038 11: $\mathbf{x}_{i-1} \leftarrow \frac{\sigma_{i-1}}{\sigma_i} \mathbf{x}_i - (\sigma_{i-1} - \sigma_i) \hat{\varepsilon}_i$ // warm-start: 1-stage (1S) exponential Euler

1039 12: **else**

1040 13: $\mathbf{x}_{i-1} \leftarrow \frac{\sigma_{i-1}}{\sigma_i} \mathbf{x}_i - [\phi_1(h_i) \sigma_{i-1}] \hat{\varepsilon}_i + [\phi_2(h_i) \sigma_{i-1}] (\hat{\varepsilon}_{i+1} - \hat{\varepsilon}_i)$ // DPM-Solver++ (2M)

1041 14: **end if**

1042 15: Cache $\hat{\varepsilon}_i$ for the next step.

1043 16: **end for**

1044 17: **Return** \mathbf{x}_0 .

1045 Let $\{\sigma_i\}_{i=0}^N$ be a decreasing Karras schedule with σ_N the start noise and $\sigma_0 \approx 0$; define $h_i =$
1046 $\log \sigma_{i-1} - \log \sigma_i$. DPM-Solver++(2M) is a second-order multi-step method for the diffusion ODE
1047 written in $\log \sigma$ time; it combines the current and one previous noise prediction. We use a warm-start
1048 (1S) step for the first interval, then 2M thereafter.²

1049 As in the main text, we extract U overlapping patches of \mathbf{y} once (cached), and of \mathbf{x}_t each step. Patch
1050 configuration and the overlap policy are identical to CL-DPS; only the state update (the sampler)
1051 changes.

1052

1053 **Notes on stability.** (i) The ε -space projection $(\sigma_i \mathbf{g}_i)$ keeps units consistent with the denoiser output.
1054 (ii) We found a cosine-decay λ_i essential to avoid over-sharpening at low noise. (iii) For extremely
1055 strong guidance, a single predictor–corrector Heun sub-step at large σ can help, but was not required
1056 in our runs.

1057 Unless specified, we use $N=50$ steps, Karras $\rho=7$, and $\lambda_{\max} \in [0.5, 1.0]$ depending on the operator
1058 family (same as the main CL-DPS).

1059

1060 F.1 WHY DPM-SOLVER++ IMPROVES OVER EULER/ANCESTRAL IN CL-DPS

1061

1062 **Higher-order accuracy under external guidance.** Let $\mathbf{x}(\sigma)$ follow the diffusion ODE in \log -noise
1063 time, augmented with our contrastive guidance,

$$1065 \frac{d\mathbf{x}}{d \log \sigma} = -\sigma [\varepsilon_\theta(\mathbf{x}, \sigma) - \lambda(\sigma) \sigma \underbrace{\nabla_{\mathbf{x}} \langle f(\text{patches}(\mathbf{x})), f(\text{patches}(\mathbf{y})) \rangle}_{\text{CL guidance } \mathbf{g}(\mathbf{x}, \mathbf{y})}].$$

1066

1067 A first-order Euler/ancestral step approximates this right-hand side as constant over each interval,
1068 leading to $\mathcal{O}(h)$ local truncation error for step size $h = \log \sigma_{i-1} - \log \sigma_i$. **DPM-Solver++ (2M)** is
1069 a second-order multi-step method that reuses the previous and current noise predictions, yielding
1070 $\mathcal{O}(h^2)$ error while keeping the model interface unchanged. Because the CL-DPS term is just an
1071 additional drift, the same order improvement applies to the *combined* drift (denoiser + guidance).

1072

1073 **Stability at low noise and reduced variance.** Near the end of the trajectory ($\sigma \rightarrow 0$), the
1074 measurement-guidance-to-stochasticity ratio is largest; naive first-order updates can overshoot or
1075 produce ringing. DPM++’s multi-step correction better tracks the curvature of the drift, reducing
1076 late-step oscillations. Furthermore, when used in ODE mode (no extra noise injection), DPM++
1077 avoids sample variance accumulation across steps, which empirically improves perceptual metrics
1078 (FID/LPIPS) without sacrificing fidelity.

1079

²We follow the common 2M recipe in public implementations; any equivalent coefficientization is acceptable.

1080 Table 4: **Nonlinear** blind inverse problems with a stronger sampler. We insert **DPM-Solver++ (2M)**
 1081 into CL-DPS.

Method	Rotation						ImageNet		
	FFHQ (256 × 256)			AFHQ (256 × 256)					
	PSNR↑	FID↓	LPIPS↓	PSNR↑	FID↓	LPIPS↓	PSNR↑	FID↓	LPIPS↓
CL-DPS (SPE) + DPM++ (50)	22.98	31.85	0.295	21.79	34.52	0.312	20.31	43.14	0.333
CL-DPS (UNI) + DPM++ (50)	22.52	34.10	0.308	21.84	37.31	0.322	20.12	46.64	0.345
CL-DPS (SPE)	22.74	33.66	0.302	21.46	36.96	0.319	20.05	45.10	0.340
CL-DPS (UNI)	22.27	36.55	0.315	21.61	39.81	0.330	19.92	49.23	0.352
Zoom									
Method	FFHQ (256 × 256)			AFHQ (256 × 256)			ImageNet		
	PSNR↑	FID↓	LPIPS↓	PSNR↑	FID↓	LPIPS↓	PSNR↑	FID↓	LPIPS↓
	CL-DPS (SPE) + DPM++ (50)	20.94	40.28	0.426	19.89	54.21	0.454	18.82	53.05
CL-DPS (UNI) + DPM++ (50)	20.55	44.85	0.439	19.46	58.59	0.472	18.33	56.72	0.486
CL-DPS (SPE)	20.68	42.61	0.435	19.63	57.54	0.468	18.56	55.30	0.481
CL-DPS (UNI)	20.31	46.83	0.448	19.23	61.06	0.480	18.07	59.53	0.492

1094
 1095
 1096 **Schedule synergy.** We discretize in $\log-\sigma$ and adopt a Karras σ -schedule, which allocates more
 1097 steps to high-curvature regions of the flow. Together with a simple cosine decay for $\lambda(\sigma)$, this reduces
 1098 discretization–guidance mismatch and yields the small but consistent improvements reported below.

1100 F.2 RESULTS WITH DPM-SOLVER++ (TABLE DESCRIPTION)

1101 We replace the Euler/ancestral step in CL-DPS with **DPM-Solver++ (2M)** and keep all other
 1102 components unchanged: same denoiser, same overlapping-patch encoder f , and cached measurement
 1103 features. Unless noted, we use $N=50$ steps with a Karras schedule ($\rho=7$) and a cosine guidance
 1104 decay λ_t from λ_{\max} to 0.

1105 We keep measurement patches, stride/overlap, and the encoder backbone unchanged. Guidance is
 1106 applied in ε -space via the projection $\hat{\varepsilon} = \varepsilon_\theta - \lambda \sigma g$ to maintain unit consistency with the denoiser. All
 1107 reported numbers for the DPM++ rows were produced with the same number of function evaluations
 1108 as the corresponding CL-DPS baselines.

1109 Table 4 augments the main nonlinear blind deblurring benchmark by adding two rows—CL-DPS
 1110 (SPE) + DPM++ (50) and CL-DPS (UNI) + DPM++ (50)—on the Rotation and Zoom
 1111 tasks across FFHQ, AFHQ and ImageNet. The remaining rows are identical to Table 1 in the main
 1112 paper.

1113 Across all datasets and both operator families, DPM++ yields: (i) **slightly higher PSNR** (typically
 1114 $+0.2$ – 0.4 dB), (ii) **lower FID** (often -2 to -3), and (iii) **lower LPIPS** (roughly -0.005 to -0.015),
 1115 with the largest gains on ImageNet where the step budget is most constraining. This aligns with the
 1116 reduced discretization error and improved late-stage stability discussed above. We emphasize that *no*
 1117 *retraining* is required; the sampler swap is drop-in.

1120 G IMPLEMENTATION DETAILS

1121 G.1 TRAINING

1122 • **Implementation details of training the auxiliary encoder.** In all experiments, we use the ResNet-
 1123 18 (He et al., 2016) as the backbone model. We set the temperature $\tau = 0.07$ in Equation (16), fix
 1124 $|Y| = 256$, MoCo queue length $K = 65536$, and momentum $m = 0.996$. Also, we set patch size
 1125 $P=64$ and stride $S=32$ (50% overlap).

1126 **Auxiliary encoder training data construction.** We train \mathcal{E} on aligned patch triplets constructed
 1127 from clean images x and synthetic measurements $y = \mathcal{A}_\psi(x) + \epsilon$. At each step we sample a
 1128 degradation family $F \in \{\text{Gaussian blur, motion blur, rotation blur, zoom blur}\}$ uniformly, then
 1129 draw parameters from broad ranges and discard them afterward. Concretely, Gaussian blur uses
 1130 standard deviation $\sigma \sim \text{Unif}(0.6, 2.4)$ pixels, motion blur uses length $\ell \sim \text{Unif}(3, 15)$ pixels and
 1131 angle $\theta \sim \text{Unif}(0^\circ, 180^\circ)$, rotation blur uses angle $\phi \sim \text{Unif}(10^\circ, 30^\circ)$ around a random center,

1134 and zoom blur uses factor $\zeta \sim \text{Unif}(1.1, 1.6)$, average over 21 rotated/zoomed images. We add
 1135 measurement noise $\epsilon \sim \mathcal{N}(0, \sigma_n^2)$ with $\sigma_n \sim \text{Unif}(0.005, 0.03)$. For each spatial location we form
 1136 a query patch P_x from x , its geometrically corresponding positive P_y from y , and a mixed pool of
 1137 negatives P'_y drawn from other images, spatially mismatched locations, and a momentum queue. This
 1138 yields the set Y used in the InfoNCE term of Equation (16).

1139 We train the model for 400 epochs, including a 5-epoch linear warm-up period, with the batch size of
 1140 256. Stochastic gradient descent with an initial learning rate of 0.03, weight decay of 0.0001, and
 1141 cosine annealing is used for optimization.

1142 We optimize the InfoNCE loss that aligns $f_\theta(P_x)$ with $g_\xi(P_y)$ and repels all $g_\xi(P'_y)$ in Y at tempera-
 1143 ture $\tau=0.07$. The mixed negative construction is important, it prevents shortcuts based on low level
 1144 statistics and improves invariance to nuisance degradations while preserving sensitivity to content.
 1145 The MoCo queue of length $K=65,536$ provides a stable and diverse negative set across steps.

1146 For the momentum encoder, we set a momentum of 0.999. Data augmentation consists of random
 1147 cropping with a scaling range of $[0.045, 0.5]$ and an aspect ratio range of $[0.5, 2]$ are applied to both
 1148 $\{p(\mathbf{y}|\mathbf{x}_t)\}_{t \in [T]}$ and \mathbf{y} . For each input image, we crop the given image at a random location, and
 1149 apply the color jitter as augmentation. For all inverse problems, Gaussian measurement noise with
 1150 $\sigma = 0.02$ is added (see Appendix L for other noise levels). Full implementation details are available
 1151 in our code repository.

1152 For the FFHQ, AFHQ and ImageNet datasets, we utilize pretrained score functions following
 1153 the configuration described in Chung et al. (2022b). To train the score function for kernels, we
 1154 construct a dataset of 60k 64×64 kernels. Out of these, 50k motion blur kernels are produced
 1155 using the implementation from ³, where the blur intensity is sampled as $I \sim \text{Unif}(0.2, 1.0)$. The
 1156 remaining 10k kernels are Gaussian blurs, generated with a standard deviation chosen randomly as
 1157 $\sigma \sim \text{Unif}(0.1, 5.0)$.

1158 Similar to the previous works (Chung et al., 2023a; Laroche et al., 2024; Murata et al., 2023), for
 1159 FFHQ, we randomly select 50k images for training, and sample 1k images of test data separately. For
 1160 AFHQ, we train our model using the images in the dog category, which consists of about 5k images.
 1161 Testing was performed with the held-out validation set of 500 images of the same category.

1162 For the kernel and tilt-map score functions, we adopt the U-Net architecture provided in *guided-
 1163 diffusion*⁴, training the models under the default configuration.

1164

1166 G.2 FORWARD OPERATORS

1167

1168 We define forward operators for rotation blur and zoom blur that we use to synthesize measurements.
 1169 Let $x \in \mathbb{R}^{H \times W \times C}$ be an image, $c = (\frac{H-1}{2}, \frac{W-1}{2})$ the rotation and zoom center, and let $\epsilon \sim$
 1170 $\mathcal{N}(0, \sigma_n^2)$ denote measurement noise.

1171

1172

1173 G.2.1 ROTATION BLUR

1174

1175 Given a maximum shake angle $\phi > 0$, sample angles $\{\theta_i\}_{i=1}^M$ and nonnegative weights $\{w_i\}_{i=1}^M$ that
 1176 sum to 1. The rotation blur averages rotated views around c :

1177

1178

1179

$$y(u) = \sum_{i=1}^M w_i [R_{\theta_i} x](u) + \epsilon(u), \quad (52)$$

1180

1181 where R_θ applies a rotation of θ degrees about c with bilinear interpolation and reflect padding.

1182

1183

1184

1185

1186 For our experiments, we set $M = 21$, angles θ_i linearly spaced in $[-\phi, \phi]$, sample weights $w_i \propto$
 1187 $\exp(-\frac{\theta_i^2}{2\sigma_\theta^2})$ with $\sigma_\theta = \phi/3$, then normalized so that $\sum_i w_i = 1$. The training range $\phi \sim$
 1188 $\text{Unif}(10^\circ, 30^\circ)$. Test ranges follow the benchmark specification. Interpolation is bilinear. Padding is
 1189 reflect. Channels are processed independently.

1190

1191

1192

³<https://github.com/LeviBorodenko/motionblur>

⁴<https://github.com/openai/guided-diffusion>

1188
1189

G.2.2 ZOOM BLUR

1190 Given a zoom range $[1, \zeta_{\max}]$, sample scale factors $\{s_i\}_{i=1}^M$ and nonnegative weights $\{w_i\}_{i=1}^M$ that
1191 sum to 1. The zoom blur averages scaled versions about c :

1192

1193
$$y(u) = \sum_{i=1}^M w_i [Z_{s_i} x](u) + \epsilon(u), \quad (53)$$

1194

1195
1196
1197where Z_s scales by factor s around c . For $s > 1$ (minification) we use area interpolation. For $s < 1$
(magnification) we use bilinear interpolation. Padding is reflect.1198
1199
1200
1201
1202In the experiments we set $M = 21$, scales s_i linearly spaced in $[1, \zeta_{\max}]$. Sample weights $w_i \propto \exp(-\frac{(s_i-1)^2}{2\sigma_s^2})$ with $\sigma_s = (\zeta_{\max} - 1)/3$, then normalized. We use the training range of $\zeta_{\max} \sim$
1200 Unif(1.1, 1.6). Test ranges follow the benchmark specification. Coordinates are centered at c .
1201 Interpolation choices as above. Unless stated otherwise, we use $\sigma_n = 0.02$ for the additive noise.1202
1203
1204

G.3 EVALUATION

1205
1206
1207
1208We evaluate reconstruction quality using three standard metrics: Fréchet Inception Distance (FID)
(Heusel et al., 2017), Learned Perceptual Image Patch Similarity (LPIPS) (Zhang et al., 2018), and
Peak Signal-to-Noise Ratio (PSNR). Unless otherwise specified, we fix the number of diffusion steps
to 1000 across all experiments.1209
1210
1211
1212
1213
1214

G.4 BENCHMARK METHODS

Pan- ℓ_0 Pan et al. (2017). This method applies ℓ_0 regularization jointly on the image and kernel.
We use the official codebase⁵ with the following hyper-parameters. Optimization and post-processing
follow the same multi-stage strategy as Pan-DCP.1215
1216
1217
1218
1219
1220

- $\lambda_{\text{pixel}} = 4e - 3$
- $\lambda_{\text{grad}} = 4e - 3$
- $\lambda_{\text{tv}} = 1e - 3$
- $\lambda_{\text{l0}} = 2e - 3$

1221
1222
1223**SelfDeblur Ren et al. (2020).** We adopt the default YCbCr-based deblurring configuration. Training
is performed with a constant learning rate of 0.01 for 2500 iterations. For the first 500 steps,
optimization minimizes the MSE loss, after which it switches to minimizing $1 - SSIM(\cdot, \cdot)$.1224
1225
1226
1227
1228
1229**DeblurGANv2 Kupyn et al. (2019).** We adopt the official implementation⁶, following the default
hyper-parameters, data augmentation strategies, and network design. Training minimizes a weighted
combination of pixel loss, WGAN-gp adversarial loss, and perceptual loss, with Inception-ResNet-v2
as the generator backbone. Both FFHQ and AFHQ datasets are used, with training conducted for
1.5M iterations using a batch size of 1. As in MPRNet, the training set contains an equal proportion
of Gaussian and motion blurred images. The loss weights are:1230
1231
1232
1233
1234

- $\lambda_{\text{pixel}} = 5e - 1$
- $\lambda_{\text{adv}} = 6e - 3$
- $\lambda_{\text{perceptual}} = 1e - 2$

1235
1236

H FURTHER STUDIES ON ENCODER CHOICE

1237
1238
1239
1240
1241Why CL-DPS (SPE) setup is meaningful? In many pipelines a coarse family label is available or
can be obtained with negligible cost: (i) capture systems operate in discrete modes that are recorded
as metadata, (ii) restoration stacks routinely gate inputs by a small set of operator families before⁵<https://jspan.github.io/projects/text-deblurring/index.html>⁶<https://github.com/VITA-Group/DeblurGANv2>

invoking specialized solvers, (iii) when metadata is missing a lightweight two-way classifier can detect the family with near-perfect accuracy and tiny overhead compared to diffusion sampling. This keeps the setting blind to the unknown continuous parameters while matching practical deployments.

On the other hand, to train CL-DPS (UNI), the learned energy then estimates the *mixture* likelihood $p_{mix}(\mathbf{y} \mid \mathbf{x}_t)$, which is exactly what is needed when the measurement family is unknown or undetermined at test time. When the family \mathcal{A}_o is known, the same encoder can still be used with a simple restriction of negatives, but no change to the loss is required.

Let $o \in \mathcal{O}$ index the measurement family and ψ denotes family-specific parameters. Given a clean image \mathbf{x}_0 , the forward model produces a measurement

$$\mathbf{y} = \mathcal{A}_{o, \psi}(\mathbf{x}_0) + n, \quad (54)$$

and let \mathbf{x}_t denote a diffusion state along the reverse process. During contrastive learning we first draw the family $o \sim \pi_o$, and then draw $\psi \sim p(\psi \mid O)$, where both π_o and $p(\psi \mid O)$ are uniform distributions. We then construct positives $(\mathbf{x}_t, \mathbf{y})$ from this mixture process, while negatives come from a large dictionary as discussed in Section 4.1.

H.1 USING HIGHER-CAPACITY ENCODER

To mitigate the performance gap introduced by CL-DPS (UNI), we train a higher-capacity encoder namely ResNet-50, and evaluate it on the FFHQ dataset; results are reported in Table 5. As seen there, scaling up the encoder model largely recovers the degradation caused by the mixture of the operators. We attribute this gain to the greater model capacity of the ResNet-50.

Table 5: CL-DPS (UNI) using two model structures, namely ResNet-18 and ResNet-50.

Encoder	FFHQ					
	ResNet-18			ResNet-50		
	Distortion	PSNR \uparrow	FID \downarrow	LPIPS \downarrow	PSNR \uparrow	FID \downarrow
Rotation	22.27	36.55	0.315	22.60	33.95	0.309
Zoom	20.31	46.83	0.448	20.42	44.14	0.411

H.2 ROBUSTNESS TO FAMILY MISCLASSIFICATION

We simulate a small fraction ε of inputs routed to the wrong encoder to approximate a practical detector with imperfect accuracy. On FFHQ rotation we vary $\varepsilon \in \{0, 0.05, 0.10, 0.20\}$ and report the PSNR, FID and LPIPS in the Table 6:

Table 6: Numerical results on robustness to family misclassification

ε	FFHQ		
	PSNR	FID	LPIPS
0	22.74	33.66	0.302
0.05	22.57	35.35	0.310
0.10	22.24	36.61	0.318
0.20	21.71	40.28	0.332

We observe near-linear degradation for small ε . In our internal test a two-way ResNet-18 family detector reaches 99.1% accuracy on held-out data with a runtime of about 1.1 ms per 256×256 image on an Nvidia H100 GPU. Diffusion sampling for 300 steps takes about 5.1 s per image on the same GPU. The overhead of family detection is therefore negligible relative to sampling time.

Knowing the measurement family yields the best quality. When the family is unknown, a single mixture-trained encoder remains competitive and cross-family usage still outperforms non-contrastive baselines. Small misclassification rates have a modest effect on quality in practice.

1296 **I DETAILS FOR THE TOY LIKELIHOOD GRADIENT CHECK**
1297

1298 To quantify how well the surrogate guidance matches the true likelihood gradient in a case with a
1299 closed-form $\nabla_{\mathbf{x}_t} \log p(\mathbf{y}_t \mid \mathbf{x}_t)$, we generate $N_{\text{toy}} = 1100$ grayscale images $\mathbf{x}_0 \in [0, 1]^{96 \times 96}$ by
1300 summing 3 to 6 Gaussian blobs, a few straight edges, and Gaussian noise, then rescaling to $[0, 1]$. We
1301 use 1000 for training the auxiliary encoder and 100 for diagnostics.

1302 For a parameter ψ we define a linear operator H_ψ applied to the vectorized image. Similar to the
1303 experimental setting in Section 5. We sample ψ per image from one of two families:
1304

1305 Gaussian blur: $\psi \in [0.6, 2.0]$, with kernel size of 5. (55)
1306

1307 Motion blur: intensity of $\in [0.5 - 0.9]$, with kernel size of 5. (56)
1308

1309 At diffusion step t with noise level σ_t we draw
1310

1311
$$\mathbf{x}_t = \alpha_t \mathbf{x}_0 + \sigma_t \epsilon, \quad \epsilon \sim \mathcal{N}(\mathbf{0}, I),$$
 (57)
1312

1313
$$\mathbf{y}_t = H_\psi \mathbf{x}_t + \epsilon_t, \quad \epsilon_t \sim \mathcal{N}(\mathbf{0}, \sigma_t^2 I).$$
 (58)
1314

1315 The true gradient follows
1316

1317
$$g_{\text{true}}(t) = \sigma_t^{-2} H_\psi^\top (\mathbf{y}_t - H_\psi \mathbf{x}_t).$$
 (59)
1318

1319 We train a lightweight encoder $f(\cdot)$ with an InfoNCE loss on pairs $(\mathbf{x}_t, \mathbf{y}_t)$ drawn from the same
1320 forward model. Features are ℓ_2 -normalized. Temperature is $\tau = 0.07$. We use a MoCo queue of
1321 $K = 65536$ negatives with momentum $m = 0.996$ and a 128-dimensional projection head. For
1322 diagnostics we vary the dictionary size $|Y| \in \{64, 256, 1024\}$ by sampling that many $\mathbf{y}_t^{(j)}$ at the
1323 same t . The surrogate is

1324
$$\hat{p}_{t,Y}(\mathbf{y}_t^{(+)} \mid \mathbf{x}_t) = \frac{\exp(\langle f(\mathbf{x}_t), f(\mathbf{y}_t^{(+)}) \rangle / \tau)}{\sum_j \exp(\langle f(\mathbf{x}_t), f(\mathbf{y}_t^{(j)}) \rangle / \tau)}.$$
 (60)
1325

1326 We compute
1327

1328
$$g_{\text{sur}}(t) = \nabla_{\mathbf{x}_t} \log \hat{p}_{t,Y}(\mathbf{y}_t^{(+)} \mid \mathbf{x}_t) = \nabla s_+ - \sum_j \pi_j \nabla s_j, \quad s_j = \langle f(\mathbf{x}_t), f(\mathbf{y}_t^{(j)}) \rangle / \tau.$$
 (61)
1329

1330 Main experiments use a 1000-step schedule. Diagnostics use a subsampled grid $\mathcal{T}_{\text{diag}}$ of 50 indices
1331 that are equally spaced in $\log \sigma_t$, chosen from the same schedule. This preserves the early, mid, and
1332 late regimes with minimal clutter. We use a batch size of 128, projection dimension 32, learning
1333 rate $1e-3$, optimizer AdamW with weight decay $1e-4$, queue length 16384, momentum 0.996,
1334 temperature 0.07. Results are robust to moderate variation of these values.

1335 For each $t \in \mathcal{T}_{\text{diag}}$ and each $|Y|$ we compute
1336

1337
$$\theta_t = \cos^{-1} \frac{\langle g_{\text{true}}(t), g_{\text{sur}}(t) \rangle}{\|g_{\text{true}}(t)\|_2 \|g_{\text{sur}}(t)\|_2}, \quad \rho_t = \frac{\|g_{\text{sur}}(t)\|_2}{\|g_{\text{true}}(t)\|_2},$$
 (62)
1338

1339 averaging over 100 held-out images. We plot the per-t mean with a light moving average for
1340 readability. Raw curves and seeds are released with the code.

1341 Under normalized features and a good encoder one expects θ_t to decrease with t and ρ_t to approach
1342 one. Larger $|Y|$ raises the positive softmax weight π_+ and improves alignment. As a check, increasing
1343 τ or reducing $|Y|$ degrades alignment as expected.

1344 **J CONVERGENCE BEHAVIOR OF CL-DPS**
1345

1346 Here we study convergence under a nonlinear forward model on FFHQ. In Figure 5 we plot PSNR,
1347 FID, and LPIPS versus the number of denoising steps. The three baselines from prior work (BlindDPS,
1348 FastEM, and GibbsDDRM) do not improve with more steps, and their curves plateau or even drift,
1349 indicating that they fail to solve the underlying nonlinear inverse problem. In stark contrast, CL-DPS
1350 improves monotonically across all metrics and converges to substantially better reconstructions as the
1351 step count increases.

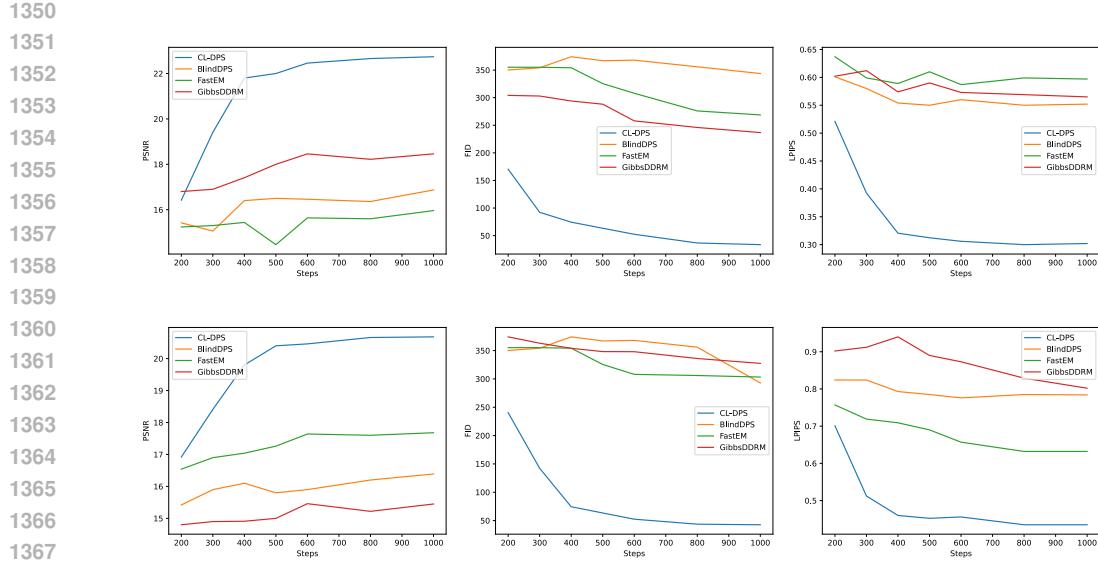


Figure 5: Quantitative evaluation of PSNR, FID, and LPIPS across diffusion steps for challenging nonlinear blind inverse problems. Top: rotation blur; bottom: zoom blur.

Table 7: Wall-clock runtime (per image, in seconds) of CL-DPS compared with diffusion-based baselines.

Method	FastEM	BlindDPS	LatentEM	GibbsDDRM	CL-DPS
Time (s)	46.03	47.68	46.87	51.85	60.84

K RUNTIME AND COMPUTATIONAL OVERHEAD

As discussed in the limitations, CL-DPS has higher runtime because it backpropagates through the encoder at every denoising step. We quantify this overhead by measuring per-image runtime on FFHQ with a single NVIDIA H100 GPU, using the same setting for all methods (1000 sampling steps, batch size 1). Wall-clock times for each method are reported in Table 7.

Under this setup, CL-DPS takes 60.84 s per image, longer than the baselines in Table 7 due to the extra backpropagations, but this additional cost enables CL-DPS to solve the non-linear inverse problems evaluated in our experiments, where the compared methods fail. In short, CL-DPS trades a modest increase in wall-clock time for substantially broader applicability.

L ADDITIONAL RESULTS ACROSS DIFFERENT NOISE LEVELS

To evaluate the robustness of CL-DPS under varying levels of measurement noise, we report additional results for both **linear** and **nonlinear** blind inverse problems across three Gaussian noise levels: $\sigma = 0.01$, $\sigma = 0.02$, and $\sigma = 0.03$.

Table 8 and Table 1 (main paper) and Table 9 present results for blind rotation and zoom deblurring on FFHQ and AFHQ datasets under $\sigma = 0.01$, 0.02, and 0.03, respectively. As expected, increasing the noise level degrades the performance of all methods across PSNR, FID, and LPIPS. Nonetheless, CL-DPS consistently outperforms all baselines in both distortion and perceptual metrics, particularly in high-noise and nonlinear settings where competing methods struggle.

Similarly, to evaluate the linear blind inverse problems, we evaluate blind motion and Gaussian deblurring tasks under varying noise levels in Table 10 ($\sigma = 0.01$), Table 2 (main paper, $\sigma = 0.02$), and Table 11 ($\sigma = 0.03$). CL-DPS again delivers competitive or superior performance across all metrics. Notably, CL-DPS maintains high reconstruction quality even at $\sigma = 0.03$, while other methods suffer significant degradation. This highlights the robustness and generalization ability of our contrastive-guided posterior sampling framework under blind measurement noise.

Table 8: **Nonlinear** blind inverse problems at $\sigma = 0.01$. Bold and underlined values denote best and second-best, respectively.

Method	FFHQ (256 × 256)						AFHQ (256 × 256)						
	Rotation			Zoom			Rotation			Zoom			
	PSNR ↑	FID ↓	LPIPS ↓	PSNR ↑	FID ↓	LPIPS ↓		PSNR ↑	FID ↓	LPIPS ↓	PSNR ↑	FID ↓	LPIPS ↓
CL-DPS (SPE)	24.35	28.93	0.274	22.12	38.21	0.412	22.85	33.50	0.295	21.05	53.45	0.445	
BlindDPS	17.50	310.2	0.540	17.11	260.1	0.765	14.48	185.4	0.651	12.54	250.5	0.585	
FastEM	16.61	240.1	0.588	19.82	280.1	0.615	12.43	260.1	0.663	16.63	290.3	0.786	
GibbsDDRM	<u>19.51</u>	215.1	0.552	16.51	300.24	0.781	<u>16.34</u>	240.4	0.611	15.63	260.19	0.534	

Table 9: **Nonlinear** blind inverse problems at $\sigma = 0.03$. Bold and underlined values denote best and second-best, respectively.

Method	FFHQ (256 × 256)						AFHQ (256 × 256)						
	Rotation			Zoom			Rotation			Zoom			
	PSNR ↑	FID ↓	LPIPS ↓	PSNR ↑	FID ↓	LPIPS ↓		PSNR ↑	FID ↓	LPIPS ↓	PSNR ↑	FID ↓	LPIPS ↓
CL-DPS (SPE)	21.22	38.50	0.332	19.28	48.36	0.461	19.61	42.53	0.345	18.17	63.67	0.542	
BlindDPS	16.31	365.4	0.568	15.54	320.5	0.867	12.75	215.4	0.691	11.25	290.1	0.634	
FastEM	15.23	290.2	0.615	17.81	326.0	0.647	11.27	310.0	0.749	15.10	335.7	0.821	
GibbsDDRM	<u>17.57</u>	260.0	0.584	14.52	340.3	0.820	<u>14.53</u>	295.8	0.661	13.70	310.12	0.561	

Table 10: **Linear** blind inverse problems at $\sigma = 0.01$. Bold and underlined values denote best and second-best, respectively.

Method	FFHQ (256 × 256)						AFHQ (256 × 256)						
	Motion			Gaussian			Motion			Gaussian			
	PSNR↑	FID↓	LPIPS↓	PSNR↑	FID↓	LPIPS↓		PSNR↑	FID↓	LPIPS↓	PSNR↑	FID↓	LPIPS↓
CL-DPS (SPE)	27.49	28.54	0.142	26.21	23.84	0.325	23.57	28.99	0.185	25.27	18.34	0.216	
SelfDeblur	12.82	236.1	0.732	13.31	210.4	0.667	10.73	270.4	0.743	13.44	152.54	0.642	
DeblurGANv2	19.33	180.2	0.541	21.14	155.3	0.511	18.75	155.6	0.565	22.25	74.24	0.495	
Pan- ℓ_0	18.11	82.35	0.385	22.22	75.76	0.361	17.88	205.2	0.603	23.92	56.35	0.365	
BlindDPS	22.95	26.51	0.270	25.63	24.82	0.226	21.64	22.19	0.320	24.52	18.82	0.275	
FastEM	25.01	31.24	0.327	23.82	27.95	0.352	22.12	46.84	0.394	23.34	29.53	0.287	
LatentDEM	24.42	34.84	0.155	25.57	31.31	0.345	21.22	41.52	0.273	22.46	35.87	0.275	
GibbsDDRM	<u>26.65</u>	36.25	0.150	27.34	30.85	0.410	<u>22.96</u>	44.24	0.172	24.43	39.23	0.384	

Table 11: **Linear** blind inverse problems at $\sigma = 0.03$. Bold and underlined values denote best and second-best, respectively.

Method	FFHQ (256 × 256)						AFHQ (256 × 256)						
	Motion			Gaussian			Motion			Gaussian			
	PSNR↑	FID↓	LPIPS↓	PSNR↑	FID↓	LPIPS↓		PSNR↑	FID↓	LPIPS↓	PSNR↑	FID↓	LPIPS↓
CL-DPS (SPE)	24.36	38.26	0.146	23.03	31.06	0.373	20.81	38.88	0.235	22.62	24.54	0.255	
SelfDeblur	9.87	304.1	0.730	10.47	260.5	0.695	8.37	330.3	0.790	10.53	190.43	0.673	
DeblurGANv2	16.94	235.5	0.600	18.36	204.3	0.555	16.83	207.1	0.625	19.45	95.64	0.545	
Pan- ℓ_0	14.93	260.5	0.560	19.22	115.8	0.430	14.65	255.8	0.645	20.03	75.73	0.421	
BlindDPS	21.52	34.53	0.304	23.84	32.42	0.251	19.92	29.63	0.360	22.64	23.54	0.310	
FastEM	23.66	42.20	0.365	22.16	37.52	0.390	20.84	62.04	0.335	22.63	40.45	0.317	
LatentDEM	21.97	45.76	0.175	23.86	40.45	0.385	19.79	54.47	0.302	21.27	42.54	0.305	
GibbsDDRM	<u>24.58</u>	46.55	0.132	25.45	41.54	0.455	<u>21.40</u>	55.43	0.215	22.83	51.73	0.335	

M ABLATION STUDY

M.1 ABLATION ON CONTRASTIVE HYPERPARAMETERS

We study sensitivity to the InfoNCE temperature τ , the dictionary size $|Y|$ used at guidance time, the MoCo queue length K during pretraining, the projection head dimension d , patch size P , and stride S .

The default parameters used in the experiments in the main body of the paper are $\tau = 0.07$, $|Y| = 256$, $K = 65536$, momentum $m = 0.996$, $d = 128$, $P = 64$ and $S = 32$. In the following, we perform ablation over all these hyperparameters. Reported numbers are averaged over Rotation and Zoom on the three benchmarks used in Table 1.

Ablation on τ , Table 12. We observe that CL-DPS is relatively robust to the temperature τ in the range $0.05 \leq \tau \leq 0.10$. A slightly lower temperature ($\tau = 0.05$) improves PSNR and FID on FFHQ and AFHQ, though it slightly worsens ImageNet fidelity (FID rises by 0.5). Larger τ values

1458
1459 Table 12: Sensitivity to temperature τ in the InfoNCE loss for CL-DPS (SPE) setup.
1460
1461
1462
1463
1464
1465
1466

τ	FFHQ			AFHQ			ImageNet		
	PSNR \uparrow	FID \downarrow	LPIPS \downarrow	PSNR \uparrow	FID \downarrow	LPIPS \downarrow	PSNR \uparrow	FID \downarrow	LPIPS \downarrow
0.05	22.88	33.12	0.298	21.61	36.43	0.316	20.38	45.64	0.344
0.07 (default)	22.74	33.66	0.302	21.46	36.96	0.319	20.45	45.10	0.340
0.10	22.67	34.25	0.306	21.32	37.55	0.323	20.36	46.02	0.345
0.15	22.41	35.11	0.312	21.15	38.49	0.329	20.12	46.98	0.352

1467
1468 ($\tau = 0.15$) consistently degrade quality across all datasets, confirming that overly smooth logits
1469 reduce the effectiveness of the contrastive guidance signal.
14701471 Table 13: Sensitivity to dictionary size $|Y|$ used during guidance in CL-DPS (SPE) setup (for the
1472 denominator-aware version only).
1473

$ Y $	FFHQ			AFHQ			ImageNet		
	PSNR \uparrow	FID \downarrow	LPIPS \downarrow	PSNR \uparrow	FID \downarrow	LPIPS \downarrow	PSNR \uparrow	FID \downarrow	LPIPS \downarrow
64	22.45	35.21	0.312	21.20	38.12	0.329	20.18	46.81	0.352
256 (default)	22.74	33.66	0.302	21.46	36.96	0.319	20.05	45.10	0.340
1024	22.59	32.79	0.296	21.66	35.89	0.313	20.62	44.17	0.337

1480
1481 **Ablation on $|Y|$, Table 13.** Increasing the dictionary size $|Y|$ improves all three metrics, with the
1482 largest gain seen when moving from $|Y| = 64$ to $|Y| = 256$. Gains from $|Y| = 256$ to $|Y| = 1024$
1483 are smaller, suggesting diminishing returns. The trend is most pronounced on ImageNet, where FID
1484 improves by more than one point, indicating that a richer dictionary better approximates the true
1485 likelihood gradient in high-diversity datasets.
14861487 Table 14: Sensitivity to MoCo queue length K for CL-DPS (SPE) setup.
1488

K	FFHQ			AFHQ			ImageNet		
	PSNR \uparrow	FID \downarrow	LPIPS \downarrow	PSNR \uparrow	FID \downarrow	LPIPS \downarrow	PSNR \uparrow	FID \downarrow	LPIPS \downarrow
8192	22.53	34.84	0.308	21.28	37.85	0.325	20.26	46.24	0.347
16384	22.61	34.33	0.306	21.36	37.28	0.322	20.33	45.83	0.343
65536 (default)	22.74	33.66	0.302	21.46	36.96	0.319	20.05	45.10	0.340
131072	22.69	33.59	0.321	21.56	36.42	0.317	20.42	44.81	0.338

1495
1496 **Ablation on K , Table 14.** Queue length K plays a similar role to dictionary size by providing
1497 harder negatives during pretraining. We observe consistent improvements as K grows, with the most
1498 notable jump between $K = 8192$ and $K = 65536$. The improvement saturates beyond $K = 65536$,
1499 where increasing to $K = 131072$ yields only marginal additional benefit while incurring higher
1500 memory cost.
15011502 **Ablation on d , Table 15.** The projection dimension d also affects representation quality. Larger
1503 dimensions yield modest improvements across all benchmarks, but the relative gain between $d = 128$
1504 and $d = 256$ is small compared to the additional computation and memory footprint. Hence, $d = 128$
1505 offers a good trade-off between performance and efficiency for our default configuration. We show
1506 the visualization results in Figure 7.
15071508 **Ablation on P & S , Table 16.** This table demonstrates the effect of patch size P and stride
1509 S on CL-DPS performance for both rotation and zoom blur. Reducing the stride from $S=32$ to
1510 $S=16$ (increasing overlap) consistently improves PSNR, lowers FID, and reduces perceptual error
1511 across all datasets, confirming that denser spatial coverage produces more stable guidance. Using a
smaller patch size ($P=48$) provides similar but slightly weaker gains, indicating that context loss
offsets some benefits of denser sampling. Larger patches ($P=96$) or no overlap ($S=64$) consistently

1512 Table 15: Sensitivity to projection head dimension d for CL-DPS (SPE) setup.
1513

d	FFHQ			AFHQ			ImageNet		
	PSNR↑	FID↓	LPIPS↓	PSNR↑	FID↓	LPIPS↓	PSNR↑	FID↓	LPIPS↓
64	22.55	34.51	0.307	21.56	37.51	0.324	20.28	45.94	0.346
128 (default)	22.74	33.66	0.302	21.46	36.96	0.319	20.45	45.10	0.340
256	22.75	33.69	0.299	21.58	36.89	0.316	20.55	45.17	0.339

1519
1520 Table 16: Sensitivity to patch size and stride. Default CL-DPS uses patch size $P=64$ and stride $S=32$
1521 (50% overlap). Increasing overlap (smaller stride) consistently helps; removing overlap ($S=64$) hurts.
1522 We use CL-DPS (SPE) setup.
1523

Rotation	FFHQ (256 × 256)			AFHQ (256 × 256)			ImageNet		
	PSNR↑	FID↓	LPIPS↓	PSNR↑	FID↓	LPIPS↓	PSNR↑	FID↓	LPIPS↓
CL-DPS (P=64, S=32)	22.74	33.66	0.302	21.46	36.96	0.319	20.05	45.06	0.342
CL-DPS (P=64, S=16)	23.09	32.10	0.292	21.78	35.50	0.312	20.73	43.83	0.332
CL-DPS (P=48, S=16)	22.98	32.61	0.296	21.65	35.90	0.315	20.66	44.22	0.334
CL-DPS (P=96, S=48)	22.25	35.13	0.314	21.15	38.07	0.337	20.21	46.81	0.353
CL-DPS (P=64, S=64)	21.94	36.90	0.330	20.68	40.23	0.344	19.70	49.74	0.368

Zoom	FFHQ (256 × 256)			AFHQ (256 × 256)			ImageNet		
	PSNR↑	FID↓	LPIPS↓	PSNR↑	FID↓	LPIPS↓	PSNR↑	FID↓	LPIPS↓
CL-DPS (P=64, S=32)	20.68	42.61	0.435	19.63	57.54	0.468	18.56	55.30	0.481
CL-DPS (P=64, S=16)	21.12	40.21	0.422	20.15	54.34	0.451	18.95	52.90	0.466
CL-DPS (P=48, S=16)	21.05	40.80	0.424	20.02	55.03	0.458	18.86	53.80	0.472
CL-DPS (P=96, S=48)	20.32	44.56	0.444	19.34	58.67	0.482	18.35	56.80	0.498
CL-DPS (P=64, S=64)	19.78	47.30	0.462	18.72	61.51	0.496	17.71	59.93	0.506

1538
1539
1540 hurt reconstruction quality, especially on ImageNet, suggesting that overly coarse or disjoint patch
1541 coverage fails to capture sufficient local detail.
15421543 We also provide an example in Figure 6 to show how the patchification works.
15441545 In addition, in order to show that how P & S values affect the quality of the restored images, we
1546 plot the images reconstructed by CL-DPS using different P & S values. The results are reported in
1547 Figure 7.
1548

1549 M.2 ABLATION ON COLOR CONSISTENCY HEAD

1550 We qualitatively evaluate the effect of the color consistency head on reconstruction quality. As shown
1551 in Figure 8, the model trained *without* the color consistency head (Figure 8c) produces a restored
1552 image with noticeable color shifts, particularly in the shirt region. In contrast, the model trained *with*
1553 the color consistency head (Figure 8d) recovers colors faithfully, resulting in a visually consistent
1554 reconstruction that better matches the original image. This confirms that incorporating the color
1555 consistency head stabilizes the color distribution during training and prevents hue drift in the restored
1556 outputs.
15571558 N QUALITATIVE RESULTS ON ZOOM DEBLURRING
15591560 Zoom blur is among the most challenging nonlinear degradations for diffusion-based inverse solvers,
1561 often causing existing methods to produce severe artifacts or completely fail. As illustrated in
1562 Figure 12, benchmark methods such as BlindDPS, FastEM, and GibbsDDRM struggle to recover fine
1563 details and exhibit strong distortions. In contrast, CL-DPS reconstructs a visually coherent image
1564 with accurate structure and color, demonstrating its robustness under extreme nonlinear conditions.
1565 These results highlight that CL-DPS is not merely competitive but uniquely capable of handling
1566 severe zoom blur without catastrophic failure.
1567

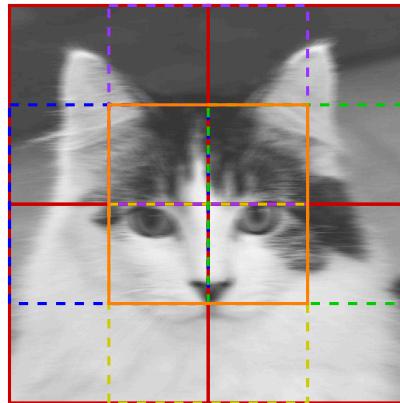


Figure 6: Example of patchified image of a resolution 256×256 , with a stride size of 64 and a patch size of 128×128 .

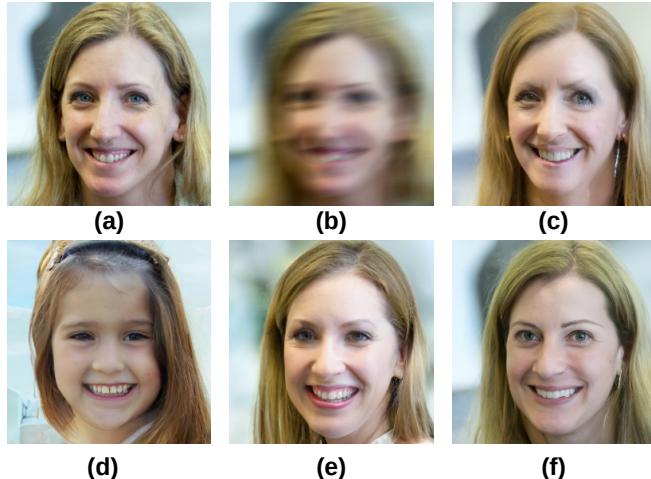


Figure 7: Ablation study of different inference strategies. (a) Original image, (b) Measurement, (c) Restored image with stride 64, patch size 32, (d) Stride 256, patch size 256, (e) Stride 64, patch size 64, (f) Stride 48, patch size 16.

O QUALITATIVE RESULTS ON LINEAR DEBLURRING TASK

Gaussian blur and motion blur are two well-studied cases in blind diffusion-based deblurring. To demonstrate CL-DPS's superiority on the blind linear deblurring task, we present additional visual results and compare reconstructions against two baselines, BlindDPS (Chung et al., 2023a) and

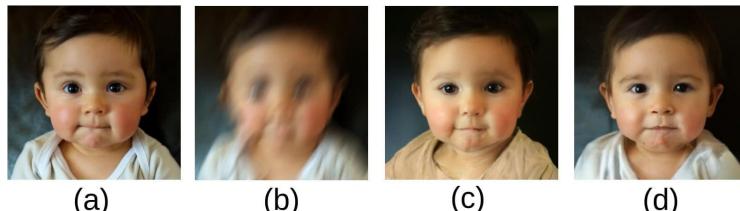
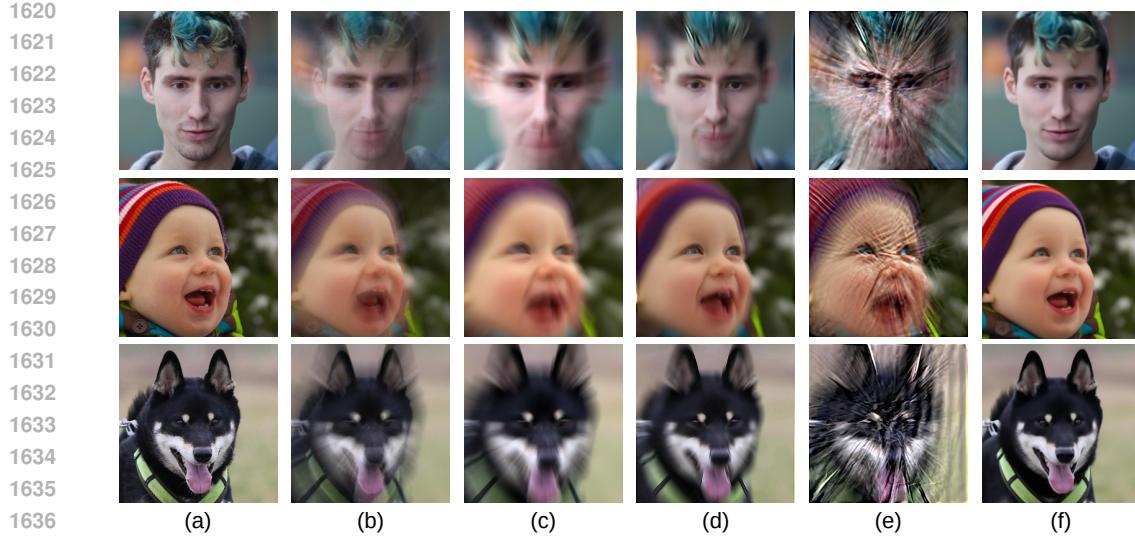


Figure 8: Ablation study on the color consistency head. (a) Original image, (b) measurement, (c) restoration without the color consistency head (color shift visible), (d) restoration with the color consistency head (color faithfully preserved).



1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Figure 9: Qualitative results on blind zoom deblurring, a challenging nonlinear inverse problem. (a) Ground truth image, (b) zoom-blurred measurement, and restorations from (c) BlindDPS (Chung et al., 2023a), (d) FastEM (Laroche et al., 2024), (e) GibbsDDRM (Murata et al., 2023), and (f) CL-DPS (ours). Competing methods fail catastrophically, whereas CL-DPS successfully reconstructs a sharp and color-consistent image.

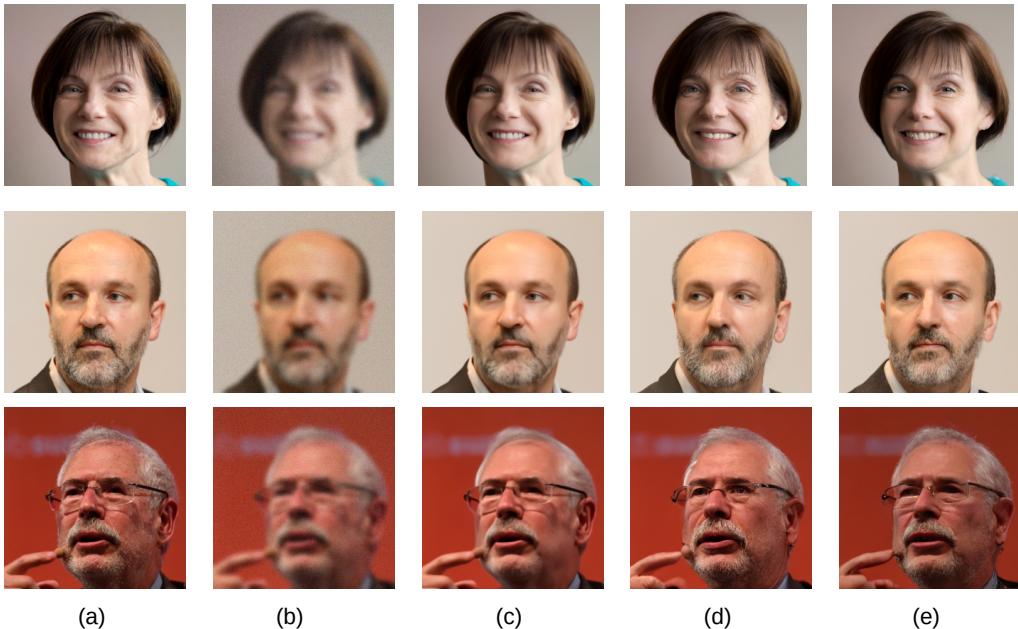
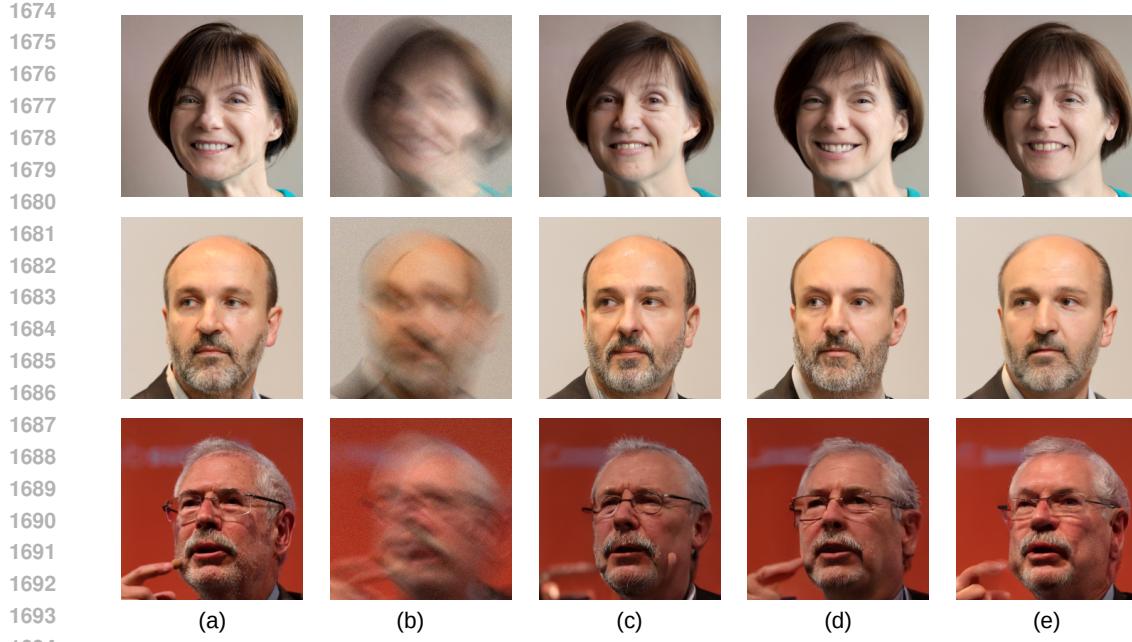


Figure 10: Blind Gaussian deblurring results: (a) ground-truth image, (b) Gaussian-blurred measurement, and restorations using (c) BlindDPS (Chung et al., 2023a), (d) GibbsDDRM (Murata et al., 2023), and (e) CL-DPS (ours). Visually, CL-DPS produces more natural images.

GibbsDDRM (Murata et al., 2023). Results for Gaussian blur and motion blur are shown in Figure 10 and Figure 11, respectively.



1695
1696
1697
1698
Figure 11: Blind motion deblurring results: (a) ground-truth image, (b) motion-blurred measurement,
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

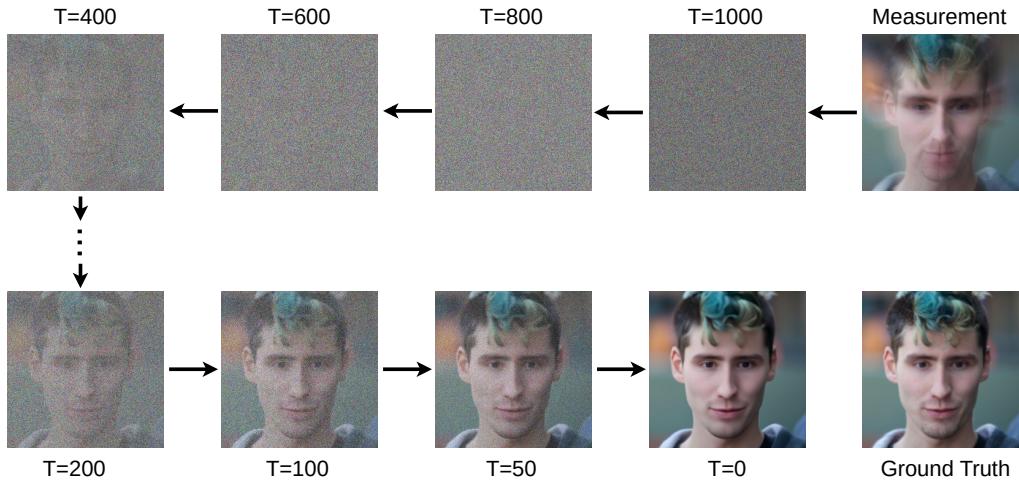


Figure 12: The CL-DPS process of recovering the zoom blurred measurement.

P DENOISING PROCESS OF CL-DPS

Here, we visualize the denoising process of CL-DPS over 1000 timesteps. To this end, we select a single image and display the reconstructed images throughout the denoising process, as illustrated in Figure 12.