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CL-DPS: A CONTRASTIVE LEARNING APPROACH TO
BLIND NONLINEAR INVERSE PROBLEM SOLVING VIA
DIFFUSION POSTERIOR SAMPLING

Anonymous authors
Paper under double-blind review

(a) (b) (c) (d) (f)(e)
Figure 1: Results of blind rotational deblurring, a challenging nonlinear inverse problem: (a) ground
truth, (b) rotation-blurred measurement, and restored images using (c) BlindDPS (Chung et al.,
2023a), (d) FastEM (Laroche et al., 2024), (e) GibbsDDRM (Murata et al., 2023), and (f) CL-DPS
(ours). All methods fail catastrophically except for CL-DPS.

ABSTRACT

Diffusion models (DMs) have recently become powerful priors for solving in-
verse problems. However, most work focuses on non-blind settings with known
measurement operators, and existing DM-based blind solvers largely assume lin-
ear measurements, which limits practical applicability where operators are fre-
quently nonlinear. We introduce CL-DPS, a contrastive learning framework
for diffusion posterior sampling that requires no knowledge of the operator pa-
rameters at inference. To the best of our knowledge, CL-DPS is the first DM-
based framework capable of solving blind nonlinear inverse problems. Our
key idea is to train an auxiliary encoder offline, using a MoCo-style contrastive
objective over randomized measurement operators, to learn a surrogate for the
conditional likelihood p(y|xt). During sampling, we inject the surrogate’s gra-
dient as a guidance term along the reverse diffusion trajectory, which enables
posterior sampling without estimating or inverting the forward operator. We
further employ overlapping patch-wise inference to preserve fine structure and
a lightweight color-consistency head to capture color statistics. The guidance
is sampler-agnostic and pairs well with modern solvers (e.g., DPM-Solver++
(2M)). Extensive experiments show that CL-DPS effectively handles challenging
nonlinear cases, such as rotational and zoom deblurring, where prior DM-based
methods fail, while remaining competitive on standard linear benchmarks. Code:
https://anonymous.4open.science/r/CL-DPS-4F5D.
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1 INTRODUCTION

Inverse problems are pervasive across many fields, with applications in medical imaging (McCann
et al., 2017; Jin et al., 2017), computational photography (Tonolini et al., 2020; Ongie et al., 2020), and
seismic imaging (Hosseini & Plataniotis, 2020; Zhdanov, 2002). The goal is to recover the original
signal x0 from a corrupted measurement y produced by a forward operator Aψ(·). Depending on
whether this operator is available, inverse problems are categorized as (i) non-blind, where Aψ is
known, or (ii) blind, where Aψ is unknown and must be estimated jointly with x0, making the
problem substantially more challenging.

Inverse problems are inherently ill-posed, often relying heavily on data priors p(x0) for accurate
computation. Recently, diffusion models (DMs) have emerged as powerful tools for solving inverse
problems due to their remarkable ability to capture complex data distributions p(x0) (Song et al.,
2023; Chung et al., 2023b; Dou & Song, 2024). A straightforward approach to leveraging DMs for
solving inverse problems involves training a conditional DM to directly estimate the posterior p(x0|y)
via supervised learning. However, this method can be computationally intensive, as it requires training
separate DMs for each distinct measurement operator Aψ .

To overcome this limitation, a practical alternative uses a pretrained, unconditional DM as a prior for
p(x0) and combines it with a likelihood term inside a diffusion posterior sampling (DPS) scheme.
During sampling, the DM maintains a latent variable xt that represents the current state along the
reverse diffusion process at step t. Posterior guidance needs a surrogate for the intractable likelihood
p(y|xt), which recent work approximates in various ways (Chung et al., 2023b; Song et al., 2023).

Nevertheless, most DM-based inverse solvers remain limited to non-blind settings where the measure-
ment operator Aψ is assumed known (Chung et al., 2023b; Song et al., 2023). However, accurately
obtaining the measurement operator is often difficult or infeasible in real-world applications (Chung
et al., 2023a; Laroche et al., 2024; Ji et al., 2024). Recently, efforts have emerged in the literature to
address blind inverse problems using DMs. In particular, Chung et al. (2023a) introduced BlindDPS,
a method that trains a DM specifically for the blur operator. While this approach benefits from widely
available pretrained DMs for signals such as images and audio, it requires additional training of a
DM for the parameters of the relevant linear operators, significantly limiting its practical applicability.
Murata et al. (2023) proposed GibbsDDRM, which constructs a joint distribution over the data, mea-
surements, and linear operator, addressing the problem through posterior sampling using a variant of
the Gibbs sampler. Similarly, Sanghvi (2024) estimated the kernel parameters to tackle deconvolution
problems. However, these methods are fundamentally restricted to addressing only linear inverse
problems, as they assume that Aψ is a convolution operator (Chihaoui et al., 2024; Sanghvi, 2024;
Murata et al., 2023; Chung et al., 2023a). In practice, however, many blind inverse problems involve
operators that are nonlinear, rendering these approaches inadequate for such cases.

To address the aforementioned limitation, we propose CL-DPS, a method based on contrastive
learning for solving blind inverse problems via diffusion posterior sampling. To the best of our
knowledge, CL-DPS is the first DM-based method that can solve blind nonlinear inverse problems,
without requiring knowledge or estimation of the operator parameters. Concretely, in CL-DPS,
an auxiliary encoder is first trained offline using a modified version of MoCo (He et al., 2020), a
contrastive learning (CL) technique. The role of this auxiliary encoder is to estimate the likelihood
p(y|xt) without knowing the measurement Aψ . Then, during inverse problem solving, we perform
inference with this auxiliary encoder to estimate p(y|xt), which is then used to guide the reverse path
of the diffusion process. To further improve the auxiliary encoder’s accuracy in estimating p(y|xt),
we introduce a novel overlapping patch-wise inference method that divides the images into patches
during the inference stage.

We evaluate CL-DPS on FFHQ (Karras et al., 2021), AFHQ (Choi et al., 2020), and ImageNet (Deng
et al., 2009) under blind linear and nonlinear measurements. In the nonlinear setting (e.g., rotation
blur), prior DM-based methods fail, while CL-DPS restores high-quality images (see Figure 1). In
the linear setting, CL-DPS is competitive with state of the art. Our main contributions are:

•We introduce CL-DPS, a diffusion posterior sampling framework that learns a contrastive likelihood
surrogate offline and plugs it in as guidance at test time. The auxiliary encoder is trained with
a MoCo-style framework over randomized measurements, so CL-DPS applies to both linear and
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nonlinear blind settings without knowing the measurement parameters at inference. In addition, a
lightweight color-consistency head is deployed to capture color information.

•We establish a lemma (Lemma 1) showing that, under an energy-based formulation, the gradient of
the contrastive log probability coincides with the desired likelihood gradient and becomes consistent
as the dictionary size grows. We further present a denominator-aware variant, which yields results
comparable to the simpler numerator-only update but incurs higher computational cost.

•We introduce an overlapping patch-wise inference strategy with an information-theoretic guarantee
(Theorem 1): stacking more overlapping patch features increases the mutual information between the
signal and its encoded features, I(x; f({pxj })).
• Across blind linear and nonlinear tasks, including rotation blur, CL-DPS delivers strong quantitative
and qualitative results. Ablations isolate the impact of patch-wise inference, color regularization, and
dictionary size, and confirm the efficiency of the numerator-only guidance.

2 RELATED WORK AND NOTATION

• Diffusion models for inverse problems: The use of DMs to solve inverse problems through poste-
rior sampling has recently attracted considerable attention across various domains, including image
denoising (Kawar et al., 2022), compressed sensing (Bora et al., 2017; Kadkhodaie & Simoncelli,
2021), magnetic resonance imaging (MRI) (Jalal et al., 2021), score-based stochastic differential
equations (SDEs) (Song et al., 2022), and variational methods (Mardani et al.; Feng & Bouman, 2023).
For non-blind inverse problems, methods such as diffusion posterior sampling (DPS) (Chung et al.,
2023b) and pseudo-guided diffusion models (ΠGDM) (Song et al., 2023) leverage Tweedie’s formula
(Efron, 2011) to approximate the smoothed likelihood. Similarly, singular-value decomposition based
techniques (Kawar et al., 2021) are applied for related purposes.

On the other hand, for blind inverse problems, alongside the approaches discussed in Section 1 (Chung
et al., 2023a; Murata et al., 2023; Sanghvi, 2024), Alkan et al. (2023) introduced Blind RED-Diff, an
extension of the RED-Diff framework (Mardani et al.). This method employs variational inference to
jointly estimate both the latent image and the unknown forward model parameters, addressing the
challenges of unknown measurement operators. Recent work applies diffusion priors to amortized
variational inference for inverse problems (Lee et al., 2024), training a network end to end to map y
to posterior parameters under a specified forward model. Our setting is different: blind nonlinear
operators (no operator estimates). We keep the diffusion prior frozen and use a contrastive plug in
likelihood surrogate to guide sampling from (xt,y).

We defer the discussion of contrastive learning to Appendix A.

• Notation: For a positive integer C, let [C] ≜ {1, . . . , C}. Scalars are denoted by non-bold letters
(e.g. u and U ), vectors by boldface lowercase letters (e.g. u). Denote by u[i] the i-th element of
vector u. For two vectors u and v, denote by ⟨u,v⟩ their inner product. We use |C| to denote the
cardinality of a set C. (·)T denotes the transpose operation. The mutual information between two
random variables X and Y is denoted by I(X;Y ).

3 BACKGROUND AND PRELIMINARIES

3.1 DIFFUSION MODELS

DMs generate data by reversing a forward noising process. We adopt the variance preserving SDE
(VP-SDE) (Song et al., 2020), which is equivalent to DDPM (Ho et al., 2020)

dx = −βt

2 x dt +
√
βt dw, (1)

with noise schedule βt > 0 and standard Wiener process w. The data distribution is at t = 0 with
x0 ∼ pdata and at t = T the state is xT ∼ N (0, I).

The reverse time SDE (Anderson, 1982) is

dx =
[
−βt

2 x − βt∇xt
log p(xt)

]
dt +

√
βt dw̄, (2)
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where dt flows backward and dw̄ is reverse time Wiener noise. The score∇xt
log p(xt) is approxi-

mated by a neural network sθ trained with denoising score matching (Vincent, 2011)

θ∗ = argmin
θ

Et∼U(ε,1) Ex0∼pdata Ext∼p(xt|x0)

[
∥sθ(xt, t) − ∇xt

log p(xt | x0)∥22
]
. (3)

After training we use sθ∗(xt, t) as an estimate of the score in Equation (2). Discretizing Equation (2)
yields the DDPM sampler. We use αi ≜ 1− βi and ᾱi ≜

∏i
j=1 αj for the discrete schedule.

3.2 DIFFUSION MODELS FOR SOLVING INVERSE PROBLEMS

We observe y ∈ Rm from an unknown x0 ∈ Rd via

y = Aψ(x0) + n, (4)

where Aψ is a linear or nonlinear measurement with unknown parameters ψ and n is Gaussian with
zero-mean and covariance σ2I . The regime m < d is ill-posed and requires a prior on x0.

Using a diffusion prior we sample from the posterior by modifying the reverse SDE to include the
likelihood term

dx =
[
−βt

2 x− βt
(
∇xt

log p(xt) +∇xt
log p(y | xt)

)]
dt +

√
βt dw̄, (5)

which follows from

∇xt log p(xt | y) = ∇xt log p(xt) + ∇xt log p(y | xt). (6)

The prior score∇xt log p(xt) is given by the pretrained network sθ∗ . The bottleneck is the likelihood
term ∇xt log p(y | xt) which is time dependent and intractable when ψ is unknown.

Prior work often assumes a known operator for likelihood evaluation (Chung et al., 2022a; 2023b). We
address the blind case by learning a contrastive likelihood surrogate offline and using it as guidance
inside the sampler, as detailed in Section 4.

3.3 MOMENTUM CONTRAST LEARNING

Contrastive learning learns representations by pulling together positives and pushing apart negatives
(Hadsell et al., 2006; Tian et al., 2020). MoCo (He et al., 2020) implements this as dictionary lookup
with two components: a large queue of keys that serves as a dynamic dictionary and a momentum
encoder that produces stable keys. Let fq be the query encoder with parameters θq and fk the key
encoder with parameters θk updated as θk ← mθk+(1−m)θq , where m ∈ [0, 1) is the momentum
coefficient. Given a query q = fq(·) a positive key k+ = fk(·) and K negative keys {ki}Ki=1 from
the queue MoCo minimizes the InfoNCE loss (Oord et al., 2018)

Lq = − log
exp

(
⟨q, k+⟩/τ

)∑K
i=1 exp

(
⟨q, ki⟩/τ

) , (7)

with temperature τ > 0. In our method we set q = f(xt) the positive key to k+ = f(ysyn) and use
the MoCo queue to approximate the dictionary Y of negatives.

4 METHODOLOGY

As discussed in Section 3, diffusion posterior sampling relies on the likelihood term p(y | xt) and its
gradient with respect to xt. We approximate this term with an auxiliary encoder f , trained offline to
provide a surrogate across a range of measurement operators since the parameters ψ are unknown
at inference. During reverse diffusion, f supplies the likelihood gradient to guide the sampling
trajectory. Section 4.1 details the contrastive learning procedure used to train f , Section 4.2 shows
how it is applied at inference, and Section 4.3 presents the full CL-DPS algorithm.

4
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4.1 TRAINING THE AUXILIARY ENCODER

4.1.1 CONTRASTIVE LEARNING AS LIKELIHOOD ESTIMATION

Using Bayes’ formula, the likelihood p(y|xt) can be written as

p(y | xt) =
p(y,xt)

p(xt)
=

p(y,xt)∫
p(ỹ,xt) dỹ

. (8)

To compute Equation (8), we first obtain a numerical representation of its numerator, p(y,xt).
Specifically, following (Oord et al., 2018; Li et al., 2021), we approximate it with an energy score
learned by a neural encoder f as: p(y,xt) ∝ exp

(
⟨f(xt), f(y)⟩ / τ

)
, where τ > 0 is a temperature.

The denominator in Equation (8),
∫
p(ỹ,xt)dỹ, is generally intractable. Thus, we rely on an

approximation method, using a finite sum as follows:
∫
p(ỹ,xt)dỹ ≈

∑
ỹ∈Y p(ỹ,xt), where Y is a

sufficiently large set. This allows us to numerically approximate p(y | xt) as:

p(y | xt) ≈
exp(⟨f(xt), f(y)⟩/τ)∑
ỹ∈Y exp(⟨f(xt), f(ỹ)⟩/τ)

. (9)

This suggests training f by maximizing the log of Equation (9). Equivalently we minimize the
negative log likelihood surrogate

Lp(y|xt) = − log
exp(⟨f(xt), f(y)⟩/τ)∑
ỹ∈Y exp(⟨f(xt), f(ỹ)⟩/τ)

. (10)

Comparing Equation (10) with the InfoNCE loss in Equation (7) shows that the standard contrastive
objective is a direct estimator of this surrogate when the query is q = f(xt) and the keys are
{ki}i∈[K] ⊂ Y . With a large dictionary as in MoCo, the queue of size K provides a practical
approximation to the population Y .

To justify that this contrastive surrogate serves as the likelihood term required by diffusion posterior
sampling, we state the following Lemma that links the contrastive log probability to the conditional
likelihood gradient. The full version with assumptions and the proof are provided in Appendix B.
Lemma 1 (Contrastive likelihood gradient, short version). Let τ > 0 and define

st(xt | y) ≜ ⟨f(xt), f(y)⟩ / τ. (11)

For a finite dictionary Y with y ∈ Y define the softmax surrogate

p̂t,Y (y | xt) =
exp{st(xt | y)}∑
ỹ∈Y exp{st(xt | ỹ)}

. (12)

Then,

∇xt
log p̂t,Y (y | xt) = ∇xt

st(xt | y) −
∑
ỹ∈Y

p̂t,Y (ỹ | xt)∇xt
st(xt | ỹ), (13)

Moreover, under the energy model p(y | xt) ∝ exp{st(xt | y)} with mild integrability conditions
stated in Appendix B and with Yn drawn i.i.d. and augmented so that y ∈ Yn

∇xt log p̂t,Yn(y | xt)
a.s.−−−−→
n→∞

∇xt log p(y | xt). (14)

4.1.2 TRAINING THE AUXILIARY ENCODER FOR DPS

To optimize Equation (10) we ideally need pairs (xt,y) drawn from the true measurement process
since inference will condition on the observed y. During training the measurement parameters ψ of
the operator family Aψ are unknown and vary at test time, so we replace y by a surrogate synthetic
measurement ysyn generated by sampling ψ from a prior PΨ. This trains the encoder to approximate
the likelihood across a range of operator parameter settings. To this end, given a clean image x0 we
synthesize the training pair (xt,ysyn) at a randomly chosen time t as

ysyn = Aψ(x0), xt =
√
ᾱt x0 +

√
1− ᾱt n, (15)

5
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where ψ ∼ PΨ and n ∼ N (0, I). The diffusion schedule satisfies ᾱt =
∏t
j=1 αj with 0 < αj < 1.

Examples ofAψ include Gaussian, motion, rotation, and zoom blur, where the operator parameters ψ
are sampled from the prior PΨ, which is commonly chosen as a uniform distribution over a specified
range of blur intensities. At each training iteration, we construct a distinct pair (xt,ysyn). Note that
although f does not take t explicitly, its input xt is drawn at timestep t, so the surrogate p(y |xt)
(and its gradient) are implicitly t-dependent.

The contrastive dictionary Y is formed by the current mini-batch’s embeddings (EBDs) together with
a queue of EBDs from previous batches; the EBDs are produced by a momentum-updated encoder,
as in MoCo. We train the encoder with an InfoNCE-style objective Lp(ysyn|xt).

Projection           

             

ema

Encoder

Linear

Momentum
Encoder

ema

Projection Memory
Queue

EBD

sg

EBD

Sigmoid

Projection &

Trainable Components

Conv 1X1

Relu

Conv 1X1

EBD

sg

Figure 2: Overview of the training process for the auxiliary
encoder. The figure also illustrates the structure of the linear
projection head and the color-consistency head (CCH). The
CCH is a two-layer convolutional network that encourages the
model to preserve the color information of the input during
training. indicates trainable components, sg stands for stop
gradient, and ema for exponential moving average.

In practice, the contrastive objec-
tive can become insensitive to color
information, often resulting in hue
or brightness shifts in reconstruc-
tions. To mitigate this issue, we
add a lightweight color-consistency
head (CCH), denoted by Hc, on top
of the auxiliary encoder. The CCH
is trained to predict the global color
statistics of the input. Formally, let
xt ∈ RC×N1×N2 and define its spa-
tial average[
AP(xt)

]
c
=

1

N1N2

N1∑
i=1

N2∑
j=1

xt cij .

The color-consistency head
Hc(xt) ∈ RC is implemented as
a two-layer convolutional module
with global pooling followed by a
sigmoid activation. We define the
color-consistency loss as

LCC(xt) =
∥∥Hc(xt) − AP(xt)

∥∥2
2
.

To train the auxiliary encoder f to
approximate the likelihood and cap-
ture color information, we optimize the following combined loss:

LCL-DPS = Lp(ysyn|xt) + λLCC(xt), (16)
where λ > 0 balances likelihood estimation and color preservation. The loss in Equation (16) is
averaged over the mini-batch. The CCH is used only during training and discarded at inference. At
test time, ysyn is replaced by the observed measurement y, and the pretrained encoder f provides
surrogate likelihood guidance within CL-DPS. The framework for CL-DPS is depicted in Figure 2.
Remark 1. CL-DPS adds a small, one time auxiliary training stage to enable the blind nonlinear
setting. This stage is lightweight, and the encoder is trained once for a given forward setting and
then reused for all measurements and noise realizations. The procedure remains zero shot for the
downstream task because it uses only synthetic pairs generated from the diffusion prior and the
measurement simulator, no extra labels or human annotations are needed. In practice this offline cost
is far smaller than pretraining or fine tuning a DM or training a supervised reconstructor, and per
image inference remains on the same order as standard DPS (see Appendix K). The added training
enables, to our knowledge, the first DM-based solution to blind nonlinear inverse problems without
estimating operator parameters, which prior training free methods do not handle.

4.2 LIKELIHOOD ESTIMATION USING AUXILIARY ENCODER

After training with Equation (16), the encoder f provides a surrogate for p(y|xt) that we use inside
diffusion posterior sampling. However, the convolutional encoders often compress low level details
(Yu et al., 2020; Chan et al., 2022; Yang et al., 2025; Tishby & Zaslavsky, 2015), which can reduce
the granularity needed for inverse problems. We therefore use an overlapping patch-wise inference
scheme that increases how much information the encoder output retains about its input.

6
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4.2.1 OVERLAPPING PATCH-WISE INFERENCE

Given an image x ∈ RN1×N2 we partition it into Ls overlapping n× n patches with stride s < n

denoted by {pxj }j∈[Ls], where Ls =
⌊
N1−n
s + 1

⌋ ⌊
N2−n
s + 1

⌋
. Then, we run f on each patch and

stack the features
f
(
{pxj }j∈[Ls]

)
=

[
fT(px1 ) . . . f

T(pxLs
)
]T
. (17)

To quantify retained information we use mutual information I(x; f(x)). The next result shows that
stacking more overlapping patch features increases this quantity.
Theorem 1. Let x ∈ RN1×N2 be any random image. Fix a patch size n× n and a stride s < n. Let
f : Rn×n → Rd act patch-wise. For integers 1 ≤ U < V extract U and V overlapping patches and
form stacked features as above. Then,

I
(
x ; f({pxj }j∈[U ])

)
≤ I

(
x ; f({pxj }j∈[V ])

)
. (18)

The proof is deferred to Appendix C. In words, denser overlapping patching makes the encoder output
more informative about x.
Corollary 1. Adopt the notation of Theorem 1. For a single extracted patch (U = 1), write f(x) ≜

f
(
{px1 }

)
∈ Rd. Then for every integer U ≥ 1, we have I

(
x; f(x)

)
≤ I

(
x; f

(
{pxj }j∈[U ]

))
.

Algorithm 1: CL-DPS (ours)
1: Input number of steps T , measurement y, noise schedule {σ̃t},

pretrained encoder f(·), step size η > 0, number of overlapping
patches U .

2: xT ∼ N (0, I). // initialize with Gaussian noise
3: Extract U overlapping patches from y once.

// cache measurement features
4: {py

j }j∈[U ] ← y.
5: for t = T−1 . . . 0 do
6: ŝ← sθ(xt, t). // score model estimate of∇xt log p(xt)

7: x̃0 ← 1√
ᾱt

(
xt + (1− ᾱt)ŝ

)
. // Tweedie posterior mean

8: z ∼ N (0, I).

9: x′
t−1 ←

√
αt(1−ᾱt−1)

1−ᾱt
xt +

√
ᾱt−1βt

1−ᾱt
x̃0 + σ̃tz.

// DDPM update
10: Extract U overlapping patches from xt.
11: {pxt

j }j∈[U ] ← xt.
12: xt−1 ← x′

t−1 − η∇xt

〈
f({pxt

j }j∈[U ]) , f({py
j }j∈[U ])

〉
.

// contrastive guidance
13: end for
14: Output x0.

We further complement Theorem 1
and Corollary 1 with a variance-
reduction analysis for the guidance
estimator, simple design rules, and
an empirical study in Appendix D.

During likelihood estimation we ap-
ply the same patchification to the
measurement y and use the stacked
features to score consistency.
Remark 2. Patch-wise ideas exist
in prior work. Hu et al. (2024) train
a patch-based diffusion prior and
aggregate patch scores with posi-
tional encoding to form a whole-
image prior score. Wang et al. pro-
pose DDNM, a zero-shot restora-
tion method that uses an off-the-
shelf diffusion prior and enforces
data consistency by modifying only
the null-space component for linear
measurements, without auxiliary training. In contrast, our overlapping patch-wise step is neither a
prior nor a null-space projector. It extracts stacked local features that are fed to an auxiliary encoder
learning a contrastive likelihood surrogate for DPS guidance.

4.3 ALGORITHM FOR CL-DPS

After training with Equation (16), we keep only the encoder f and use it as a likelihood surrogate
inside diffusion posterior sampling. We integrate f into DPS (Chung et al., 2023b) with overlapping
patch-wise features from Section 4.2. The only change relative to unconditional sampling is a
contrastive guidance step that adds an estimate of ∇xt log p(y | xt) at each time t. The procedure is
summarized in Algorithm 1. In line 12 of Algorithm 1, we adopt an energy-guidance view: treat the
contrastive score as an unnormalized likelihood and use only the numerator gradient, following prior
unnormalized-energy guidance (Lu et al., 2023; Du et al., 2023). A denominator-aware alternative is
provided in Appendix E, where we show that it yields essentially the same reconstruction quality but
with higher computational cost.
Remark 3. We note that CL-DPS can be seamlessly combined with alternative diffusion sampling
processes. For example, in Appendix F, we pair CL-DPS with DPM-Solver++ (2M) (Lu et al., 2025),
providing the algorithm, implementation details, and representative results.
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Table 1: Nonlinear blind inverse problems: Blind rotation and zoom deblurring results on the FFHQ,
AFHQ and ImageNet datasets. Only CL-DPS achieves high-quality image restoration; other methods
fail. Bold and underlined values denote the best and second-best results, respectively.

Rotation
FFHQ (256× 256) AFHQ (256× 256) ImageNet

Method PSNR ↑ FID ↓ LPIPS ↓ PSNR ↑ FID ↓ LPIPS ↓ PSNR ↑ FID ↓ LPIPS ↓
CL-DPS (SPE) 22.74 33.66 0.302 21.46 36.96 0.319 20.05 45.10 0.340
CL-DPS (UNI) 22.27 36.55 0.315 21.61 39.81 0.330 19.92 49.23 0.352
FastEM WACV 2024 15.96 268.4 0.597 11.57 289.2 0.684 13.90 337.8 0.721
BlindDPS CVPR 2023a 16.87 343.8 0.552 13.25 200.5 0.674 11.25 392.4 0.895
GibbsDDRM ICML 2023 18.43 236.6 0.565 15.24 263.5 0.628 12.24 311.2 0.781
Pan-ℓ0 TPAMI 2017 14.63 327.7 0.629 13.41 227.8 0.895 11.52 340.7 0.862

Zoom
FFHQ (256× 256) AFHQ (256× 256) ImageNet

Method PSNR ↑ FID ↓ LPIPS ↓ PSNR ↑ FID ↓ LPIPS ↓ PSNR ↑ FID ↓ LPIPS ↓
CL-DPS (SPE) 20.68 42.61 0.435 19.63 57.54 0.468 18.56 55.30 0.481
CL-DPS (UNI) 20.31 46.83 0.448 19.23 61.06 0.480 18.07 59.53 0.492
FastEM WACV 2024 17.68 303.4 0.623 15.69 310.1 0.797 12.76 331.4 0.754
BlindDPS CVPR 2023a 16.39 292.9 0.784 11.75 279.6 0.607 11.96 348.2 0.812
GibbsDDRM ICML 2023 15.45 327.4 0.802 14.57 280.5 0.549 11.14 299.8 0.702
Pan-ℓ0 TPAMI 2017 11.52 392.2 0.715 12.41 292.8 0.851 9.452 347.2 0.743

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

• Implementation details. Implementation details for CL-DPS, including training the auxiliary
encoder, and implementation details for baseline methods are provided in Appendix G.

Datasets. We use Flickr-faces-HQ (FFHQ) 256 × 256 dataset (Karras et al., 2021) and animal
faces-HQ (AFHQ) 256× 256 dataset (Choi et al., 2020) and ImageNet (Deng et al., 2009).

• Pretrained diffusion models. We leverage pretrained score functions from Chung et al. (2022b).

• Evaluation metrics. We use Fréchet inception distance (FID) (Heusel et al., 2017), learned
perceptual image patch similarity (LPIPS) (Zhang et al., 2018) and peak signal-to-noise ratio (PSNR)
between the original image and the reconstructed image as the evaluation metrics.

• Choice of benchmarks. For the blind nonlinear setting, to the best of our knowledge there are no
prior DM-based methods; we therefore compare against the strongest blind linear DM-based solvers
(FastEM (Laroche et al., 2024), BlindDPS (Chung et al., 2023a), GibbsDDRM (Murata et al., 2023))
and include one classical non-DM baseline, Pan-ℓ0 (Pan et al., 2017). For the blind linear setting, we
evaluate against the full set of seven baselines: SelfDeblur (Ren et al., 2020), DeblurGANv2 (Kupyn
et al., 2019), Pan-ℓ0 (Pan et al., 2017), BlindDPS (Chung et al., 2023a), FastEM (Laroche et al.,
2024), LatentDEM (Bai et al., 2025), and GibbsDDRM (Murata et al., 2023). The last four methods
use DMs. CL-DPS is not the only method that uses synthetic degradations for training. In particular,
BlindDPS and FastEM train operator priors on synthetic blur kernels, while DeblurGANv2 is trained
on synthetic degraded–clean image pairs.

For CL-DPS, we evaluate two training regimes: (i) Universal (CL-DPS (UNI)), using a single
encoder trained jointly across all operator families; and (ii) Specialist (CL-DPS (SPE)), training
a separate encoder offline for each family Aψ (e.g., distinct encoders for rotation and zoom blur).
At inference, we select the encoder for the detected family while still treating ψ as unknown. See
Appendix H for justification.

5.2 RESULTS

Nonlinear deblurring. We consider rotation blur and zoom deblurring tasks as nonlinear inverse
problems. For rotation blur, we randomly choose a rotation center per image, set the rotation angle in
[10◦, 30◦], and apply a random weight to the rotation trajectory. For zoom blur, we set the center of
the image as the focal point of the zoom, then apply a zoom factor in [1, 3].

The qualitative results for the rotational deblurring task using benchmark methods and CL-DPS are
shown in Figure 1. As observed, CL-DPS is the only method capable of successfully recovering the
ground truth images, while all benchmark methods fail to do so. Qualitative results for the zoom
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Table 2: Linear blind inverse problems: blind motion and Gaussian deblurring results. Bold and
underlined values denote the best and second-best results, respectively.

Motion
FFHQ (256× 256) AFHQ (256× 256) ImageNet

Method PSNR↑ FID↓ LPIPS↓ PSNR↑ FID↓ LPIPS↓ PSNR↑ FID↓ LPIPS↓
CL-DPS (SPE) 26.33 27.44 0.117 24.06 26.25 0.186 22.27 40.35 0.131
CL-DPS (UNI) 26.17 28.90 0.124 23.72 28.90 0.191 21.88 43.20 0.135
SelfDeblur CVPR 2020 10.83 270.0 0.717 9.082 300.5 0.768 9.542 320.1 0.775
DeblurGANv2 ICCV 2019 17.75 220.7 0.571 17.64 186.2 0.597 18.40 260.2 0.561
Pan-ℓ0 TPAMI 2017 15.53 242.6 0.542 15.34 235.3 0.627 14.92 275.2 0.585
BlindDPS CVPR 2023a 22.24 29.49 0.281 20.92 23.89 0.338 19.59 51.25 0.341
FastEM WACV 2024 24.68 34.52 0.340 21.60 50.80 0.315 18.03 38.24 0.345
LatentDEM arXiv 2025 22.65 37.10 0.167 20.32 45.61 0.285 18.55 42.53 0.295
GibbsDDRM ICML 2023 25.80 38.71 0.115 22.01 48.48 0.197 17.10 43.22 0.240

Gaussian
FFHQ (256× 256) AFHQ (256× 256) ImageNet

Method PSNR↑ FID↓ LPIPS↓ PSNR↑ FID↓ LPIPS↓ PSNR↑ FID↓ LPIPS↓
CL-DPS (SPE) 26.42 26.65 0.218 21.76 20.16 0.225 22.05 34.11 0.255
CL-DPS (UNI) 26.35 27.05 0.228 24.40 22.25 0.237 21.85 36.90 0.268
SelfDeblur CVPR 2020 11.36 235.4 0.686 11.53 172.2 0.662 10.22 280.5 0.740
DeblurGANv2 ICCV 2019 19.69 185.5 0.529 20.29 86.87 0.523 21.56 60.31 0.393
Pan-ℓ0 TPAMI 2017 19.94 92.70 0.415 21.41 62.76 0.395 18.52 110.7 0.462
BlindDPS CVPR 2023a 24.77 27.36 0.233 23.63 20.54 0.287 19.59 51.25 0.341
FastEM WACV 2024 23.15 30.25 0.375 22.95 32.15 0.295 17.51 36.01 0.285
LatentDEM arXiv 2025 22.75 30.53 0.365 21.57 38.24 0.296 19.31 38.25 0.273
GibbsDDRM ICML 2023 26.34 34.12 0.426 23.12 42.75 0.314 19.63 38.10 0.355

deblurring task are provided in Appendix N. Also, the quantitative results are presented in Table 1.
The results on all three datasets show the significant superiority of CL-DPS over benchmark methods.
Using a Universal encoder for all measurements leads to a slight performance drop compared to
the family-operator setting, yet CL-DPS (UNI) still remains far ahead of all baselines.

All DM-based benchmark methods fail in nonlinear settings because they assume that Aψ is
a convolutional operator , an assumption that cannot be remedied with a simple modification.

Linear deblurring. For linear deblurring, we consider Gaussian and motion deblurring. Specifically,
following (Bai et al., 2025; Laroche et al., 2024; Murata et al., 2023), we apply the Gaussian blur
kernel with the size of 61×61 and standard deviation of 3.0. Also, the motion blur kernel is generated
randomly using an open-source code1, with kernel size of 61× 61 and intensity of 0.5. These kernels
are convolved with the ground truth image to produce the measurement.

Table 2 summarizes the quantitative results for Gaussian and motion deblurring tasks. Compared to
state-of-the-art methods, CL-DPS achieves competitive performance across various metrics under
blind linear inverse settings. Notably, CL-DPS outperforms all the other methods in terms of PSNR
and FID score on the FFHQ and AFHQ datasets when subjected to Gaussian blur. Further Qualitative
results are provided in Appendix O.

Comprehensive ablations on contrastive hyperparameters, overlapping patch-wise inference, and the
color-consistency head are provided in Appendix M. Wall-clock run times are reported in Appendix K.

6 TOY LIKELIHOOD GRADIENT CHECK

We validate that the surrogate guidance aligns with the true likelihood gradient in a controlled
synthetic setting (full setup and hyperparameters are in Appendix I.). For a fixed diffusion schedule,
we subsample Tdiag = 50 timesteps that are equally spaced in log σt. At each t we form a toy
observation yt with a linear operator Hψ and Gaussian noise, then compare the closed-form gradient

gtrue(t) = ∇xt log p(yt | xt) = σ−2
t H⊤

ψ

(
yt −Hψxt

)
(19)

to the gradient of our contrastive softmax surrogate

gsur(t) = ∇xt

〈
f({pxt

j }j∈[U ]) , f({pyj }j∈[U ])
〉
. (20)

We report the angle θt = cos−1 ⟨gtrue(t), gsur(t)⟩
∥gtrue(t)∥2 ∥gsur(t)∥2

and the norm ratio ρt =
∥gsur(t)∥2

∥gtrue(t)∥2
.

1https://github.com/LeviBorodenko/motionblur.
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Figure 3: Toy gradient check on a subsampled grid of 50 timesteps. Left, angle between gtrue and gsur.
Right, norm ratio ∥gsur∥2

/
∥gtrue∥2. Larger |Y | yields better alignment. Details are in Appendix I.

Figure 3 shows that θt decreases and ρt approaches one as t increases. Larger dictionary sizes |Y |
further improve alignment.

7 CONCLUSION AND FUTURE WORK

We proposed CL-DPS, a diffusion-based method for blind inverse problems with unknown mea-
surement parameters. By training an auxiliary encoder via a modified MoCo framework, CL-DPS
estimates p(y|xt) without access to the measurement operator and guides the reverse diffusion
process accordingly. We further improved estimation accuracy by using color consistency head and
deploying overlapping patch-wise inference. Experiments show that CL-DPS handles both linear and
complex nonlinear settings, including tasks like rotational deblurring, where prior methods fail. One
potential direction for future work is to design a more efficient auxiliary encoder to further reduce
inference cost.

LLM USAGE STATEMENT

LLM used only for grammar and wording edits; no generation of ideas, methods, analyses, results, or
citations. Authors reviewed all edits and accept full responsibility.

REPRODUCIBILITY STATEMENT

We have taken steps to ensure our results are reproducible. All model and algorithmic details, training
procedures, hyperparameters, evaluation protocols, and metrics are specified in the main text. The
appendix provides complete proofs, implementation notes, ablations, and additional qualitative results.
An anonymized GitHub repository contains the source code and configuration files, and pre-trained
checkpoints. All datasets used in our experiments are publicly available.
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A RELATED WORK

A.1 CONTRASTIVE LEARNING

As a versatile semi-supervised learning framework, contrastive learning learns a useful feature
representation by clustering positive samples and dispersing negative samples. It achieves great
success since instance discrimination has been proposed in (Wu et al., 2018). Since then (Chen et al.,
2020a;b) advanced the field by leveraging diverse data augmentation methods and using projection
head during the contrastive learning process. (He et al., 2020) used a momentum update mechanism
to maintain a negative sample queue to reduce the memory consumption. Later (Wang et al., 2021)
further proposed a dense contrastive loss for dense downstream task, specifically, (Wang et al.,
2021) can consistently outperform its baseline methods like (He et al., 2020), when transferring to
downstream dense prediction tasks including object detection. For interested readers seeking further
information, please refer to the survey paper (Gui et al., 2024).

B FULL VERSION OF LEMMA 1 AND ITS PROOF

Lemma 1, Full Version.

Let f be differentiable in xt and let τ > 0. Define

st(xt | y) ≜ ⟨f(xt), f(y)⟩ / τ. (21)

For a finite dictionary Y with y ∈ Y define

p̂t,Y (y | xt) =
exp{st(xt | y)}∑
ỹ∈Y exp{st(xt | ỹ)}

. (22)

Then,

∇xt
log p̂t,Y (y | xt) = ∇xt

st(xt | y) −
∑
ỹ∈Y

πt,Y (ỹ | xt)∇xt
st(xt | ỹ), (23)

where

πt,Y (ỹ | xt) =
exp{st(xt | ỹ)}∑
z∈Y exp{st(xt | z)}

. (24)

Assume the energy model

p(y | xt) = exp{st(xt | y)} /Zt(xt), (25)

with base measure on Y and partition function

Zt(xt) =

∫
exp{st(xt | z)} dµ(z). (26)

Let Yn be i.i.d. samples from µ augmented so that y ∈ Yn. If exp{st(xt|·)} and
exp{st(xt|·)} ∥∇xtst(xt|·)∥ are µ integrable then for fixed y and xt

∇xt
log p̂t,Yn

(y | xt)
a.s.−−−−→
n→∞

∇xt
log p(y | xt). (27)

Proof. Define the empirical partition function

Zt,Y (xt) =
∑
z∈Y

exp{st(xt | z)} (28)

. Then,

log p̂t,Y (y | xt) = st(xt | y) − logZt,Y (xt). (29)

Differentiating with respect to xt gives

∇xt
log p̂t,Y (y | xt) = ∇xt

st(xt | y) −
1

Zt,Y (xt)
∇xt

Zt,Y (xt). (30)
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The gradient of Zt,Y is

∇xtZt,Y (xt) =
∑
ỹ∈Y

exp{st(xt | ỹ)}∇xtst(xt | ỹ). (31)

Therefore,
1

Zt,Y (xt)
∇xt

Zt,Y (xt) =
∑
ỹ∈Y

πt,Y (ỹ | xt)∇xt
st(xt | ỹ) (32)

which proves the gradient identity.

For consistency consider the true partition function

Zt(xt) =

∫
exp{st(xt | z)} dµ(z). (33)

Let g(z) = ∇xt
st(xt | z). By the strong law of large numbers and the integrability assumptions

1

|Yn|
∑
z∈Yn

exp{st(xt | z)}
a.s.−−→

∫
exp{st(xt | z)} dµ(z) (34)

1

|Yn|
∑
z∈Yn

exp{st(xt | z)} g(z)
a.s.−−→

∫
exp{st(xt | z)} g(z) dµ(z), (35)

Hence ∑
ỹ∈Yn

πt,Yn
(ỹ | xt) g(ỹ)

a.s.−−→
∫
exp{st(xt | z)} g(z) dµ(z)∫

exp{st(xt | z)} dµ(z)
. (36)

The right hand side equals Ez∼p(·|xt)[g(z)]. Finally

∇xt
log p(y | xt) = ∇xt

st(xt | y) − Ez∼p(·|xt)

[
∇xt

st(xt | z)
]
. (37)

Combining the empirical identity with this limit shows

∇xt
log p̂t,Yn

(y | xt)
a.s.−−→ ∇xt

log p(y | xt), (38)

which completes the proof.

C PROOF OF THEOREM 1

Proof. Define the additional patch collection

G(x) ≜
{
pxj

}V
j=U+1

, so that f
(
{pxj }j∈[V ]

)
=

[
f
(
{pxj }j∈[U ]

)T
, f

(
G(x)

)T]T
.

Using the definition of mutual information and the chain rule for entropy,

I
(
x; f

(
{pxj }j∈[V ]

))
= H(x)−H

(
x
∣∣ f({pxj }j∈[V ]

))
= H(x)−H

(
x
∣∣ f({pxj }j∈[U ]

)
, f

(
G(x)

))
,

where H(·) denotes the entropy function. Since conditioning cannot increase conditional entropy,

H
(
x
∣∣ f({pxj }j∈[U ]

)
, f

(
G(x)

))
≤ H

(
x
∣∣ f({pxj }j∈[U ]

))
.

Substituting gives

I
(
x; f

(
{pxj }j∈[V ]

))
≥ H(x)−H

(
x
∣∣ f({pxj }j∈[U ]

))
= I

(
x; f

(
{pxj }j∈[U ]

))
.

The argument uses only that the patch extractor and f are deterministic functions of x and that the
entropies are well defined. No independence or distributional assumptions on x are required. This
proves the claim.
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D FROM MUTUAL-INFORMATION MONOTONICITY TO PRACTICAL PATCH
DESIGN

Theorem 1 concerns the clean image x and the stacked patch-wise features f({pxj }). During sampling
we operate on diffusion states xt and form a surrogate likelihood guidance using patch-wise features.
In this appendix we relate the monotonicity guarantee to the stability of that guidance and derive
practical patch-selection rules.

D.1 VARIANCE CONTRACTION OF THE SURROGATE GUIDANCE

At reverse step t, let the per-patch contribution to the surrogate likelihood gradient be ϕj(xt) ∈ RD,
computed from the j-th overlapping patch feature. Define the averaged guidance

gU (xt) =
1

U

U∑
j=1

ϕj(xt). (39)

Assume the following mild regularity conditions: (i) bounded second moments, Var(ϕj) ⪯ σ2I for
all j, and (ii) weak dependence across overlapping patches,

∑
k≥1∥Cov(ϕj ,ϕj+k)∥op <∞.

Proposition 1 (Variance contraction). Under the conditions above,

Var
(
gU (xt)

)
⪯ c

U
I (40)

for a constant c that depends on σ2 and the dependence sum. Consequently, the signal-to-noise ratio
of gU increases with U , and the expected cosine similarity between gU and its mean increases toward
one at a rate that saturates on the order of 1/U .

Proof. Write ϕj = ϕj(xt) for brevity and let ϕ̃j = ϕj − Eϕj . For any unit vector u ∈ SD−1

define the scalar sequence ξj = u⊤ϕ̃j . Then

Var
(
u⊤gU

)
= Var

( 1

U

U∑
j=1

ξj

)
=

1

U2

( U∑
j=1

Var(ξj) + 2

U−1∑
k=1

U−k∑
j=1

Cov(ξj , ξj+k)
)
. (41)

Bound the diagonal terms using Var(ξj) = u⊤ Var(ϕj)u ≤ σ2. For the off–diagonal terms, note
that ∣∣Cov(ξj , ξj+k)∣∣ =

∣∣u⊤ Cov(ϕj ,ϕj+k)u
∣∣ ≤ ∥∥Cov(ϕj ,ϕj+k)∥∥op ≤ ρk. (42)

Therefore

Var
(
u⊤gU

)
≤ 1

U2

(
Uσ2 + 2

U−1∑
k=1

U−k∑
j=1

ρk

)
=

1

U2

(
Uσ2 + 2

U−1∑
k=1

(U − k)ρk
)

(43)

=
1

U

(
σ2 + 2

U−1∑
k=1

(
1− k

U

)
ρk

)
≤ 1

U

(
σ2 + 2

∞∑
k=1

ρk

)
. (44)

Since the bound holds for every unit vector u, by the variational characterization of the operator
norm we obtain the matrix inequality in equation 40, that is

Var
(
gU (xt)

)
⪯ 1

U

(
σ2 + 2

U−1∑
k=1

(
1− k

U

)
ρk

)
I ⪯ 1

U

(
σ2 + 2

∞∑
k=1

ρk

)
I. (45)

This completes the proof.

Corollary 2 (Design implication). Increasing the number of overlapping patches U yields
diminishing-returns improvements in guidance stability. This explains why small to moderate overlaps
deliver most of the gain while very dense overlaps plateau.
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D.2 A COMPUTE-AWARE PATCH POLICY

Let n be the patch size and s the stride. We use Theorem 1 as a safety guarantee and choose
granularity by the following rule. (i) Choose n so that salient structures span multiple patches, (ii)
choose s in the range n/4 to n/2 so that each pixel participates in several overlapping contexts, (iii)
increase U until a held-out validation metric (for example PSNR or FID) saturates, then stop. This
policy turns the monotonicity guarantee into a practical selection strategy without over-allocating
compute to excessive overlap.

E DENOMINATOR TERM: THEORY, DIAGNOSTICS, AND IMPLEMENTATION

In the main sampler we apply the contrastive guidance using a numerator-only update at line 12
of Algorithm 1. This section justifies that choice, reports an empirical magnitude diagnostic of the
softmax denominator term, and provides the full denominator-aware variant for completeness. Let
the logits be sj = ⟨f(xt), f(y(j))⟩/τ with probabilities

πj =
exp(sj)∑
k exp(sk)

, (46)

and let the softmax surrogate be

p̂t,Y (y | xt) :=
exp

(
⟨f(xt), f(y)⟩/τ

)∑
ỹ∈Y exp

(
⟨f(xt), f(ỹ)⟩/τ

) . (47)

From Lemma 1,

∇xt
log p̂t,Y (y

(+) | xt) = ∇xt
s+︸ ︷︷ ︸

gnum

−
∑
j ̸=+

πj ∇xt
sj︸ ︷︷ ︸

gden

. (48)

With unit normalized features and comparable Jacobian scales one expects

∥gden∥2
∥gnum∥2

≈ 1− π+, (49)

so a well trained encoder yields a small ratio when π+ is large.

Magnitude diagnostic on a toy dataset. To verify the claim, we reuse the toy setup and the
subsampled diagnostic grid from Appendix I. For N = 120 held out toy images and Tdiag = 50
timesteps, we compute

rt =
∥gden∥2
∥gnum∥2

(50)

at each t. Unless stated otherwise we fix |Y | = 256, temperature τ = 0.07, ℓ2 feature normalization,
MoCo queue length K = 65536, and momentum m = 0.996. The left panel of Figure 4 aggregates
all N × Tdiag ratios into a single histogram. The right panel shows the per t median with the
interquartile range. Most mass lies between 0.08 and 0.20, and the median decreases mildly with t.
This indicates that the denominator term is typically much smaller than the numerator term in the
guidance regime of interest.

For completeness, the denominator-aware update replaces line 12 of Algorithm 1 with

xt−1 ← x′
t−1 − η∇xt

(
s+ −

∑
ỹ∈Y

πt,Y (ỹ | xt) st(xt | ỹ)
)
, (51)

which requires evaluating f(xt) against all ỹ ∈ Y and taking a weighted sum of their gradients. This
increases compute and memory per step.
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Figure 4: Magnitude of the softmax denominator term on the toy dataset from Appendix I. Left,
histogram of rt = ∥gden∥2/∥gnum∥2 aggregated over images and timesteps. Right, per t median with
interquartile range. Small ratios support the efficient numerator-only guidance used in the main
sampler.

Numerical Comparison To quantify the effect of including the softmax denominator term in the
guidance update, we compare the default numerator-only update with the full denominator-aware
variant described above. Both methods are run with identical hyperparameters, timesteps, and random
seeds to ensure a fair comparison. Results are averaged over the same held-out test split and noise
schedule used for Table 1.

As shown in Table 3, incorporating the denominator term leads to slightly higher PSNR and noticeably
lower FID/LPIPS, confirming that the correction provides a modest but consistent benefit. However,
this comes at the cost of additional compute and memory per step since it requires evaluating the
encoder against all y ∈ Y and forming a weighted gradient sum.

Table 3: Comparison of numerator-only and denominator-aware contrastive guidance (Appendix E).
Results are averaged over the same test split and noise schedule as in Table 1. Denominator-aware
guidance slightly improves perceptual quality (lower FID/LPIPS) but at higher compute cost.

FFHQ (256 × 256) AFHQ (256 × 256) ImageNet

Task Variant PSNR↑ FID↓ LPIPS↓ PSNR↑ FID↓ LPIPS↓ PSNR↑ FID↓ LPIPS↓

Rotation Numerator-only 22.74 33.66 0.302 21.46 36.96 0.319 20.45 45.10 0.340
Denominator-aware 22.79 32.95 0.297 21.52 36.99 0.315 20.52 44.35 0.336

Zoom Numerator-only 20.68 42.61 0.435 19.63 57.54 0.468 18.56 55.30 0.481
Denominator-aware 20.73 41.72 0.429 19.70 56.40 0.471 18.60 54.35 0.474

Given the small empirical ratio rt, the nearly identical quality, and the higher cost of the denominator-
aware step, we adopt the numerator-only update in the main algorithm. If one observes large early
step ratios rt ≳ 0.4, two practical mitigations are to lower the temperature τ for the first few steps or
to increase |Y | moderately, both of which increase π+ and reduce the denominator scale.

F DPM-SOLVER++ FOR CL-DPS (SAMPLER DETAILS)

Our method augments each reverse step with a contrastive likelihood surrogate. This guidance
is sampler-agnostic: it only requires evaluating a gradient ∇xtLCL(xt,y) at the current iterate.
Replacing the first-order DDPM/DDIM stepper with a high-order solver reduces discretization error
and improves stability under strong guidance. We adopt DPM-Solver++ (2M) (Lu et al., 2025)with a
Karras σ-schedule.

Let xt =
√
ᾱt x0 + σt ε. Our denoiser predicts noise εθ(xt, σt). The CL-DPS guidance is computed

in image space as gt = ∇xt

〈
f(patches(xt)), f(patches(y))

〉
, where features of the measurement

are cached once. To apply guidance consistently with an ε-parameterized solver, we use the local
relation ∂xt/∂ε = σtI and project the guidance to ε-space:

ε̂t = εθ(xt, σt) − λt σt gt︸︷︷︸
guidance in ε-space

,

where λt is a (monotone) guidance schedule. We use a cosine decay λt = λmax
1+cos(π·τt)

2 with
τt ∈ [0, 1] the normalized time (1 at start, 0 at end).
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Algorithm 2 CL-DPS + DPM-Solver++ (2M) (ours)

1: Input: steps N , measurement y, Karras schedule {σi}Ni=0, pretrained encoder f , guidance weights {λi}Ni=1,
#overlapping patches U .

2: Sample xN ∼ N (0, I); cache measurement patches {pyj }
U
j=1.

3: Initialize ε̂N+1 ← 0 // dummy prev. noise for warm-start
4: for i = N,N−1, . . . , 1 do
5: // denoiser + CL guidance at (xi, σi)
6: Extract U overlapping patches {pxi

j }
U
j=1 from xi.

7: gi ← ∇xi

〈
f({pxi

j }), f({p
y
j })

〉
.

8: ε̂i ← εθ(xi, σi) − λi σi gi.
9: hi ← log σi−1 − log σi, ϕ1(h) =

eh−1
h

, ϕ2(h) =
eh−1−h

h2 .
10: if i == N then
11: xi−1 ← σi−1

σi
xi −

(
σi−1 − σi

)
ε̂i // warm-start: 1-stage (1S) exponential Euler

12: else
13: xi−1 ← σi−1

σi
xi −

[
ϕ1(hi)σi−1

]
ε̂i +

[
ϕ2(hi)σi−1

](
ε̂i+1 − ε̂i

)
// DPM-Solver++ (2M)

14: end if
15: Cache ε̂i for the next step.
16: end for
17: Return x0.

Let {σi}Ni=0 be a decreasing Karras schedule with σN the start noise and σ0 ≈ 0; define hi =
log σi−1 − log σi. DPM-Solver++(2M) is a second-order multi-step method for the diffusion ODE
written in log σ time; it combines the current and one previous noise prediction. We use a warm-start
(1S) step for the first interval, then 2M thereafter.2

As in the main text, we extract U overlapping patches of y once (cached), and of xt each step. Patch
configuration and the overlap policy are identical to CL-DPS; only the state update (the sampler)
changes.

Notes on stability. (i) The ε-space projection (σigi) keeps units consistent with the denoiser output.
(ii) We found a cosine-decay λi essential to avoid over-sharpening at low noise. (iii) For extremely
strong guidance, a single predictor–corrector Heun sub-step at large σ can help, but was not required
in our runs.

Unless specified, we use N=50 steps, Karras ρ=7, and λmax ∈ [0.5, 1.0] depending on the operator
family (same as the main CL-DPS).

F.1 WHY DPM-SOLVER++ IMPROVES OVER EULER/ANCESTRAL IN CL-DPS

Higher-order accuracy under external guidance. Let x(σ) follow the diffusion ODE in log-noise
time, augmented with our contrastive guidance,

dx

d log σ
= −σ

[
εθ(x, σ) − λ(σ)σ ∇x⟨f(patches(x)), f(patches(y))⟩︸ ︷︷ ︸

CL guidance g(x,y)

]
.

A first-order Euler/ancestral step approximates this right-hand side as constant over each interval,
leading to O(h) local truncation error for step size h = log σi−1 − log σi. DPM-Solver++ (2M) is
a second-order multi-step method that reuses the previous and current noise predictions, yielding
O(h2) error while keeping the model interface unchanged. Because the CL-DPS term is just an
additional drift, the same order improvement applies to the combined drift (denoiser + guidance).

Stability at low noise and reduced variance. Near the end of the trajectory (σ → 0), the
measurement-guidance-to-stochasticity ratio is largest; naive first-order updates can overshoot or
produce ringing. DPM++’s multi-step correction better tracks the curvature of the drift, reducing
late-step oscillations. Furthermore, when used in ODE mode (no extra noise injection), DPM++
avoids sample variance accumulation across steps, which empirically improves perceptual metrics
(FID/LPIPS) without sacrificing fidelity.

2We follow the common 2M recipe in public implementations; any equivalent coefficientization is acceptable.
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Table 4: Nonlinear blind inverse problems with a stronger sampler. We insert DPM-Solver++ (2M)
into CL-DPS.

Rotation
FFHQ (256× 256) AFHQ (256× 256) ImageNet

Method PSNR↑ FID↓ LPIPS↓ PSNR↑ FID↓ LPIPS↓ PSNR↑ FID↓ LPIPS↓
CL-DPS (SPE) + DPM++ (50) 22.98 31.85 0.295 21.79 34.52 0.312 20.31 43.14 0.333
CL-DPS (UNI) + DPM++ (50) 22.52 34.10 0.308 21.84 37.31 0.322 20.12 46.64 0.345
CL-DPS (SPE) 22.74 33.66 0.302 21.46 36.96 0.319 20.05 45.10 0.340
CL-DPS (UNI) 22.27 36.55 0.315 21.61 39.81 0.330 19.92 49.23 0.352

Zoom
FFHQ (256× 256) AFHQ (256× 256) ImageNet

Method PSNR↑ FID↓ LPIPS↓ PSNR↑ FID↓ LPIPS↓ PSNR↑ FID↓ LPIPS↓
CL-DPS (SPE) + DPM++ (50) 20.94 40.28 0.426 19.89 54.21 0.454 18.82 53.05 0.474
CL-DPS (UNI) + DPM++ (50) 20.55 44.85 0.439 19.46 58.59 0.472 18.33 56.72 0.486
CL-DPS (SPE) 20.68 42.61 0.435 19.63 57.54 0.468 18.56 55.30 0.481
CL-DPS (UNI) 20.31 46.83 0.448 19.23 61.06 0.480 18.07 59.53 0.492

Schedule synergy. We discretize in log-σ and adopt a Karras σ-schedule, which allocates more
steps to high-curvature regions of the flow. Together with a simple cosine decay for λ(σ), this reduces
discretization–guidance mismatch and yields the small but consistent improvements reported below.

F.2 RESULTS WITH DPM-SOLVER++ (TABLE DESCRIPTION)

We replace the Euler/ancestral step in CL-DPS with DPM-Solver++ (2M) and keep all other
components unchanged: same denoiser, same overlapping-patch encoder f , and cached measurement
features. Unless noted, we use N=50 steps with a Karras schedule (ρ=7) and a cosine guidance
decay λt from λmax to 0.

We keep measurement patches, stride/overlap, and the encoder backbone unchanged. Guidance is
applied in ε-space via the projection ε̂ = εθ−λσ g to maintain unit consistency with the denoiser. All
reported numbers for the DPM++ rows were produced with the same number of function evaluations
as the corresponding CL-DPS baselines.

Table 4 augments the main nonlinear blind deblurring benchmark by adding two rows—CL-DPS
(SPE) + DPM++ (50) and CL-DPS (UNI) + DPM++ (50)—on the Rotation and Zoom
tasks across FFHQ, AFHQ and ImageNet. The remaining rows are identical to Table 1 in the main
paper.

Across all datasets and both operator families, DPM++ yields: (i) slightly higher PSNR (typically
+0.2–0.4 dB), (ii) lower FID (often −2 to −3), and (iii) lower LPIPS (roughly −0.005 to −0.015),
with the largest gains on ImageNet where the step budget is most constraining. This aligns with the
reduced discretization error and improved late-stage stability discussed above. We emphasize that no
retraining is required; the sampler swap is drop-in.

G IMPLEMENTATION DETAILS

G.1 TRAINING

• Implementation details of training the auxiliary encoder. In all experiments, we use the ResNet-
18 (He et al., 2016) as the backbone model. We set the temperature τ = 0.07 in Equation (16), fix
|Y | = 256, MoCo queue length K = 65536, and momentum m = 0.996. Also, we set patch size
P=64 and stride S=32 (50% overlap).

Auxiliary encoder training data construction. We train E on aligned patch triplets constructed
from clean images x and synthetic measurements y = Aψ(x) + ϵ. At each step we sample a
degradation family F ∈ {Gaussian blur, motion blur, rotation blur, zoom blur} uniformly, then
draw parameters from broad ranges and discard them afterward. Concretely, Gaussian blur uses
standard deviation σ ∼ Unif(0.6, 2.4) pixels, motion blur uses length ℓ ∼ Unif(3, 15) pixels and
angle θ ∼ Unif(0◦, 180◦), rotation blur uses angle ϕ ∼ Unif(10◦, 30◦) around a random center,
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and zoom blur uses factor ζ ∼ Unif(1.1, 1.6), average over 21 rotated/zoomed images. We add
measurement noise ϵ ∼ N (0, σ2

n) with σn ∼ Unif(0.005, 0.03). For each spatial location we form
a query patch Px from x, its geometrically corresponding positive Py from y, and a mixed pool of
negatives P ′

y drawn from other images, spatially mismatched locations, and a momentum queue. This
yields the set Y used in the InfoNCE term of Equation (16).

We train the model for 400 epochs, including a 5-epoch linear warm-up period, with the batch size of
256. Stochastic gradient descent with an initial learning rate of 0.03, weight decay of 0.0001, and
cosine annealing is used for optimization.

We optimize the InfoNCE loss that aligns fθ(Px) with gξ(Py) and repels all gξ(P ′
y) in Y at tempera-

ture τ=0.07. The mixed negative construction is important, it prevents shortcuts based on low level
statistics and improves invariance to nuisance degradations while preserving sensitivity to content.
The MoCo queue of length K=65,536 provides a stable and diverse negative set across steps.

For the momentum encoder, we set a momentum of 0.999. Data augmentation consists of random
cropping with a scaling range of [0.045, 0.5] and an aspect ratio range of [0.5, 2] are applied to both
{p(y|xt)}t∈[T ] and y. For each input image, we crop the given image at a random location, and
apply the color jitter as augmentation. For all inverse problems, Gaussian measurement noise with
σ = 0.02 is added (see Appendix L for other noise levels). Full implementation details are available
in our code repository.

For the FFHQ, AFHQ and ImageNet datasets, we utilize pretrained score functions following
the configuration described in Chung et al. (2022b). To train the score function for kernels, we
construct a dataset of 60k 64 × 64 kernels. Out of these, 50k motion blur kernels are produced
using the implementation from 3, where the blur intensity is sampled as I ∼ Unif(0.2, 1.0). The
remaining 10k kernels are Gaussian blurs, generated with a standard deviation chosen randomly as
σ ∼ Unif(0.1, 5.0).

Similar to the previous works (Chung et al., 2023a; Laroche et al., 2024; Murata et al., 2023), for
FFHQ, we randomly select 50k images for training, and sample 1k images of test data separately. For
AFHQ, we train our model using the images in the dog category, which consists of about 5k images.
Testing was performed with the held-out validation set of 500 images of the same category.

For the kernel and tilt-map score functions, we adopt the U-Net architecture provided in guided-
diffusion 4, training the models under the default configuration.

G.2 FORWARD OPERATORS

We define forward operators for rotation blur and zoom blur that we use to synthesize measurements.
Let x ∈ RH×W×C be an image, c =

(
H−1
2 , W−1

2

)
the rotation and zoom center, and let ϵ ∼

N (0, σ2
n) denote measurement noise.

G.2.1 ROTATION BLUR

Given a maximum shake angle ϕ > 0, sample angles {θi}Mi=1 and nonnegative weights {wi}Mi=1 that
sum to 1. The rotation blur averages rotated views around c:

y(u) =

M∑
i=1

wi
[
Rθi x

]
(u) + ϵ(u), (52)

where Rθ applies a rotation of θ degrees about c with bilinear interpolation and reflect padding.

For our experiments, we set M = 21, angles θi linearly spaced in [−ϕ, ϕ], sample weights wi ∝
exp

(
− θ2i

2σ2
θ

)
with σθ = ϕ/3, then normalized so that

∑
i wi = 1. The training range ϕ ∼

Unif(10◦, 30◦). Test ranges follow the benchmark specification. Interpolation is bilinear. Padding is
reflect. Channels are processed independently.

3https://github.com/LeviBorodenko/motionblur
4https://github.com/openai/guided-diffusion
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G.2.2 ZOOM BLUR

Given a zoom range [1, ζmax], sample scale factors {si}Mi=1 and nonnegative weights {wi}Mi=1 that
sum to 1. The zoom blur averages scaled versions about c:

y(u) =

M∑
i=1

wi
[
Zsi x

]
(u) + ϵ(u), (53)

where Zs scales by factor s around c. For s > 1 (minification) we use area interpolation. For s < 1
(magnification) we use bilinear interpolation. Padding is reflect.

In the experiments we set M = 21, scales si linearly spaced in
[
1, ζmax

]
. Sample weights wi ∝

exp
(
− (si−1)2

2σ2
s

)
with σs = (ζmax − 1)/3, then normalized. We use the training range of ζmax ∼

Unif(1.1, 1.6). Test ranges follow the benchmark specification. Coordinates are centered at c.
Interpolation choices as above. Unless stated otherwise, we use σn = 0.02 for the additive noise.

G.3 EVALUATION

We evaluate reconstruction quality using three standard metrics: Fréchet Inception Distance (FID)
(Heusel et al., 2017), Learned Perceptual Image Patch Similarity (LPIPS) (Zhang et al., 2018), and
Peak Signal-to-Noise Ratio (PSNR). Unless otherwise specified, we fix the number of diffusion steps
to 1000 across all experiments.

G.4 BENCHMARK METHODS

Pan-ℓ_0 Pan et al. (2017). This method applies ℓ_0 regularization jointly on the image and kernel.
We use the official codebase5 with the following hyper-parameters. Optimization and post-processing
follow the same multi-stage strategy as Pan-DCP.

• λ_pixel = 4e− 3

• λ_grad = 4e− 3

• λ_tv = 1e− 3

• λ_l0 = 2e− 3

SelfDeblur Ren et al. (2020). We adopt the default YCbCr-based deblurring configuration. Training
is performed with a constant learning rate of 0.01 for 2500 iterations. For the first 500 steps,
optimization minimizes the MSE loss, after which it switches to minimizing 1− SSIM(·, ·).
DeblurGANv2 Kupyn et al. (2019). We adopt the official implementation6, following the default
hyper-parameters, data augmentation strategies, and network design. Training minimizes a weighted
combination of pixel loss, WGAN-gp adversarial loss, and perceptual loss, with Inception-ResNet-v2
as the generator backbone. Both FFHQ and AFHQ datasets are used, with training conducted for
1.5M iterations using a batch size of 1. As in MPRNet, the training set contains an equal proportion
of Gaussian and motion blurred images. The loss weights are:

• λ_pixel = 5e− 1

• λ_adv = 6e− 3

• λ_perceptual = 1e− 2

H FURTHER STUDIES ON ENCODER CHOICE

Why CL-DPS (SPE) setup is meaningful? In many pipelines a coarse family label is available or
can be obtained with negligible cost: (i) capture systems operate in discrete modes that are recorded
as metadata, (ii) restoration stacks routinely gate inputs by a small set of operator families before

5https://jspan.github.io/projects/text-deblurring/index.html
6https://github.com/VITA-Group/DeblurGANv2
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invoking specialized solvers, (iii) when metadata is missing a lightweight two-way classifier can
detect the family with near-perfect accuracy and tiny overhead compared to diffusion sampling. This
keeps the setting blind to the unknown continuous parameters while matching practical deployments.

On the other hand, to train CL-DPS (UNI), the learned energy then estimates the mixture likelihood
pmix(y | xt), which is exactly what is needed when the measurement family is unknown or
undetermined at test time. When the family Ao is known, the same encoder can still be used with a
simple restriction of negatives, but no change to the loss is required.

Let o ∈ O index the measurement family and ψ denotes family-specific parameters. Given a clean
image x0, the forward model produces a measurement

y = Ao,ψ(x0) + n, (54)

and let xt denote a diffusion state along the reverse process. During contrastive learning we first
draw the family o ∼ πo, and then draw ψ ∼ p(ψ | O), where both πo and p(ψ | O) are uniform
distributions. We then construct positives (xt,y) from this mixture process, while negatives come
from a large dictionary as discussed in Section 4.1.

H.1 USING HIGHER-CAPACITY ENCODER

To mitigate the performance gap introduced by CL-DPS (UNI), we train a higher-capacity encoder
namely ResNet-50, and evaluate it on the FFHQ dataset; results are reported in Table 5. As seen
there, scaling up the encoder model largely recovers the degradation caused by the mixture of the
operators. We attribute this gain to the greater model capacity of the ResNet-50.

Table 5: CL-DPS (UNI) using two model structures, namely ResNet-18 and ResNet-50.

FFHQ

Encoder ResNet-18 ResNet-50
Distortion PSNR ↑ FID ↓ LPIPS ↓ PSNR ↑ FID ↓ LPIPS ↓
Rotation 22.27 36.55 0.315 22.60 33.95 0.309

Zoom 20.31 46.83 0.448 20.42 44.14 0.411

H.2 ROBUSTNESS TO FAMILY MISCLASSIFICATION

We simulate a small fraction ε of inputs routed to the wrong encoder to approximate a practical
detector with imperfect accuracy. On FFHQ rotation we vary ε ∈ {0, 0.05, 0.10, 0.20} and report the
PSNR, FID and LPIPS in the Table 6:

Table 6: Numerical results on robustness to family misclassification

FFHQ

ε PSNR FID LPIPS
0 22.74 33.66 0.302

0.05 22.57 35.35 0.310
0.10 22.24 36.61 0.318
0.20 21.71 40.28 0.332

We observe near-linear degradation for small ε. In our internal test a two-way ResNet-18 family
detector reaches 99.1% accuracy on held-out data with a runtime of about 1.1 ms per 256 × 256
image on an Nvidia H100 GPU. Diffusion sampling for 300 steps takes about 5.1 s per image on the
same GPU. The overhead of family detection is therefore negligible relative to sampling time.

Knowing the measurement family yields the best quality. When the family is unknown, a single
mixture-trained encoder remains competitive and cross-family usage still outperforms non-contrastive
baselines. Small misclassification rates have a modest effect on quality in practice.
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I DETAILS FOR THE TOY LIKELIHOOD GRADIENT CHECK

To quantify how well the surrogate guidance matches the true likelihood gradient in a case with a
closed-form ∇xt log p(yt | xt), we generate Ntoy = 1100 grayscale images x0 ∈ [0, 1]96×96 by
summing 3 to 6 Gaussian blobs, a few straight edges, and Gaussian noise, then rescaling to [0, 1]. We
use 1000 for training the auxiliary encoder and 100 for diagnostics.

For a parameter ψ we define a linear operator Hψ applied to the vectorized image. Similar to the
experimental setting in Section 5. We sample ψ per image from one of two families:

Gaussian blur: ψ ∈ [0.6, 2.0], with kernel size of 5. (55)
Motion blur: intensity of ∈ [0.5− 0.9], , with kernel size of 5. (56)

At diffusion step t with noise level σt we draw

xt = αtx0 + σtϵ, ϵ ∼ N (0, I), (57)

yt = Hψ xt + εt, εt ∼ N (0, σ2
t I). (58)

The true gradient follows

gtrue(t) = σ−2
t H⊤

ψ

(
yt −Hψxt

)
. (59)

We train a lightweight encoder f(·) with an InfoNCE loss on pairs (xt,yt) drawn from the same
forward model. Features are ℓ2-normalized. Temperature is τ = 0.07. We use a MoCo queue of
K = 65536 negatives with momentum m = 0.996 and a 128-dimensional projection head. For
diagnostics we vary the dictionary size |Y | ∈ {64, 256, 1024} by sampling that many y(j)

t at the
same t. The surrogate is

p̂t,Y (y
(+)
t | xt) =

exp
(
⟨f(xt), f(y(+)

t )⟩/τ
)∑

j exp
(
⟨f(xt), f(y(j)

t )⟩/τ
) . (60)

We compute

gsur(t) = ∇xt
log p̂t,Y (y

(+)
t | xt) = ∇s+ −

∑
j

πj∇sj , sj = ⟨f(xt), f(y(j)
t )⟩/τ. (61)

Main experiments use a 1000-step schedule. Diagnostics use a subsampled grid Tdiag of 50 indices
that are equally spaced in log σt, chosen from the same schedule. This preserves the early, mid, and
late regimes with minimal clutter. We use a batch size of 128, projection dimension 32, learning
rate 1e−3, optimizer AdamW with weight decay 1e−4, queue length 16384, momentum 0.996,
temperature 0.07. Results are robust to moderate variation of these values.

For each t ∈ Tdiag and each |Y | we compute

θt = cos−1 ⟨gtrue(t), gsur(t)⟩
∥gtrue(t)∥2 ∥gsur(t)∥2

, ρt =
∥gsur(t)∥2
∥gtrue(t)∥2

, (62)

averaging over 100 held-out images. We plot the per-t mean with a light moving average for
readability. Raw curves and seeds are released with the code.

Under normalized features and a good encoder one expects θt to decrease with t and ρt to approach
one. Larger |Y | raises the positive softmax weight π+ and improves alignment. As a check, increasing
τ or reducing |Y | degrades alignment as expected.

J CONVERGENCE BEHAVIOR OF CL-DPS

Here we study convergence under a nonlinear forward model on FFHQ. In Figure 5 we plot PSNR,
FID, and LPIPS versus the number of denoising steps. The three baselines from prior work (BlindDPS,
FastEM, and GibbsDDRM) do not improve with more steps, and their curves plateau or even drift,
indicating that they fail to solve the underlying nonlinear inverse problem. In stark contrast, CL-DPS
improves monotonically across all metrics and converges to substantially better reconstructions as the
step count increases.
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Figure 5: Quantitative evaluation of PSNR, FID, and LPIPS across diffusion steps for challenging
nonlinear blind inverse problems. Top: rotation blur; bottom: zoom blur.

Table 7: Wall-clock runtime (per image, in seconds) of CL-DPS compared with diffusion-based
baselines.

Method FastEM BlindDPS LatentEM GibbsDDRM CL-DPS

Time (s) 46.03 47.68 46.87 51.85 60.84

K RUNTIME AND COMPUTATIONAL OVERHEAD

As discussed in the limitations, CL-DPS has higher runtime because it backpropagates through the
encoder at every denoising step. We quantify this overhead by measuring per-image runtime on
FFHQ with a single NVIDIA H100 GPU, using the same setting for all methods (1000 sampling
steps, batch size 1). Wall-clock times for each method are reported in Table 7.

Under this setup, CL-DPS takes 60.84 s per image, longer than the baselines in Table 7 due to the
extra backpropagations, but this additional cost enables CL-DPS to solve the non-linear inverse
problems evaluated in our experiments, where the compared methods fail. In short, CL-DPS trades a
modest increase in wall-clock time for substantially broader applicability.

L ADDITIONAL RESULTS ACROSS DIFFERENT NOISE LEVELS

To evaluate the robustness of CL-DPS under varying levels of measurement noise, we report additional
results for both linear and nonlinear blind inverse problems across three Gaussian noise levels:
σ = 0.01, σ = 0.02, and σ = 0.03.

Table 8 and Table 1 (main paper) and Table 9 present results for blind rotation and zoom deblurring
on FFHQ and AFHQ datasets under σ = 0.01, 0.02, and 0.03, respectively. As expected, increasing
the noise level degrades the performance of all methods across PSNR, FID, and LPIPS. Nonetheless,
CL-DPS consistently outperforms all baselines in both distortion and perceptual metrics, particularly
in high-noise and nonlinear settings where competing methods struggle.

Similarly, to evaluate the linear blind inverse problems, we evaluate blind motion and Gaussian
deblurring tasks under varying noise levels in Table 10 (σ = 0.01), Table 2 (main paper, σ = 0.02),
and Table 11 (σ = 0.03). CL-DPS again delivers competitive or superior performance across all
metrics. Notably, CL-DPS maintains high reconstruction quality even at σ = 0.03, while other
methods suffer significant degradation. This highlights the robustness and generalization ability of
our contrastive-guided posterior sampling framework under blind measurement noise.
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Table 8: Nonlinear blind inverse problems at σ = 0.01. Bold and underlined values denote best and
second-best, respectively.

FFHQ (256× 256) AFHQ (256× 256)
Method Rotation Zoom Rotation Zoom

PSNR ↑ FID ↓ LPIPS ↓ PSNR ↑ FID ↓ LPIPS ↓ PSNR ↑ FID ↓ LPIPS ↓ PSNR ↑ FID ↓ LPIPS ↓
CL-DPS (SPE) 24.35 28.93 0.274 22.12 38.21 0.412 22.85 33.50 0.295 21.05 53.45 0.445

BlindDPS 17.50 310.2 0.540 17.11 260.1 0.765 14.48 185.4 0.651 12.54 250.5 0.585
FastEM 16.61 240.1 0.588 19.82 280.1 0.615 12.43 260.1 0.663 16.63 290.3 0.786

GibbsDDRM 19.51 215.1 0.552 16.51 300.24 0.781 16.34 240.4 0.611 15.63 260.19 0.534

Table 9: Nonlinear blind inverse problems at σ = 0.03. Bold and underlined values denote best and
second-best, respectively.

FFHQ (256× 256) AFHQ (256× 256)
Method Rotation Zoom Rotation Zoom

PSNR ↑ FID ↓ LPIPS ↓ PSNR ↑ FID ↓ LPIPS ↓ PSNR ↑ FID ↓ LPIPS ↓ PSNR ↑ FID ↓ LPIPS ↓
CL-DPS (SPE) 21.22 38.50 0.332 19.28 48.36 0.461 19.61 42.53 0.345 18.17 63.67 0.542

BlindDPS 16.31 365.4 0.568 15.54 320.5 0.867 12.75 215.4 0.691 11.25 290.1 0.634
FastEM 15.23 290.2 0.615 17.81 326.0 0.647 11.27 310.0 0.749 15.10 335.7 0.821

GibbsDDRM 17.57 260.0 0.584 14.52 340.3 0.820 14.53 295.8 0.661 13.70 310.12 0.561

Table 10: Linear blind inverse problems at σ = 0.01. Bold and underlined values denote best and
second-best, respectively.

FFHQ (256× 256) AFHQ (256× 256)
Method Motion Gaussian Motion Gaussian

PSNR↑ FID↓ LPIPS↓ PSNR↑ FID↓ LPIPS↓ PSNR↑ FID↓ LPIPS↓ PSNR↑ FID↓ LPIPS↓
CL-DPS (SPE) 27.49 28.54 0.142 26.21 23.84 0.325 23.57 28.99 0.185 25.27 18.34 0.216

SelfDeblur 12.82 236.1 0.732 13.31 210.4 0.667 10.73 270.4 0.743 13.44 152.54 0.642
DeblurGANv2 19.33 180.2 0.541 21.14 155.3 0.511 18.75 155.6 0.565 22.25 74.24 0.495

Pan-ℓ0 18.11 82.35 0.385 22.22 75.76 0.361 17.88 205.2 0.603 23.92 56.35 0.365
BlindDPS 22.95 26.51 0.270 25.63 24.82 0.226 21.64 22.19 0.320 24.52 18.82 0.275
FastEM 25.01 31.24 0.327 23.82 27.95 0.352 22.12 46.84 0.394 23.34 29.53 0.287

LatentDEM 24.42 34.84 0.155 25.57 31.31 0.345 21.22 41.52 0.273 22.46 35.87 0.275
GibbsDDRM 26.65 36.25 0.150 27.34 30.85 0.410 22.96 44.24 0.172 24.43 39.23 0.384

Table 11: Linear blind inverse problems at σ = 0.03. Bold and underlined values denote best and
second-best, respectively.

FFHQ (256× 256) AFHQ (256× 256)
Method Motion Gaussian Motion Gaussian

PSNR↑ FID↓ LPIPS↓ PSNR↑ FID↓ LPIPS↓ PSNR↑ FID↓ LPIPS↓ PSNR↑ FID↓ LPIPS↓
CL-DPS (SPE) 24.36 38.26 0.146 23.03 31.06 0.373 20.81 38.88 0.235 22.62 24.54 0.255

SelfDeblur 9.87 304.1 0.730 10.47 260.5 0.695 8.37 330.3 0.790 10.53 190.43 0.673
DeblurGANv2 16.94 235.5 0.600 18.36 204.3 0.555 16.83 207.1 0.625 19.45 95.64 0.545

Pan-ℓ0 14.93 260.5 0.560 19.22 115.8 0.430 14.65 255.8 0.645 20.03 75.73 0.421
BlindDPS 21.52 34.53 0.304 23.84 32.42 0.251 19.92 29.63 0.360 22.64 23.54 0.310
FastEM 23.66 42.20 0.365 22.16 37.52 0.390 20.84 62.04 0.335 22.63 40.45 0.317

LatentDEM 21.97 45.76 0.175 23.86 40.45 0.385 19.79 54.47 0.302 21.27 42.54 0.305
GibbsDDRM 24.58 46.55 0.132 25.45 41.54 0.455 21.40 55.43 0.215 22.83 51.73 0.335

M ABLATION STUDY

M.1 ABLATION ON CONTRASTIVE HYPERPARAMETERS

We study sensitivity to the InfoNCE temperature τ , the dictionary size |Y | used at guidance time, the
MoCo queue length K during pretraining, the projection head dimension d, patch size P , and stride
S.

The default parameters used in the experiments in the main body of the paper are τ = 0.07, |Y | = 256,
K = 65536, momentum m = 0.996, d = 128, P = 64 and S = 32. In the following, we perform
ablation over all these hyperparameters. Reported numbers are averaged over Rotation and Zoom on
the three benchmarks used in Table 1.

Ablation on τ , Table 12. We observe that CL-DPS is relatively robust to the temperature τ in
the range 0.05 ≤ τ ≤ 0.10. A slightly lower temperature (τ = 0.05) improves PSNR and FID on
FFHQ and AFHQ, though it slightly worsens ImageNet fidelity (FID rises by 0.5). Larger τ values
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Table 12: Sensitivity to temperature τ in the InfoNCE loss for CL-DPS (SPE) setup.

τ FFHQ AFHQ ImageNet

PSNR↑ FID↓ LPIPS↓ PSNR↑ FID↓ LPIPS↓ PSNR↑ FID↓ LPIPS↓
0.05 22.88 33.12 0.298 21.61 36.43 0.316 20.38 45.64 0.344
0.07 (default) 22.74 33.66 0.302 21.46 36.96 0.319 20.45 45.10 0.340
0.10 22.67 34.25 0.306 21.32 37.55 0.323 20.36 46.02 0.345
0.15 22.41 35.11 0.312 21.15 38.49 0.329 20.12 46.98 0.352

(τ = 0.15) consistently degrade quality across all datasets, confirming that overly smooth logits
reduce the effectiveness of the contrastive guidance signal.

Table 13: Sensitivity to dictionary size |Y | used during guidance in CL-DPS (SPE) setup (for the
denominator-aware version only).

|Y | FFHQ AFHQ ImageNet

PSNR↑ FID↓ LPIPS↓ PSNR↑ FID↓ LPIPS↓ PSNR↑ FID↓ LPIPS↓
64 22.45 35.21 0.312 21.20 38.12 0.329 20.18 46.81 0.352
256 (default) 22.74 33.66 0.302 21.46 36.96 0.319 20.05 45.10 0.340
1024 22.59 32.79 0.296 21.66 35.89 0.313 20.62 44.17 0.337

Ablation on |Y |, Table 13. Increasing the dictionary size |Y | improves all three metrics, with the
largest gain seen when moving from |Y | = 64 to |Y | = 256. Gains from |Y | = 256 to |Y | = 1024
are smaller, suggesting diminishing returns. The trend is most pronounced on ImageNet, where FID
improves by more than one point, indicating that a richer dictionary better approximates the true
likelihood gradient in high-diversity datasets.

Table 14: Sensitivity to MoCo queue length K for CL-DPS (SPE) setup.

K FFHQ AFHQ ImageNet

PSNR↑ FID↓ LPIPS↓ PSNR↑ FID↓ LPIPS↓ PSNR↑ FID↓ LPIPS↓
8192 22.53 34.84 0.308 21.28 37.85 0.325 20.26 46.24 0.347
16384 22.61 34.33 0.306 21.36 37.28 0.322 20.33 45.83 0.343
65536 (default) 22.74 33.66 0.302 21.46 36.96 0.319 20.05 45.10 0.340
131072 22.69 33.59 0.321 21.56 36.42 0.317 20.42 44.81 0.338

Ablation on K, Table 14. Queue length K plays a similar role to dictionary size by providing
harder negatives during pretraining. We observe consistent improvements as K grows, with the most
notable jump between K = 8192 and K = 65536. The improvement saturates beyond K = 65536,
where increasing to K = 131072 yields only marginal additional benefit while incurring higher
memory cost.

Ablation on d, Table 15. The projection dimension d also affects representation quality. Larger
dimensions yield modest improvements across all benchmarks, but the relative gain between d = 128
and d = 256 is small compared to the additional computation and memory footprint. Hence, d = 128
offers a good trade-off between performance and efficiency for our default configuration. We show
the visualization results in Figure 7.

Ablation on P & S, Table 16. This table demonstrates the effect of patch size P and stride
S on CL-DPS performance for both rotation and zoom blur. Reducing the stride from S=32 to
S=16 (increasing overlap) consistently improves PSNR, lowers FID, and reduces perceptual error
across all datasets, confirming that denser spatial coverage produces more stable guidance. Using a
smaller patch size (P=48) provides similar but slightly weaker gains, indicating that context loss
offsets some benefits of denser sampling. Larger patches (P=96) or no overlap (S=64) consistently
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Table 15: Sensitivity to projection head dimension d for CL-DPS (SPE) setup.
d FFHQ AFHQ ImageNet

PSNR↑ FID↓ LPIPS↓ PSNR↑ FID↓ LPIPS↓ PSNR↑ FID↓ LPIPS↓
64 22.55 34.51 0.307 21.56 37.51 0.324 20.28 45.94 0.346
128 (default) 22.74 33.66 0.302 21.46 36.96 0.319 20.45 45.10 0.340
256 22.75 33.69 0.299 21.58 36.89 0.316 20.55 45.17 0.339

Table 16: Sensitivity to patch size and stride. Default CL-DPS uses patch size P=64 and stride S=32
(50% overlap). Increasing overlap (smaller stride) consistently helps; removing overlap (S=64) hurts.
We use CL-DPS (SPE) setup.

FFHQ (256 × 256) AFHQ (256 × 256) ImageNet

Rotation PSNR↑ FID↓ LPIPS↓ PSNR↑ FID↓ LPIPS↓ PSNR↑ FID↓ LPIPS↓
CL-DPS (P=64, S=32) 22.74 33.66 0.302 21.46 36.96 0.319 20.05 45.06 0.342
CL-DPS (P=64, S=16) 23.09 32.10 0.292 21.78 35.50 0.312 20.73 43.83 0.332
CL-DPS (P=48, S=16) 22.98 32.61 0.296 21.65 35.90 0.315 20.66 44.22 0.334
CL-DPS (P=96, S=48) 22.25 35.13 0.314 21.15 38.07 0.337 20.21 46.81 0.353
CL-DPS (P=64, S=64) 21.94 36.90 0.330 20.68 40.23 0.344 19.70 49.74 0.368

FFHQ (256 × 256) AFHQ (256 × 256) ImageNet

Zoom PSNR↑ FID↓ LPIPS↓ PSNR↑ FID↓ LPIPS↓ PSNR↑ FID↓ LPIPS↓
CL-DPS (P=64, S=32) 20.68 42.61 0.435 19.63 57.54 0.468 18.56 55.30 0.481
CL-DPS (P=64, S=16) 21.12 40.21 0.422 20.15 54.34 0.451 18.95 52.90 0.466
CL-DPS (P=48, S=16) 21.05 40.80 0.424 20.02 55.03 0.458 18.86 53.80 0.472
CL-DPS (P=96, S=48) 20.32 44.56 0.444 19.34 58.67 0.482 18.35 56.80 0.498
CL-DPS (P=64, S=64) 19.78 47.30 0.462 18.72 61.51 0.496 17.71 59.93 0.506

hurt reconstruction quality, especially on ImageNet, suggesting that overly coarse or disjoint patch
coverage fails to capture sufficient local detail.

We also provide an example in Figure 6 to show how the patchification works.

In addition, in order to show that how P & S values affect the quality of the restored images, we
plot the images reconstructed by CL-DPS using different P & S values. The results are reported in
Figure 7.

M.2 ABLATION ON COLOR CONSISTENCY HEAD

We qualitatively evaluate the effect of the color consistency head on reconstruction quality. As shown
in Figure 8, the model trained without the color consistency head (Figure 8c) produces a restored
image with noticeable color shifts, particularly in the shirt region. In contrast, the model trained with
the color consistency head (Figure 8d) recovers colors faithfully, resulting in a visually consistent
reconstruction that better matches the original image. This confirms that incorporating the color
consistency head stabilizes the color distribution during training and prevents hue drift in the restored
outputs.

N QUALITATIVE RESULTS ON ZOOM DEBLURRING

Zoom blur is among the most challenging nonlinear degradations for diffusion-based inverse solvers,
often causing existing methods to produce severe artifacts or completely fail. As illustrated in
Figure 12, benchmark methods such as BlindDPS, FastEM, and GibbsDDRM struggle to recover fine
details and exhibit strong distortions. In contrast, CL-DPS reconstructs a visually coherent image
with accurate structure and color, demonstrating its robustness under extreme nonlinear conditions.
These results highlight that CL-DPS is not merely competitive but uniquely capable of handling
severe zoom blur without catastrophic failure.
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Figure 6: Example of patchified image of a resolution 256× 256, with a stride size of 64 and a patch
size of 128× 128.

(a) (b) (c)

(d) (e) (f)

Figure 7: Ablation study of different inference strategies. (a) Original image, (b) Measurement, (c)
Restored image with stride 64, patch size 32, (d) Stride 256, patch size 256, (e) Stride 64, patch size
64, (f) Stride 48, patch size 16.

O QUALITATIVE RESULTS ON LINEAR DEBLURRING TASK

Gaussian blur and motion blur are two well-studied cases in blind diffusion-based deblurring. To
demonstrate CL-DPS’s superiority on the blind linear deblurring task, we present additional visual
results and compare reconstructions against two baselines, BlindDPS (Chung et al., 2023a) and

Figure 8: Ablation study on the color consistency head. (a) Original image, (b) measurement, (c)
restoration without the color consistency head (color shift visible), (d) restoration with the color
consistency head (color faithfully preserved).
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(a) (b) (c) (d) (e) (f)

Figure 9: Qualitative results on blind zoom deblurring, a challenging nonlinear inverse problem. (a)
Ground truth image, (b) zoom-blurred measurement, and restorations from (c) BlindDPS (Chung
et al., 2023a), (d) FastEM (Laroche et al., 2024), (e) GibbsDDRM (Murata et al., 2023), and (f)
CL-DPS (ours). Competing methods fail catastrophically, whereas CL-DPS successfully reconstructs
a sharp and color-consistent image.

(a) (b) (c) (d) (e)

Figure 10: Blind Gaussian deblurring results: (a) ground-truth image, (b) Gaussian-blurred measure-
ment, and restorations using (c) BlindDPS (Chung et al., 2023a), (d) GibbsDDRM (Murata et al.,
2023), and (e) CL-DPS (ours). Visually, CL-DPS produces more natural images.

GibbsDDRM (Murata et al., 2023). Results for Gaussian blur and motion blur are shown in Figure 10
and Figure 11, respectively.
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(a) (b) (c) (d) (e)

Figure 11: Blind motion deblurring results: (a) ground-truth image, (b) motion-blurred measurement,
and restorations using (c) BlindDPS (Chung et al., 2023a), (d) GibbsDDRM (Murata et al., 2023),
and (e) CL-DPS (ours). Visually, CL-DPS produces more natural images.

...

Ground Truth

MeasurementT=1000T=800T=600T=400

T=200 T=100 T=50 T=0

Figure 12: The CL-DPS process of recovering the zoom blurred measurement.

P DENOISING PROCESS OF CL-DPS

Here, we visualize the denoising process of CL-DPS over 1000 timesteps. To this end, we select a
single image and display the reconstructed images throughout the denoising process, as illustrated in
Figure 12.
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