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Abstract

This paper advocates a new paradigm Personalized Empirical Risk Minimization
(PERM) to facilitate learning from heterogeneous data sources without imposing
stringent constraints on computational resources shared by participating devices.
In PERM, we aim to learn a distinct model for each client by learning who to learn
with and personalizing the aggregation of local empirical losses by effectively esti-
mating the statistical discrepancy among data distributions, which entails optimal
statistical accuracy for all local distributions and overcomes the data heterogeneity
issue. To learn personalized models at scale, we propose a distributed algorithm
that replaces the standard model averaging with model shuffling to simultaneously
optimize PERM objectives for all devices. This also allows us to learn distinct
model architectures (e.g., neural networks with different numbers of parameters)
for different clients, thus confining underlying memory and compute resources of
individual clients. We rigorously analyze the convergence of the proposed algo-
rithm and conduct experiments that corroborate the effectiveness of the proposed
paradigm.

1 Introduction

Recently federated learning (FL) has emerged as an alternative paradigm to centralized learning to
encourage federated model sharing and create a framework to support edge intelligence by shifting
model training and inference from data centers to potentially scattered—and perhaps self-interested—
systems where data is generated [1]. While undoubtedly being a better paradigm than centralized
learning, enabling the widespread adoption of FL necessitates foundational advances in the efficient
use of statistical and computational resources to encourage a large pool of individuals or corporations
to share their private data and resources. Specifically, due to heterogeneity of data and compute
resources among participants, it is necessary, if not imperative, to develop distributed algorithms that
are i) cognizant of statistical heterogeneity (data-awareness) by designing algorithms that effectively
deal with highly heterogeneous data distributions across devices; and ii) confined to learning models
that meet available computational resources of participant devices (system-awareness).

To mitigate the negative effect of data heterogeneity (non-IIDness), two common approaches are
clustering and personalization. The key idea behind the clustering-based methods [2, 3, 4, 5] is to
partition the devices into clusters (coalitions) of similar data distributions and then learn a single shared
model for all clients within each cluster. While appealing, the partitioning methods are limited to
heuristic ideas such as clustering based on the geographical distribution of devices without taking the
actual data distributions into account and lack theoretical guarantees or postulate strong assumptions
on initial models or data distributions [4, 5]. In personalization-based methods [6, 7, 8, 2, 9, 10, 11],
the idea is to learn a distinct personalized model for each device alongside the global model, which
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can be unified as minimizing a bi-level optimization problem [12]. Personalization aims to learn a
model that has the generalization capabilities of the global model but can also perform well on the
specific data distribution of each participant suffers from a few key limitations. First, as the number
of clients grows, while the number of training data increases, the number of parameters to be learned
increases which limits to increase in the number of clients beyond a certain point to balance data and
overall model complexity tradeoff– a phenomenon known as incidental parameters problem [13].
Moreover, since the knowledge transfer among data sources happens through a single global model,
it might lead to suboptimal results. To see this, consider an extreme example, where half of the
users have identical data distributions, say D, while the other half share a data distribution that is
substantially different, say −D (e.g. two distributions with same marginal distribution on features but
opposite labeling functions). In this case, the global model obtained by naively aggregating local
models (e.g., fixed mixture weights) converges to a solution that suffers from low test accuracy on all
local distributions which makes it preferable to learn a model for each client solely based on its local
data or carefully chosen subset of data sources.

Focusing on system heterogeneity, most existing works require learning models of identical ar-
chitecture to be deployed across the clients and server (model-homogeneity) [14, 15], and mostly
focus on reducing number [15] or size [16, 17, 18] of communications or sampling handling chaotic
availability of clients [19, 20]. The requirement of the same model makes it infeasible to train large
models due to system heterogeneity where client devices have drastically different computational
resources. A few recent studies aim to overcome this issue either by leveraging knowledge dis-
tillation methods [21, 22, 23, 24] or partial training (PT) strategies via model subsampling (either
static [25, 26], random [27], or rolling [28]). However, KD-based methods require having access
to a public representative dataset of all local datasets at server and ignore data heterogeneity in the
distillation stage to a large extent. The focus of PT training methods is mostly on learning a single
server model using heterogeneous resources of devices and does not aim at deploying a model onto
each client after the global server model is trained (which is left as a future direction in [28]). The
aforementioned issues lead to a fundamental question: “What is the best strategy to learn from
heterogeneous data sources to achieve optimal accuracy w.r.t. each data source, without imposing
stringent constraints on computational resources shared by participating devices?”.

We answer this question affirmatively, by proposing a new data&system-aware paradigm dubbed
Personalized Empirical Risk Minimization (PERM), to facilitate learning from massively fragmented
private data under resource constraints. Motivated by generalization bounds in multiple source domain
adaptation [29, 30, 31, 32], in PERM we aim to learn a distinct model for each client by personalizing
the aggregation of empirical losses of different data sources which enables each client to learn who to
learn with using an effective method to empirically estimate the statistical discrepancy between their
associated data distributions. We argue that PERM entails optimal statistical accuracy for all local
distributions, thus overcoming the data heterogeneity issue. PERM can also be employed in other
learning settings with multiple heterogeneous sources of data such as domain adaptation and multi-
task learning to entail optimal statistical accuracy. While PERM overcomes the data heterogeneity
issue, the number of optimization problems (i.e., distinct personalized ERMs) to be solved scales
linearly with the number of data sources. To simultaneously optimize all objectives in a scalable and
computationally efficient manner, we propose a novel idea that replaces the standard model averaging
in distributed learning with model shuffling and establish its convergence rate. This also allows us
to learn distinct model architectures (e.g., neural networks with different number of parameters) for
different clients, thus confining to underlying memory and compute resources of individual clients,
and overcoming the system heterogeneity issue. This addresses an open question in [28] where only a
single global model can be trained in a model-heterogeneous setting, while PERM allows deploying
distinct models for different clients. We empirically evaluate the performance of PERM, which
corroborates the statistical benefits of PERM in comparison to existing methods.

2 Personalized Empirical Risk Minimization

In this section, we formally state the problem and introduce PERM as an ideal paradigm for learning
from heterogeneous data sources. We assume there are N distributed devices where each holds
a distinct data shard Si = {(xi,j , yi,j)}ni

j=1 with ni training samples that are realized by a local
source distribution Di over instance space Ξ = X × Y . The data distributions across the devices
are not independently and identically distributed (non-IID or heterogeneous), i.e., D1 ̸= D2 ̸=
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. . . ̸= DN , and each distribution corresponds to a local generalization error or true risk Li(h) =
E(x,y)∼Di

[ℓ(h(x), y)], i = 1, 2, . . . , N on unseen samples for any model h ∈ H, where H is the
hypothesis set (e.g., a linear model or a deep neural network) and ℓ : Y × Y → R+ is a given convex
or non-convex loss function. We use L̂i(h) = (1/ni)

∑
(x,y)∈Si

ℓ (h(x), y)) to denote the local
empirical risk or training loss at ith data shard Si with ni samples.

We seek to collaboratively learn a model or personalized models that entail a good generalization
on all local distributions, i.e. minimizing true risk Li(·), i = 1, . . . , N for all data sources (all-for-
all [33]). A simple non-personalized solution, particularly in FL, aims to minimize a (weighted)
empirical risk over all data shards in a communication-efficient manner [34]:

argminh∈H
∑N

i=1
p(i)L̂i(h) with p ∈ ∆N , (WERM)

where ∆N = {p ∈ RN
+ |

∑N
i=1 p(i) = 1} denotes the simplex set.

It has been shown that a single model learned by WERM, for example by using fixed mixing
weights p(i) = ni/n, where n is total number of training samples, or even agnostic to mixture of
distributions [35, 36], while yielding a good performance on the combined datasets of all devices,
can suffer from a poor generalization error on individual datasets by increasing the diversity among
distributions [37, 38, 39, 40]. To overcome this issue, there has been a surge of interest in developing
methods that personalize the global model to individual local distributions. These methods can be
unified as the following bi-level problem (a similar unification has been made in [12]):

argminh1,h2,...,hm∈H F̂ i(hi⊕h∗) subject to h∗ = argminh∈H
∑N

j=1
α(j)L̂j(h) (BERM)

where ⊕ denotes the mixing operation to combine local and global models, and F̂i is a modified
local loss which is not necessarily same as local risk L̂i. By carefully designing the local loss F̂i and
mixing operation ⊕, we can develop different penalization schemes for FL including existing methods
such as linearly interpolating global and local models [11, 2], multi-task learning [10] and meta-
learning [9] as special cases. For example, BERM reduces to zero-personalization objective WERM
when hi⊕h∗ = h∗, and F̂i = L̂i. At the other end of the spectrum lies the zero-collaboration where
the ith client trains its own model without any influence from other clients by setting hi⊕h∗ = hi,
F̂i = L̂i. The personalized model with interpolation of global and local models can be recovered by
setting hi⊕h∗ = αhi + (1− α)h∗, and F̂i = L̂i. While more effective than a single global model
learned via WERM, personalization methods suffer from three key issues: i) the global model is
still obtained by minimizing the average empirical loss which might limit the statistical benefits of
collaboration, ii) overall model complexity increases linearly with number of clients, and iii) a same
model space is shared across servers and clients.

To motivate our proposal, let us consider the empirical loss
∑N

i=1 α(i)L̂i(h) in WERM (or the inner
level objective in BERM) with fixed mixing weights α ∈ ∆N , and denote the optimal solution by ĥα.
The excess risk of the learned model ĥα on ith local distribution Di w.r.t. the optimal local model
h∗
i = argminh∈H LDi

(h) (i.e. all-for-one) can be bounded by (informal) [31]

Li

(
ĥα

)
≤ Li (h

∗
i ) +

N∑
j=1

α(j)Rj(H) + 2

N∑
j=1

α(j)discH (Dj ,Di) + C

√√√√ N∑
j=1

α(j)2

nj

(GEN)

where Rj(H) is the empirical Rademacher complexity H w.r.t. Sj , and discH(Di,Dj) is a pseudo-
distance on the set of probability measures on Ξ to assess the discrepancy between the distributions
Di and Dj with respect to the hypothesis class H as defined below [29]:

Definition 1. For a model space H and D,D′ two probability distributions on Ξ = X × Y ,

discH (D,D′) = sup
h∈H

|Eξ∼D(ℓ(h, ξ))− Eξ′∼D′(ℓ(h, ξ′))|

Intuitively, the discrepancy between the two distributions is large, if there exists a predictor that
performs well on one of them and badly on the other. On the other hand, if all functions in the
hypothesis class perform similarly on both, then D and D′ have low discrepancy. The above metric
which is a special case of a popular family of distance measures in probability theory and mathematical
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statistics known as integral probability metrics (IPMs) [41], can be estimated from finite data by
replacing the expected losses with their empirical counterparts (i.e. Li with L̂i).

From GEN, it can be observed that a mismatch between pairs of distributions limits the benefits of
ERM on all distributions. Indeed, the generalization risk w.r.t. Di will significantly increase when the
distribution divergence terms discH(Dj ,Di) are large. It leads to an ideal sample complexity 1/

√
n

where n = n1+n2+ . . .+nN is the total number of samples, which could have been obtained in the
IID setting with α(j) = 1/N when the divergence is small as the pairwise discrepancies disappear.
Also, we note that even if the global model achieves a small training error over the union of all data
(e.g., over parametrized setting) and can entail a good generalization error with respect to average
distribution, the divergence term still remains which illustrates the poor performance of the global
model on all local distributions Di, i = 1, 2, . . . , N . This implies that even personalization of the
global model as in BERM can not entail a good generalization on all local distributions as there is no
effective transfer of positive knowledge among data sources in the presence of high data heterogeneity
among local distributions (similar impossibility results even under seemingly generous assumptions
on how distributions relate have been made in multisource domain adaptation as well [42]).

Interestingly the bound suggests that seeking optimal accuracy on all local distributions requires
choosing a distinct mixing of local losses for each client i that minimizes the right-hand side of GEN.
This indicates that in an ideal setting (i.e. all-for-all), we can achieve the best accuracy for each
local distribution Di by personalizing the WERM, i.e., (i) first estimating αi, i = 1, 2, . . . , N for
each client individually, then (ii) solving a variant of WERM for each client with obtained mixing
parameters:

arg min
h∈Hi

∑N

j=1
αi(j)L̂j(h) for i = 1, 2, . . . , N. (PERM)

By doing this each device achieves the optimal local generalization error by learning who to learn
with based on the number of samples at each source and the mismatch between its data distribution
with other clients. We also note that compared to WERM and BERM, in PERM since we solve
a different aggregated empirical loss for each client, we can pick a different model space/model
architecture Hi for each client to meet its available computational resources.

While this two-stage method is guaranteed to entail optimal test accuracy for all local distributions
Di, however, making it scalable requires overcoming two issues. First, estimating the statistical
discrepancies between each pair of data sources (i.e., αi, i = 1, . . . , N ) is a computing burden as it
requires solving O(N2) difference of (non)-convex functions in a distributed manner and requires
enough samples form each source to entail good accuracy on estimating pairwise discrepancies [41].
Second, we need to solve N variants of the optimization problem in PERM, possibly each with a
different model space, which is infeasible when the number of devices is huge (e.g., cross-device
federated learning). In the next section, we propose a simple yet effective idea to overcome these
issues in a computationally efficient manner.

3 PERM at Scale via Model Shuffling

In this section, we propose a method to efficiently estimate the empirical discrepancies among data
sources followed by a model shuffling idea to simultaneously solve N versions of PERM to learn a
personalized model for each client. We first start by proposing a two-stage algorithm: estimating
mixing parameters followed by model shuffling. Then, we propose a single loop unified algorithm
that enjoys the same computation and communication overhead as BERM (twice communication
of FedAvg). For ease of exposition, we discuss the proposed algorithms by assuming all the clients
share the same model architecture and later on discuss the generalization to heterogeneous model
spaces. Specifically, we assume that the model space H is a parameterized by a convex set W ⊆ Rd

and use fi(w) := L̂i(w) =
∑

(x,y)∈Si
ℓ(w; (x, y)) to denote the empirical loss at ith data shard.

3.1 Warmup: a two-stage algorithm
We start by proposing a two-stage method for solving N variants of PERM in parallel. In the first
stage, we propose an efficient method to learn the mixing parameters for all clients. Then, in stage
two, we propose a model shuffling method to solve all personalized empirical losses in parallel.

Stage 1: Mixing parameters estimation. In the first stage we aim to efficiently estimate the pairwise
discrepancy among local distributions to construct mixing parameters αi, i = 1, 2, . . . N . From
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generalization bound GEN and Definition 1, a direct solution to estimate αi is to solve the following
convex-nonconcave minimax problem for each client:

α∗
i = arg min

α∈∆N

∑N

j=1
α(j) max

w∈W
|fi(w)− fj(w)|+

∑N

j=1
α(j)2/nj (1)

where we estimate the true risks in pairwise discrepancy terms with their empirical counterparts and
drop the complexity term as it becomes identical for all sources by fixing the hypothesis space H and
bounding it with a computable distribution-independent quantity such as VC dimension [43], or it can
be controlled by choice of H or through data-dependent regularization. However, solving the above
minimax problem itself is already challenging: the inner maximization loop is a nonconcave (or
difference of convex) problem, so most of the existing minimax algorithms will fail on this problem.
To our best knowledge, the only provable deterministic algorithm is [44], and it is hard to generalize
it to stochastic and distributed fashion. Moreover, since we have N clients, we need to solve N
variants of (1), which makes designing a scalable algorithm even harder.

To overcome aforementioned issues, we make two relaxations to estimate the per client mixing
parameters. First, we optimize an upper bound of pairwise empirical discrepancies supw |fi(w)−
fj(w)| in terms of gradient dissimilarity between local objectives ∥∇fi(w)−∇fj(w)∥ [45], which
quantifies how different the local empirical losses are and widely used in analysis of learning
from heterogeneous losses as in FL [46]. Second, given that the discrepancy measure based on
the supremum could be excessively pessimistic in real-world scenarios, and drawing inspiration
from the concept of average drift at the optimal point as a right metric to measure the effect of
data heterogeneity in federated learning [47], we propose to measure discrepancy at the optimal
solution obtained by solving WERM, i.e., w∗ := argminw∈W(1/N)

∑N
i=1 fi(w). By doing this,

the problem reduces to a simple minimization for each client, given the optimal global solution.
These two relaxations lead to solving the following tractable optimization problem to decide the
per-client mixing parameters:

arg min
α∈∆N

gi(w
∗,α) :=

∑N

j=1
α(j)∥∇fi(w

∗)−∇fj(w
∗)∥2 + λ

∑N

j=1
α(j)2/nj (2)

where we added a regularization parameter λ and used the squared of gradient dissimilarity for
computational convenience. Thus, obtaining all N mixing parameters requires solving a single
ERM to obtain optimal global solution and N variants of (2). To get the optimal solution in a
communication-reduced manner, we adapt the Local SGD algorithm [48] (or FedAvg [14]) and find
the optimal solution in intermittent communication setting [49] where the clients work in parallel and
are allowed to make K stochastic updates between two communication rounds for R consecutive
rounds. The detailed steps are given in Algorithm A1 in Appendix B for completeness. After
obtaining the global model wR we optimize over α in gi(w

R,α) using Tα iterations of GD to
get α̂i. Actually, we will show that as long as wR converge to w∗, α̂i, i = 1, . . . , N converges to
solution of (2) very fast. Our proof idea is based on the following Lipschitzness observation:

∥∥α∗
gi(w

R)−α∗
gi(w

∗)
∥∥2 ≤ 4L2κ2

g

N∑
j=1

(
2 ∥∇fi(w

∗)−∇fj(w
∗)∥2 + 4L2

∥∥wR −w∗∥∥2)∥∥wR −w∗∥∥2
where α∗

gi(w) := argminα∈∆N
gi(w,α) and κg := nmax/(2λ) is the condition number of gi(w, ·)

where nmax = maxi∈[N ] ni. The Lipschitz constant mainly depends on gradient dissimilarity at
optimum. As wR tends to w∗, the α∗

gi(·) becomes more Lipschitz continuous, i.e., the coefficient in

front of
∥∥wR −w∗

∥∥2 getting smaller, thus leading to more accurate mixing parameters.

To establish the convergence, we make the following standard assumptions.
Assumption 1 (Smoothness and strong convexity). We assume fi(x)’s are L-smooth and µ-
strongly convex, i.e.,

∀x,y : ∥∇fi(x)−∇fi(y)∥ ≤ L∥x− y∥.

∀x,y : fi(y) ≥ fi(x) + ⟨∇fi(x),y − x⟩+ 1

2
µ∥y − x∥2

We denote the condition number by κ = L/µ.
Assumption 2 (Bounded variance). The variance of stochastic gradients computed at each local
function is bounded, i.e., ∀i ∈ [N ],∀w ∈ W,E[∥∇fi(w; ξ)−∇fi(w)∥2] ≤ δ2.
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Assumption 3 (Bounded domain). The domain W ⊂ Rd is a bounded convex set, with diameter D
under ℓ2 metric, i.e., ∀w,w′ ∈ W, ∥w −w′∥ ≤ D.
Definition 2 (Gradient dissimilarity). We define the following quantities to measure the gradient
dissimilarity among local functions:

ζi,j(w) := ∥∇fi(w)−∇fj(w)∥2 , ζ̄i(w) :=
1

N

N∑
j=1

ζi,j(w),

ζ := supw∈W maxi∈[N ] ∥∇fi(w)− (1/N)
∑N

j=1
∇fj(w)∥2.

The following theorem gives the convergence rate of estimated discrepancies to optimal counterparts.

Theorem 1. Under Assumptions 1-3, if we run Algorithm A1 on F (w) := 1
N

∑N
j=1 fj(w) with

γ = Θ
(

log(RK)
µRK

)
for R rounds with synchronization gap K, for κg = 1/(λnmin), it holds that

E∥αR
i −α∗

i ∥2 ≤ Õ

(
exp

(
−Tα

κg

)
+ κ2

g ζ̄i(w
∗)L2

(
D2

RK
+

κζ2

µ2R2
+

δ2

µ2NRK

))
∀i ∈ [N ].

An immediate implication of Theorem 1 is that even we solve (2) at wR, the algorithm will eventually
converge to optimal solution of (2) at w∗. The core technique in the proof, as we mentioned, is to
show that for a parameter within a small region centered at w∗, the function α∗

gi(w) becomes ‘more
Lipschitz’. The rigorous characterization of this property is captured by Lemma 3 in appendix.

Stage 2: Scalable personalized optimization with model shuffling. After obtaining the per client
mixing parameters, in the second stage we aim at solving N different personalized variants of PERM
denoted by Φ(α̂1,v),Φ(α̂2,v), . . .Φ(α̂N ,v) to learn local models where

min
v∈W

Φ(α̂i,v) :=
1

N

∑N

j=1
α̂i(j)fj(v). (3)

Here we devise an iterative algorithm based on distributed SGD with periodic averaging (a.k.a.
Local SGD [48]) to solve these N optimization problems in parallel with no extra overhead. The
idea is to replace the model averaging in vanilla distributed (Local) SGD with model shuffling.
Specifically, as shown in Algorithm 1 the algorithm proceeds for R epochs where each epoch runs
for N communication rounds. At the beginning of each epoch r the server generates a random
permutation σr over N clients. At each communication round j within the epoch, the server sends
the model of client i to client ij = (i+ j) mod N in the permutation σr along with αi(ij). After
receiving a model from the server, the client updates the received model for K local steps and returns
it back to the server. As it can be seen, the updates of each loss Φ(α̂i,v), i = 1, 2, . . . , N during
an epoch is equivalent to sequentially processing individual losses in (3) which can be considered
as permutation-based SGD but with the different that each component now is updated for K steps.
By interleaving the permutations, we are able to simultaneously optimize all N objectives. We
note that the computation and communication complexity of the proposed algorithm is the same
as Local SGD with two differences: the model averaging is replaced with model shuffling, and the
algorithms run over a permutation of devices. The convergence rate of Local SGD is well-established
in literature [50, 51, 52, 53, 54], but here we establish the convergence of permutation-based variant
which is interesting by its own.
Assumption 4 (Bounded Gradient). The variance of stochastic gradients computed at each local
function is bounded, i.e., ∀i ∈ [N ], supv∈W ∥∇fi(v)∥ ≤ G.

We note that the Assumption 4 can be realized since we work with a bounded domain W .
Theorem 2. Let Assumptions 1- 4 hold. Assume α∗

i is the solution of (2). Then if we run Algorithm 1

on the α̂i obtained from Algorithm A1, then Algorithm 1 with η = Θ
(

log(NKR3)
µR

)
will output the

solution v̂i, ∀i ∈ [N ], such that with probability at least 1− p, the following statement holds:

E[Φ(α∗
i , v̂i)− Φ(α∗

i ,v
∗(α∗

i ))] ≤ Õ

(
D2L

NKR2

)
+

Lδ2

µ2R
+

(
L4 +N

µ4R2

)
LG2N log(1/p)

+ κ2
ΦLÕ

(
exp

(
−Tα

κg

)
+ κ2

g ζ̄i(w
∗)L2

(
κζ2

µ2R2
+

δ2

µ2NRK

))
,
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Algorithm 1: Shuffling Local SGD
Input: Clients 1, ..., N , Number of Local Steps K , Number of Epoch R, mixing parameter
α̂1, ..., α̂N

Epoch for r = 0, ..., R− 1 do
Server generates permutation σr : [N ] 7→ [N ].
parallel for i = 1, ..., N do

Client i sets initial model vr,0
i = vr

i .
for j = 1, ..., N do

Set indices ij = σr((i+ j) mod N).
Server sends vr,j

i to Client ij .
vr,j+1
i = SGD-Update(vr,j

i , η, ij ,K, α̂i).
Client i does projection: vr+1

i = PW(vr,N
i ).

Output: v̂i = PW(vR
i − (1/L)∇vΦ(α̂i,v

R
i )),∀i ∈ [N ].

SGD-Update(v, η, j,K,α)
Initialize v0 = v
for t = 0, ...,K − 1 do

vt = vt−1 − ηα(j)N∇fj(v
t−1; ξt−1

j )

Output: vK

where κ = L
µ , κg = nmax

2λ and κΦ =
√
NG
µ , and the expectation is taken over randomness

of Algorithm A1. That is, to guarantee E[Φ(α∗
i , v̂i) − Φ(α∗

i ,v
∗
i )] ≤ ϵ, we choose R =

O
(
max

{
Lδ2

µϵ ,
κ2
Φκ2

gL
3ζ̄i(w

∗)D2

ϵ

})
and Tα = O

(
κg log

(
Lκ2

Φ

ϵ

))
.

The above theorem shows that even though we run the optimization on Φ(α̂i,v), our obtained
model v̂i will still converge to the optimal solution of Φ(α∗

i ,v). The convergence rate is contributed
from two parts: convergence of α̂i (Algorithm A1) and convergence of personalized model v̂i

(Algorithm 1). Notice that, for the convergence rate of v̂i, we roughly recover the optimal rate of
shuffling SGD [55], which is O(1/R2). However, we suffer from a O(δ2/R) term since each client
runs vanilla SGD on their local data (the SGD-Update procedure in Algorithm 1). One medication for
this variance term could be deploying variance reduction or shuffling data locally at each client before
applying SGD. We notice that there is a recent work [56] also considering the client-level shuffling
idea, but our work differs from it in two aspects: 1) they work with local SGD type algorithm and the
shuffling idea is employed for model averaging within a subset of clients, while in our algorithm,
during each local update period, each client runs shuffling SGD directly on other’s model 2) from a
theoretical perspective, we are mostly interested in investigating whether the algorithm can converge
to the true optimal solution of Φ(α∗

i ,v) if we only optimize on a surrogate function Φ(α̂i,v).

One drawback of Algorithm 1 is that we have to wait for Algorithm A1 to finish and output α̂i, so
that we can proceed with Algorithm 1. However, if we are not satisfied with the precision of α̂i, we
may not have a chance to go back to refine it. Hence in the next subsection, we propose to interleave
Algorithm 1 and Algorithm A1, and introduce a single-loop variant of PERM which will jointly
optimize mixture weights and learn personalized models in an interleaving fashion.

3.2 A unified single loop algorithm
We now turn to introducing a single-stage algorithm that jointly optimizes αis and vis as depicted
in Algorithm 2 by intertwining the two stages in Algorithm A1 and Algorithm 1 in a single unified
method. The idea is to learn the global model, which is used to estimate mixing parameters, concurrent
to personalized models. At each communication round, the clients compute gradients on the global
model, on their data, after the server collects these gradients does a step mini-batch SGD update
on the global model, and then updates the mixing parameters. Then we proceed to update the
personalized models similar to Algorithm 1. We note that, unlike the two-stage method where the
mixing parameters are computed at the final global model, here the mixing parameters are updated
adaptively based on intermediate global models.

Theorem 3. Let Assumptions 1 to 4 to be satisfied. Assume α∗
i is the solution of (2). Then if we

run Algorithm 2 with η = Θ
(

log(NKR3)
µR

)
and γ = Θ

(
log(NKR3)

µR

)
, it will output the solution v̂i,
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Algorithm 2: Single Loop PERM
Input: Clients 1, ..., N , Number of Local Steps K , Number of Epoch R, Initial mixing
parameter α0

1 =, ...,α0
N = ᾱ = [1/N, ..., 1/N ].

Epoch for r = 0, ..., R− 1 do
Server generates permutation σr : [N ] 7→ [N ].
parallel for Client i = 1, ..., N do

Client i sets initial model vr,0
i = vr

i .
for j = 1, ..., N do

Set indices ij = σr((i+ j) mod N).
Server sends vr,j

i to client ij .
vr,j+1
i = SGD-Update(vr,j

i , η, ij ,K,αr
i ). // Personalized model update

Client i does projection: vr+1
i = PW(vr,N

i ).

wr+1 = PW(wr − γ 1
N

∑N
i=1

1
M

∑M
j=1 ∇fi(w

r, ξri,j)) // Global model update

Compute αr+1
i by running Tα steps GD on gi(w

r+1,α) // α update

Output: v̂i = PW(vR
i − (1/L)∇vΦ(α

R
i ,v

R
i )), α̂i = αR

i ,∀i ∈ [N ].
SGD-Update(v, η, j,K,α)

Initialize v0
j = v

for t = 0, ...,K − 1 do
vt = vt−1 − ηα(j)N∇fj(v

t−1
j ; ξt−1

j )

Output: vK

∀i ∈ [N ], such that with probability at least 1− p, the following statement holds:

E[Φ(α∗
i , v̂i)− Φ(α∗

i ,v
∗
i )] ≤ O

(
LD2

NKR3

)
+ Õ

((
κ4L

R2
+

NL

µ2R2

)
G2N log(1/p) +

Lδ2

µR

)
+ κ2

ΦLÕ

(
κ2κ2

gL
2ζ̄i(w

∗)DG

R
+R2 exp

(
−Tα

κg

)
+

Lκ2κ2
g ζ̄i(w

∗)δ2

µ2M

)
,

where κ = L
µ , κg = nmax

2λ , κΦ =
√
NG
µ and the expectation is taken over the randomness of stochastic

samples in Algorithm 2. That is, to guarantee E[Φ(α∗
i , v̂i) − Φ(α∗

i ,v
∗
i )] ≤ ϵ, we choose M =

O
(

L2κ2κ2
gκ

2
Φζ̄i(w

∗)δ2

µ2ϵ

)
, R = O

(
max

{
Lδ2

µϵ ,
κ2
Φκ2κ2

gL
3ζ̄i(w

∗)DG

ϵ

})
and Tα = O

(
κg log

(
LR2

ϵ

))
.

Compared to Theorem 2, we achieve a slightly worse rate, since we need a large mini-batch when
we update global model w. However, the advantages of the single-loop algorithm are two-fold.
First, as we mentioned in the previous subsection, we have the freedom to optimize α̂i to arbitrary
accuracy, while in double loop algorithm (Algorithm A1 + Algorithm 1), once we get α̂i, we do not
have the chance to further refine it. Second, in practice, a single-loop algorithm is often easier to
implement and can make better use of caches by operating on data sequentially, leading to improved
performance, especially on modern processors with complex memory hierarchies.

3.3 Extension to heterogeneous model setting

In the homogeneous model setting, we assumed a shared model space W for clients and the server.
However, in real-world FL applications, devices have diverse resources and can only train models
that match their capacities. We demonstrate that the PERM paradigm can be extended to support
learning in model-heterogeneous settings, where different models with varying capacities are used by
the server and clients. Focusing on learning the global optimal model to estimate pairwise statistical
discrepancies, we note that by utilizing partial training methods [28], where at each communication
round a sub-model with a size proportional to resources of each client is sampled from the server’s
global model (extracted either random, static, or rolling) and is transmitted to be updated locally.
Upon receiving updated sub-models, the server can simply aggregate (average) heterogeneous sub-
model updates sent from the clients to update the global model. We can consider the complexity of
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Figure 1: Comparative analysis of personalization methods, including our single-loop PERM algo-
rithm, localized FedAvg, perFedAvg, and pFedME, with synthetic data. The disparity in personalized
accuracy and loss highlights PERM’s capability to leverage relevant client correlations.

models used by clients when estimating mixing parameters by solving a modified version of (2) as:
N∑
j=1

α(j)
√

VC(Hj)/nj +

N∑
j=1

α(j)∥∇fi(mi ⊙w∗)−∇fj(mj ⊙w∗)∥2 + λ

N∑
j=1

α(j)2/nj ,

where we simply upper bounded the Rademacher complexity w.r.t. each data source in (GEN) with
VC dimension [57]. Here mi is the masking operator to extract a sub-model of the global model
to compute local gradients at client i based on its available resources. By doing so, we can adjust
mixing parameters based on the complexity of underlying models, as different sub-models of the
global model (i.e., mi ⊙w∗ versus mj ⊙w∗) are used to compute drift between pair of gradients at
the optimal solution. With regards to training personalized models with heterogeneous local models,
as we solve a distinct aggregated empirical loss for each client by interleaving permutations and
shuffling models, we can utilize different model spaces Wi, i = 1, . . . , N for different clients that
meet their available resources with aforementioned partial training strategies.

4 Experimental Results

In this section we benchmark the effectiveness of PERM on synthetic data with 50 clients, where it
notably outshone other renowned methods as evident in Figure 1. Our experiments concluded with the
CIFAR10 dataset, employing a 2-layer convolutional neural network, where PERM, despite a warm-
up phase, demonstrated unmatched convergence performance (Figure 2). Additional experiments
are reported in the appendix. Across all datasets, the PERM algorithm consistently showcased its
robustness and unmatched efficiency in the realm of personalized federated learning.

Experiment on synthetic data. To demonstrate the superior effectiveness of our proposed single-loop
PERM algorithm compared to other existing personalization methods, we conducted an experiment
using synthetic data generated according to the following specifications. We consider a scenario
with a total of N clients, where we draw samples from the distribution N (µ1,Σi) for half of
the clients, denoted by i ∈ [1, N

2 ], and from N (µ2,Σi) for the remaining clients, denoted by
i ∈ (N2 , N ]. Following the approach outlined in [58], we adopt a uniform variance for all samples,
with Σk,k = k−1.2. Subsequently, we generate a labeling model using the distribution N (µw,Σw).

Given a data sample x ∈ Rd, the labels are generated as follows: clients 1, ..., N
2 assign labels based

on y = sign(w⊤x), while clients N
2 + 1, ..., N assign labels based on y = sign(−w⊤x). For this

specific experiment, we set µ1 = 0.2, µ2 = −0.2, and µw = 0.1. The data dimension is d = 60, and
there are 2 classes in the output. We have a total of 50 clients, each generating 500 samples following
the aforementioned guidelines. We train a logistic regression model on each client’s data.

To demonstrate the superiority of our PERM algorithm, we conducted a performance comparison
against other prominent personalized approaches, including the fined-tuned model of FedAvg [14]
(referred to as localized FedAvg), perFedAg [9], and pFedME [7]. The results in Figure 1 highlight
PERM’s efficient learning of personalized models for individual clients. In contrast, competing
methods relying on globally trained models struggle to match PERM’s effectiveness in highly
heterogeneous scenarios, as seen in personalized accuracy and loss. This showcases PERM’s
exceptional ability to leverage relevant client learning.
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Figure 2: Comparative analysis of our single-loop PERM algorithm, localized FedAvg, PFedMe, and
perFedAg, on CIFAR10 dataset and a 2-layer CNN model. Each client has access to only 2 classes of
data. PERM rapidly catches up after 10 rounds of warmup without personalization involved.

Figure 3: Runtime of different algorithms in a
limited environment. We compare PERM (single
loop), PerFedAvg, FedAvg, and pFedMe. PERM
has a minimal overhead over FedAvg and is com-
parable to other personalization methods.

Experiment on CIFAR10 dataset. We extend
our experimentation to the CIFAR10 dataset us-
ing a 2-layer convolutional neural network. Dur-
ing this test, 50 clients participate, each limited
to data from just 2 classes, resulting in a pro-
nounced heterogeneous data distribution. We
benchmark our algorithm against PerFedAvg,
PFedMe, and the localized FedAvg. As illus-
trated in Figure 2, PERM demonstrates supe-
rior convergence performance compared to other
personalized strategies. It’s noteworthy that
PERM’s initial personalized validation is signif-
icantly lower than that of approaches like PerFe-
dAvg and PFedMe. This discrepancy stems
from our choice to implement 10 communica-
tion rounds as a warm-up phase before initiating personalization, whereas other models embark on
personalization right from the outset.

Computational overhead. In demonstrating the computational efficiency of the proposed PERM
algorithm, we present a comparison of wall-clock time of completing one round of communication
of PERM and other methods. Each method undertakes 20 local steps along with their distinct
computations for personalization. As depicted in Figure 3, the PERM (single loop) algorithm’s
runtime is compared against personalization methods such as PerFedAvg, FedAvg, and pFedMe.
Remarkably, PERM maintains a notably minimal computational overhead. The run-time is slightly
worse due to overhead of estimating mixing parameters.

5 Discussion & Conclusion
This paper introduces a new data&system-aware paradigm for learning from multiple heterogeneous
data sources to achieve optimal statistical accuracy across all data distributions without imposing
stringent constraints on computational resources shared by participating devices. The proposed PERM
schema, though simple, provides an efficient solution to enable each client to learn a personalized
model by learning who to learn with via personalizing the aggregation of data sources through an
efficient empirical statistical discrepancy estimation module. To efficiently solve all aggregated
personalized losses, we propose a model shuffling idea to optimize all losses in parallel. PERM can
also be employed in other learning settings with multiple sources of data such as domain adaptation
and multi-task learning to entail optimal statistical accuracy.

We would like to embark on the scalability of PERM. The compute burden on clients and servers is
roughly the same as existing methods thanks to shuffling (except for extra overhead due to estimating
mixing parameters which is the same as running FedAvg in a two-stage approach and an extra
communication in an interleaved approach). The only hurdle would be the required memory at server
to maintain mixing parameters, which scales proportionally to the square of the number of clients,
which can be alleviated by clustering devices which we leave as a future work.
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A Additional Experiments

In addition to experiments on synthetic and CIFAR10 datasets reported before, we have also conducted
experiments on the EMNIST dataset, highlighting PERM’s capability to derive superior personalized
models by tapping into inter-client data similarities. Additionally, further insights emerged from our
tests on the MNIST dataset, revealing how PERM’s learned mixture weights adeptly respond to both
homogeneous and highly heterogeneous data scenarios.

Experiment on EMNIST dataset In addition to the synthetic and CIFAR10 datasets discussed in
the main body, we run experiments on the EMNIST dataset [59], which is naturally distributed in
a federated setting. In this case, we chose 50 clients and use a 2-layer MLP model, each with 200
neurons. We compare the PERM algorithm with the localized model in FedAvg and perFedAvg [9].
As it can be seen in Figure 4, PERM can learn a better personalized model by attending to each
client’s data according to the similarity of the data distribution between clients. The learned values
of α, in Figure 5, show that the clients are learning from each others’ data, and not focused on
their own data only. This signifies that the distribution of data among clients in this dataset is not
highly heterogeneous. Note that, since we are using a subset of clients in the EMNIST dataset for
the training (only 50 clients for 100 rounds of communication), the results would be sub-optimal.
Nonetheless, the experiments are designed to show the effectiveness of different algorithms. As it can
be concluded, in terms of performance, PERM consistently excels beyond its peers, demonstrating
exemplary results on various benchmark datasets.
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Figure 4: Comparative Analysis of Personalization methods, including our single-loop PERM
algorithm, localized FedAvg, and perFedAg, with EMNIST dataset. The disparity in personalized
accuracy and loss highlights PERM’s capability in leveraging relevant client correlations.
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The effectiveness of learned mixture weights To show the effectiveness of the two-stage PERM
algorithm, as well as the effects of heterogeneity on the distribution of data among clients on the
learned weights α in the algorithm, we run this algorithm on MNIST dataset. We use 50 clients,
and the model is an MLP, similar to the EMNIST experiment. In this case, we consider two cases:
distributing the data randomly across clients (homogeneous) and only allocating 1 class per client
(highly heterogeneous). As it can be seen from Figure 6, when the data distribution is homogeneous
the learned values of α as diffused across clients. However, when the data is highly heterogeneous,
the learned α values will be highly sparse, indicating that each client is mostly learning from its own
data and some other clients with partial distribution similarity. Notably, the matrix predominantly
exhibits sparsity, indicating that each client selectively leverages information solely from a subset of
other clients. This discernible pattern reinforces the inherent confidence that each client is effectively
learning from a limited but strategically chosen group of clients.
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Figure 6: Comparing the performance of two-stage PERM algorithm in learning α values on
heterogeneous and homogeneous data distributions. We use MNIST dataset across 50 clients with
homogeneous and heterogeneous distributions.

B Proof of Two Stages Algorithm

In this section we provide the proof of convergence of two-stage implementation of PERM (computing
mixing parameters followed by learning personalized models via model shuffling using permutation-
based variant of distributed SGD with periodic communication).

B.1 Technical Lemmas

Lemma 1. Define v∗(α) := argminv∈W Φ(α,v), and assume Φ(α, ·) is µ-strongly convex and
∇vΦ(α,v) is L Lipschitz in α. Then, v∗(·) is κ-Lipschitz where κ = L/µ.

Proof. The proof is similar to Lin et al’s result on minimax objective [60]. First, according to
optimality conditions we have:

⟨v − v∗(α),∇2Φ(α,v∗(α))⟩ ≥ 0,

⟨v − v∗(α′),∇2Φ(α
′,v∗(α′))⟩ ≥ 0

Substituting v with v∗(α′) and v∗(α) in the above first and second inequalities respectively yields:

⟨v∗(α′)− v∗(α),∇2Φ(α,v∗(α))⟩ ≥ 0,

⟨v∗(α)− v∗(α′),∇2Φ(α
′,v∗(α′))⟩ ≥ 0

Adding up the above two inequalities yields:

⟨v∗(α′)− v∗(α),∇2Φ(α,v∗(α))−∇2Φ(α
′,v∗(α′))⟩ ≥ 0, (4)

Since Φ(α, ·) is µ strongly convex, we have:

⟨v∗(α′)− v∗(α),∇2Φ(α,v∗(α′))−∇2Φ(α,v∗(α)) ≥ µ∥v∗(α′)− v∗(α)∥2. (5)

Adding up (4) and (5) yields:

⟨v∗(α′)− v∗(α),∇2Φ(α,v∗(α′))−∇2Φ(α
′,v∗(α′)) ≥ µ∥v∗(α′)− v∗(α)∥2

Finally, using L smoothness of Φ will conclude the proof:

L∥v∗(α′)− v∗(α)∥∥α−α′∥ ≥ µ∥v∗(α′)− v∗(α)∥2

⇐⇒ κ∥α−α′∥ ≥ ∥v∗(α′)− v∗(α)∥

Lemma 2 (Optimality Gap). Let Φ(α,v) be defined in (3). Let v̂ = PW(ṽ − 1
L∇vΦ(α̂, ṽ)). If we

assume each fi is L-smooth, µ-strongly convex and with gradient bounded by G, then the following
statement holds true:

Φ(α∗, v̂)− Φ(α∗,v∗) ≤ 2L∥ṽ − v∗(α̂)∥2 +
(
2κ2

ΦL+
4NG2

L

)
∥α̂−α∗∥2.

where κΦ =
√
NG
µ , v∗ = argminv∈W Φ(α∗,v).
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Proof. First we show that ∇vΦ(α,v) is
√
NG Lipschitz in α. To see this:

∥∇vΦ(α,v)−∇vΦ(α
′,v)∥ =

∥∥∥∥∥∥
N∑
j=1

αi(j)∇fj(v)−
N∑
j=1

α′
i(j)∇fj(v)

∥∥∥∥∥∥
≤

√
NG ∥αi −α′

i∥ .

Hence due to Lemma 1, we know v∗(α) is κΦ :=
√
NG
µ Lipschitz. According to property of

projection, we have:

0 ≤ ⟨v − v̂, L(v̂ − ṽ) +∇vΦ(α̂, ṽ)⟩
= ⟨v − v̂, L(v̂ − ṽ) +∇vΦ(α

∗, ṽ)⟩︸ ︷︷ ︸
T1

+ ⟨v − v̂, ∇vΦ(α̂, ṽ)−∇vΦ(α
∗, ṽ)⟩︸ ︷︷ ︸

T2

.

For T1, we notice:

⟨v − v̂, L(v̂ − ṽ) +∇vΦ(α
∗, ṽ)⟩ = L ⟨v − ṽ, v̂ − ṽ⟩+ 1

η
⟨ṽ − v̂, v̂ − ṽ⟩+ ⟨v − v̂, ∇vΦ(α

∗, ṽ)⟩

= L ⟨v − ṽ, v̂ − ṽ⟩ − L ∥ṽ − v̂∥2 + ⟨v − v̂i, ∇vΦ(α
∗, ṽ)⟩

≤ L(∥v − ṽ∥2 + 1

4
∥v̂ − ṽ∥2)− L ∥ṽ − v̂∥2 + ⟨v − v̂, ∇vΦ(α

∗, ṽ)⟩︸ ︷︷ ︸
♠

where at last step we used Young’s inequality. To bound ♠, we apply the L smoothness and µ strongly
convexity of Φ(α, ·):
⟨v − v̂i, ∇vΦ(α

∗
i , ṽi)⟩ = ⟨v − ṽi, ∇vΦ(α

∗, ṽ)⟩+ ⟨ṽ − v̂, ∇vΦ(α
∗, ṽ)⟩

≤ Φ(α∗,v)− Φ(α∗, ṽ)− µ

2
∥ṽ − v∥2 +Φ(α∗, ṽ)− Φ(α∗, v̂) +

L

2
∥ṽ − v̂∥2

≤ Φ(α∗,v)− Φ(α∗, v̂)− µ

2
∥ṽ − v∥2 + L

2
∥ṽ − v̂∥2

Putting above bound back yields:〈
v − v̂,

1

η
(v̂ − ṽ) +∇vΦ(α

∗, ṽ)

〉
≤ Φ(α∗,v)− Φ(α∗, v̂) +

1

2η
∥ṽ − v∥2 −

(
3L

4
− L

2

)
∥ṽ − v̂∥2

Now we switch to bounding T2. Applying Cauchy-Schwartz yields:

⟨v − v̂i, ∇vΦ(α̂i, ṽi)−∇vΦ(α
∗
i , ṽi)⟩ ≤

L

4
∥v − ṽi∥2 +

L

4
∥ṽ − v̂i∥2 +

4

L
∥∇vΦ(α̂i, ṽi)−∇vΦ(α

∗
i , ṽi)∥2

≤ L

4
∥v − ṽi∥2 +

L

4
∥ṽ − v̂i∥2 +

4NG2

L
∥α̂i −α∗

i ∥
2

where at last step we apply
√
NG smoothness of Φ(·,v). Putting pieces together yields:

0 ≤ Φ(α∗
i ,v)− Φ(α∗

i , v̂i) +
L

2
∥ṽi − v∥2 + L

2
∥v − ṽi∥2 +

4NG2

L
∥α̂i −α∗

i ∥
2

Re-arranging terms and setting v = v∗(α∗) = argminv∈W Φ(α∗,v) yields:

Φ(α∗, v̂)− Φ(α∗,v∗) ≤ L ∥ṽ − v∗∥2 + 4NG2

L
∥α̂−α∗∥2 .

At last, due to the κΦ-Lipschitzness property of of v∗(·) as shown in Lemma 1, it follows that:

L∥ṽ − v∗(α∗)∥2 ≤ L∥ṽ − v∗(α̂)∥2 + L∥v∗(α̂)− v∗(α∗)∥2

≤ 2L∥ṽ − v∗(α̂)∥2 + 2κ2
ΦL∥α̂−α∗∥2,

as desired.
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Algorithm A1: Discrepancy Estimation at Optimum
Input: Number of clients N , number of local steps K , number of communications rounds R
for r = 0, . . . , R− 1 do

parallel for client i = 0, ..., N − 1 do
Client i initializes model wr,0

i = wr
i .

for t = 0, ...,K − 1 do
wr,t+1

i = wr,t
i − γ∇fi(w

r,t
i ; ξr,ti ) where ξr,ti is a mini-batch sampled from Si.

Client i sends wr,K
i to Server.

Server computes wr+1 = PW

(
1
N

∑N
i=1 w

r,K
i

)
Server broadcasts wr+1 to all clients.

Server computes α̂i, i = 1, 2, . . . , N by running Tα steps of GD on gi(w
R,α).

Output: α̂1, . . . , α̂N .

B.2 Proof of Convergence of Theorem 1

In this section we are going to prove the result in Theorem 1. To this end, we need to show that
mixing parameters we compute by first learning the global model and then solving the optimization
problem in objective (2) (as depicted in Algorithm A1) converges to optimal values. Notice that in
Algorithm A1 we do not solve gi(w

∗,α) directly, but optimize gi(w
R,α) on α for Tα iterations of

GD. Hence, firstly we need to show that optimizing the surrogate function will also guarantee the
convergence of output of algorithm α̂ to α∗ by deriving a property of the objective in (2). Formally
the property is captured by the following lemma.

Lemma 3. Let g(w,α) :=
∑N

j=1 αj ∥∇fi(w)−∇fj(w)∥2 + λ
∑N

j=1 α
2
j/nj and α∗

g(w) =

argminα∈∆N
g(w,α). Let wR be the output of Algorithm A1. Then the following statement

holds:∥∥α∗
g(w

R)−α∗
g(w

∗)
∥∥ ≤ κ2

g

N∑
j=1

(
2 ∥∇fi(w

∗)−∇fj(w
∗)∥2 + 4L2

∥∥wR −w∗∥∥2) 4L∥∥wR −w∗∥∥2
where κg := nmax

2λ .

Proof. Define function

W (z,α) =
∑N

j=1
αjzj + λ

∑N

j=1
α2
j/nj (6)

Apparently, W (z,α) is linear in z and 2 λ
nmax

strongly convex in z. Next we show that ∇αW (z,α)
is Lipschitz in w. To see this,

∥∇αW (z,α)−∇αW (z′,α)∥ = ∥[z1, ..., zN ]− [z′1, ..., z
′
N ]∥

≤ ∥z − z′∥ .

Then, according to Proposition 1, α∗
W (z) := argminα∈∆N

W (z,α) is κg lipschitz in z where
κg = nmax

2λ , i.e., ∥α∗
W (z)−α∗

W (z′)∥ ≤ κg ∥z − z′∥. Now, let us consider the objective (2):

g(w,α) :=
∑N

j=1
αj ∥∇fi(w)−∇fj(w)∥2 + λ

∑N

j=1
α2
j/nj

We define α∗
g(w) = argminα∈∆N

g(w,α).

We set

zR =
[∥∥∇fi(w

R)−∇f1(w
R)
∥∥2 , ...,∥∥∇fi(w

R)−∇fN (wR)
∥∥2] ,

z∗ =
[
∥∇fi(w

∗)−∇f1(w
∗)∥2 , ..., ∥∇fi(w

∗)−∇fN (w∗)∥2
]
.
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Then we know that∥∥α∗
g(w

R)−α∗
g(w

∗)
∥∥2 =

∥∥α∗
W (zR)−α∗

W (z∗)
∥∥2 ≤ κ2

g

∥∥zR − z∗∥∥2 (7)

≤ κ2
g

N∑
j=1

∣∣∣∥∥∇fi(w
R)−∇fj(w

R)
∥∥2 − ∥∇fi(w

∗)−∇fj(w
∗)∥2

∣∣∣2 (8)

≤ κ2
g

N∑
j=1

∣∣(∇fi(w
R)−∇fj(w

R) +∇fi(w
∗)−∇fj(w

∗)
)

×
(
∇fi(w

R)−∇fj(w
R)−∇fi(w

∗) +∇fj(w
∗)
)∣∣2

≤ κ2
g

N∑
j=1

∥∥∇fi(w
R)−∇fj(w

R) +∇fi(w
∗)−∇fj(w

∗)
∥∥24L2

∥∥wR −w∗∥∥2
Since

∥∥∇fi(w
R)−∇fj(w

R)
∥∥ ≤ ∥∇fi(w

∗)−∇fj(w
∗)∥ + 2L

∥∥wR −w∗
∥∥, we can conclude

that

∥∥α∗
g(w

R)−α∗
g(w

∗)
∥∥ ≤ κ2

g

N∑
j=1

(
2 ∥∇fi(w

∗)−∇fj(w
∗)∥2 + 4L2

∥∥wR −w∗∥∥2) 4L∥∥wR −w∗∥∥2 .

With above lemma, to show the convergence of α̂ to α∗, we do the following decomposition

∥α̂−α∗∥2 ≤ 2
∥∥α̂−α∗

g(w
R)
∥∥2 + 2

∥∥α∗
g(w

R)−α∗
g(w

∗)
∥∥2

≤ 2(1− µηα)
K + 2κ2

g

N∑
j=1

(
2 ∥∇fi(w

∗)−∇fj(w
∗)∥2 + 4L2

∥∥wR −w∗∥∥2) 4L∥∥wR −w∗∥∥2 .
Now it remains to show the convergence of Local SGD last iterate wR to optimal solution w∗. By
convention, we use wt = 1

N

∑N
i=1 w

t
i to denote the virtual average iterates.

Lemma 4 (One iteration analysis of Local SGD). Under the condition of Theorem 1, the following
statement holds true for any t ∈ [T ]:

E
∥∥wr,t+1 −w∗∥∥2 ≤ (1− µγ)E

∥∥wr,t −w∗∥∥2 − (2γ − 4γ2L)E
(
F (w∗)− F (wr,t)

)
+ (γL+ 2γ2L2)

1

N

N∑
i=1

∥∥wr,t
i −wr,t

∥∥2 + γ2 δ
2

N
.

Proof. According to updating rule in Algorithm A1, we have the following identity:

E
∥∥wr,t+1 −w∗∥∥2 = E

∥∥wr,t −w∗∥∥2 − 2γE

〈
1

N

N∑
i=1

∇fi(w
r,t
i ; zr,ti ), wr,t −w∗

〉
+ γ2E

∥∥∥∥∥ 1

N

N∑
i=1

∇fi(w
r,t
i )

∥∥∥∥∥
2

(9)

= E
∥∥wt −w∗∥∥2 −2γ

〈
1

N

N∑
i=1

∇fi(w
r,t
i ), wr,t −w∗

〉
︸ ︷︷ ︸

T1

+ γ2 E

∥∥∥∥∥ 1

N

N∑
i=1

∇fi(w
r,t
i ; zr,ti )

∥∥∥∥∥
2

︸ ︷︷ ︸
T2

+γ2 δ
2

N
. (10)
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For T1, since each fj is L smooth and µ strongly convex, we have:

−2γ

〈
1

N

N∑
i=1

∇fi(w
r,t
i ), wt −w∗

〉
= −2γ

〈
1

N

N∑
i=1

∇fi(w
t
i), w

t −wt
i +wr,t

i −w∗

〉

≤ −2γ

〈
1

N

N∑
i=1

∇fi(w
t
i), w

r,t −wr,t
i +wr,t

i −w∗

〉

≤ 2γ
1

N

N∑
i=1

(
fi(w

∗)− fi(w
r,t)− µ

2

∥∥wr,t
i −w∗∥∥2 + L

2

∥∥wr,t
i −wr,t

∥∥2) .

Due to Jensen’s inequality we know: − 1
N

∑N
i=1

µ
2 ∥wt

i −w∗∥2 ≤ −µ
2 ∥wt −w∗∥2. Hence we

know:

−2γ

〈
1

N

N∑
i=1

∇fi(w
r,t
i ), wr,t −w∗

〉
≤ 2γ

(
F (w∗)− F (wr,t)− µ

2

∥∥wr,t −w∗∥∥2 + L

2

1

N

N∑
i=1

∥∥wr,t
i −wr,t

∥∥2) .

For T2, we have:

E

∥∥∥∥∥ 1

N

N∑
i=1

∇fi(w
r,t
i )

∥∥∥∥∥
2

= 2E

∥∥∥∥∥ 1

N

N∑
i=1

∇fi(w
r,t
i )−∇F (wr,t)

∥∥∥∥∥
2

+ 2E
∥∥∇F (wr,t)

∥∥2
≤ 2L2 1

N

N∑
i=1

E
∥∥wr,t

i −wr,t
∥∥2 + 4L

(
F (wr,t)− F (w∗)

)
.

Now, plugging T1 and T2 back to (10) yields:

E
∥∥wr,t+1 −w∗∥∥2 ≤ (1− µγ)E

∥∥wr,t −w∗∥∥2 − (2γ − 4γ2L)E
(
F (w∗)− F (wr,t)

)
+ (γL+ 2γ2L2)

1

N

N∑
i=1

∥∥wr,t
i −wr,t

∥∥2 + γ2 δ
2

N
.

Lemma 5. [50, Lemma 8] For the iterates {wr,t
i } generated in Algorithm A1, the following statement

holds true:

1

N

N∑
i=1

∥∥wr,t
i −wr,t

∥∥2 ≤ 3Kγ2δ2 + 6K2γ2ζ2.

Lemma 6 (Last iterate convergence of Local SGD). Under the conditions of Theorem 1, the following
statement holds true for the iterates in Algorithm A1:

E
∥∥wR −w∗∥∥2 ≤ (1− µγ)RKE

∥∥w0 −w∗∥∥2 + 1

µγ
(γL+ 2γ2L2)

(
3Kγ2δ2 + 6K2γ2ζ2

)
+

γδ2

µN

Proof. We first unroll the recursion in Lemma 4 from t = K to 0, within one communication round:

E
∥∥wr,K −w∗∥∥2 = (1− µγ)KE

∥∥wr,0 −w∗∥∥2 − K−1∑
t=0

(1− µγ)K−t(2γ − 4γ2L)E
(
F (w∗)− F (wr,t)

)
+

K−1∑
t=0

(1− µγ)K−t(γL+ 2γ2L2)
1

N

N∑
i=1

∥∥wr,t
i −wr,t

∥∥2 + K−1∑
t=0

(1− µγ)K−tγ2 δ
2

N

Since we choose γ ≤ 1
2L , we know

∑K−1
t=0 (1 − µγ)K−t(2γ − 4γ2L)E (F (w∗)− F (wr,t)) ≥ 0.

Plugging in Lemma 5 yields:

E
∥∥wR −w∗∥∥2 = (1− µγ)RKE

∥∥w0 −w∗∥∥2 + 1

µγ
(γL+ 2γ2L2)

(
3Kγ2δ2 + 6K2γ2ζ2

)
+

γδ2

µN
,
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Algorithm A2: Shuffling Local SGD (One Client)
Input: Clients 0, ..., N − 1, Number of Local Steps K , Number of Epoch R, Mixing parameter
α̂

Epoch for r = 0, ..., R− 1 do
Server generates permutation σr : [N ] 7→ [N ].
Client sets initial model vr,0 = vr.
for j = 0, ..., N − 1 do

Server sends vr,j to Client σr(j).
vr,j+1 = SGD-Update(vr,j , η, σr(j),K, α̂).

Client i does projection: vr+1 = PW(vr,N ).
Output: v̂ = vR.
SGD-Update(v, η, j,K,α)

Initialize v0 = v
for t = 0, ...,K − 1 do

vt = vt−1 − ηα(j)N∇fj(v
t−1; ξt−1)

Output vK

Plugging in γ = log(RK)
µRK gives the convergence rate:

E
∥∥wR −w∗∥∥2 ≤ Õ

(
E
∥∥w0 −w∗

∥∥2
RK

+ κ

(
δ2

µ2R2K
+

ζ2

µ2R2

)
+

δ2

µ2NRK

)
,

which concludes the proof.

Equipped with above results, we are now ready to provide the convergence of main theorem.

Proof of Theorem 1. The proof simply follows from Lemma 3:

∥α̂−α∗∥2 ≤ 2
∥∥α̂−α∗

g(w
R)
∥∥2 + 2

∥∥α∗
g(w

R)−α∗
g(w

∗)
∥∥2

≤ 2(1− µηα)
Tα + 8Lκ2

g

N∑
j=1

(
2 ∥∇fi(w

∗)−∇fj(w
∗)∥2 + 4L2

∥∥wR −w∗∥∥2)∥∥wR −w∗∥∥2
≤ 2(1− µηα)

Tα + 8Lκ2
g

(
2ζ̄i(w

∗) + 4NL2
∥∥wR −w∗∥∥2)∥∥wR −w∗∥∥2

Plugging in the convergence of
∥∥wR −w∗

∥∥2 from Lemma 6, and the stepsize ηα = 1
Lg

for α yields:

E∥αR
i −α∗

i ∥2 ≤ Õ

(
exp(−Tα

κg
) + κ2

g ζ̄i(w
∗)L2

(
D2

RK
+ κ

(
δ2

µ2R2K
+

ζ2

µ2R2

)
+

δ2

µ2NRK

))
.

B.3 Proof of Convergence of Shuffling Local SGD

In this section, we are going to prove the convergence of proposed shuffled variant of Local SGD
(Theorem 2). The whole proof framework follows the analysis of vanilla shuffling SGD, but notice
that there are two differences. First, in vanilla shuffling SGD, in each epoch, algorithm only updates
on each component function fj once, while here we have to take K steps of SGD update on each
component function. Second, we are considering a weighted sum objective in contrary to averaged
objective in [56], which means we need to rescale the objective when we apply without-replacement
concentration inequality. Even though our algorithm solves models for N clients, for the sake of
simplicity, throughout the proof we only show the convergence of one client’s model. The algorithm
from one client point of view is described in Algorithm A2, where we drop the client index for
notational convenience.
Proposition 1. Assume a sequence {wt}Kt=1 is obtained by

wt = wt−1 − ηαN∇f(wt−1; ξt−1), t = 1, . . . ,K,
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then we have

wt+1 = w0 −

(
t∑

τ=0

τ+1∏
t′=t

(I− αNηHt′)

)
ηαN∇f(w0)−

t∑
τ=0

τ+1∏
t′=t

(I− αNηHt′) ηαNδt, ∀0 ≤ t ≤ K − 1,

where δt := ∇f(wt; ξt)−∇f(wt), and by convention, we define
∏b

j=a Aj = I if a < b.

Proof. According to updating rule, we have:

wt+1 −w0 = wt −w0 − ηαN∇f(wt; ξt)

= wt −w0 − ηαN∇f(wt)− ηαNδt

= wt −w0 − ηαN∇f(w0)− ηαN(∇f(wt)−∇f(w0))− ηαNδt.

Since f is L smooth, and according to Mean Value Theorem, there is a matrix Ht satisfying
µI ⪯ Ht ⪯ LI, such that ∇f(wt)−∇f(w0) = Ht(w

t −w0). Hence we have:

wt+1 −w0 = (I− ηαNHt) (w
t −w0)− ηαN∇f(w0)− ηαNδt.

Unrolling the recursion from t to 0 will conclude the proof.

The following lemma establishes the updating rule of models between epochs r and r + 1. For
notational convenience, whenever there is no confusion, we drop the superscript r in σr.

Lemma 7 (One epoch updating rule). Let vr and vr+1 be two iterates generated by Shuffling Local
SGD (Algorithm A2), then the following updating rule holds:

vr+1 = vr −
N∑
j=1

j+1∏
j′=N

(I−Qj′Hj′)(Qj∇fσ(j)(v
r)− δj),

where

Qj :=

(
K−1∑
τ=0

τ+1∏
t′=K−1

(I− ηα̂(σ(j))NHt′)

)
ηα̂(σ(j))N,

δj :=

K−1∑
τ=0

τ+1∏
t′=t

(I− α̂(σ(j))NηHt′) ηα̂(σ(j))Nδtσ(j),

by convention, we define
∏b

j=a Aj = I if a < b.

Proof. According to Proposition 1, we have

vr,j+1 = vr,j −

(
K−1∑
τ=0

τ+1∏
t′=t

(I− α̂(σ(j))NηHt′)

)
ηα̂(σ(j))N∇fσ(j)(v

r,j)

−
K−1∑
τ=0

τ+1∏
t′=t

(I− α̂(σ(j))NηHt′) ηα̂(σ(j))Nδtσ(j).

Plugging our definition of Qj and δj yields:

vr,j+1 − vr = vr,j − vr −Qj∇fσ(j)(v
r,j)− δj .

Following the same reasoning in the proof of Proposition 1 will conclude the proof.

Lemma 8 (Summation by parts). Let Aj and Bj be complex valued matrices. Then the following
fact holds:

N∑
j=1

AjBj = AN

N∑
j=1

Bj −
N−1∑
n=1

(An+1 −An)

n∑
j=1

Bj .
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Proposition 2 (Spectral bound of polynomial expansion). Given a collection of matrices {At} and
{Bt}, such that At ⪯ LI and Bt ⪯ LI, the following bound hold:∥∥∥∥∥

h∏
t=l

(I− aAt)− I

∥∥∥∥∥ ≤
h−l∑
m=1

(
e(h− l)

m

)m

(aL)m,∥∥∥∥∥
h∏

t=l

(I− aAt)−
h∏

t=l

(I− bBt)

∥∥∥∥∥ ≤
h−l∑
m=1

(
e(h− l)

m

)m

(aL)m +

h−l∑
m=1

(
e(h− l)

m

)m

(bL)m.

Proof. We start with proving the first statement. Expanding the product yields:
h∏

t=l

(I− aAt) = I+

h−l∑
m=1

(−1)mam
∑

|S|=m,|S|⊆{l,...,h}

∏
m′∈S

Am′ .

Hence we have:∥∥∥∥∥
h∏

t=l

(I− aAt)− I

∥∥∥∥∥ =

∥∥∥∥∥∥
h−l∑
m=1

(−1)mam
∑

|S|=m,|S|⊆{l,...,h}

∏
m′∈S

Am′

∥∥∥∥∥∥ ≤
h−l∑
m=1

(
h− l

m

)
(aL)m

According to the upper bound for binomial coefficients:
(
h−l
m

)
≤
(

e(h−l)
m

)m
, we have:

h−l∑
m=1

(
h− l

m

)
(aL)m ≤

h−l∑
m=1

(
e(h− l)

m

)m

(aL)m.

Then we switch to the second one. Using the same expanding product yields:∥∥∥∥∥
h∏

t=l

(I− aAt)−
h∏

t=l

(I− bBt)

∥∥∥∥∥
=

∥∥∥∥∥∥
h−l∑
m=1

(−1)mam
∑

|S|=m,|S|⊆{l,...,h}

∏
m′∈S

Am′ −
h−l∑
m=1

(−1)mbm
∑

|S|=m,|S|⊆{l,...,h}

∏
m′∈S

Bm′

∥∥∥∥∥∥
≤

h−l∑
m=1

(
h− l

m

)
(aL)m +

h−l∑
m=1

(
h− l

m

)
(bL)m

≤
h−l∑
m=1

(
e(h− l)

m

)m

(aL)m +

h−l∑
m=1

(
e(h− l)

m

)m

(bL)m.

The following concentration result is the key to bound variance during shuffling updating. The
original result holds for the average of gradients, and we will later on generalize it to an arbitrary
weighted sum of gradients.
Lemma 9 ([61, Theorem 2]). Suppose n ≥ 2. Let g1, g2, . . . , gn ∈ Rd satisfy ∥gj∥ ≤ G for all j.
Let ḡ = 1

n

∑n
j=1 gj . Let σ ∈ Sn be a uniform random permutation of n elements. Then, for i ≤ n,

with probability at least 1− p, we have∥∥∥∥∥∥1i
i∑

j=1

gσ(j) − ḡ

∥∥∥∥∥∥ ≤ G

√
8(1− i−1

n ) log 2
p

i
.

Lemma 10 (Concentration of partial sum of gradients). Given a uniformly randomly generated
permutation σ, and simplex vector α, if we assume each supv∈W ∥∇fj(v)∥ ≤ G, then the following
statement holds true:∥∥∥∥∥∥

n∑
j=0

α̂(σ(j))∇fσ(j)(v
r)

∥∥∥∥∥∥ ≤ G
√
8n log(1/p) +

n

N
∥ ∇Φ(α̂,vr)∥ .
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Proof. The proof works by re-writing weighted sum of vectors to average of the these vectors:∥∥∥∥∥∥
n∑

j=0

α̂(σ(j))∇fσ(j)(v
r)

∥∥∥∥∥∥ =
1

N

∥∥∥∥∥∥
n∑

j=0

α̂(σ(j))N∇fσ(j)(v
r)

∥∥∥∥∥∥
=

1

N

∥∥∥∥∥∥
n∑

j=0

α̂(σ(j))N∇fσ(j)(v
r)− n∇Φ(α̂,vr)

∥∥∥∥∥∥+ n ∥ ∇Φ(α̂,vr)∥


≤ G

√
8n log(1/p) +

n

N
∥ ∇Φ(α̂,vr)∥ .

Proposition 3 (Spectral norm bound of Q). Let Qj be defined in (11). Then the following bound for
the spectral norm of Qj holds true for all j ∈ [N ]:

∥Qj∥ ≤ ηα̂(σ(j))NK(1 + ηNL)K

Proof. The proof can be completed by writing down the definitin of Qj and applying Cauchy-
Schwartz inequality:

∥Qj∥ =

∥∥∥∥∥
(

K−1∑
τ=0

τ+1∏
t′=K−1

(I− ηα̂(σ(j))N ′Ht′)

)
ηα̂(σ(j))N

∥∥∥∥∥
≤ ηα̂(σ(j))N

K−1∑
τ=0

τ+1∏
t′=K−1

∥(I− ηα̂(σ(j))N ′Ht′)∥

≤ ηα̂(σ(j))N

K−1∑
τ=0

τ+1∏
t′=K−1

(1 + ηα̂(σ(j))N ′L)

≤ ηα̂(σ(j))NK(1 + ηNL)K .

The last step is due to we choose η such that ηNL ≤ 1
K .

The following lemma establishes the bound regarding cumulative update between two epochs, namely,
vr+1 − vr. In particular, Lemma 11 below shows that: (a) in shuffling Local SGD, our update from
vr to vr+1 approximates performing NK times of gradient descent with α̂(j)N∇fσ(j)(v

r), namely,
the bias is controlled, and (b) the update itself is bounded, and can be related to the norm of full
gradient.
Lemma 11. During the dynamic of Algorithm A2, the following statements hold true with probability
at least 1− p:

(a)∥∥∥∥∥∥
N∑
j=1

Qj∇fσ(j)(v
r)− ηNK

N∑
j=1

α̂(j)∇fσ(j)(v
r)

∥∥∥∥∥∥
2

≤ 10η2N2K2

(
e

4R− e

)2

∥∇Φ(α̂,vr)∥2

+ 128η2N3K2

(
e

4R− e

)2

G2 log(1/p).

(b) for any N ′ such that 0 ≤ N ′ < N∥∥∥∥∥∥
N ′−1∑
j=1

Qj∇fσ(j)(v
r)

∥∥∥∥∥∥ ≤ 3eηNK
(
∥∇Φ(α̂,vr)∥+G

√
8N log(1/p)

)
,

where

Qj :=

(
K−1∑
τ=0

τ+1∏
t′=K−1

(I− ηα̂(σ(j))N ′Ht′)

)
ηα̂(σ(j))N. (11)
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Proof. We start with proving statement (a). Let Aj =
Qj

α̂(σ(j)) and Bj = α̂(σ(j))∇fσ(j)(v
r),

applying the identity of summation by parts yields:
N∑
j=1

Qj∇fσ(j)(v
r) =

QN−1

α̂(σ(N − 1))

N∑
j=1

α̂(σ(j))∇fσ(j)(v
r)−

N−1∑
n=1

(
Qn+1

α̂(σ(n+ 1))
− Qn

α̂(σ(n))

) n∑
j=1

α̂(σ(j))∇fσ(j)(v
r)

∥∥∥∥∥
N∑

j=1

Qj∇fσ(j)(v)− ηNK

N∑
j=1

α̂(j)∇fj(v)

∥∥∥∥∥
2

≤ 2

∥∥∥∥∥
(

QN−1

α̂(σ(N − 1))
− ηNKI

) N∑
j=1

α̂(σ(j))∇fσ(j)(v
r)

∥∥∥∥∥
2

︸ ︷︷ ︸
T1

+2

∥∥∥∥∥
N−1∑
n=1

(
Qn+1

α̂(σ(n+ 1))
− Qn

α̂(σ(n))

) n∑
j=1

α̂(σ(j))∇fσ(j)(v
r)

∥∥∥∥∥
2

︸ ︷︷ ︸
T2

.

According to Proposition 2, we have:∥∥∥∥∥
τ+1∏

t′=K−1

(I− ηα̂(σ(j))NHt′)− I

∥∥∥∥∥ ≤
K−2−τ∑
m=1

(
e(K − 2− τ)

m
ηα̂(σ(j))NL

)m

.

Since we choose η ≤ 1
4NKRL , we have:∥∥∥∥∥

τ+1∏
t′=K−1

(I− ηα̂(σ(j))NHt′)− I

∥∥∥∥∥ ≤
K−2−τ∑
m=1

( e

4Rm

)m
≤ e

4R− e
, (12)

where we use the fact that
∑K−2−τ

m=1

(
e

4Rm

)m ≤
∑K−2−τ

m=1

(
e
4R

)m ≤ e
4R

1
1−e/4R . Hence we know:

T1 ≤
∥∥∥∥( QN−1

α̂(σ(N − 1))
− ηNKI

)∥∥∥∥2
∥∥∥∥∥∥

N∑
j=1

α̂(σ(j))∇fσ(j)(v
r)

∥∥∥∥∥∥
2

≤

∥∥∥∥∥
(

K−1∑
τ=0

τ+1∏
t′=K−1

(I− ηα̂(σ(N − 1))NHt′)

)
ηN − ηNKI

∥∥∥∥∥
2
∥∥∥∥∥∥

N∑
j=1

α̂(σ(j))∇fσ(j)(v
r)

∥∥∥∥∥∥
2

≤ η2N2K

K−1∑
τ=0

∥∥∥∥∥
τ+1∏

t′=K−1

(I− ηα̂(σ(N − 1))NHt′)− I

∥∥∥∥∥
2
∥∥∥∥∥∥

N∑
j=1

α̂(σ(j))∇fσ(j)(v
r)

∥∥∥∥∥∥
2

≤ η2N2K2

(
e

4R− e

)2
∥∥∥∥∥∥

N∑
j=1

α̂(σ(j))∇fσ(j)(v
r)

∥∥∥∥∥∥
2

.

Thus we have:

T1 ≤ η2N2K2

(
e

4R− e

)2

∥∇Φ(α̂,vr)∥2 .

For T2, we first examine the bound of Qn+1

α̂(σ(n+1)) −
Qn

α̂(σ(n)) :∥∥∥∥ Qn+1

α̂(σ(n+ 1))
− Qn

α̂(σ(n))

∥∥∥∥ =

∥∥∥∥∥∥
K−1∑

τ=0

τ+1∏
t′=K−1

(I− ηα̂(σ(n+ 1))NHt′)

 ηN −

K−1∑
τ=0

τ+1∏
t′=K−1

(I− ηα̂(σ(n))NHt′)

 ηN

∥∥∥∥∥∥
= ηN

∥∥∥∥∥∥
K−1∑

τ=0

τ+1∏
t′=K−1

(I− ηα̂(σ(n+ 1))NHt′)

−

K−1∑
τ=0

τ+1∏
t′=K−1

(I− ηα̂(σ(n))NHt′)

∥∥∥∥∥∥
= ηN

∥∥∥∥∥∥
K−1∑

τ=0

τ+1∏
t′=K−1

(I− ηα̂(σ(n+ 1))NHt′)

−

K−1∑
τ=0

τ+1∏
t′=K−1

(I− ηα̂(σ(n))NHt′)

∥∥∥∥∥∥
≤ ηN

K−1∑
τ=0

(
K−2−τ∑
m=1

(
e(K − 2− τ)

m
ηα̂(σ(n))NL

)m

+

K−2−τ∑
m=1

(
e(K − 2− τ)

m
ηα̂(σ(n+ 1))NL

)m
)
.
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where we evoke Proposition 2 at last step. Given that η ≤ 1
4NKRL we have:∥∥∥∥ Qn+1

α̂(σ(n+ 1))
− Qn

α̂(σ(n))

∥∥∥∥ ≤ ηN

K−1∑
τ=0

(
K−2−τ∑
m=1

( e

4Rm
α̂(σ(n))

)m
+

K−2−τ∑
m=1

( e

4Rm
α̂(σ(n+ 1))L

)m)

≤ ηNK

(
α̂(σ(n))e

4R− e
+

α̂(σ(n+ 1))e

4R− e

)
.

where we use the reasoining in (12). Hence for
√
T2:

√
T2 ≤ ηNK

N−1∑
n=1

(
α̂(σ(n))e

4R− e
+

α̂(σ(n+ 1))e

4R− e

)∥∥∥∥∥∥
n∑

j=1

α̂(σ(j))∇fσ(j)(v
r)

∥∥∥∥∥∥
≤ ηNK

e

4R− e

N−1∑
n=1

(α̂(σ(n)) + α̂(σ(n+ 1)))
(
G
√

8n log(1/p) +
n

N
∥ ∇Φ(α̂,vr)∥

)
≤ ηNK

2e

4R− e

(
G
√
8N log(1/p) + ∥∇Φ(α̂,vr)∥

)
.

where at last step we evoke Lemma 10. So we can conclude T2 ≤
2η2N2K2

(
2e

4R−e

)2 (
G28N log(1/p) + ∥∇Φ(α̂,vr)∥2

)
. Putting the bounds of T1 and T2

together will conclude the proof for (a).

Now we switch to proving (b). Once again by the summation of parts identity we have:

N′∑
j=1

Qj∇fσ(j)(v
r) =

QN′

α̂(σ(N ′))

N′∑
j=1

α̂(σ(j))∇fσ(j)(v
r)−

N′−1∑
n=1

(
Qn+1

α̂(σ(n+ 1))
− Qn

α̂(σ(n))

) n∑
j=1

α̂(σ(j))∇fσ(j)(v
r).

Taking the norm of both side yields:∥∥∥∥∥∥
N ′∑
j=1

Qj∇fσ(j)(v
r)

∥∥∥∥∥∥ =

∥∥∥∥∥∥ QN ′

α̂(σ(N ′))

N ′∑
j=1

α̂(σ(j))∇fσ(j)(v
r)

∥∥∥∥∥∥︸ ︷︷ ︸
B

+

∥∥∥∥∥∥
N ′−1∑
n=1

(
Qn+1

α̂(σ(n+ 1))
− Qn

α̂(σ(n))

) n∑
j=1

α̂(σ(j))∇fσ(j)(v
r)

∥∥∥∥∥∥︸ ︷︷ ︸
C

.

Plugging our developed bound for ∥QN ′∥ and
∥∥∥∑N ′−1

n=1

(
Qn+1

α̂(σ(n+1)) −
Qn

α̂(σ(n))

)∥∥∥ yields:

B ≤
∥∥∥∥ QN ′

α̂(σ(N ′))

∥∥∥∥
∥∥∥∥∥∥

N ′∑
j=1

α̂(σ(j))∇fσ(j)(v
r)

∥∥∥∥∥∥
≤ ηNK(1 + ηNL)K

(
G
√
8N ′ log(1/p) +

N ′

N
∥∇Φ(α̂,vr)∥

)
.

where at last step we evoke Lemma 10. And for C, we use the similar reasoning:

C ≤
N ′−1∑
n=1

∥∥∥∥( Qn+1

α̂(σ(n+ 1))
− Qn

α̂(σ(n))

)∥∥∥∥
∥∥∥∥∥∥

n∑
j=1

α̂(σ(j))∇fσ(j)(v
r)

∥∥∥∥∥∥
≤

N ′−1∑
n=1

ηNK
e

4R− e
(α̂(σ(n+ 1)) + α̂(σ(n)))

(
G
√

8n log(1/p) +
n

N
∥∇Φ(α̂,vr)∥

)
≤ 2ηNK

e

4R− e

(
G
√
8N log(1/p) + ∥∇Φ(α̂,vr)∥

)
.
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Putting these pieces together yields:∥∥∥∥∥∥
N ′∑
j=1

Qj∇fσ(j)(v
r)

∥∥∥∥∥∥ ≤ 3eηNK
(
∥∇Φ(α̂,vr)∥+G

√
8N log(1/p)

)
.

Lemma 12. During the dynamic of Algorithm A2, the following statements hold true with probability
at least 1− p: ∥∥∥∥∥∥

N−1∑
n=1

 n+2∏
j′=N

(I−Qj′Hj′)

Qn+1Hn+1

n∑
j=1

Qj∇fσ(j)(v
r)

∥∥∥∥∥∥
2

≤ 18e6η4N4K4L4
(
∥∇Φ(α̂,vr)∥2 + 8G2N log(1/p)

)
Proof. We first apply Cauchy-Schwartz inequality:∥∥∥∥∥∥

N−1∑
n=1

 n+2∏
j′=N

(I−Qj′Hj′)

Qn+1Hn+1

n∑
j=1

Qj∇fσ(j)(v
r)

∥∥∥∥∥∥
≤

N−1∑
n=1

∥∥∥∥∥∥
 n+2∏

j′=N

(I−Qj′Hj′)

∥∥∥∥∥∥ ∥Qn+1Hn+1∥

∥∥∥∥∥∥
n∑

j=1

Qj∇fσ(j)(v
r)

∥∥∥∥∥∥
≤
(
1 + ηNK + η2N2KL

)2N
ηNLK(1 + ηNL)KL

N−1∑
n=1

α̂(σ(n+ 1))

∥∥∥∥∥∥
n∑

j=1

Qj∇fσ(j)(v
r)

∥∥∥∥∥∥
≤e2ηNKL2

N−1∑
n=1

α̂(σ(n+ 1))

∥∥∥∥∥∥
n∑

j=1

Qj∇fσ(j)(v
r)

∥∥∥∥∥∥ .
We proceed by applying the bound from Lemma 11 (b):∥∥∥∥∥∥

n∑
j=1

Qj∇fσ(j)(v
r)

∥∥∥∥∥∥ ≤ 3eηNK
(
∥∇Φ(α̂,vr)∥+G

√
8N log(1/p)

)
.

Therefore, it follows that:∥∥∥∥∥∥
N−1∑
n=1

 n+2∏
j′=N

(I−Qj′Hj′)

Qn+1Hn+1

n∑
j=1

Qj∇fσ(j)(v
r)

∥∥∥∥∥∥
≤ e2ηNKL2

N−1∑
n=1

α̂(σ(n+ 1)) · 3eηNK
(
∥∇Φ(α̂,vr)∥+G

√
8N log(1/p)

)
≤ 3e3η2N2K2L2

(
∥∇Φ(α̂,vr)∥+G

√
8N log(1/p)

)

Lemma 13 (Noise bound). During the dynamic of Algorithm A2, the following statement for gradient
noises holds true with probability at least 1− p:

E

∥∥∥∥∥∥
N∑
j=1

j+1∏
j′=N

(I−Qj′Hj′)δj

∥∥∥∥∥∥ ≤ ηNKe2δ,

where

δj :=

K−1∑
τ=0

τ+1∏
t′=t

(I− α̂(σ(j))NηHt′) ηα̂(σ(j))Nδtσ(j).
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Proof. According to triangle and Cauchy-Schwartz inequalities we have:∥∥∥∥∥∥
N∑
j=1

j+1∏
j′=N

(I−Qj′Hj′)δj

∥∥∥∥∥∥ ≤
N∑
j=1

j+1∏
j′=N

∥(I−Qj′Hj′)∥ ∥δj∥

≤
N∑
j=1

(
1 + (ηα̂(σ(j))NK(1 + ηNL)K)L

)N ∥δj∥

≤
N∑
j=1

(
1 + (ηα̂(σ(j))NK(1 + ηNL)K)L

)N︸ ︷︷ ︸
≤e

·ηα̂(σ(j))NK (1 + ηNL)K︸ ︷︷ ︸
≤e

δ

≤ ηNKe2δ.

B.4 Proof of Theorem 2

Proof. For notational convenience, let us define

gr :=

N∑
j=1

j+1∏
j′=N

(I−Qj′Hj′)Qj∇fσ(j)(v
r),

δr :=

N∑
j=1

j+1∏
j′=N

(I−Qj′Hj′)δj .

Then we recall the updating rule of v (Lemma 7):

vr+1 = PW (vr − gr − δr)

Hence we have:

E
∥∥vr+1 − v∗(α̂)

∥∥2 = E ∥PW (vr − gr − δr − v∗(α̂))∥2

≤ E ∥vr − gr − δr − v∗(α̂)∥2

≤ E ∥vr − v∗(α̂)∥2 − 2E⟨gr,vr − v∗(α̂)⟩+ E ∥gr∥2 + E ∥δr∥2

≤ E ∥vr − v∗(α̂)∥2 − 2E⟨ηNK∇Φ(α̂,vr),vr − v∗(α̂)⟩ − 2E⟨gr − ηNK∇Φ(α̂,vr),vr − v∗(α̂)⟩
+ E ∥gr∥2 + E ∥δr∥2 .

Now, applying strongly convexity of Φ(α̂, ·) and Cauchy-Schwartz inequality yields:

E
∥∥vr+1 − v∗(α̂)

∥∥2 ≤ (1− µηNK)E ∥vr − v∗(α̂)∥2 − ηNKE[Φ(α̂,vr)− Φ(α̂,v∗(α̂))]

+
1

2

(
1

µηNK
E∥gr − ηNK∇Φ(α̂,vr)∥2 + µηNKE∥vr − v∗(α̂)∥2

)
+ E ∥gr∥2 + E ∥δr∥2

≤ (1− 1

2
µηNK)E ∥vr − v∗(α̂)∥2 − ηNKE[Φ(α̂,vr)− Φ(α̂,v∗(α̂))]

+
1

2µηNK
E∥gr − ηNK∇Φ(α̂,vr)∥2

+ 2E ∥gr − ηNK∇Φ(α̂,vr)∥2 + 2E ∥ηNK∇Φ(α̂,vr)∥2 + E ∥δr∥2 .

Since Φ(α̂, ·) is L smooth, we have: E ∥∇Φ(α̂,vr)∥2 ≤ 2LE[Φ(α̂,vr)−Φ(α̂,v∗(α̂))]. Therefore,
we have:

E
∥∥vr+1 − v∗(α̂)

∥∥2 ≤ (1− 1

2
µηNK)E ∥vr − v∗(α̂)∥2 − (ηNK − 4η2N2K2L)E[Φ(α̂,vr)− Φ(α̂,v∗(α̂))]

(13)

+

(
1

2µηNK
+ 2

)
E∥gr − ηNK∇Φ(α̂,vr)∥2 + E ∥δr∥2 . (14)
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Now, we examine the term ∥gr − ηNK∇Φ(α̂,vr)∥2. First according to summation by part
(Lemma 8) by letting Aj :=

∏j+1
j′=N (I−Qj′Hj′) and Bj = Qj∇fσ(j)(v

r), we have:

gr =

N∑
j=1

j+1∏
j′=N

(I−Qj′Hj′)Qj∇fσ(j)(v
r)

=

N∑
j=1

AjBj =

N∑
j=1

Qj∇fσ(j)(v
r)−

N−1∑
n=1

 n+2∏
j′=N

(I−Qj′Hj′)−
n+1∏
j′=N

(I−Qj′Hj′)

 n∑
j=1

Qj∇fσ(j)(v
r)

=

N∑
j=1

Qj∇fσ(j)(v
r)−

N−1∑
n=1

 n+2∏
j′=N

(I−Qj′Hj′)

Qn+1Hn+1

n∑
j=1

Qj∇fσ(j)(v
r).

Hence we have:
∥gr − ηNK∇Φ(α̂,vr)∥2

=

∥∥∥∥∥∥ηNK

N∑
j=1

α̂(σ(j))∇fσ(j)(v
r)−

 N∑
j=1

Qj∇fσ(j)(v
r)−

N−1∑
n=1

 n+2∏
j′=N

(I−Qj′Hj′)

Qn+1Hn+1

n∑
j=1

Qj∇fσ(j)(v
r)

∥∥∥∥∥∥
2

(1)
=2

∥∥∥∥∥
(
ηNK

N∑
j=1

α̂(σ(j))∇fσ(j)(v
r)−

N∑
j=1

Qj∇fσ(j)(v
r)

)∥∥∥∥∥
2

+ 2

∥∥∥∥∥∥
N−1∑
n=1

 n+2∏
j′=N

(I−Qj′Hj′)

Qn+1Hn+1

n∑
j=1

Qj∇fσ(j)(v
r)

∥∥∥∥∥∥
2

(2)

≤

(
20η2N2K2

(
e

4R− e

)2

+ 36e6η4N4K4L4

)
∥∇Φ(α̂,vr)∥2 + 256η2N3K2

(
e

4R− e

)2

G2 log(1/p)

+ 244e6η4N4K4L4G2N log(1/p)

(3)

≤

(
20η2N2K2

(
e

4R− e

)2

+ 36e6η4N4K4L4

)
2L (Φ(α̂,vr)− Φ(α̂,v∗(α̂)))

+

(
244e6η4N4K4L4 + 256η2N3K2

(
e

4R− e

)2
)
G2N log(1/p),

where in (1) we apply Jensen’s inequality, in (2) we plug in Lemma 11 (a), and Lemma 12, and in (3)
we use the L-smoothness of Φ. Plugging above bound back in (19) yields:

E
∥∥vr+1 − v∗(α̂)

∥∥2
≤ (1− 1

2
µηNK)E ∥vr − v∗(α̂)∥2 + η2N2K2e4δ2

−

(
ηNK − 4η2N2K2L−

(
1

2µηNK
+ 2

)(
20η2N2K2

(
e

4R− e

)2

− 36e6η4N4K4L4

))
︸ ︷︷ ︸

T1

E[Φ(α̂,vr)− Φ(α̂,v∗(α̂))]

+

(
1

2µηNK
+ 2

)(
244e6η4N4K4L4 + 256η2N3K2

(
e

4R− e

)2
)
G2N log(1/p).

Since we choose η = 4 log(
√
NKR)

µNKR , and large enough epoch number:

R ≥ max

{(
40

µ
+ 1

)
e, 16 log(

√
NKR), 64κ log(

√
NKR)

}
,

we know that T1 ≤ 0. We thus have:

E
∥∥vr+1 − v∗(α̂)

∥∥2
≤ (1− 1

2
µηNK)E ∥vr − v∗(α̂)∥2 + η2N2K2e4δ2

+

(
1

2µηNK
+ 2

)(
244e6η4N4K4L4 + 256η2N3K2

(
e

4R− e

)2
)
G2N log(1/p)
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Unrolling the recursion from r = R to 0:

E
∥∥vR − v∗(α̂)

∥∥2
≤ (1− 1

2
µηNK)RE

∥∥v0 − v∗(α̂)
∥∥2 + 2

µ
ηNKe4δ2

+
1

µ

(
1

2µηNK
+ 2

)(
488e6η3N3K3L4 + 512ηN2K

(
e

4R− e

)2
)
G2N log(1/p).

Plugging in our choice of η will conclude the proof:

E
∥∥vR − v∗(α̂)

∥∥2 ≤ Õ

(
E
∥∥v0 − v∗(α̂)

∥∥2
NKR2

+
δ2

µ2R
+

(
L4 +N

µ4R2

)
G2N log(1/p)

)
.

Finally, according to Lemma 2 we can complete the proof:

Φ(α∗
i , v̂i)− Φ(α∗

i ,v
∗
i ) ≤ 2L

∥∥vR
i − v∗(α̂i)

∥∥2 + (2κ2
ΦL+

4NG2

L

)
∥α̂i −α∗∥2

≤ Õ

(
LD2

NKR2
+

Lδ2

µ2R
+

(
L4 +N

µ4R2

)
LG2N log(1/p)

)
+ κ2

ΦLÕ

(
exp

(
−Tα

κg

)
+ κ2

g ζ̄i(w
∗)L2

(
D2

RK
+

κζ2

µ2R2
+

δ2

µ2NRK

))
,

where we plug in the convergence result from Theorem 1 at last step.

C Proof of Convergence of Single Loop Algorithm

In this section, we turn to presenting the proof of single loop PERM algorithm (Algorithm 2) where
the learning of mixing parameters and personalized models are coupled. Compared to Algorithm A2,
here during the optimization of model, the mixing parameters are also being updated. As a result,
we need to decouple the two updates which makes the analysis more involved. We begin with some
technical lemmas that support the proof of main result.

C.1 Technical Lemmas

Proposition 4 (Basic Properties of SGD on Smooth Strongly Convex Function). Let wt to be the
tth iterate of minibatch SGD on smooth and strongly convex function F , with minibatch size M and
learning rate γ. Also assume the variance is bounded by δ. Then the following statements hold true
after T iterations of SGD:

E∥∇F (wT )∥2 ≤ 2L (1− µγ)
T
(F (w0)− F (w∗)) +

2γκδ2

M
(15)

E∥wT+1 −wT ∥2 ≤ 2γ2L (1− µγ)
T
(F (w0)− F (w∗)) +

2γ3κδ2

M
+

γ2δ2

M
(16)

E∥wT −w∗∥2 ≤ 2

µ
(1− µγ)

T
(F (w0)− F (w∗)) + 2γ

δ2

µ2M
. (17)

Lemma 14 (Bounded iterates difference of α). Let {αr
i } be iterates generated by Algorithm 2, then

under conditions of Theorem 3, the following statement holds:

∥αr
i −αr−1

i ∥2 ≤ 6

(
1− 1

κg

)Tα

+O
(
κ2
gL

2ζ̄i(w
∗)
)(

γ2L (1− µγ)
r
(F (w0)− F (w∗)) +

γ3κδ2

M
+

γ2δ2

M

)
Proof. Define

zr =
[
∥∇fi(w

r)−∇f1(w
r)∥2 , ..., ∥∇fi(w

r)−∇fN (wr)∥2
]
.
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According to updating rule of α in Algorithm 2 and Lemma 3 we have:

∥αr
i −αr−1

i ∥2 ≤ 3∥αr
i −α∗

gi(w
r)∥2 + 3

∥∥α∗
gi(w

r−1)−α∗
gi(w

r)
∥∥2 + 3∥α∗

gi(w
r−1)−αr−1

i ∥2

≤ 6(1− µgηα)
Tα + 3

∥∥α∗
gi(w

r−1)−α∗
gi(w

r)
∥∥2

≤ 6(1− µgηα)
Tα + 3κ2

g

∥∥zr−1 − zr
∥∥2

≤ 6(1− µgηα)
Tα + 3κ2

g

N∑
j=1

∥∥∇fi(w
r)−∇fj(w

r) +∇fi(w
r−1)−∇fj(w

r−1)
∥∥24L2

∥∥wr −wr−1
∥∥2

where the third inequality follows from (8). Since ∥∇fi(w
r)−∇fj(w

r)∥ ≤
∥∇fi(w

∗)−∇fj(w
∗)∥+ 2L ∥wr −w∗∥, we can conclude that

∥αr
i −αr−1

i ∥2 ≤ 6(1− µgηα)
Tα

+ 12L2κ2
g

N∑
j=1

(
8 ∥∇fi(w

∗)−∇fj(w
∗)∥2 + 8L2 ∥wr −w∗∥2 + 8L2

∥∥wr−1 −w∗∥∥2)∥∥wr −wr−1
∥∥2

≤ 6

(
1− 1

κg

)Tα

+O
(
κ2
gL

2ζ̄i(w
∗)
∥∥wr −wr−1

∥∥2)
≤ 6

(
1− 1

κg

)Tα

+O
(
κ2
gL

2ζ̄i(w
∗)
)(

γ2L (1− µγ)
r
(F (w0)− F (w∗)) +

γ3κδ2

M
+

γ2δ2

M

)

where at last step we plug in Proposition 4 (16).

Lemma 15 (Convergence of α). Let {α̂i}Ni=1 be the mixing parameters generated by Algorithm 2.
Then under the conditions of Theorem 3, the following statement holds:

∥α̂i −α∗∥2 ≤ 2(1− 1

κg
)Tα +O

(
κ2
g ζ̄i(w

∗)L2 2

µ
(1− µγ)

T
+ 2γ

δ2

µ2M

)
, i ∈ [N ]

Proof. We notice the following decomposition:

∥α̂i −α∗∥2 =
∥∥αR

i −α∗
g(w

∗)
∥∥2

≤ 2
∥∥αR

i −α∗
g(w

R)
∥∥2 + 2

∥∥α∗
gi(w

R)−α∗
gi(w

∗)
∥∥2

≤ 2(1− 1

κg
)Tα +O

(
κ2
g

(
ζ̄i(w

∗) +NL2
∥∥wR −w∗∥∥2) 4L∥∥wR −w∗∥∥2)

≤ 2(1− 1

κg
)Tα +O

(
κ2
g ζ̄i(w

∗)L2 2

µ
(1− µγ)

T
+ 2γ

δ2

µ2M

)
,

where in the second inequality we apply Lemma 3, and in the third inequality we use Proposition 4
(17).

C.2 Proof of Theorem 3

Proof. According to Lemma 2, we have:

Φ(α∗
i , v̂i)− Φ(α∗

i ,v
∗
i ) ≤ 2L

∥∥vR
i − v∗(α̂i)

∥∥2 + (2κ2
ΦL+

4NG2

L

)
∥α̂i −α∗

i ∥
2
.

We first examine the convergence of
∥∥vR

i − v∗(α̂i)
∥∥2. Applying Cauchy-Schwartz inequality yields:

∥vr+1 − v∗(αr+1)∥2 ≤
(
1 +

1

4a− 2

)
∥vr+1 − v∗(αr)∥2 + (1 + 4a− 2) ∥v∗(αr+1)− v∗(αr)∥2

≤
(
1 +

1

4a− 2

)
∥vr+1 − v∗(αr)∥2 + (1 + 4a− 2)κ2

Φ∥αr+1 −αr∥2

(18)

31



where a = 1
µηNK , and last step is due to that v∗(α) is κΦ :=

√
NG
µ Lipschitz, as proven in Lemma 2

. Similar to the proof of Theorem 2, we first define

gr :=

N∑
j=1

j+1∏
j′=N−1

(I−Qj′Hj′)Qj∇fσ(j)(v
r),

δr :=

N∑
j=1

j+1∏
j′=N−1

(I−Qj′Hj′)δj .

Then we recall the updating rule of v:

vr+1 = PW (vr − gr − δr) .

Hence we have:

E
∥∥vr+1 − v∗(αr)

∥∥2 = E ∥PW (vr − gr − δr − v∗(αr))∥2

≤ E ∥vr − gr − δr − v∗(αr)∥2

≤ E ∥vr − v∗(αr)∥2 − 2E⟨gr,vr − v∗(αr)⟩+ E ∥gr∥2 + E ∥δr∥2

≤ E ∥vr − v∗(αr)∥2 − 2E⟨ηNK∇Φ(αr,vr),vr − v∗(αr)⟩
− 2E⟨gr − ηNK∇Φ(αr,vr),vr − v∗(αr)⟩+ E ∥gr∥2 + E ∥δr∥2 .

Now, applying strongly convexity of Φ(αr, ·) and Cauchy-Schwartz inequality yields:

E
∥∥vr+1 − v∗(αr)

∥∥2 ≤ (1− µηNK)E ∥vr − v∗(αr)∥2 − ηNKE[Φ(αr,vr)− Φ(αr,v∗(α̂))]

+
1

2

(
1

µηNK
E∥gr − ηNK∇Φ(α̂,vr)∥2 + µηNKE∥vr − v∗(α̂)∥2

)
+ E ∥gr∥2 + E ∥δr∥2

≤
(
1− 1

2
µηNK

)
E ∥vr − v∗(αr)∥2 − ηNKE[Φ(αr,vr)− Φ(αr,v∗(α̂))]

+
1

2µηNK
E∥gr − ηNK∇Φ(αr,vr)∥2

+ 2E ∥gr − ηNK∇Φ(αr,vr)∥2 + 2E ∥ηNK∇Φ(αr,vr)∥2 + E ∥δr∥2 .

where in the first inequality we applied Cauchy-Schwartz inequality and strongly convexity. Since
Φ(αr, ·) is L smooth, we have: E ∥∇Φ(αr,vr)∥2 ≤ 2LE[Φ(αr,vr)−Φ(αr,v∗(αr))]. Therefore,
it follows that:

E
∥∥vr+1 − v∗(α̂)

∥∥2 ≤
(
1− 1

2
µηNK

)
E ∥vr − v∗(αr)∥2 − (ηNK − 4η2N2K2L)E[Φ(αr,vr)− Φ(αr,v∗(αr))]

+

(
1

2µηNK
+ 2

)
E∥gr − ηNK∇Φ(αr,vr)∥2 + E ∥δr∥2 (19)

Now, we examine the term ∥gr − ηNK∇Φ(αr,vr)∥2 in the right hand side of abovee inequality.
First according to summation by part (Lemma 8): we let Aj :=

∏j+1
j′=N−1(I − Qj′Hj′) and

Bj = Qj∇fσ(j)(v
r), then we have:

gr =

N∑
j=1

j+1∏
j′=N

(I−Qj′Hj′)Qj∇fσ(j)(v
r)

=

N∑
j=1

AjBj =

N∑
j=1

Qj∇fσ(j)(v
r)−

N−1∑
n=1

 n+2∏
j′=N

(I−Qj′Hj′)−
n+1∏
j′=N

(I−Qj′Hj′)

 n∑
j=1

Qj∇fσ(j)(v
r)

=

N∑
j=1

Qj∇fσ(j)(v
r)−

N−1∑
n=1

 n+2∏
j′=N

(I−Qj′Hj′)

Qn+1Hn+1

n∑
j=1

Qj∇fσ(j)(v
r).
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Hence we have:

∥gr − ηNK∇Φ(α̂,vr)∥2

=

∥∥∥∥∥∥ηNK∇Φ(α̂,vr)−
N∑
j=1

j+1∏
j′=N−1

(I−Qj′Hj′)Qj∇fσ(j)(v
r)

∥∥∥∥∥∥
2

=

∥∥∥∥∥∥ηNK

N∑
j=1

α̂(σ(j))∇fσ(j)(v
r)−

 N∑
j=1

Qj∇fσ(j)(v
r)−

N−1∑
n=1

 n+2∏
j′=N

(I−Qj′Hj′)

Qn+1Hn+1

n∑
j=0

Qj∇fσ(j)(v
r)

∥∥∥∥∥∥
2

(1)

≤ 2

∥∥∥∥∥∥
ηNK

N∑
j=1

α̂(σ(j))∇fσ(j)(v
r)−

N∑
j=1

Qj∇fσ(j)(v
r)

∥∥∥∥∥∥
2

+ 2

∥∥∥∥∥∥
N−1∑
n=1

 n+2∏
j′=N

(I−Qj′Hj′)

Qn+1Hn+1

n∑
j=1

Qj∇fσ(j)(v
r)

∥∥∥∥∥∥
2

(2)

≤

(
20η2N2K2

(
e

4R− e

)2

+ 36e6η4N4K4L4

)
∥∇Φ(α̂,vr)∥2 + 256η2N3K2

(
e

4R− e

)2

G2 log(1/p)

+ 244e6η4N4K4L4G2N log(1/p)

(3)

≤

(
20η2N2K2

(
e

4R− e

)2

+ 36e6η4N4K4L4

)
2L (Φ(α̂,vr)− Φ(α̂,v∗(α̂)))

+

(
244e6η4N4K4L4 + 256η2N3K2

(
e

4R− e

)2
)
G2N log(1/p)

where in (1) we apply Jensen’s inequality, in (2) we plug in Lemma 11 (a), and Lemma 12, and in (3)
we use the L-smoothness of Φ. Plugging above bound back in (19) yields:

E
∥∥vr+1 − v∗(αr)

∥∥2
≤ (1− 1

2
µηNK)E ∥vr − v∗(αr)∥2 + η2N2K2e4δ2

−

(
ηNK − 4η2N2K2L−

(
1

2µηNK
+ 2

)(
20η2N2K2

(
e

4R− e

)2

− 36e6η4N4K4L4

))
× E[Φ(αr,vr)− Φ(αr,v∗(αr))]

+

(
1

2µηNK
+ 2

)(
244e6η4N4K4L4 + 256η2N3K2

(
e

4R− e

)2
)
G2N log(1/p).

Since we choose η = 4 log(
√
NKR)

µNKR , and

R ≥ max

3

8
e,

3

√
64κ2 log(

√
NKR)e6

9µ

 ,
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hence we have:

E
∥∥vr+1 − v∗(αr)

∥∥2
≤ (1− 1

2
µηNK)E ∥vr − v∗(αr)∥2 + η2N2K2e4δ2 − 1

2
ηNK E[Φ(α̂,vr)− Φ(α̂,v∗(α̂))]︸ ︷︷ ︸

≥0

+

(
1

2µηNK
+ 2

)(
244e6η4N4K4L4 + 256η2N3K2

(
e

4R− e

)2
)
G2N log(1/p)

≤
(
1− 1

2
µηNK

)
E ∥vr − v∗(α̂)∥2 + η2N2K2e4δ2

+

(
1

2µηNK
+ 2

)(
244e6η4N4K4L4 + 256η2N3K2

(
e

4R− e

)2
)
G2N log(1/p).

Putting above inequality back to (18) yields:

∥vr+1 − v∗(αr+1)∥2 ≤
(
1− 1

4a

)
∥vr − v∗(αr)∥2 + 2η2N2K2e4δ2 + (1 + 4a− 2)κ2

Φ∥αr+1 −αr∥2

+ 2

(
1

2µηNK
+ 2

)(
244e6η4N4K4L4 + 256η2N3K2

(
e

4R− e

)2
)
G2N log(1/p)

≤
(
1− 1

4a

)
∥vr − v∗(αr)∥2 + 2η2N2K2e4δ2

+ 2

(
1

2µηNK
+ 2

)(
244e6η4N4K4L4 + 256η2N3K2

(
e

4R− e

)2
)
G2N log(1/p)

+O

(
κ2
Φ

µηNK

((
1− 1

κg

)Tα

+ κ2
gL

2ζ̄i(w
∗)

(
γ2L (1− µγ)

r
DG+

γ3κδ2

M
+

γ2δ2

M

)))

where at second inequality we plug in Lemma 14. Unrolling the recursion from r = R to 0, and
plugging in η = 4 log(NKR3)

µNKR yields:

∥vR − v∗(αR)∥2

≤
(
1− 1

4
µηNK

)R

∥v0 − v∗(α0)∥2 + 1

µ
ηNKe4δ2

+ 8
1

µ

(
1

2µηNK
+ 2

)(
244e6η3N3K3L4 + 256ηN2K

(
e

4R− e

)2
)
G2N log(1/p)

+O

(
κ2
Φ

µηNK

R∑
r=0

(
1− 1

4a

)R−r
((

1− 1

κg

)Tα

+ κ2
gL

2ζ̄i(w
∗)

(
γ2L (1− µγ)

r
DG+

γ3κδ2

M
+

γ2δ2

M

)))

≤ O

(
∥v0 − v∗(α0)∥2

NKR3

)
+ Õ

((
κ4

R2
+

N

µ2R2

)
G2N log(1/p) +

δ2

µR

)
+ Õ

(
Rκ2

Φ

R∑
r=0

(
1− log(NKR3)

R

)R−r
((

1− 1

κg

)Tα

+ κ2
gL

2ζ̄i(w
∗)

(
γ2L (1− µγ)

r
DG+

γ3κδ2

M
+

γ2δ2

M

)))
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Plugging in γ = log(NKR3)
µR yields:

∥vR − v∗(αR)∥2 ≤ O

(
∥v0 − v∗(α0)∥2

NKR3

)
+ Õ

((
κ4

R2
+

N

µ2R2

)
G2N log(1/p) +

δ2

µR

)
+ Õ

(
κ2
ΦR

(
γ2L2

R∑
r=0

(
1− log(NKR3)

R

)R

κ2
gL

2ζ̄i(w
∗)DG

+

R∑
r=0

(
1− log(NKR3)

R

)R−r
((

1− 1

κg

)Tα

+
κ2
gL

2ζ̄i(w
∗)γ2δ2

M

)))

≤ O

(
D2

NKR3

)
+ Õ

((
κ4

R2
+

N

µ2R2

)
G2N log(1/p) +

δ2

µR

)
+ Õ

(
κ2
Φκ

2κ2
gL

2ζ̄i(w
∗)DG

R
+ κ2

ΦR
2

((
1− 1

κg

)Tα

+
κ2
gκ

2ζ̄i(w
∗)δ2

µ2MR2

))

Since v̂i = vR and α̂i = αR, we have the convergence of ∥v̂i − v∗(α̂i)∥2. Plugging this conver-
gence rate together with the convergence of ∥α̂i −α∗∥2 from Lemma 15:

∥α̂i −α∗∥2 ≤ O

(
2(1− 1

κg
)Tα +O

(
κ2
g ζ̄i(w

∗)L2 2

µ
(1− µγ)

R
+ 2γ

δ2

µ2M

))
≤ Õ

((
1− 1

κg

)Tα

+O

(
κ2
g ζ̄i(w

∗)L2 2

µ

1

R
+

δ2

µ3RM

))
together with applying Lemma 2 leads to:

Φ(α∗
i , v̂i)− Φ(α∗

i ,v
∗
i ) ≤ 2L ∥v̂i − v∗(α̂i)∥2 +

(
2κ2

ΦL+
4NG2

L

)
∥α̂i −α∗

i ∥
2

≤ O

(
LD2

NKR3

)
+ Õ

((
κ4L

R2
+

NL

µ2R2

)
G2N log(1/p) +

Lδ2

µR

)
+ Õ

(
κ2
Φκ

2κ2
gL

3ζ̄i(w
∗)DG

R
+ κ2

ΦLR
2

(
1− 1

κg

)Tα

+
Lκ2

Φκ
2
gκ

2ζ̄i(w
∗)δ2

µ2M

)

+

(
2κ2

ΦL+
4NG2

L

)
Õ

((
1− 1

κg

)Tα

+
κ2
g ζ̄i(w

∗)κL

R
+

δ2

µ3RM

)

≤ O

(
LD2

NKR3

)
+ Õ

((
κ4L

R2
+

NL

µ2R2

)
G2N log(1/p) +

Lδ2

µR

)
+ Õ

(
κ2
Φκ

2κ2
gL

3ζ̄i(w
∗)DG

R
+ κ2

ΦLR
2

(
1− 1

κg

)Tα

+
L2κ2κ2

gκ
2
Φζ̄i(w

∗)δ2

µ2M

)
.

thus completing the proof.
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