
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

ROLL THE DICE: MONTE CARLO DOWNSAMPLING AS
A LOW-COST ADVERSARIAL DEFENCE

Anonymous authors
Paper under double-blind review

ABSTRACT

The well-known vulnerability of Neural Networks to adversarial attacks is con-
cerning, more so with the increasing reliance on them for real-world applica-
tions like autonomous driving, medical imaging, and others. Multiple previous
works have proposed defense methods against adversarial attacks, including ad-
versarial training, adding random noise to images, frequency pooling, and oth-
ers. We observe from several such works, that there are two main paradigms
for mitigating adversarial attacks. First, effective downsampling leads to learn-
ing better feature representations during training, thus improving the performance
on attacked and non-attacked samples. However, these methods are expensive.
Second, perturbing samples with for example random noise helps in mitigating
adversarial attacks as they stymie the flow of gradients to optimize the attacks.
However, these methods lower the network’s performance on non-attacked sam-
ples. Thus, in this work, we combine the best of both strategies to propose a
novel Monte-Carlo sampling-based approach for downsampling called Stochastic
Downsampling. We combine bi-linear interpolation with Monte Carlo integration
for performing downsampling. This helps us mitigate adversarial attacks while
preserving the performance of non-attacked samples, thus increasing reliability.
Our proposed Stochastic Downsampling operator can easily be integrated into
any existing architecture, including adversarially pre-trained networks, with some
finetuning. We show the effectiveness of Stochastic Dowsampling over multiple
image classification datasets using different network architectures with different
training strategies. We provide the code for performing Stochastic Downsampling
here: Anonymous GitHub Repository.

1 INTRODUCTION

The advent of Machine Learning (ML) methods, specifically in Computer Vision (CV), has fu-
eled their increased application for real-world applications such as Autonomous Driving(Hu et al.,
2023), Semantic Segmentation(Ronneberger et al., 2015; Chen et al., 2017), Optical Flow Estima-
tion(Dosovitskiy et al., 2015; Ilg et al., 2017; Teed & Deng, 2020), Panoptic Segmentation(Sirohi
et al., 2023; Mohan & Valada, 2021), Image Restoration(Zamir et al., 2022; Chen et al., 2022;
Agnihotri et al., 2023a), among others. The reliability of models trained with such methods is of
paramount importance for their applications, especially those where human safety is critical. How-
ever, prior works(Goodfellow et al., 2015; Kurakin et al., 2017; Gu et al., 2022; Schrodi et al., 2022;
Agnihotri et al., 2023c; Grabinski et al., 2022b; 2023; Croce et al., 2021; Hendrycks & Dietterich,
2019; Wong et al., 2020) have shown that ML methods are susceptible to adversarial attacks and
distribution shifts making them non-robust. These vulnerabilities of a non-robust ML model can be
exploited by an attacker to fool the model, or by natural weather conditions, to fail the model on the
target task. This adversely affects their reliability for any safety critical real-world task.

Prior works have proposed methods to alleviate this vulnerability by either encouraging the ML
model to learn more stable feature representations or by obstructing the optimization process of the
attacks, such that the attack effectiveness is reduced. The former can be achieved by either using
learning strategies, such as adversarial training (Salman et al., 2020; Liu et al., 2023; Singh et al.,
2024) or by architectural design choices (Grabinski et al., 2022a; 2023; Agnihotri et al., 2023b) that
lead to the ML model learning better representation thus increasing their endurance of attacks and
distribution shifts. The latter can be achieved by adding blurring (Zhang, 2019) or noise (Zhang,

1

https://anonymous.4open.science/r/stochastic-downsampling/

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

0 5 10 15
AutoAttack Accuracy

50

60

70

80

90

i.i
.d

. A
cc

ur
ac

y

406080
mCE

50

60

70

80

90

i.i
.d

. A
cc

ur
ac

y

Adversarial Defense Methods and Sampling Strategies
Baseline
ASAP (Trained)
ASAP (Finetuned)
AvgPooling
Dropout + AvgPooling

BlurPooling (Trained)
Blurpooling (Finetuned)
AddNoise
Stochastic Downsampling (Ours)
Stochastic Downsampling + AddNoise (Ours)

Figure 1: Comparing the performance of various adversarial attack defense methods and down-
sampling approaches intended to improve robustness. We observe that our proposed Stochastic
Downsampling offers the best trade-off between i.i.d. accuracy, reliability, and generalization.

2019; Rony et al., 2019) to the feature maps. However, on the one hand, the proposed learning
strategies require training the ML models (such that the epochs of training the robust ML model
are equal to the epochs of training required by the non-robust model), often from scratch which
requires significant computation, especially increasing the time complexity. These methods do not
consider the information already learned by the non-robust model. Training the ML models with
adversarial attacks (Kurakin et al., 2017; Wong et al., 2020) has the added complexity of performing
the attacks during training which can be very expensive (Agnihotri et al., 2023c). On the other hand,
strategies like adding noise to disturb the gradient flow also corrupt the image and therefore lead to
a loss in performance on independent and identically distributed (i.i.d.) samples (not adversarially
attacked) of images and also lead to a loss in generalization, for example, to changes in distribution
due to weather conditions or digital corruptions. Additionally, these methods also fail to protect the
model against attacks that do not require the passing of gradients through the model for optimizing
the attack, i.e. black-box adversarial attacks like Squares attack(Andriushchenko et al., 2020) in
AutoAttack(Croce & Hein, 2020c).

To address this issue, we propose Stochastic Downsampling (SD), an adversarial defense method
that helps the model be robust against adversarial attacks and common corruptions(Hendrycks &
Dietterich, 2019) while preserving the performance of the model on clean samples. Unlike existing
gradient obfuscation defenses, it provides robustness against zero-order (black-box) adversarial at-
tacks due to its inherent stochasticity. At the same time, the sampling in the proposed operation is
purely done within the variance of the existing data, allowing it to be used within pre-trained models
with only little adaptation and to perform at very low cost in terms of clean accuracy.

Specifically, Stochastic Downsampling changes the downsampling operation in a ML model, re-
placing it with a Monte-Carlo Integration1, followed by bilinear interpolation. For Convolutional
Neural Networks (CNNs), this is achieved by changing the stride of the strided convolution oper-
ations used for downsampling to one and appending the new Stochastic Downsampling layer to it
for downsampling feature maps. Architectures like ViT (Touvron et al., 2021; Tan & Le, 2021;
Radosavovic et al., 2020) do not have a downsampling step and thus might require a different ap-
proach. Our proposed Stochastic Downsampling has no additional learnable parameters and thus
does not require learning. However, the other model weights might require some finetuning to adapt

1please refer to (Caflisch, 1998) for more details on Monte Carlo Integration

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

to the new downsampling method and thus are trained with a low learning rate for very few epochs
(specifically just 5 epochs) providing us with a low-cost solution. The Monte-Carlo Integration pro-
vides the stochasticity required to disorient the attacks, while the finetuning helps preserve model
performance.

In Fig. 1, we show the gains from Stochastic Downsampling, compared to other approaches, and
show that our method provides the best trade-off between i.i.d. performance, reliability (shown by
AutoAttack Accuracy), and ability to generalize to image corruptions (show by mean Corruption
Error i.e. mCE). We describe the method in detail in Section 3.

The following are the most important contributions of our work:

• We propose a novel downsampling operation Stochastic Downsampling that provides de-
fense against adversarial attacks without any additional learnable parameters.

• Our method preserves most of the i.i.d. performance of the model while helping improve
reliability under adversarial attacks.

• Stochastic Downsampling can be included in the model architecture with elementary and
straightforward modifications.

• We provide an in-depth analysis of our proposed method in comparison to other methods
and show that Stochastic Downsampling offers the best possible trade-off.

2 RELATED WORK

Following, we discuss prior works done toward defense from adversarial methods

Gradient Obfuscation All white-box adversarial attacks attempt to optimize the attack noise by
back-propagating the loss gradients to the input image. However, if this flow of gradients were to be
disturbed, it would interfere with the optimization ability of the attack and thus such methods would
be hacks that work at adversarial defense. This is known as “Obfuscated Gradients” as shown by
Athalye et al. (2018). They categorized obfuscation of gradients into three types, Shattered Gra-
dients, where the gradients are incorrect or non-existent, Exploding & Vanishing Gradients, and
Stochastic Gradients, which causes incorrect estimation of the gradients. Our proposed Stochas-
tic Downsampling might appear similar to the Stochastic Gradient type of Obfuscated Gradients
method, however, as we sample multiple points from the valid data space (i.e. within the variance
of correct sampling), we simply change the direction of the gradients within their correct range
rather than making them incorrect. Thus, Stochastic Downsampling is more than just a gradient
obfuscation method but is an efficient sampling method with stochasticity.

Byun et al. (2022); Nguyen et al. (2023); Li et al. (2019) proposed adding noise at various stages of
the model. For our comparative analysis, we take inspiration from them and include “AddNoise”, as
a method for comparison. Here, in each forward pass on the model, we add noise to feature maps,
after downsampling them. The noise itself can be sampled from a Gaussian or a uniform distribution
and has the same spatial resolution as the feature maps to which it is added.

While moderately effective in disturbing gradient flow and thus weakening the adversarial attacks,
these methods lead to a significant drop in clean performance. This is explained by Zhang et al.
(2019) and Tsipras et al. (2019), which show there exists a trade-off between robustness and clean
performance of a model. However, we demonstrate that Stochastic Downsampling can achieve a
significantly better trade-off than some simple hacks, helping the model extract meaningful repre-
sentations during downsampling.

Adversarial Training Adversarial training is one of the most promising methods to enhance the
model’s robustness, especially in the presence of adversarial attacks (Goodfellow et al., 2015; Ku-
rakin et al., 2017; Moosavi-Dezfooli et al., 2016; Carlini & Wagner, 2017; Rony et al., 2019) but also
to enhance general model robustness (Croce et al., 2020). During adversarial training, the model is
confronted with adversarial samples by adding an additional loss term (Liu et al., 2023; Kurakin
et al., 2017), showing augmented inputs (Geirhos et al., 2018) or adding additional external or gen-
erated inputs. One widely used additional data source is using ddpm (Gowal et al., 2021; Rade &
Moosavi-Dezfooli, 2021; Rebuffi et al., 2021) dataset which is generated by Ho et al. (2020) and

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

includes one million additional samples for CIFAR-10. For the evaluation and collection of robust
models RobustBench (Croce et al., 2020) provides a compressive overview of recent adversarially
trained models and their performance on AutoAttack (Croce & Hein, 2020a) and Common Corrup-
tions (Hendrycks & Dietterich, 2019; Kar et al., 2022).

However, most of these methods to enhance the model’s robustness rely heavily on additional data
or data augmentation which takes much longer to train. In the case of traditional adversarial training,
one needs even several forward and backward passes to calculate the adversarial noise depending
on the adversarial attack used to generate the perturbations. Perturbations generated using several
iterations (Kurakin et al., 2017) provide stronger robustness than perturbations generated with a
single iteration (Goodfellow et al., 2015). Summarizing, adversarial training mostly comes at an
increased amount in computations needed due to more samples and a harder learning problem this
can increase the training time by a factor between seven and fifteen (Kurakin et al., 2017; Wang
et al., 2020; Wu et al., 2020; Zhang et al., 2019; Grabinski et al., 2022a)

Anti-Aliasing Sampling for increased Robustness Prior works on inherently improving robust-
ness via Anti-Aliasing Sampling include aliasing-free downsampling like Frequency Low Cut (FLC)
Pooling (Grabinski et al., 2022a), aliasing- and sinc-artifact-free pooling (ASAP) (Grabinski et al.,
2023), BlurPooling (Zhang, 2019) or adaptive BlurPooling (Zou et al., 2020). While BlurPooling
and adaptive BlurPooling use blurring before downsampling to reduce aliasing and ensure greater
shift invariance, FLC Pooling and ASAP ensure aliasing-free downsampling, leading to higher na-
tive robustness and a reduced risk of catastrophic overfitting in FGSM adversarial training. In Gra-
binski et al. (2022b), the authors show a strong negative correlation between aliasing after down-
sampling and the robustness of a network. Thus, ensuring aliasing-free downsampling increases a
network’s robustness.

3 METHOD

Strided Convolution AddNoise Stochastic Downsampling
Higher Resolution

Feature Map (M X N)

*
Strided

Convolution
(eg. stride=2)

Learnable
Filter

Downsampled
Feature Map
(M/2 X N/2)

Higher Resolution
Feature Map (M X N)

*
Strided

Convolution
(eg. stride=2)

Learnable
Filter

Downsampled
Feature Map
(M/2 X N/2)

Noise

+

Figure 2: An Abstract representation of downsampling operations performed by strided convolution,
AddNoise, and Stochastic Downsampling.

The rise of Deep Learning in computer vision is undoubtedly an impressive achievement. There are
several modifications and adjustments that keep developing the field in the domain such as object
detection, segmentation, and so on. One such development is the modification of the Pixel lattice
structure in the sensor by Sommerhoff et al. (2023). The proposed idea of a differential sensor
simulation framework modified the pixel lattice using rectilinear and curvilinear deformation. This
helped the model to capture better feature representation when the image is downsampled using the
deformed sensor layout.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

The practical implementation of Sommerhoff et al. (2023) aims to efficiently compute the accumu-
lated incoming radiance Li captured by a (non-uniform) sensor pixel as

Ik =
1

area(Ak)

∫
Ak

W (x)Li(x)dx, (1)

where Ak is the set containing every point of the k-th pixel, W is a weighting function that can
model spatially varying pixel response and Ik is the final pixel color.

The analytic integral in Eq. 1 can be approximated by Monte Carlo integration:

Ik ≈ 1

n

n∑
i

W (xi)Li(xi), (2)

where xi are uniform random samples inside the pixel. Computing this integral with Monte Carlo
sampling is similar to stochastic multisampling as a spatial anti-aliasing technique, which is com-
monly utilized in computer graphics, especially for photorealistic path-tracing (Ernst et al., 2006;
Glassner, 2014; Pharr et al., 2024).

The quality of this approach scales with the number of random samples per pixel and the expected
value is the true integral. On the contrary a lower number of samples results in higher variance and
thus more noise. We ablate over the choice of Samples Per-Pixel (SPP), to find an ideal number.

Since a closed form expression for the incoming radiance Li is generally not available and simula-
tion, e.g. by raytracing, is computationally expensive, Sommerhoff et al. (2023) propose to approx-
imate Li by existing high-resolution images. These images can be sampled at arbitrary positions by
bilinear interpolation. Together with Monte Carlo integration, this effectively results in a Stochastic
Downsampling operation, if the resolution of the target sensor is lower than the resolution of the
high-resolution input image.

We make the observation that this downsampling scheme can be naturally extended from images
to more general feature maps F ∈ RW×H×C . For this, we make the simplifying assumptions of
uniform pixels and constant W (x) = 1. In the following, square brackets denote querying a feature
map at integer locations, i.e. F [i, j] ∈ RC , whereas parenthesis denotes bilinear interpolation of the
for nearest neighbors at not necessarily integer coordinates, e.g. F (x, y) ∈ RC . Using this notation,
our stochastic downsampling operation in total can thus be expressed as shown in Eq. (3),

F ↓α [u, v] =
1

n

n∑
i

F (αxi, αyi) (3)

where xi ∼ U[u,u+1] and yi ∼ U[v,v+1] follow uniform distributions inside the current pixel.

The Stochastic Downsampling operation can replace other pooling operations like average pool-
ing, or downsampling operations like strided convolution, commonly used in many neural network
architectures. We implement it in PyTorch using the grid sample function, which is differentiable
with respect to the input feature map.

Most architectures use a strided convolution for downsampling, as shown by Eq. (4) for a downsam-
pling factor of two.

M∑
2m

N∑
2n

FM×N (xm, yn)Ki×j(i−m, j − n) = FM
2 ×N

2
(4)

where K is the learned convolution kernel. In our modification, instead of taking a step of size
two in Eq. (4), we modify the step size to one and then use Eq. (3) to perform the downsampling
operation.

To perform ablation studies, we experiment with a few other methods, we describe them here:

AvgPool: We change the stride in Eq. (4) to one, and use Average Pooling with a 2×2 kernel for
downsampling.

DropOut + AvgPool: To ablate over the repercussions of looking at merely 2 pixels (at random),
when downsampling with a 2×2 sized kernel in Average Pooling, we use DropOut(Srivastava et al.,
2014) with a dropping probability of 50% after convolution with a stride of one, and before the
AvgPool operation.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

AddNoise: To ablate if our gains are merely due to adding noise to feature maps, or truly due to
the Stochastic Downsampling operation itself, we perform downsampling as shown by Eq. (4), but
add noise to the feature maps, after the downsampling. The noise can be sampled from a uniform
distribution or a Gaussian distribution.

We provide an abstract overview of the prominent downsampling methods in Fig. 2.

4 EXPERIMENTS

Following, we report the implementation details of the experiments performed and discuss the ob-
servations made on the results.

4.1 EXPERIMENTAL SETUP

Here we provide an overview of the implementation details, we provide additional implementation
details in Appendix A.

Adversarial Attacks. We use PGD(Kurakin et al., 2017), APGD(Wong et al., 2020) and AutoAt-
tack(Croce & Hein, 2020a), with ℓ∞-norm bounded ϵ = 4

255 and α=0.01 for all our experiments.
PGD and APGD are white-box attacks, meaning they require an undisturbed flow of gradients for
optimizing their attack. However, AutoAttack, as proposed comprises APGD-CE (non-targeted
APGD attack with Cross Entropy loss), APGD-T (targeted APGD attack), FAB(Croce & Hein,
2020b) and Square(Andriushchenko et al., 2020) Attacks, from these, Square Attack is a black-box
attack that does not require a flow of gradients through the ML model. Additionally, since Stochastic
Downsampling is essentially a gradient obfuscation method, we also test against Square Attack (An-
driushchenko et al., 2020) alone, as it is a black-box attack and does not use the gradient information
of a model to optimize the attack.

Metrics. For independent and identically distributed (i.i.d.) (non-attacked and non-perturbed) sam-
ples, we report the i.i.d. Accuracy (i.i.d. Acc). For evaluations against adversarial attacks, we report
the accuracy after the respective attack. For samples from the 2D Common Corruptions variant of
the respective datasets, we report the mean Corruption Error (mCE), this is the mean error by the
method on all the corrupted samples. All numbers are reported in percentages.

A high i.i.d. accuracy indicates good performance, while a high accuracy against adversarial attacks
indicates more reliability and a lower mCE value indicates more generalization ability.

4.2 RESULTS

Following we report the experimental results, comparing our proposed Stochastic Downsampling
(SD), with other known methods which can be used for defense against adversarial attacks. In

Table 1: Here we report the performance of various defense methods against adversarial attacks and
common corruptions using ConvNeXt-tiny and the ImageNet100 dataset. We perform these exper-
iments over three different seeds and report the mean and standard deviation (std) as ‘mean±std’.
† denotes longer training until convergence of training loss. All other methods are finetuned for
merely five epochs.

Defense Method i.i.d. Acc. (%)↑ PGD Acc. (%)↑ AutoAttack Acc. (%)↑ Square Attack Acc. (%)↑ mCE (%)↓
Baseline† 89.05 ± 0.1 0.51 ± 0.06 0 ± 0 36.26 ± 0.54 34.94 ± 0.31
ASAP† 86.36 ± 0.21 1.91 ± 0.2 0 ± 0 13.59 ± 0.65 34.94 ± 0.53
ASAP 51.25 ± 1.12 0.01 ± 0.01 0 ± 0 5.93 ± 0.21 84.2 ± 0.89
AvgPool 87.54 ± 0.16 1.49 ± 0.24 0 ± 0 24.07 ± 0.47 35.11 ± 0.49
DropOut + AvgPool 81.19 ± 0.71 0.42 ± 0.04 0 ± 0 12.66 ± 0.61 54.47 ± 1.69
Blurpooling† 81.97 ± 0.13 0.57 ± 0.25 0 ± 0 12.53 ± 0.86 44.41 ± 0.52
Blurpooling 54.17 ± 3.3 0.23 ± 0.03 0.01 ± 0.01 3.79 ± 0.42 70.99 ± 2.54
AddNoise (uniform) 87.25 ± 0.15 33.49 ± 0.81 1.78 ± 0.11 85.33 ± 0.19 37.98 ± 0.11
AddNoise (std=0.75) 83.53 ± 0.05 40.55 ± 0.55 16.4 ± 0.18 79.78 ± 0.49 42.96 ± 0.29
SD (Ours) 86.83 ± 0.16 40.81 ± 0.64 2.5 ± 0.1 83.08 ± 0.07 38.34 ± 0.6
SD + AddNoise(std=0.15) (Ours) 85.23 ± 0.24 48.12 ± 0.14 15.18 ± 0.1 81.3 ± 0.16 39.24 ± 0.25

Tab. 1, we observe that methods such as BlurPooling and ASAP require long training and do not
perform well when simply fintuned at a low budget. The recently proposed ASAP significantly

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

outperforms BlurPooling in all aspects, i.e. i.i.d. accuracy, OOD robustness and adversarial robust-
ness. Whereas, certain variants of AddNoise outperform ASAP w.r.t. adversarial robustness, while
ASAP still outperforms Addnoise variants in i.i.d. performance and OOD robustness. Please note,
here AddNoise variants were only finetuned for 5 epochs, whereas ASAP requires full training.
AddNoise and ASAP provide a trade-off, here we trade i.i.d. performance and generalization ability
with reliability under adversarial attacks. However, this is not ideal, we require our models to have
good i.i.d. performance, generalization ability, and reliability. To this effect, Stochastic Downsam-
pling comes in handy. As shown in Tab. 1, Stochastic Downsampling provides the best possible
trade-off, for an insignificant drop in i.i.d. accuracy, and generalization ability, it provides signifi-
cant gains in reliability under adversarial attacks. In case of scenarios where adversarial robustness
is more important, Stochastic Downsampling can also be coupled with AddNoise to trade-off some
i.i.d. accuracy and OOD robustness for more adversarial robustness.

Stochastic Downsampling might be considered similar to a gradient obfuscation method (Athalye
et al., 2018). Thus, to ascertain that it is not providing a false sense of security, we additionally
perform Square Attack, a black-box adversarial attack that does not require gradient information
of the model to optimize the attack. We observe that the performance of the model with Stochastic
Downsampling is almost unaffected under Square attack. This shows that Stochastic Downsampling
is not providing a false sense of security.

5 ANALYSIS AND ABLATION STUDIES

Following we provide analysis and ablation studies to demonstrate that despite being similar to a
gradient obfuscation method, Stochastic Downsampling does not provide a false sense of security.
Additionally, we demonstrate the versatility and ease of use of Stochastic Downsampling.

5.1 EXTENDING TO OTHER MODELS AND DATASETS

The gains obtained using Stochastic Downsampling are not limited to the ConvNeXt-tiny model and
ImageNet100 dataset but extend to other models and larger datasets as well. To demonstrate this we
extend the experiments to ConvNeXt-Small, ConvNeXt-Base, ResNet18, ResNet50, and ResNet101
on the ImageNet-1k dataset. These models were pretrained on the ImageNet-1k dataset, and then

Table 2: Here we report the performance of various model finetuning strategies against adversarial
attacks for the ImageNet-1k dataset. All methods except ‘Baseline’ are finetuned for 5 epochs.

Model Method i.i.d. Accuracy (%)↑ PGD Acc (%)↑ AutoAttack Acc. (%)↑

ConvNeXt-T
Baseline 82.06 1.08 0.00
SD + AddNoise 77.55 29.05 6.00
SD 79.21 20.25 0.94

ConvNeXt-S
Baseline 83.15 3.7 0.00
SD + AddNoise 79.23 32.34 4.86
SD 80.45 23.59 0.56

ConvNeXt-B
Baseline 83.83 5.12 0.00
SD + AddNoise 80.01 29.98 3.32
SD 81.02 21.41 0.66

ResNet18
Baseline 69.76 0.29 0.00
SD + AddNoise 68.08 34.41 0.14
SD 69.24 19.39 0.80

ResNet50
Baseline 76.15 1.28 0.00
SD + AddNoise 73.73 53.80 0.16
SD 75.39 34.44 1.00

ResNet101
Baseline 77.37 2.33 0.00
SD + AddNoise 75.35 55.70 0.38
SD 76.60 36.59 0.94

the strided convolution layers used in them for downsampling were replaced with non-strided Con-
volution layers (with the same weights as the strided-convolution) and Stochastic Downsampling

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

layer. The resultant models were then finetuned for 5 epochs. We observe in Tab. 2 that the minimal
trade-off between i.i.d. accuracy and adversarial robustness observed in Sec. 4.2 still holds demon-
strating the effectiveness of Stochastic Downsampling even with large models on vast datasets with
significantly many classes. Please refer to the Tab. 6 for experiments with CIFAR-100.

5.2 BETTER UNDERSTANDING THE TRADE-OFF

We observed the performance trade-off by AddNoise, Stochastic Downsampling, and the combina-
tion of Stochastic Downsampling and AddNoise in Sec. 4.2. Intruiged by this trade-off we attempt
to understand it better and thus perform more detailed evaluations as reported in Tab. 3. Here we

Table 3: Here we report the performance of ConvNeXt-tiny with various defense strategies against
AutoAttack for the ImageNet100 dataset. The noise for AddNoise is sampled from a normal distri-
bution with mean=0 and different standard deviations (std) denoted below, except AddNoise (Uni-
form), here the noise is sampled from a uniform distribution. All methods are finetuned for 5 epochs,
except those denoted by †, these are finetuned for a longer duration (until training loss converges).

Method i.i.d. Accuracy (%)↑ AutoAttack (%)↑ mCE (%)↓
APGD-CE APGD-T FAB-T Square

Baseline 89.00 0.00 0.00 0.00 0.00 35.00

AddNoise (std=0.05) 88.82 0.38 0.14 0.06 0.02 34.842
AddNoise (std=0.10) 88.48 0.56 0.26 0.06 0.06 35.381
AddNoise (std=0.15) 88.12 0.92 0.36 0.24 0.12 36.217
AddNoise (std=0.30) 87.18 9.02 2.94 2.76 2.72 37.879
AddNoise (std=0.50) 85.68 20.22 10.66 10.28 10.26 40.218
AddNoise (std=0.75) 83.52 24.82 17.02 16.74 16.54 42.65
AddNoise† (std=0.75) 86.76 1.28 0.28 0.18 0.12 37.753
AddNoise (std=0.90) 82.48 26.54 18.84 18.36 18.28 43.916
AddNoise (std=1.0) 81.58 26.74 19.82 19.5 19.38 44.406

AddNoise (Uniform) 87.10 6.48 2.18 1.96 1.92 37.853

SD + AddNoise (std=0.05) 86.12 14.48 6.14 5.94 5.88 37.837
SD + AddNoise (std=0.1) 85.62 21.12 11.40 11.18 11.10 39.171
SD + AddNoise (std=0.15) 84.98 26.48 15.36 15.14 15.12 38.955
SD + AddNoise (std=0.9) 75.68 37.72 29.38 28.74 28.42 46.403
SD + AddNoise (std=0.15)† 86.76 14.82 6.00 5.80 5.74 36.941

SD 86.80 7.70 3.00 2.64 2.60 37.74

vary, the degree of noise added to the feature maps after downsampling. That is for AddNoise when
sampling from a Normal distribution, we keep the mean equal to zero and vary the standard devi-
ation from 0.05 to 1.0. Additionally, we do the same when combining Stochastic Downsampling
and AddNoise. Then, we arrive at the best possible trade-off, for AddNoise it is with a standard de-
viation equal to 0.75. For the combination of Stochastic Downsampling and AddNoise, a standard
deviation of 0.15 provides a decent trade-off. However, depending on the scenario, one is free to
choose their ideal trade-off. As shown in Tab. 3, as the standard deviation increases, the accuracy
against adversarial attacks increases, and the i.i.d. accuracy and generalization ability decreases.

5.3 TRANSFER ATTACK COMPARISON

Apart from using Square Attacks in Sec. 4.2, to negate the argument of a false sense of security due
to gradient obfuscation, we transfer adversarial attacks from the baseline model, which allows the
adversarial attack to be optimized without any gradient obfuscation to models that inhibit the free
flow of gradients. We report our findings in Tab. 4. Here we observe that the attack is indeed strong
against the baseline model of ConvNeXt-tiny. However, when the attack is transferred to models
with alleged gradient obfuscation, that is models with AddNoise and Stochastic Downsampling, the
strength of the attack is reduced. Moreover, while AddNoise is reducing the attack to a great extent,
the model with Stochastic Downsampling is hardly affected by the attack thus reducing its strength
even more. This demonstrates that Stochastic Downsampling is not just another gradient obfusca-
tion method but is helping the network defend against adversarial attacks by extracting meaningful
representations even under adversarial attacks.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 4: Here we report the performance of transfer attacks across different defense strategies with
ConvNeXt-tiny using the ImageNet100 dataset. Defense methods are evaluated on adversarial
samples optimized using the ‘Baseline’ ConvNeXt-tiny.

Model PGD (%)↑ AutoAttack (%)↑
Baseline 0.54 0
AddNoise (std= 0.75) 45.24 45.4
SD 75.06 80.3
SD + AddNoise (std=0.15) 65.14 65.6

5.4 ABLATING THE EFFECT OF CONTEXT

As discussed in Sec. 3, the Stochastic Downsampling operation samples only two pixels (chosen at
random) in a region of the feature maps to downsample to one, i.e. samples per pixel (SPP) is two.
However, it would be interesting to ablate this spatial context available to Stochastic Downsampling.
Thus, we ablate increasing this spatial context such that the operation samples each downsampled
pixel using a varying number of pixels from the higher-resolution feature map. We report our

Table 5: Ablation over different values of samples per pixel (SPP) for Stochastic Downsampling
performed using ConvNeXt-tiny and ImageNet100 dataset.

SPP (%)↑ i.i.d. Accuracy (%)↑ PGD Accuracy (%)↑
1 85.78 50.22
2 86.8 41.38
4 87.06 30.76
8 87.02 18.14

16 87.02 9.06

findings in Tab. 5 and observe that as we increase context the i.i.d. accuracy increases, however, that
saturates after four samples per pixel. While the robustness of the model consistently decreases with
increasing context. Additionally, we observe that at SPP=2, the i.i.d. accuracy is marginally higher
than SPP=1. Thus, we use SPP=2 for our Stochastic Downsampling.

6 CONCLUSION

Adversarial attacks pose a threat to Deep Learning based methods. It is of paramount importance that
reliable DL-based methods can defend against such threats to a reasonable extent. However, most
adversarial defense methods inherently create a challenging trade-off between i.i.d. performance and
robustness. Stochastic Downsampling eases this challenge by significantly improving the trade-off
by increasing reliability with only a marginal drop in i.i.d. accuracy and generalization ability of DL-
based methods. Stochastic Downsampling is easy to incorporate in pre-trained models and requires
very limited finetuning to perform at its peak efficiency. The gains from Stochastic Downsampling
are consistent across model architectures, and datasets. We show that despite being very similar
to a gradient obfuscation based defense method, Stochastic Downsampling does not provide a false
sense of security. This work is a step in the direction of sampling-based adversarial defense methods
that help extract meaningful representations during downsampling, even under adversarial attacks.

LIMITATIONS

There is still a marginal drop in clean performance, ideally this should also be avoided. While
Stochastic Downsampling mitigates adversarial attacks better than other defense methods, there is
still significant room for improvement.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

REPRODUCIBILITY STATEMENT

All experimental results in this work are reproducible. We make the code base available to the
reviewers and will make it public upon acceptance. We understand that the evaluations involve
stochasticity and thus to demonstrate the effectiveness of our proposed Stochastic Downsampling,
we perform multiple experiments over 3 different seeds and report the mean and standard devia-
tion. We observe that the standard deviation is quite low indicating that the improvements due to
Stochastic Downsampling cannot be attributed to the stochastic behaviour.

REFERENCES

Shashank Agnihotri, Kanchana Vaishnavi Gandikota, Julia Grabinski, Paramanand Chandramouli,
and Margret Keuper. On the unreasonable vulnerability of transformers for image restoration-and
an easy fix. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pp.
3707–3717, 2023a.

Shashank Agnihotri, Julia Grabinski, and Margret Keuper. Improving stability during upsampling –
on the importance of spatial context, 2023b.

Shashank Agnihotri, Steffen Jung, and Margret Keuper. Cospgd: a unified white-box adversarial
attack for pixel-wise prediction tasks, 2023c.

Maksym Andriushchenko, Francesco Croce, Nicolas Flammarion, and Matthias Hein. Square at-
tack: a query-efficient black-box adversarial attack via random search. In ECCV, pp. 484–501.
Springer, 2020.

Anish Athalye, Nicholas Carlini, and David Wagner. Obfuscated gradients give a false sense of se-
curity: Circumventing defenses to adversarial examples. In International conference on machine
learning, pp. 274–283. PMLR, 2018.

Junyoung Byun, Hyojun Go, and Changick Kim. On the effectiveness of small input noise for
defending against query-based black-box attacks. In Proceedings of the IEEE/CVF winter con-
ference on applications of computer vision, pp. 3051–3060, 2022.

Russel E. Caflisch. Monte carlo and quasi-monte carlo methods. Acta Numerica, 7:1–49, 1998. doi:
10.1017/S0962492900002804.

Nicholas Carlini and David Wagner. Towards evaluating the robustness of neural networks. In 2017
ieee symposium on security and privacy (sp), pp. 39–57. IEEE, 2017.

Liang-Chieh Chen, George Papandreou, Florian Schroff, and Hartwig Adam. Rethinking atrous
convolution for semantic image segmentation, 2017.

Liangyu Chen, Xiaojie Chu, Xiangyu Zhang, and Jian Sun. Simple baselines for image restoration.
In ECCV, pp. 17–33. Springer, 2022.

Francesco Croce and Matthias Hein. Reliable evaluation of adversarial robustness with an ensemble
of diverse parameter-free attacks. In ICML, 2020a.

Francesco Croce and Matthias Hein. Minimally distorted adversarial examples with a fast adaptive
boundary attack. In International Conference on Machine Learning, pp. 2196–2205. PMLR,
2020b.

Francesco Croce and Matthias Hein. Reliable evaluation of adversarial robustness with an ensemble
of diverse parameter-free attacks. In ICML, 2020c.

Francesco Croce, Maksym Andriushchenko, Vikash Sehwag, Nicolas Flammarion, Mung Chiang,
Prateek Mittal, and Matthias Hein. Robustbench: a standardized adversarial robustness bench-
mark. CoRR, abs/2010.09670, 2020. URL https://arxiv.org/abs/2010.09670.

10

https://arxiv.org/abs/2010.09670

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Francesco Croce, Maksym Andriushchenko, Vikash Sehwag, Edoardo Debenedetti, Nicolas Flam-
marion, Mung Chiang, Prateek Mittal, and Matthias Hein. Robustbench: a standardized adver-
sarial robustness benchmark. In Thirty-fifth Conference on Neural Information Processing Sys-
tems Datasets and Benchmarks Track (Round 2), 2021. URL https://openreview.net/
forum?id=SSKZPJCt7B.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hi-
erarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pp. 248–255. Ieee, 2009.

Alexey Dosovitskiy, Philipp Fischer, Eddy Ilg, Philip Hausser, Caner Hazirbas, Vladimir Golkov,
Patrick Van Der Smagt, Daniel Cremers, and Thomas Brox. Flownet: Learning optical flow with
convolutional networks. In Proceedings of the IEEE international conference on computer vision,
pp. 2758–2766, 2015.

Manfred Ernst, Marc Stamminger, and Gunther Greiner. Filter importance sampling. In 2006 IEEE
Symposium on Interactive Ray Tracing, pp. 125–132. IEEE, 2006.

Songwei Ge, Shlok Mishra, Chun-Liang Li, Haohan Wang, and David Jacobs. Robust contrastive
learning using negative samples with diminished semantics. Advances in Neural Information
Processing Systems, 34:27356–27368, 2021.

Robert Geirhos, Patricia Rubisch, Claudio Michaelis, Matthias Bethge, Felix A Wichmann, and
Wieland Brendel. Imagenet-trained cnns are biased towards texture; increasing shape bias im-
proves accuracy and robustness. In International Conference on Learning Representations, 2018.

Andrew S Glassner. Principles of digital image synthesis. Elsevier, 2014.

Ian Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial
examples. In International Conference on Learning Representations, 2015. URL http://
arxiv.org/abs/1412.6572.

Sven Gowal, Sylvestre-Alvise Rebuffi, Olivia Wiles, Florian Stimberg, Dan Andrei Calian, and
Timothy A Mann. Improving robustness using generated data. Advances in Neural Information
Processing Systems, 34, 2021.

Julia Grabinski, Steffen Jung, Janis Keuper, and Margret Keuper. Frequencylowcut pooling-plug
and play against catastrophic overfitting. In European Conference on Computer Vision, pp. 36–
57. Springer, 2022a.

Julia Grabinski, Janis Keuper, and Margret Keuper. Aliasing and adversarial robust generalization
of cnns. Machine Learning, pp. 1–27, 2022b.

Julia Grabinski, Janis Keuper, and Margret Keuper. Fix your downsampling asap! be natively more
robust via aliasing and spectral artifact free pooling, 2023.

Jindong Gu, Hengshuang Zhao, Volker Tresp, and Philip HS Torr. Segpgd: An effective and efficient
adversarial attack for evaluating and boosting segmentation robustness. In ECCV, pp. 308–325.
Springer, 2022.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

Dan Hendrycks and Thomas Dietterich. Benchmarking neural network robustness to common cor-
ruptions and perturbations, 2019. URL https://arxiv.org/abs/1903.12261.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
Neural Information Processing Systems, 33:6840–6851, 2020.

J Hoffmann, S Agnihotri, Tonmoy Saikia, and Thomas Brox. Towards improving robustness of
compressed cnns. In ICML Workshop on Uncertainty and Robustness in Deep Learning (UDL),
2021.

11

https://openreview.net/forum?id=SSKZPJCt7B
https://openreview.net/forum?id=SSKZPJCt7B
http://arxiv.org/abs/1412.6572
http://arxiv.org/abs/1412.6572
https://arxiv.org/abs/1903.12261

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Yihan Hu, Jiazhi Yang, Li Chen, Keyu Li, Chonghao Sima, Xizhou Zhu, Siqi Chai, Senyao Du, Tian-
wei Lin, Wenhai Wang, Lewei Lu, Xiaosong Jia, Qiang Liu, Jifeng Dai, Yu Qiao, and Hongyang
Li. Planning-oriented autonomous driving. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, 2023.

Eddy Ilg, Nikolaus Mayer, Tonmoy Saikia, Margret Keuper, Alexey Dosovitskiy, and Thomas Brox.
Flownet 2.0: Evolution of optical flow estimation with deep networks. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pp. 2462–2470, 2017.

Oğuzhan Fatih Kar, Teresa Yeo, Andrei Atanov, and Amir Zamir. 3d common corruptions and
data augmentation. In Proc. IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 18963–18974, 2022.

Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. Cifar-10 and cifar-100 datasets, learning multi-
ple layers of features from tiny images. URl: https://www. cs. toronto. edu/kriz/cifar. html, 6(1):
1, 2009.

Alexey Kurakin, Ian J. Goodfellow, and Samy Bengio. Adversarial machine learning at scale. In
ICLR, 2017.

Sangjun Lee, Inwoo Hwang, Gi-Cheon Kang, and Byoung-Tak Zhang. Improving robustness to
texture bias via shape-focused augmentation. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR) Workshops, pp. 4323–4331, June 2022.

Bai Li, Changyou Chen, Wenlin Wang, and Lawrence Carin. Certified adversarial robustness with
additive noise. Advances in neural information processing systems, 32, 2019.

Chang Liu, Yinpeng Dong, Wenzhao Xiang, Xiao Yang, Hang Su, Jun Zhu, Yuefeng Chen, Yuan
He, Hui Xue, and Shibao Zheng. A comprehensive study on robustness of image classification
models: Benchmarking and rethinking. arXiv preprint arXiv:2302.14301, 2023.

Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, and Saining Xie.
A convnet for the 2020s. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pp. 11976–11986, 2022.

Rohit Mohan and Abhinav Valada. Efficientps: Efficient panoptic segmentation. International
Journal of Computer Vision (IJCV), 2021.

Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, and Pascal Frossard. Deepfool: a simple and
accurate method to fool deep neural networks. In Proceedings of the IEEE conference on com-
puter vision and pattern recognition, pp. 2574–2582, 2016.

Quang H Nguyen, Yingjie Lao, Tung Pham, Kok-Seng Wong, and Khoa D Doan. Understanding the
robustness of randomized feature defense against query-based adversarial attacks. arXiv preprint
arXiv:2310.00567, 2023.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance
deep learning library. In Advances in Neural Information Processing Systems 32, pp. 8024–8035.
Curran Associates, Inc., 2019.

Matt Pharr, Bartlomiej Wronski, Marco Salvi, and Marcos Fajardo. Filtering after shading with
stochastic texture filtering. In ACM SIGGRAPH Symposium on Interactive 3D Graphics and
Games (I3D), May 2024.

Rahul Rade and Seyed-Mohsen Moosavi-Dezfooli. Helper-based adversarial training: Reducing
excessive margin to achieve a better accuracy vs. robustness trade-off. In ICML 2021 Workshop
on Adversarial Machine Learning, 2021. URL https://openreview.net/forum?id=
BuD2LmNaU3a.

Ilija Radosavovic, Raj Prateek Kosaraju, Ross Girshick, Kaiming He, and Piotr Dollár. Designing
network design spaces, 2020. URL https://arxiv.org/abs/2003.13678.

12

https://openreview.net/forum?id=BuD2LmNaU3a
https://openreview.net/forum?id=BuD2LmNaU3a
https://arxiv.org/abs/2003.13678

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Sylvestre-Alvise Rebuffi, Sven Gowal, Dan Andrei Calian, Florian Stimberg, Olivia Wiles, and
Timothy Mann. Data augmentation can improve robustness. In A. Beygelzimer, Y. Dauphin,
P. Liang, and J. Wortman Vaughan (eds.), Advances in Neural Information Processing Systems,
2021. URL https://openreview.net/forum?id=kgVJBBThdSZ.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedi-
cal image segmentation. In MICCAI, pp. 234–241. Springer, 2015.

Jérôme Rony, Luiz G. Hafemann, Luiz S. Oliveira, Ismail Ben Ayed, Robert Sabourin, and Eric
Granger. Decoupling direction and norm for efficient gradient-based l2 adversarial attacks and
defenses, 2019.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li Fei-Fei.
ImageNet Large Scale Visual Recognition Challenge. International Journal of Computer Vision
(IJCV), 115(3):211–252, 2015. doi: 10.1007/s11263-015-0816-y.

Tonmoy Saikia, Cordelia Schmid, and Thomas Brox. Improving robustness against common corrup-
tions with frequency biased models. In Proceedings of the IEEE/CVF International Conference
on Computer Vision, pp. 10211–10220, 2021.

Hadi Salman, Andrew Ilyas, Logan Engstrom, Ashish Kapoor, and Aleksander Madry. Do adver-
sarially robust imagenet models transfer better? Advances in Neural Information Processing
Systems, 33:3533–3545, 2020.

Simon Schrodi, Tonmoy Saikia, and Thomas Brox. Towards understanding adversarial robustness
of optical flow networks. In CVPR, pp. 8916–8924, 2022.

Naman Deep Singh, Francesco Croce, and Matthias Hein. Revisiting adversarial training for ima-
genet: Architectures, training and generalization across threat models. Advances in Neural Infor-
mation Processing Systems, 36, 2024.

Kshitij Sirohi, Sajad Marvi, Daniel Büscher, and Wolfram Burgard. Uncertainty-aware panoptic
segmentation. IEEE Robotics and Automation Letters, 8(5):2629–2636, 2023.

Hendrik Sommerhoff, Shashank Agnihotri, Mohamed Saleh, Michael Moeller, Margret Keuper,
and Andreas Kolb. Differentiable sensor layouts for end-to-end learning of task-specific camera
parameters. arXiv preprint arXiv:2304.14736, 2023.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
Dropout: a simple way to prevent neural networks from overfitting. The journal of machine
learning research, 15(1):1929–1958, 2014.

Mingxing Tan and Quoc Le. Efficientnetv2: Smaller models and faster training. In International
conference on machine learning, pp. 10096–10106. PMLR, 2021.

Zachary Teed and Jia Deng. Raft: Recurrent all-pairs field transforms for optical flow. In Computer
Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings,
Part II 16, pp. 402–419. Springer, 2020.

Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, and
Hervé Jégou. Training data-efficient image transformers & distillation through attention. In
International conference on machine learning, pp. 10347–10357. PMLR, 2021.

Yao-Hung Hubert Tsai, Tianqin Li, Weixin Liu, Peiyuan Liao, Ruslan Salakhutdinov, and Louis-
Philippe Morency. Learning weakly-supervised contrastive representations. In International
Conference on Learning Representations, 2021.

Dimitris Tsipras, Shibani Santurkar, Logan Engstrom, Alexander Turner, and Aleksander Madry.
Robustness may be at odds with accuracy. In ICLR, 2019.

Yisen Wang, Difan Zou, Jinfeng Yi, James Bailey, Xingjun Ma, and Quanquan Gu. Improv-
ing adversarial robustness requires revisiting misclassified examples. In International Confer-
ence on Learning Representations, 2020. URL https://openreview.net/forum?id=
rklOg6EFwS.

13

https://openreview.net/forum?id=kgVJBBThdSZ
https://openreview.net/forum?id=rklOg6EFwS
https://openreview.net/forum?id=rklOg6EFwS

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Eric Wong, Leslie Rice, and J. Zico Kolter. Fast is better than free: Revisiting adversarial training,
2020. URL https://arxiv.org/abs/2001.03994.

Dongxian Wu, Shu-Tao Xia, and Yisen Wang. Adversarial weight perturbation helps robust gener-
alization. Advances in Neural Information Processing Systems, 33:2958–2969, 2020.

Syed Waqas Zamir, Aditya Arora, Salman Khan, Munawar Hayat, Fahad Shahbaz Khan, and Ming-
Hsuan Yang. Restormer: Efficient transformer for high-resolution image restoration. In CVPR,
2022.

Hongyang Zhang, Yaodong Yu, Jiantao Jiao, Eric Xing, Laurent El Ghaoui, and Michael Jordan.
Theoretically principled trade-off between robustness and accuracy. In ICML, 2019.

Richard Zhang. Making convolutional networks shift-invariant again. In ICML, 2019.

Xueyan Zou, Fanyi Xiao, Zhiding Yu, and Yong Jae Lee. Delving deeper into anti-aliasing in
convnets. In BMVC, 2020.

14

https://arxiv.org/abs/2001.03994

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Roll the dice: Monte Carlo Downsampling
as a low-cost Adversarial Defence

Paper #1058 Supplementary Material

A IMPLEMENTATION DETAILS

Following we provide in-depth implementation details for the experiments.

A.1 EXPERIMENTAL SETUP

Here we provide an overview of the implementation details, we provide additional implementation
details in Appendix A.

Downstream Tasks. The majority of our downstream tasks are performed for image classifica-
tion. We perform classification on the commonly used datasets ImageNet-1k, ImageNet-100 and
CIFAR-100. Additionally, we perform evaluations on images corrupted using 2D Common Cor-
ruptions(Hendrycks & Dietterich, 2019), and images perturbed using Adversarial attacks like PGD,
APGD (Wong et al., 2020) and AutoAttack.

Datasets. We use the 15 corruptions, with 5 severity levels each, from 2D Common Corrup-
tions(Hendrycks & Dietterich, 2019) (2D-CC), to generate the Common Corruptions version of the
respective dataset. We denote this dataset by appending ‘-C’ to the end of the name of the respective
dataset, for example, 2D Common Corruptions on ImageNet-1k results into ImageNet-1k-C. We
perform our experiments on the following datasets:

ImageNet-1k(Russakovsky et al., 2015): This is a subset of the larger ImageNet-22k dataset(Deng
et al., 2009), with 1000 object classes, and 1,281,167 training images, 50,000 validation images.

ImageNet-100: This is a commonly used(Hoffmann et al., 2021; Tsai et al., 2021; Ge et al., 2021;
Lee et al., 2022; Saikia et al., 2021) subset of ImageNet-1k with 100 classes, such that it has 130,000
training images and 5000 validation images, used for faster processing and inference.

CIFAR-100(Krizhevsky et al., 2009): This dataset contains 60,000 32×32 images, split into 50,000
training images and 10,000 validation images, equally distributed over 100 object classes.

Adversarial Attacks. We use PGD(Kurakin et al., 2017), APGD(Wong et al., 2020) and AutoAt-
tack(Croce & Hein, 2020a), with ℓ∞-norm bounded ϵ = 4

255 and α=0.01 for all our experiments.
PGD and APGD are white-box attacks, meaning they require an undisturbed flow of gradients for
optimizing their attack. However, AutoAttack, as proposed comprises of APGD-CE (non-targeted
APGD attack with Cross Entropy loss), APGD-T (targeted APGD attack), FAB(Croce & Hein,
2020b) and Square(Andriushchenko et al., 2020) Attacks, from these, Square Attack is a black-box
attack that does not require a flow of gradients through the ML model. Additionally, since Stochastic
Downsampling is essentially a gradient obfuscation method, we also test against Square Attack (An-
driushchenko et al., 2020) alone, as it is a black-box attack and does not use the gradient information
of a model to optimize the attack.

Metrics. For independent and identically distributed (i.i.d.) (non-attacked and non-perturbed) sam-
ples, we report the i.i.d. Accuracy (i.i.d. Acc). For evaluations against adversarial attacks, we report
the accuracy after the respective attack. For samples from 2D Common Corruptions variant of the
respective datasets, we report the mean Corruption Error (mCE), this is the mean error by the method
on all the corrupted samples. All numbers are reported in percentages.

Architectures. To demonstrate the versatility of Stochastic Downsampling, we have considered
multiple architectures and their variants. For experiments with ImageNet-1k, and ImageNet-1k-
C, we use ResNet18, ResNet50 and ResNet101 (He et al., 2016), ConvNeXt-T, ConvNeXt-S, and
ConvNeXt-B (Liu et al., 2022). We use RobustBench(Croce et al., 2020), to get the adversarially
trained weights. For ImageNet-100 and CIFAR-100 (and their 2D-CC counterparts) experiments, we
use ConvNeXt-T (tiny) (Liu et al., 2022). Additionally, for comparison, we also use the architectural

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

changes proposed by (Grabinski et al., 2022a) and (Grabinski et al., 2023), and include them in
ConvNeXt-tiny after correspondence with the respective authors.

A.2 COMPUTE RESOURCES

We used single NVIDIA Tesla V100, and A100 GPUs for each experiment.

A.3 FINETUNING ON IMAGENET100

We take models pretrained on ImageNet-1k and then finetune them on ImageNet-100 until the train-
ing loss converges. This trained model serves as the ‘Baseline’, and weights from this model are
used for finetuning models that are modified with adversarial defense methods. The models with
Stochastic Downsampling and other adversarial defenses were trained for 5 epochs for finetuning,
with a learning rate of 5e-5 with Cosine Annealing as the learning rate scheduler. We used the SGD
optimizer trained using the train split and tested using the test split of the ImageNet100 dataset.

A.4 FINETUNING ON IMAGENET-1K

The models were trained for 5 epochs for finetuning, with a learning rate of 5e-5 with Cosine An-
nealing and StepLR as the learning rate scheduler for ConvNeXt and ResNet respectively. We used
the SGD optimizer trained using the train split and tested using the test split of the Imagenet-1k
dataset.

A.5 FINETUNING ON CIFAR100

We take models pretrained on ImageNet-1k and then finetune them on CIFAR100 until the training
loss converges. This trained model serves as the ‘Baseline’, and weights from this model are used
for finetuning models that are modified with adversarial defense methods. The models were trained
for 5 epochs for finetuning, with a learning rate of 4e-4 with Cosine Annealing and MultiStepLR
as the learning rate scheduler in case of ConvNeXt and ResNet respectively. We used the SGD
optimizer trained using the train split and tested using the test split of the CIFAR100 dataset.

A.6 TRAINING FROM SCRATCH ON CIFAR100

These models are trained from scratch on CIFAR100. The models were trained for 100 epochs for
finetuning, with a learning rate of 0.1 with MultiStepLR as the learning rate scheduler. We used the
SGD optimizer trained using the train split and tested using the test split of the CIFAR100 dataset.

B ADDITIONAL RESULTS

Following we provide additional experimental results and analysis.

B.1 EXTENDING TO OTHER MODELS AND DATASETS

We extend the analysis from Sec. 5.1 to the CIFAR100 dataset in Tab. 6.

C CODE FOR STOCHASTIC DOWNSAMPLING

Following is the python code for performing the Stochastic Downsampling operation. It uses py-
torch (Paszke et al., 2019).

1 from typing import Literal, Tuple
2 import torch
3 import torch.nn as nn
4 import torch.nn.functional as F
5
6 import einops
7
8 class StochasticDownsampler(nn.Module):

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Table 6: Here we report the performance of various model finetuning strategies against adversarial
attacks for CIFAR100. All Methods except ‘Baseline’ are finetuned for 5 epochs.

Model Method i.i.d. Acc. (%)↑ PGD Acc. (%)↑ Autoattack Acc. (%)↑

ConvNeXt-T

Baseline 81.43 2.17 0.1
SD + Addnoise 68.34 30.79 19.74
SD 72.86 19.08 6.78

ConvNeXt-S

Baseline 82.69 1.95 0.14
SD + Addnoise 69.96 32.58 20.04
SD 74.32 20.56 7.04

ConvNeXt-B

Baseline 84.45 3.45 0.18
SD + Addnoise 72.46 32.79 19.94
SD 77.05 22.58 6.38

ResNet18

Baseline 76.15 1.14 0.16
SD + Addnoise 73.45 1.45 0.34
SD 75.77 1.64 0.28

ResNet50

Baseline 78.83 1.91 0.10
SD + Addnoise 74.67 4.43 0.38
SD 77.09 3.38 0.36

ResNet101

Baseline 79.83 2.06 0.08
SD + Addnoise 75.25 4.74 0.32
SD 77.79 3.44 0.34

9 """Stochastically downsamples a feature map to a target resolution. Conceptually approximates a pixel ←↩
integral by monte carlo sampling"""

10 def __init__(self,
11 resolution: Tuple[int, int],
12 spp: int = 16,
13 reduction: Literal["mean", "sum", "min", "max", "prod"] = "mean",
14 jitter_type: Literal["uniform", "normal"] = "uniform",
15 normal_std: float = 1,
16):
17 super().__init__()
18 if (not isinstance(resolution, tuple)
19 and not isinstance(resolution, list)):
20 resolution = (resolution, resolution)
21 if len(resolution) != 2:
22 raise ValueError(f"Resolution must be a tuple of length 2, got {resolution}")
23
24 self.resolution = resolution
25 self.spp = spp
26 self.reduction = reduction
27 self.jitter_type = jitter_type
28 self.normal_std = normal_std
29 if self.jitter_type == "uniform":
30 self.jitter_fn = torch.rand
31 elif self.jitter_type == "normal":
32 self.jitter_fn = lambda *args, **kwargs : self.normal_std*torch.randn(*args, **kwargs) + 0.5
33 else:
34 raise NotImplementedError(f"Jitter type {jitter_type} not supported")
35
36 def forward(self, x: torch.Tensor, jitter_array=None):
37 """
38 Downsamples x to the target resolution
39 :param x: high-res input feature map, shape (batch_size, C, H, W)
40 :return: downsampled image, shape (batch_size, C, resolution[0], resolution[1])
41 """
42 b, c, h, w = x.shape
43 resolution, spp = self.resolution, self.spp
44
45 step_x = (1 + 1) / resolution[1]
46 step_y = (1 + 1) / resolution[0]
47 pixel_pos_x = torch.arange(-1, 1, step_x, device=x.device)
48 pixel_pos_y = torch.arange(-1, 1, step_y, device=x.device)
49 pixel_pos = torch.stack(torch.meshgrid(pixel_pos_x, pixel_pos_y, indexing='xy'), dim=2)
50
51 # add subpixel jitter
52 if jitter_array is not None:
53 jitter = jitter_array
54 else:
55 jitter = self.jitter_fn((spp, resolution[0], resolution[1], 2), device=x.device)
56
57 jitter[..., 0] *= step_x

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

58 jitter[..., 1] *= step_y
59 pixel_pos = pixel_pos.unsqueeze(0) + jitter # (spp, resolution[0], resolution[1], 2)
60
61 pixel_pos = einops.repeat(pixel_pos, 'spp h w c -> (b spp) h w c', b=b)
62 x_tiled = einops.repeat(x, 'b c h w -> (b spp) c h w', spp=spp)
63
64 samples = F.grid_sample(x_tiled, pixel_pos, mode='bilinear', padding_mode='border', align_corners=←↩

False)
65 return einops.reduce(samples, '(b spp) c h w -> b c h w', self.reduction, b=b)
66
67 def __repr__(self):
68 return (f"StochasticDownsampler(resolution={self.resolution}, "
69 f"spp={self.spp}, reduction='{self.reduction}')")

18

	Introduction
	Related Work
	Method
	Experiments
	Experimental Setup
	Results

	Analysis and Ablation Studies
	Extending To Other Models And Datasets
	Better Understanding The Trade-Off
	Transfer Attack Comparison
	Ablating The Effect Of Context

	Conclusion
	Implementation Details
	Experimental Setup
	Compute Resources
	Finetuning on ImageNet100
	Finetuning on Imagenet-1k
	Finetuning on CIFAR100
	Training from scratch on CIFAR100

	Additional Results
	Extending To Other Models And Datasets

	Code For Stochastic Downsampling

