ROLL THE DICE: MONTE CARLO DOWNSAMPLING AS A LOW-COST ADVERSARIAL DEFENCE

Anonymous authors

004

005

010 011

012

013

014

015

016

017

018

019

021

022

023

024

025

026

027

028

029

030

031

032

034

Paper under double-blind review

Abstract

The well-known vulnerability of Neural Networks to adversarial attacks is concerning, more so with the increasing reliance on them for real-world applications like autonomous driving, medical imaging, and others. Multiple previous works have proposed defense methods against adversarial attacks, including adversarial training, adding random noise to images, frequency pooling, and others. We observe from several such works, that there are two main paradigms for mitigating adversarial attacks. First, effective downsampling leads to learning better feature representations during training, thus improving the performance on attacked and non-attacked samples. However, these methods are expensive. Second, perturbing samples with for example random noise helps in mitigating adversarial attacks as they stymie the flow of gradients to optimize the attacks. However, these methods lower the network's performance on non-attacked samples. Thus, in this work, we combine the best of both strategies to propose a novel Monte-Carlo sampling-based approach for downsampling called Stochastic Downsampling. We combine bi-linear interpolation with Monte Carlo integration for performing downsampling. This helps us mitigate adversarial attacks while preserving the performance of non-attacked samples, thus increasing reliability. Our proposed Stochastic Downsampling operator can easily be integrated into any existing architecture, including adversarially pre-trained networks, with some finetuning. We show the effectiveness of Stochastic Dowsampling over multiple image classification datasets using different network architectures with different training strategies. We provide the code for performing Stochastic Downsampling here: Anonymous GitHub Repository.

033

1 INTRODUCTION

The advent of Machine Learning (ML) methods, specifically in Computer Vision (CV), has fueled their increased application for real-world applications such as Autonomous Driving(Hu et al., 037 2023), Semantic Segmentation(Ronneberger et al., 2015; Chen et al., 2017), Optical Flow Estima-038 tion(Dosovitskiy et al., 2015; Ilg et al., 2017; Teed & Deng, 2020), Panoptic Segmentation(Sirohi 039 et al., 2023; Mohan & Valada, 2021), Image Restoration(Zamir et al., 2022; Chen et al., 2022; 040 Agnihotri et al., 2023a), among others. The reliability of models trained with such methods is of 041 paramount importance for their applications, especially those where human safety is critical. How-042 ever, prior works(Goodfellow et al., 2015; Kurakin et al., 2017; Gu et al., 2022; Schrodi et al., 2022; 043 Agnihotri et al., 2023c; Grabinski et al., 2022b; 2023; Croce et al., 2021; Hendrycks & Dietterich, 044 2019; Wong et al., 2020) have shown that ML methods are susceptible to adversarial attacks and 045 distribution shifts making them non-robust. These vulnerabilities of a non-robust ML model can be exploited by an attacker to fool the model, or by natural weather conditions, to fail the model on the 046 target task. This adversely affects their reliability for any safety critical real-world task. 047

Prior works have proposed methods to alleviate this vulnerability by either encouraging the ML model to learn more stable feature representations or by obstructing the optimization process of the attacks, such that the attack effectiveness is reduced. The former can be achieved by either using learning strategies, such as adversarial training (Salman et al., 2020; Liu et al., 2023; Singh et al., 2024) or by architectural design choices (Grabinski et al., 2022a; 2023; Agnihotri et al., 2023b) that
lead to the ML model learning better representation thus increasing their endurance of attacks and distribution shifts. The latter can be achieved by adding blurring (Zhang, 2019) or noise (Zhang,

Figure 1: Comparing the performance of various adversarial attack defense methods and down-sampling approaches intended to improve robustness. We observe that our proposed Stochastic
Downsampling offers the best trade-off between i.i.d. accuracy, reliability, and generalization.

078

079 2019; Rony et al., 2019) to the feature maps. However, on the one hand, the proposed learning 080 strategies require training the ML models (such that the epochs of training the robust ML model 081 are equal to the epochs of training required by the non-robust model), often from scratch which 082 requires significant computation, especially increasing the time complexity. These methods do not 083 consider the information already learned by the non-robust model. Training the ML models with 084 adversarial attacks (Kurakin et al., 2017; Wong et al., 2020) has the added complexity of performing 085 the attacks during training which can be very expensive (Agnihotri et al., 2023c). On the other hand, strategies like adding noise to disturb the gradient flow also corrupt the image and therefore lead to 086 a loss in performance on independent and identically distributed (i.i.d.) samples (not adversarially 087 attacked) of images and also lead to a loss in generalization, for example, to changes in distribution 088 due to weather conditions or digital corruptions. Additionally, these methods also fail to protect the 089 model against attacks that do not require the passing of gradients through the model for optimizing 090 the attack, i.e. black-box adversarial attacks like Squares attack (Andriushchenko et al., 2020) in 091 AutoAttack(Croce & Hein, 2020c). 092

To address this issue, we propose **Stochastic Downsampling (SD)**, an adversarial defense method that helps the model be robust against adversarial attacks and common corruptions(Hendrycks & Dietterich, 2019) while preserving the performance of the model on clean samples. Unlike existing gradient obfuscation defenses, it provides robustness against zero-order (black-box) adversarial attacks due to its inherent stochasticity. At the same time, the sampling in the proposed operation is purely done within the variance of the existing data, allowing it to be used within pre-trained models with only little adaptation and to perform at very low cost in terms of clean accuracy.

Specifically, Stochastic Downsampling changes the downsampling operation in a ML model, replacing it with a Monte-Carlo Integration¹, followed by bilinear interpolation. For Convolutional Neural Networks (CNNs), this is achieved by changing the stride of the strided convolution operations used for downsampling to one and appending the new Stochastic Downsampling layer to it for downsampling feature maps. Architectures like ViT (Touvron et al., 2021; Tan & Le, 2021; Radosavovic et al., 2020) do not have a downsampling step and thus might require a different approach. Our proposed Stochastic Downsampling has no additional learnable parameters and thus does not require learning. However, the other model weights might require some finetuning to adapt

107

¹please refer to (Caflisch, 1998) for more details on Monte Carlo Integration

to the new downsampling method and thus are trained with a low learning rate for very few epochs
 (specifically just 5 epochs) providing us with a low-cost solution. The Monte-Carlo Integration provides the stochasticity required to disorient the attacks, while the finetuning helps preserve model
 performance.

In Fig. 1, we show the gains from Stochastic Downsampling, compared to other approaches, and show that our method provides the best trade-off between i.i.d. performance, reliability (shown by AutoAttack Accuracy), and ability to generalize to image corruptions (show by mean Corruption Error i.e. mCE). We describe the method in detail in Section 3.

- The following are the most important contributions of our work:
 - We propose a novel downsampling operation Stochastic Downsampling that provides defense against adversarial attacks without any additional learnable parameters.
 - Our method preserves most of the i.i.d. performance of the model while helping improve reliability under adversarial attacks.
- 122 123

118

119

120

121

123 124 125

126 127

129

- Stochastic Downsampling can be included in the model architecture with elementary and straightforward modifications.
- We provide an in-depth analysis of our proposed method in comparison to other methods and show that Stochastic Downsampling offers the best possible trade-off.
- 128 2 RELATED WORK
- Following, we discuss prior works done toward defense from adversarial methods

132 Gradient Obfuscation All white-box adversarial attacks attempt to optimize the attack noise by 133 back-propagating the loss gradients to the input image. However, if this flow of gradients were to be disturbed, it would interfere with the optimization ability of the attack and thus such methods would 134 be hacks that work at adversarial defense. This is known as "Obfuscated Gradients" as shown by 135 Athalye et al. (2018). They categorized obfuscation of gradients into three types, Shattered Gra-136 dients, where the gradients are incorrect or non-existent, Exploding & Vanishing Gradients, and 137 Stochastic Gradients, which causes incorrect estimation of the gradients. Our proposed Stochas-138 tic Downsampling might appear similar to the Stochastic Gradient type of Obfuscated Gradients 139 method, however, as we sample multiple points from the valid data space (i.e. within the variance 140 of correct sampling), we simply change the direction of the gradients within their correct range 141 rather than making them incorrect. Thus, Stochastic Downsampling is more than just a gradient 142 obfuscation method but is an efficient sampling method with stochasticity. 143

Byun et al. (2022); Nguyen et al. (2023); Li et al. (2019) proposed adding noise at various stages of the model. For our comparative analysis, we take inspiration from them and include "AddNoise", as a method for comparison. Here, in each forward pass on the model, we add noise to feature maps, after downsampling them. The noise itself can be sampled from a Gaussian or a uniform distribution and has the same spatial resolution as the feature maps to which it is added.

While moderately effective in disturbing gradient flow and thus weakening the adversarial attacks, these methods lead to a significant drop in clean performance. This is explained by Zhang et al. (2019) and Tsipras et al. (2019), which show there exists a trade-off between robustness and clean performance of a model. However, we demonstrate that Stochastic Downsampling can achieve a significantly better trade-off than some simple hacks, helping the model extract meaningful representations during downsampling.

154

Adversarial Training Adversarial training is one of the most promising methods to enhance the model's robustness, especially in the presence of adversarial attacks (Goodfellow et al., 2015; Kurakin et al., 2017; Moosavi-Dezfooli et al., 2016; Carlini & Wagner, 2017; Rony et al., 2019) but also to enhance general model robustness (Croce et al., 2020). During adversarial training, the model is confronted with adversarial samples by adding an additional loss term (Liu et al., 2023; Kurakin et al., 2017), showing augmented inputs (Geirhos et al., 2018) or adding additional external or generated inputs. One widely used additional data source is using *ddpm* (Gowal et al., 2021; Rade & Moosavi-Dezfooli, 2021; Rebuffi et al., 2021) dataset which is generated by Ho et al. (2020) and

includes one million additional samples for CIFAR-10. For the evaluation and collection of robust models RobustBench (Croce et al., 2020) provides a compressive overview of recent adversarially trained models and their performance on AutoAttack (Croce & Hein, 2020a) and Common Corrup-tions (Hendrycks & Dietterich, 2019; Kar et al., 2022).

However, most of these methods to enhance the model's robustness rely heavily on additional data or data augmentation which takes much longer to train. In the case of traditional adversarial training, one needs even several forward and backward passes to calculate the adversarial noise depending on the adversarial attack used to generate the perturbations. Perturbations generated using several iterations (Kurakin et al., 2017) provide stronger robustness than perturbations generated with a single iteration (Goodfellow et al., 2015). Summarizing, adversarial training mostly comes at an increased amount in computations needed due to more samples and a harder learning problem this can increase the training time by a factor between seven and fifteen (Kurakin et al., 2017; Wang et al., 2020; Wu et al., 2020; Zhang et al., 2019; Grabinski et al., 2022a)

Anti-Aliasing Sampling for increased Robustness Prior works on inherently improving robust-ness via Anti-Aliasing Sampling include aliasing-free downsampling like Frequency Low Cut (FLC) Pooling (Grabinski et al., 2022a), aliasing- and sinc-artifact-free pooling (ASAP) (Grabinski et al., 2023), BlurPooling (Zhang, 2019) or adaptive BlurPooling (Zou et al., 2020). While BlurPooling and adaptive BlurPooling use blurring before downsampling to reduce aliasing and ensure greater shift invariance, FLC Pooling and ASAP ensure aliasing-free downsampling, leading to higher native robustness and a reduced risk of catastrophic overfitting in FGSM adversarial training. In Gra-binski et al. (2022b), the authors show a strong negative correlation between aliasing after down-sampling and the robustness of a network. Thus, ensuring aliasing-free downsampling increases a network's robustness.

METHOD

Figure 2: An Abstract representation of downsampling operations performed by strided convolution, AddNoise, and Stochastic Downsampling.

The rise of Deep Learning in computer vision is undoubtedly an impressive achievement. There are several modifications and adjustments that keep developing the field in the domain such as object detection, segmentation, and so on. One such development is the modification of the Pixel lattice structure in the sensor by Sommerhoff et al. (2023). The proposed idea of a differential sensor simulation framework modified the pixel lattice using rectilinear and curvilinear deformation. This helped the model to capture better feature representation when the image is downsampled using the deformed sensor layout.

The practical implementation of Sommerhoff et al. (2023) aims to efficiently compute the accumulated incoming radiance L_i captured by a (non-uniform) sensor pixel as

$$I_k = \frac{1}{\operatorname{area}(A_k)} \int_{A_k} W(x) L_i(x) dx,$$
(1)

where A_k is the set containing every point of the k-th pixel, W is a weighting function that can model spatially varying pixel response and I_k is the final pixel color.

223 The analytic integral in Eq. 1 can be approximated by Monte Carlo integration:

$$I_k \approx \frac{1}{n} \sum_{i}^{n} W(x_i) L_i(x_i), \tag{2}$$

where x_i are uniform random samples inside the pixel. Computing this integral with Monte Carlo sampling is similar to stochastic multisampling as a spatial anti-aliasing technique, which is commonly utilized in computer graphics, especially for photorealistic path-tracing (Ernst et al., 2006; Glassner, 2014; Pharr et al., 2024).

The quality of this approach scales with the number of random samples per pixel and the expected value is the true integral. On the contrary a lower number of samples results in higher variance and thus more noise. We ablate over the choice of *Samples Per-Pixel (SPP)*, to find an ideal number.

Since a closed form expression for the incoming radiance L_i is generally not available and simulation, e.g. by raytracing, is computationally expensive, Sommerhoff et al. (2023) propose to approximate L_i by existing high-resolution images. These images can be sampled at arbitrary positions by bilinear interpolation. Together with Monte Carlo integration, this effectively results in a *Stochastic Downsampling operation*, if the resolution of the target sensor is lower than the resolution of the high-resolution input image.

We make the observation that this downsampling scheme can be naturally extended from images to more general feature maps $F \in \mathbb{R}^{W \times H \times C}$. For this, we make the simplifying assumptions of uniform pixels and constant W(x) = 1. In the following, square brackets denote querying a feature map at integer locations, i.e. $F[i, j] \in \mathbb{R}^C$, whereas parenthesis denotes bilinear interpolation of the for nearest neighbors at not necessarily integer coordinates, e.g. $F(x, y) \in \mathbb{R}^C$. Using this notation, our stochastic downsampling operation in total can thus be expressed as shown in Eq. (3),

246 247

256 257

258

266

219

224

225 226

 $F\downarrow_{\alpha} [u,v] = \frac{1}{n} \sum_{i}^{n} F(\alpha x_{i}, \alpha y_{i})$ (3)

where $x_i \sim \mathcal{U}_{[u,u+1]}$ and $y_i \sim \mathcal{U}_{[v,v+1]}$ follow uniform distributions inside the current pixel.

The **Stochastic Downsampling** operation can replace other pooling operations like average pooling, or downsampling operations like strided convolution, commonly used in many neural network architectures. We implement it in PyTorch using the grid_sample function, which is differentiable with respect to the input feature map.

Most architectures use a strided convolution for downsampling, as shown by Eq. (4) for a downsampling factor of two.

$$\sum_{2m}^{M} \sum_{2n}^{N} F_{M \times N}(x_m, y_n) K_{i \times j}(i - m, j - n) = F_{\frac{M}{2} \times \frac{N}{2}}$$
(4)

where K is the learned convolution kernel. In our modification, instead of taking a step of size two in Eq. (4), we modify the step size to one and then use Eq. (3) to perform the downsampling operation.

To perform ablation studies, we experiment with a few other methods, we describe them here:

AvgPool: We change the stride in Eq. (4) to one, and use Average Pooling with a 2×2 kernel for downsampling.

267 DropOut + AvgPool: To ablate over the repercussions of looking at merely 2 pixels (at random),
 268 when downsampling with a 2×2 sized kernel in Average Pooling, we use DropOut(Srivastava et al.,
 2014) with a dropping probability of 50% after convolution with a stride of one, and before the AvgPool operation.

270 AddNoise: To ablate if our gains are merely due to adding noise to feature maps, or truly due to 271 the Stochastic Downsampling operation itself, we perform downsampling as shown by Eq. (4), but 272 add noise to the feature maps, after the downsampling. The noise can be sampled from a uniform 273 distribution or a Gaussian distribution.

We provide an abstract overview of the prominent downsampling methods in Fig. 2.

EXPERIMENTS 277 4

274

275 276

278

Following, we report the implementation details of the experiments performed and discuss the ob-279 servations made on the results. 280

281 4.1 EXPERIMENTAL SETUP 282

283 Here we provide an overview of the implementation details, we provide additional implementation 284 details in Appendix A. 285

Adversarial Attacks. We use PGD(Kurakin et al., 2017), APGD(Wong et al., 2020) and AutoAt-286 tack(Croce & Hein, 2020a), with ℓ_{∞} -norm bounded $\epsilon = \frac{4}{255}$ and α =0.01 for all our experiments. 287 PGD and APGD are white-box attacks, meaning they require an undisturbed flow of gradients for 288 optimizing their attack. However, AutoAttack, as proposed comprises APGD-CE (non-targeted 289 APGD attack with Cross Entropy loss), APGD-T (targeted APGD attack), FAB(Croce & Hein, 290 2020b) and Square(Andriushchenko et al., 2020) Attacks, from these, Square Attack is a black-box 291 attack that does not require a flow of gradients through the ML model. Additionally, since Stochastic 292 Downsampling is essentially a gradient obfuscation method, we also test against Square Attack (An-293 driushchenko et al., 2020) alone, as it is a black-box attack and does not use the gradient information 294 of a model to optimize the attack.

295 Metrics. For independent and identically distributed (i.i.d.) (non-attacked and non-perturbed) sam-296 ples, we report the i.i.d. Accuracy (i.i.d. Acc). For evaluations against adversarial attacks, we report 297 the accuracy after the respective attack. For samples from the 2D Common Corruptions variant of 298 the respective datasets, we report the mean Corruption Error (mCE), this is the mean error by the 299 method on all the corrupted samples. All numbers are reported in percentages. 300

A high i.i.d. accuracy indicates good performance, while a high accuracy against adversarial attacks 301 indicates more reliability and a lower mCE value indicates more generalization ability. 302

4.2 RESULTS

Following we report the experimental results, comparing our proposed Stochastic Downsampling (SD), with other known methods which can be used for defense against adversarial attacks. In

Table 1: Here we report the performance of various defense methods against adversarial attacks and common corruptions using ConvNeXt-tiny and the ImageNet100 dataset. We perform these experiments over three different seeds and report the mean and standard deviation (std) as 'mean±std'. [†] denotes longer training until convergence of training loss. All other methods are finetuned for merely five epochs.

Defense Method	i.i.d. Acc. (%)^	PGD Acc. (%)↑	AutoAttack Acc. (%)↑	Square Attack Acc. (%)↑	mCE (%)↓
Baseline [†]	89.05 ± 0.1	0.51 ± 0.06	0 ± 0	36.26 ± 0.54	34.94 ± 0.31
ASAP [†]	86.36 ± 0.21	1.91 ± 0.2	0 ± 0	13.59 ± 0.65	34.94 ± 0.53
ASAP	51.25 ± 1.12	0.01 ± 0.01	0 ± 0	5.93 ± 0.21	84.2 ± 0.89
AvgPool	87.54 ± 0.16	1.49 ± 0.24	0 ± 0	24.07 ± 0.47	35.11 ± 0.49
DropOut + AvgPool	81.19 ± 0.71	0.42 ± 0.04	0 ± 0	12.66 ± 0.61	54.47 ± 1.69
Blurpooling [†]	81.97 ± 0.13	0.57 ± 0.25	0 ± 0	12.53 ± 0.86	44.41 ± 0.52
Blurpooling	54.17 ± 3.3	0.23 ± 0.03	0.01 ± 0.01	3.79 ± 0.42	70.99 ± 2.54
AddNoise (uniform)	87.25 ± 0.15	33.49 ± 0.81	1.78 ± 0.11	85.33 ± 0.19	37.98 ± 0.11
AddNoise (std=0.75)	83.53 ± 0.05	40.55 ± 0.55	16.4 ± 0.18	79.78 ± 0.49	42.96 ± 0.29
SD (Ours)	86.83 ± 0.16	40.81 ± 0.64	2.5 ± 0.1	83.08 ± 0.07	38.34 ± 0.6
SD + AddNoise(std=0.15) (Ours)	85.23 ± 0.24	48.12 ± 0.14	15.18 ± 0.1	81.3 ± 0.16	39.24 ± 0.25

322

303

304 305

306

307 308 309

310

311

312

Tab. 1, we observe that methods such as BlurPooling and ASAP require long training and do not 323 perform well when simply fintuned at a low budget. The recently proposed ASAP significantly

6

outperforms BlurPooling in all aspects, i.e. i.i.d. accuracy, OOD robustness and adversarial robust-ness. Whereas, certain variants of AddNoise outperform ASAP w.r.t. adversarial robustness, while ASAP still outperforms Addnoise variants in i.i.d. performance and OOD robustness. Please note, here AddNoise variants were only finetuned for 5 epochs, whereas ASAP requires full training. AddNoise and ASAP provide a trade-off, here we trade i.i.d. performance and generalization ability with reliability under adversarial attacks. However, this is not ideal, we require our models to have good i.i.d. performance, generalization ability, and reliability. To this effect, Stochastic Downsam-pling comes in handy. As shown in Tab. 1, Stochastic Downsampling provides the best possible trade-off, for an insignificant drop in i.i.d. accuracy, and generalization ability, it provides signifi-cant gains in reliability under adversarial attacks. In case of scenarios where adversarial robustness is more important, Stochastic Downsampling can also be coupled with AddNoise to trade-off some i.i.d. accuracy and OOD robustness for more adversarial robustness.

Stochastic Downsampling might be considered similar to a gradient obfuscation method (Athalye
 et al., 2018). Thus, to ascertain that it is *not providing a false sense of security*, we additionally
 perform Square Attack, a black-box adversarial attack that does not require gradient information
 of the model to optimize the attack. We observe that the performance of the model with Stochastic
 Downsampling is almost unaffected under Square attack. This shows that Stochastic Downsampling
 is not providing a false sense of security.

5 ANALYSIS AND ABLATION STUDIES

Following we provide analysis and ablation studies to demonstrate that despite being similar to a gradient obfuscation method, Stochastic Downsampling does not provide a false sense of security. Additionally, we demonstrate the versatility and ease of use of Stochastic Downsampling.

5.1 EXTENDING TO OTHER MODELS AND DATASETS

The gains obtained using Stochastic Downsampling are not limited to the ConvNeXt-tiny model and ImageNet100 dataset but extend to other models and larger datasets as well. To demonstrate this we extend the experiments to ConvNeXt-Small, ConvNeXt-Base, ResNet18, ResNet50, and ResNet101 on the ImageNet-1k dataset. These models were pretrained on the ImageNet-1k dataset, and then

Table 2: Here we report the performance of various model finetuning strategies against adversarial attacks for the **ImageNet-1k dataset**. All methods except 'Baseline' are finetuned for 5 epochs.

Model	Method	i.i.d. Accuracy (%)↑	PGD Acc (%)↑	AutoAttack Acc. (%)↑
	Baseline	82.06	1.08	0.00
ConvNeXt-T	SD + AddNoise	77.55	29.05	6.00
	SD	79.21	20.25	0.94
	Baseline	83.15	3.7	0.00
ConvNeXt-S	SD + AddNoise	79.23	32.34	4.86
	SD	80.45	23.59	0.56
	Baseline	83.83	5.12	0.00
ConvNeXt-B	SD + AddNoise	80.01	29.98	3.32
	SD	81.02	21.41	0.66
	Baseline	69.76	0.29	0.00
ResNet18	SD + AddNoise	68.08	34.41	0.14
	SD	69.24	19.39	0.80
	Baseline	76.15	1.28	0.00
ResNet50	SD + AddNoise	73.73	53.80	0.16
	SD	75.39	34.44	1.00
	Baseline	77.37	2.33	0.00
ResNet101	SD + AddNoise	75.35	55.70	0.38
	SD	76.60	36.59	0.94

the strided convolution layers used in them for downsampling were replaced with non-strided Convolution layers (with the same weights as the strided-convolution) and Stochastic Downsampling 378 layer. The resultant models were then finetuned for 5 epochs. We observe in Tab. 2 that the minimal 379 trade-off between i.i.d. accuracy and adversarial robustness observed in Sec. 4.2 still holds demon-380 strating the effectiveness of Stochastic Downsampling even with large models on vast datasets with 381 significantly many classes. Please refer to the Tab. 6 for experiments with CIFAR-100.

382 383 384

52 BETTER UNDERSTANDING THE TRADE-OFF

We observed the performance trade-off by AddNoise, Stochastic Downsampling, and the combina-385 tion of Stochastic Downsampling and AddNoise in Sec. 4.2. Intruiged by this trade-off we attempt 386 to understand it better and thus perform more detailed evaluations as reported in Tab. 3. Here we 387

388 389

390

391

392

393 39

Table 3: Here we report the performance of ConvNeXt-tiny with various defense strategies against AutoAttack for the ImageNet100 dataset. The noise for AddNoise is sampled from a normal distribution with mean=0 and different standard deviations (std) denoted below, except AddNoise (Uniform), here the noise is sampled from a uniform distribution. All methods are finetuned for 5 epochs, except those denoted by [†], these are finetuned for a longer duration (until training loss converges).

Method	i.i.d. Accuracy (%)^		AutoAttack	κ (%)↑		mCE (%)
		APGD-CE	APGD-T	FAB-T	Square	. men (<i>n</i>),
Baseline	89.00	0.00	0.00	0.00	0.00	35.00
AddNoise (std=0.05)	88.82	0.38	0.14	0.06	0.02	34.842
AddNoise (std=0.10)	88.48	0.56	0.26	0.06	0.06	35.381
AddNoise (std=0.15)	88.12	0.92	0.36	0.24	0.12	36.217
AddNoise (std=0.30)	87.18	9.02	2.94	2.76	2.72	37.879
AddNoise (std=0.50)	85.68	20.22	10.66	10.28	10.26	40.218
AddNoise (std=0.75)	83.52	24.82	17.02	16.74	16.54	42.65
AddNoise [†] (std=0.75)	86.76	1.28	0.28	0.18	0.12	37.753
AddNoise (std=0.90)	82.48	26.54	18.84	18.36	18.28	43.916
AddNoise (std=1.0)	81.58	26.74	19.82	19.5	19.38	44.406
AddNoise (Uniform)	87.10	6.48	2.18	1.96	1.92	37.853
SD + AddNoise (std=0.05)	86.12	14.48	6.14	5.94	5.88	37.837
SD + AddNoise (std=0.1)	85.62	21.12	11.40	11.18	11.10	39.171
SD + AddNoise (std=0.15)	84.98	26.48	15.36	15.14	15.12	38.955
SD + AddNoise (std=0.9)	75.68	37.72	29.38	28.74	28.42	46.403
SD + AddNoise (std=0.15)	* 86.76	14.82	6.00	5.80	5.74	36.941
SD	86.80	7.70	3.00	2.64	2.60	37.74

⁴¹¹

412 vary, the degree of noise added to the feature maps after downsampling. That is for AddNoise when 413 sampling from a Normal distribution, we keep the mean equal to zero and vary the standard devi-414 ation from 0.05 to 1.0. Additionally, we do the same when combining Stochastic Downsampling 415 and AddNoise. Then, we arrive at the best possible trade-off, for AddNoise it is with a standard de-416 viation equal to 0.75. For the combination of Stochastic Downsampling and AddNoise, a standard deviation of 0.15 provides a decent trade-off. However, depending on the scenario, one is free to 417 choose their ideal trade-off. As shown in Tab. 3, as the standard deviation increases, the accuracy 418 against adversarial attacks increases, and the i.i.d. accuracy and generalization ability decreases. 419

420 421

TRANSFER ATTACK COMPARISON 5.3

422 Apart from using Square Attacks in Sec. 4.2, to negate the argument of a false sense of security due 423 to gradient obfuscation, we transfer adversarial attacks from the baseline model, which allows the 424 adversarial attack to be optimized without any gradient obfuscation to models that inhibit the free 425 flow of gradients. We report our findings in Tab. 4. Here we observe that the attack is indeed strong 426 against the baseline model of ConvNeXt-tiny. However, when the attack is transferred to models 427 with alleged gradient obfuscation, that is models with AddNoise and Stochastic Downsampling, the 428 strength of the attack is reduced. Moreover, while AddNoise is reducing the attack to a great extent, 429 the model with Stochastic Downsampling is hardly affected by the attack thus reducing its strength even more. This demonstrates that Stochastic Downsampling is not just another gradient obfusca-430 tion method but is helping the network defend against adversarial attacks by extracting meaningful 431 representations even under adversarial attacks.

Table 4: Here we report the performance of transfer attacks across different defense strategies with ConvNeXt-tiny using the ImageNet100 dataset. Defense methods are evaluated on adversarial samples optimized using the 'Baseline' ConvNeXt-tiny.

Model	PGD (%)↑	AutoAttack (%)↑
Baseline	0.54	0
AddNoise (std= 0.75)	45.24	45.4
SD	75.06	80.3
SD + AddNoise (std=0.15)	65.14	65.6

5.4 ABLATING THE EFFECT OF CONTEXT

As discussed in Sec. 3, the Stochastic Downsampling operation samples only two pixels (chosen at random) in a region of the feature maps to downsample to one, i.e. samples per pixel (SPP) is two. However, it would be interesting to ablate this spatial context available to Stochastic Downsampling. Thus, we ablate increasing this spatial context such that the operation samples each downsampled pixel using a varying number of pixels from the higher-resolution feature map. We report our

Table 5: Ablation over different values of samples per pixel (SPP) for Stochastic Downsampling performed using ConvNeXt-tiny and ImageNet100 dataset.

SPP (%)↑	i.i.d. Accuracy (%)↑	PGD Accuracy (%)↑
1	85.78	50.22
2	86.8	41.38
4	87.06	30.76
8	87.02	18.14
16	87.02	9.06

findings in Tab. 5 and observe that as we increase context the i.i.d. accuracy increases, however, that saturates after four samples per pixel. While the robustness of the model consistently decreases with increasing context. Additionally, we observe that at SPP=2, the i.i.d. accuracy is marginally higher than SPP=1. Thus, we use SPP=2 for our Stochastic Downsampling.

CONCLUSION

Adversarial attacks pose a threat to Deep Learning based methods. It is of paramount importance that reliable DL-based methods can defend against such threats to a reasonable extent. However, most adversarial defense methods inherently create a challenging trade-off between i.i.d. performance and robustness. Stochastic Downsampling eases this challenge by significantly improving the trade-off by increasing reliability with only a marginal drop in i.i.d. accuracy and generalization ability of DL-based methods. Stochastic Downsampling is easy to incorporate in pre-trained models and requires very limited finetuning to perform at its peak efficiency. The gains from Stochastic Downsampling are consistent across model architectures, and datasets. We show that despite being very similar to a gradient obfuscation based defense method, Stochastic Downsampling does not provide a false sense of security. This work is a step in the direction of sampling-based adversarial defense methods that help extract meaningful representations during downsampling, even under adversarial attacks.

LIMITATIONS

There is still a marginal drop in clean performance, ideally this should also be avoided. While Stochastic Downsampling mitigates adversarial attacks better than other defense methods, there is still significant room for improvement.

486 REPRODUCIBILITY STATEMENT

All experimental results in this work are reproducible. We make the code base available to the reviewers and will make it public upon acceptance. We understand that the evaluations involve stochasticity and thus to demonstrate the effectiveness of our proposed Stochastic Downsampling, we perform multiple experiments over 3 different seeds and report the mean and standard deviation. We observe that the standard deviation is quite low indicating that the improvements due to Stochastic Downsampling cannot be attributed to the stochastic behaviour.

References

494 495

496

510

528

537

- Shashank Agnihotri, Kanchana Vaishnavi Gandikota, Julia Grabinski, Paramanand Chandramouli,
 and Margret Keuper. On the unreasonable vulnerability of transformers for image restoration-and
 an easy fix. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pp. 3707–3717, 2023a.
- Shashank Agnihotri, Julia Grabinski, and Margret Keuper. Improving stability during upsampling on the importance of spatial context, 2023b.
- Shashank Agnihotri, Steffen Jung, and Margret Keuper. Cospgd: a unified white-box adversarial attack for pixel-wise prediction tasks, 2023c.
- Maksym Andriushchenko, Francesco Croce, Nicolas Flammarion, and Matthias Hein. Square at tack: a query-efficient black-box adversarial attack via random search. In *ECCV*, pp. 484–501.
 Springer, 2020.
- Anish Athalye, Nicholas Carlini, and David Wagner. Obfuscated gradients give a false sense of security: Circumventing defenses to adversarial examples. In *International conference on machine learning*, pp. 274–283. PMLR, 2018.
- Junyoung Byun, Hyojun Go, and Changick Kim. On the effectiveness of small input noise for defending against query-based black-box attacks. In *Proceedings of the IEEE/CVF winter conference on applications of computer vision*, pp. 3051–3060, 2022.
- Russel E. Caflisch. Monte carlo and quasi-monte carlo methods. *Acta Numerica*, 7:1–49, 1998. doi:
 10.1017/S0962492900002804.
- Nicholas Carlini and David Wagner. Towards evaluating the robustness of neural networks. In 2017
 ieee symposium on security and privacy (sp), pp. 39–57. IEEE, 2017.
- Liang-Chieh Chen, George Papandreou, Florian Schroff, and Hartwig Adam. Rethinking atrous convolution for semantic image segmentation, 2017.
- Liangyu Chen, Xiaojie Chu, Xiangyu Zhang, and Jian Sun. Simple baselines for image restoration.
 In *ECCV*, pp. 17–33. Springer, 2022.
- Francesco Croce and Matthias Hein. Reliable evaluation of adversarial robustness with an ensemble
 of diverse parameter-free attacks. In *ICML*, 2020a.
- Francesco Croce and Matthias Hein. Minimally distorted adversarial examples with a fast adaptive boundary attack. In *International Conference on Machine Learning*, pp. 2196–2205. PMLR, 2020b.
- Francesco Croce and Matthias Hein. Reliable evaluation of adversarial robustness with an ensemble
 of diverse parameter-free attacks. In *ICML*, 2020c.
- Francesco Croce, Maksym Andriushchenko, Vikash Sehwag, Nicolas Flammarion, Mung Chiang,
 Prateek Mittal, and Matthias Hein. Robustbench: a standardized adversarial robustness benchmark. *CoRR*, abs/2010.09670, 2020. URL https://arxiv.org/abs/2010.09670.

540 541 542	Francesco Croce, Maksym Andriushchenko, Vikash Sehwag, Edoardo Debenedetti, Nicolas Flam- marion, Mung Chiang, Prateek Mittal, and Matthias Hein. Robustbench: a standardized adver- sarial robustness benchmark. In <i>Thirty-fifth Conference on Neural Information Processing Sys-</i>
543 544	<pre>tems Datasets and Benchmarks Track (Round 2), 2021. URL https://openreview.net/ forum?id=SSKZPJCt7B.</pre>
545 546 547	Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hi- erarchical image database. In <i>2009 IEEE conference on computer vision and pattern recognition</i> , pp. 248–255. Ieee, 2009.
548 549 550	Alexey Dosovitskiy, Philipp Fischer, Eddy Ilg, Philip Hausser, Caner Hazirbas, Vladimir Golkov, Patrick Van Der Smagt, Daniel Cremers, and Thomas Brox. Flownet: Learning optical flow with convolutional networks. In Proceedings of the IEEE international conference on computer vision
552 553	pp. 2758–2766, 2015.
554 555	Manfred Ernst, Marc Stamminger, and Gunther Greiner. Filter importance sampling. In 2006 IEEE Symposium on Interactive Ray Tracing, pp. 125–132. IEEE, 2006.
556 557 558	Songwei Ge, Shlok Mishra, Chun-Liang Li, Haohan Wang, and David Jacobs. Robust contrastive learning using negative samples with diminished semantics. <i>Advances in Neural Information Processing Systems</i> , 34:27356–27368, 2021.
559 560 561	Robert Geirhos, Patricia Rubisch, Claudio Michaelis, Matthias Bethge, Felix A Wichmann, and Wieland Brendel. Imagenet-trained cnns are biased towards texture; increasing shape bias improves accuracy and robustness. In <i>International Conference on Learning Representations</i> , 2018.
563	Andrew S Glassner. Principles of digital image synthesis. Elsevier, 2014.
564 565 566 567	Ian Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial examples. In <i>International Conference on Learning Representations</i> , 2015. URL http://arxiv.org/abs/1412.6572.
568 569 570	Sven Gowal, Sylvestre-Alvise Rebuffi, Olivia Wiles, Florian Stimberg, Dan Andrei Calian, and Timothy A Mann. Improving robustness using generated data. <i>Advances in Neural Information</i> <i>Processing Systems</i> , 34, 2021.
571 572 573 574	Julia Grabinski, Steffen Jung, Janis Keuper, and Margret Keuper. Frequencylowcut pooling-plug and play against catastrophic overfitting. In <i>European Conference on Computer Vision</i> , pp. 36–57. Springer, 2022a.
575 576	Julia Grabinski, Janis Keuper, and Margret Keuper. Aliasing and adversarial robust generalization of cnns. <i>Machine Learning</i> , pp. 1–27, 2022b.
577 578 579	Julia Grabinski, Janis Keuper, and Margret Keuper. Fix your downsampling asap! be natively more robust via aliasing and spectral artifact free pooling, 2023.
580 581 582	Jindong Gu, Hengshuang Zhao, Volker Tresp, and Philip HS Torr. Segpgd: An effective and efficient adversarial attack for evaluating and boosting segmentation robustness. In <i>ECCV</i> , pp. 308–325. Springer, 2022.
583 584 585 586	Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog- nition. In <i>Proceedings of the IEEE conference on computer vision and pattern recognition</i> , pp. 770–778, 2016.
587 588	Dan Hendrycks and Thomas Dietterich. Benchmarking neural network robustness to common cor- ruptions and perturbations, 2019. URL https://arxiv.org/abs/1903.12261.
589 590 591	Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in Neural Information Processing Systems, 33:6840–6851, 2020.
592 593	J Hoffmann, S Agnihotri, Tonmoy Saikia, and Thomas Brox. Towards improving robustness of compressed cnns. In <i>ICML Workshop on Uncertainty and Robustness in Deep Learning (UDL)</i> , 2021.

- 594 Yihan Hu, Jiazhi Yang, Li Chen, Keyu Li, Chonghao Sima, Xizhou Zhu, Siqi Chai, Senyao Du, Tian-595 wei Lin, Wenhai Wang, Lewei Lu, Xiaosong Jia, Qiang Liu, Jifeng Dai, Yu Qiao, and Hongyang 596 Li. Planning-oriented autonomous driving. In Proceedings of the IEEE/CVF Conference on Com-597 puter Vision and Pattern Recognition, 2023. 598 Eddy Ilg, Nikolaus Mayer, Tonmoy Saikia, Margret Keuper, Alexey Dosovitskiy, and Thomas Brox. 599 Flownet 2.0: Evolution of optical flow estimation with deep networks. In *Proceedings of the IEEE* 600 conference on computer vision and pattern recognition, pp. 2462–2470, 2017. 601 Oğuzhan Fatih Kar, Teresa Yeo, Andrei Atanov, and Amir Zamir. 3d common corruptions and 602 data augmentation. In Proc. IEEE/CVF Conference on Computer Vision and Pattern Recognition 603 (CVPR), pp. 18963–18974, 2022. 604 605 Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. Cifar-10 and cifar-100 datasets, learning multi-606 ple layers of features from tiny images. URl: https://www. cs. toronto. edu/kriz/cifar. html, 6(1): 607 1, 2009. 608 Alexey Kurakin, Ian J. Goodfellow, and Samy Bengio. Adversarial machine learning at scale. In 609 ICLR, 2017. 610 611 Sangjun Lee, Inwoo Hwang, Gi-Cheon Kang, and Byoung-Tak Zhang. Improving robustness to 612 texture bias via shape-focused augmentation. In Proceedings of the IEEE/CVF Conference on 613 Computer Vision and Pattern Recognition (CVPR) Workshops, pp. 4323-4331, June 2022. 614 Bai Li, Changyou Chen, Wenlin Wang, and Lawrence Carin. Certified adversarial robustness with 615 additive noise. Advances in neural information processing systems, 32, 2019. 616 617 Chang Liu, Yinpeng Dong, Wenzhao Xiang, Xiao Yang, Hang Su, Jun Zhu, Yuefeng Chen, Yuan He, Hui Xue, and Shibao Zheng. A comprehensive study on robustness of image classification 618 models: Benchmarking and rethinking. arXiv preprint arXiv:2302.14301, 2023. 619 620 Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, and Saining Xie. 621 A convnet for the 2020s. In Proceedings of the IEEE/CVF conference on computer vision and 622 pattern recognition, pp. 11976-11986, 2022. 623 Rohit Mohan and Abhinav Valada. Efficientps: Efficient panoptic segmentation. International 624 Journal of Computer Vision (IJCV), 2021. 625 626 Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, and Pascal Frossard. Deepfool: a simple and 627 accurate method to fool deep neural networks. In Proceedings of the IEEE conference on com-628 puter vision and pattern recognition, pp. 2574–2582, 2016.
- Quang H Nguyen, Yingjie Lao, Tung Pham, Kok-Seng Wong, and Khoa D Doan. Understanding the robustness of randomized feature defense against query-based adversarial attacks. *arXiv preprint arXiv:2310.00567*, 2023.
- Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
 Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward
 Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
 Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance
 deep learning library. In *Advances in Neural Information Processing Systems 32*, pp. 8024–8035.
 Curran Associates, Inc., 2019.
- Matt Pharr, Bartlomiej Wronski, Marco Salvi, and Marcos Fajardo. Filtering after shading with
 stochastic texture filtering. In ACM SIGGRAPH Symposium on Interactive 3D Graphics and
 Games (I3D), May 2024.
- Rahul Rade and Seyed-Mohsen Moosavi-Dezfooli. Helper-based adversarial training: Reducing excessive margin to achieve a better accuracy vs. robustness trade-off. In *ICML 2021 Workshop on Adversarial Machine Learning*, 2021. URL https://openreview.net/forum?id=BuD2LmNaU3a.
- 647 Ilija Radosavovic, Raj Prateek Kosaraju, Ross Girshick, Kaiming He, and Piotr Dollár. Designing network design spaces, 2020. URL https://arxiv.org/abs/2003.13678.

648 649 650 651	Sylvestre-Alvise Rebuffi, Sven Gowal, Dan Andrei Calian, Florian Stimberg, Olivia Wiles, and Timothy Mann. Data augmentation can improve robustness. In A. Beygelzimer, Y. Dauphin, P. Liang, and J. Wortman Vaughan (eds.), <i>Advances in Neural Information Processing Systems</i> , 2021. URL https://openreview.net/forum?id=kgVJBBThdSZ.
652 653 654	Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedi- cal image segmentation. In <i>MICCAI</i> , pp. 234–241. Springer, 2015.
655 656 657	Jérôme Rony, Luiz G. Hafemann, Luiz S. Oliveira, Ismail Ben Ayed, Robert Sabourin, and Eric Granger. Decoupling direction and norm for efficient gradient-based 12 adversarial attacks and defenses, 2019.
658 659 660 661	Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li Fei-Fei. ImageNet Large Scale Visual Recognition Challenge. <i>International Journal of Computer Vision (IJCV)</i> , 115(3):211–252, 2015. doi: 10.1007/s11263-015-0816-y.
662 663 664 665	Tonmoy Saikia, Cordelia Schmid, and Thomas Brox. Improving robustness against common corruptions with frequency biased models. In <i>Proceedings of the IEEE/CVF International Conference on Computer Vision</i> , pp. 10211–10220, 2021.
666 667 668	Hadi Salman, Andrew Ilyas, Logan Engstrom, Ashish Kapoor, and Aleksander Madry. Do adversarially robust imagenet models transfer better? <i>Advances in Neural Information Processing Systems</i> , 33:3533–3545, 2020.
669 670	Simon Schrodi, Tonmoy Saikia, and Thomas Brox. Towards understanding adversarial robustness of optical flow networks. In <i>CVPR</i> , pp. 8916–8924, 2022.
671 672 673 674	Naman Deep Singh, Francesco Croce, and Matthias Hein. Revisiting adversarial training for ima- genet: Architectures, training and generalization across threat models. <i>Advances in Neural Infor-</i> <i>mation Processing Systems</i> , 36, 2024.
675 676	Kshitij Sirohi, Sajad Marvi, Daniel Büscher, and Wolfram Burgard. Uncertainty-aware panoptic segmentation. <i>IEEE Robotics and Automation Letters</i> , 8(5):2629–2636, 2023.
677 678 679 680	Hendrik Sommerhoff, Shashank Agnihotri, Mohamed Saleh, Michael Moeller, Margret Keuper, and Andreas Kolb. Differentiable sensor layouts for end-to-end learning of task-specific camera parameters. <i>arXiv preprint arXiv:2304.14736</i> , 2023.
681 682 683	Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov. Dropout: a simple way to prevent neural networks from overfitting. <i>The journal of machine learning research</i> , 15(1):1929–1958, 2014.
684 685	Mingxing Tan and Quoc Le. Efficientnetv2: Smaller models and faster training. In <i>International conference on machine learning</i> , pp. 10096–10106. PMLR, 2021.
687 688 689	Zachary Teed and Jia Deng. Raft: Recurrent all-pairs field transforms for optical flow. In <i>Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part II 16</i> , pp. 402–419. Springer, 2020.
690 691 692	Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, and Hervé Jégou. Training data-efficient image transformers & distillation through attention. In <i>International conference on machine learning</i> , pp. 10347–10357. PMLR, 2021.
693 694 695	Yao-Hung Hubert Tsai, Tianqin Li, Weixin Liu, Peiyuan Liao, Ruslan Salakhutdinov, and Louis- Philippe Morency. Learning weakly-supervised contrastive representations. In <i>International</i> <i>Conference on Learning Representations</i> , 2021.
696 697 698	Dimitris Tsipras, Shibani Santurkar, Logan Engstrom, Alexander Turner, and Aleksander Madry. Robustness may be at odds with accuracy. In <i>ICLR</i> , 2019.
699 700 701	Yisen Wang, Difan Zou, Jinfeng Yi, James Bailey, Xingjun Ma, and Quanquan Gu. Improv- ing adversarial robustness requires revisiting misclassified examples. In <i>International Confer-</i> <i>ence on Learning Representations</i> , 2020. URL https://openreview.net/forum?id= rkl0g6EFwS.

702 703 704	Eric Wong, Leslie Rice, and J. Zico Kolter. Fast is better than free: Revisiting adversarial training, 2020. URL https://arxiv.org/abs/2001.03994.
705 706	Dongxian Wu, Shu-Tao Xia, and Yisen Wang. Adversarial weight perturbation helps robust gener- alization. <i>Advances in Neural Information Processing Systems</i> , 33:2958–2969, 2020.
707 708 709 710	Syed Waqas Zamir, Aditya Arora, Salman Khan, Munawar Hayat, Fahad Shahbaz Khan, and Ming-Hsuan Yang. Restormer: Efficient transformer for high-resolution image restoration. In <i>CVPR</i> , 2022.
710 711 712	Hongyang Zhang, Yaodong Yu, Jiantao Jiao, Eric Xing, Laurent El Ghaoui, and Michael Jordan. Theoretically principled trade-off between robustness and accuracy. In <i>ICML</i> , 2019.
713	Richard Zhang. Making convolutional networks shift-invariant again. In ICML, 2019.
714	Xuevan Zou, Fanyi Xiao, Zhiding Yu, and Yong Jae Lee. Delving deeper into anti-aliasing in
716	convnets. In <i>BMVC</i> , 2020.
717	
718	
719	
720	
721	
722	
723	
724	
725	
726	
727	
728	
729	
730	
731	
732	
733	
734	
736	
737	
738	
739	
740	
741	
742	
743	
744	
745	
746	
747	
748	
749	
750	
/51	
752	
754	
755	

756 **Roll the dice: Monte Carlo Downsampling** 757 as a low-cost Adversarial Defence 758 759 Paper #1058 Supplementary Material 760 761 762 763 IMPLEMENTATION DETAILS Α 764 765 Following we provide in-depth implementation details for the experiments. 766 767 768 A.1 EXPERIMENTAL SETUP 769 770 Here we provide an overview of the implementation details, we provide additional implementation details in Appendix A. 771 772 **Downstream Tasks.** The majority of our downstream tasks are performed for image classifica-773 tion. We perform classification on the commonly used datasets ImageNet-1k, ImageNet-100 and 774 CIFAR-100. Additionally, we perform evaluations on images corrupted using 2D Common Cor-775 ruptions(Hendrycks & Dietterich, 2019), and images perturbed using Adversarial attacks like PGD, 776 APGD (Wong et al., 2020) and AutoAttack. 777 Datasets. We use the 15 corruptions, with 5 severity levels each, from 2D Common Corrup-778 tions(Hendrycks & Dietterich, 2019) (2D-CC), to generate the Common Corruptions version of the 779 respective dataset. We denote this dataset by appending '-C' to the end of the name of the respective 780 dataset, for example, 2D Common Corruptions on ImageNet-1k results into ImageNet-1k-C. We 781 perform our experiments on the following datasets: 782 ImageNet-1k(Russakovsky et al., 2015): This is a subset of the larger ImageNet-22k dataset(Deng 783 et al., 2009), with 1000 object classes, and 1,281,167 training images, 50,000 validation images. 784 ImageNet-100: This is a commonly used(Hoffmann et al., 2021; Tsai et al., 2021; Ge et al., 2021; 785 Lee et al., 2022; Saikia et al., 2021) subset of ImageNet-1k with 100 classes, such that it has 130,000 786 training images and 5000 validation images, used for faster processing and inference. 787 788 CIFAR-100(Krizhevsky et al., 2009): This dataset contains 60,000 32×32 images, split into 50,000 789 training images and 10,000 validation images, equally distributed over 100 object classes. 790 Adversarial Attacks. We use PGD(Kurakin et al., 2017), APGD(Wong et al., 2020) and AutoAt-791 tack(Croce & Hein, 2020a), with ℓ_{∞} -norm bounded $\epsilon = \frac{4}{255}$ and $\alpha = 0.01$ for all our experiments. 792 PGD and APGD are white-box attacks, meaning they require an undisturbed flow of gradients for 793 optimizing their attack. However, AutoAttack, as proposed comprises of APGD-CE (non-targeted 794 APGD attack with Cross Entropy loss), APGD-T (targeted APGD attack), FAB(Croce & Hein, 795 2020b) and Square(Andriushchenko et al., 2020) Attacks, from these, Square Attack is a black-box attack that does not require a flow of gradients through the ML model. Additionally, since Stochastic 796 Downsampling is essentially a gradient obfuscation method, we also test against Square Attack (An-797 driushchenko et al., 2020) alone, as it is a black-box attack and does not use the gradient information 798 of a model to optimize the attack. 799 800 Metrics. For independent and identically distributed (i.i.d.) (non-attacked and non-perturbed) sam-801 ples, we report the i.i.d. Accuracy (i.i.d. Acc). For evaluations against adversarial attacks, we report the accuracy after the respective attack. For samples from 2D Common Corruptions variant of the 802 respective datasets, we report the mean Corruption Error (mCE), this is the mean error by the method 803 on all the corrupted samples. All numbers are reported in percentages. 804 805 Architectures. To demonstrate the versatility of Stochastic Downsampling, we have considered 806 multiple architectures and their variants. For experiments with ImageNet-1k, and ImageNet-1k-807 C, we use ResNet18, ResNet50 and ResNet101 (He et al., 2016), ConvNeXt-T, ConvNeXt-S, and ConvNeXt-B (Liu et al., 2022). We use RobustBench(Croce et al., 2020), to get the adversarially 808

trained weights. For ImageNet-100 and CIFAR-100 (and their 2D-CC counterparts) experiments, we use ConvNeXt-T (tiny) (Liu et al., 2022). Additionally, for comparison, we also use the architectural changes proposed by (Grabinski et al., 2022a) and (Grabinski et al., 2023), and include them in ConvNeXt-tiny after correspondence with the respective authors.

- 813 814 A.2 COMPUTE RESOURCES
 - We used single NVIDIA Tesla V100, and A100 GPUs for each experiment.

A.3 FINETUNING ON IMAGENET100

We take models pretrained on ImageNet-1k and then finetune them on ImageNet-100 until the training loss converges. This trained model serves as the 'Baseline', and weights from this model are
used for finetuning models that are modified with adversarial defense methods. The models with
Stochastic Downsampling and other adversarial defenses were trained for 5 epochs for finetuning,
with a learning rate of 5e-5 with Cosine Annealing as the learning rate scheduler. We used the SGD
optimizer trained using the train split and tested using the test split of the ImageNet100 dataset.

825

815

816 817

826 A.4 FINETUNING ON IMAGENET-1K

The models were trained for 5 epochs for finetuning, with a learning rate of 5e-5 with Cosine Annealing and StepLR as the learning rate scheduler for ConvNeXt and ResNet respectively. We used the SGD optimizer trained using the train split and tested using the test split of the Imagenet-1k dataset.

831 832 833

A.5 FINETUNING ON CIFAR100

We take models pretrained on ImageNet-1k and then finetune them on CIFAR100 until the training
loss converges. This trained model serves as the 'Baseline', and weights from this model are used
for finetuning models that are modified with adversarial defense methods. The models were trained
for 5 epochs for finetuning, with a learning rate of 4e-4 with Cosine Annealing and MultiStepLR
as the learning rate scheduler in case of ConvNeXt and ResNet respectively. We used the SGD
optimizer trained using the train split and tested using the test split of the CIFAR100 dataset.

840 841

846 847

848 849

850

852

853 854 855

856 857

858

859

A.6 TRAINING FROM SCRATCH ON CIFAR100

These models are trained from scratch on CIFAR100. The models were trained for 100 epochs for
finetuning, with a learning rate of 0.1 with MultiStepLR as the learning rate scheduler. We used the
SGD optimizer trained using the train split and tested using the test split of the CIFAR100 dataset.

- **B** ADDITIONAL RESULTS
 - Following we provide additional experimental results and analysis.
- 851 B.1 EXTENDING TO OTHER MODELS AND DATASETS

We extend the analysis from Sec. 5.1 to the CIFAR100 dataset in Tab. 6.

C CODE FOR STOCHASTIC DOWNSAMPLING

Following is the python code for performing the Stochastic Downsampling operation. It uses pytorch (Paszke et al., 2019).

```
860 1 from typing import Literal, Tuple
import torch
861 3 import torch.nn as nn
import torch.nn.functional as F
863 6
7 import einops
```

⁸ class StochasticDownsampler(nn.Module):

Table 6: Here we report the performance of various model finetuning strategies against adversarial attacks for CIFAR100. All Methods except 'Baseline' are finetuned for 5 epochs.

Model	Method	i.i.d. Acc. (%)↑	PGD Acc. (%)↑	Autoattack Acc. (%)↑
	Baseline	81.43	2.17	0.1
ConvNoVt T	SD + Addnoise	68.34	30.79	19.74
Convinent-1	SD	72.86	19.08	6.78
	Baseline	82.69	1.95	0.14
ConvNoVt S	SD + Addnoise	69.96	32.58	20.04
CONVINEAL-S	SD	74.32	20.56	7.04
	Baseline	84.45	3.45	0.18
ConvNoVt D	SD + Addnoise	72.46	32.79	19.94
CONVINEAL-D	SD	77.05	22.58	6.38
	Baseline	76.15	1.14	0.16
DagNat19	SD + Addnoise	73.45	1.45	0.34
Residents	SD	75.77	1.64	0.28
	Baseline	78.83	1.91	0.10
DecNet50	SD + Addnoise	74.67	4.43	0.38
Residentio	SD	77.09	3.38	0.36
	Baseline	79.83	2.06	0.08
DecNet101	SD + Addnoise	75.25	4.74	0.32
Resinet101	SD	77.79	3.44	0.34

"""Stochastically downsamples a feature map to a target resolution. Conceptually approximates a pixel \leftrightarrow integral by monte carlo sampling""" def __init__(self, resolution: Tuple[int, int], spp: int = 16, spp: int = io, reduction: Literal["mean", "sum", "min", "max", "prod"] = "mean", jitter_type: Literal["uniform", "normal"] = "uniform", normal_std: float = 1,): super().__init__() if (not isinstance(resolution, tuple) and not isinstance(resolution, list)): resolution = (resolution, resolution) if len(resolution) != 2:
 raise ValueError(f"Resolution must be a tuple of length 2, got {resolution}") self.resolution = resolution self.spp = spp self.reduction = reduction self.jitter_type = jitter_type
self.normal_std = normal_std
if self.jitter_type == "uniform":
 self.jitter_fn = torch.rand
elif self.jitter_type == "normal"
 colf ifter fn = lorbd.cormal 30 normal": self.jitter_fn = lambda *args, **kwargs : self.normal_std*torch.randn(*args, **kwargs) + 0.5 else: raise NotImplementedError(f"Jitter type {jitter_type} not supported") def forward(self, x: torch.Tensor, jitter_array=None): Downsamples \boldsymbol{x} to the target resolution :param x: high-res input feature map, shape (batch_size, C, H, W)
:return: downsampled image, shape (batch_size, C, resolution[0], resolution[1])
""" 908 40 b, c, h, w = x.shape resolution, spp = self.resolution, self.spp step_x = (1 + 1) / resolution[1] step_y = (1 + 1) / resolution[0] pixel_pos_x = torch.arange(-1, 1, step_x, device=x.device) pixel_pos_y = torch.arange(-1, 1, step_y, device=x.device) 45 47 pixel_pos = torch.stack(torch.meshgrid(pixel_pos_x, pixel_pos_y, indexing='xy'), dim=2) add subpixel jitter 52 if jitter_array is not None: jitter = jitter_array else: jitter = self.jitter_fn((spp, resolution[0], resolution[1], 2), device=x.device) jitter[..., 0] *= step_x

919 59 jitter[..., 1] *= step_y
pixel_pos = pixel_pos.unsqueeze(0) + jitter # (spp, resolution[0], resolution[1], 2) 60 61 pixel_pos = einops.repeat(pixel_pos, 'spp h w c -> (b spp) h w c', b=b) x_tiled = einops.repeat(x, 'b c h w -> (b spp) c h w', spp=spp) 62 64 samples = F.grid_sample(x_tiled, pixel_pos, mode='bilinear', padding_mode='border', align_corners=↔ False) return einops.reduce(samples, '(b spp) c h w -> b c h w', self.reduction, b=b) def __repr__(self):
 return (f"StochasticDownsampler(resolution={self.resolution}, "
 f"spp={self.spp}, reduction='(self.reduction}')")