

# 000 001 DSPO: DIRECT SEMANTIC PREFERENCE OPTIMI- 002 ZATION FOR REAL-WORLD IMAGE SUPER-RESOLUTION 003 004

005 **Anonymous authors**

006 Paper under double-blind review

## 007 008 ABSTRACT 009

011 Recent advances in diffusion models have improved Real-World Image Super-  
012 Resolution (Real-ISR), but lack human feedback integration, risking misalign-  
013 ment with human preference and potentially leading to artifacts, hallucinations,  
014 and harmful content generation. To this end, we are the first to introduce human  
015 preference alignment into Real-ISR, a technique that has been successfully ap-  
016 plied in Large Language Models and Text-to-Image tasks to effectively enhance  
017 the alignment of generated outputs with human preferences. Specifically, we intro-  
018 duce Direct Preference Optimization (DPO) into Real-ISR to achieve alignment,  
019 where DPO serves as a general alignment technique that directly optimizes from  
020 the human preference. Nevertheless, the pixel-level reconstruction objectives of  
021 Real-ISR are difficult to reconcile with the image-level preferences of DPO, which  
022 can lead to the DPO being overly sensitive to local anomalies, leading to reduced  
023 generation quality. To resolve this challenge, we propose Direct Semantic Prefer-  
024 ence Optimization (DSPO) to align instance-level human preferences by incor-  
025 porating semantic guidance, which consists of two strategies: (a) semantic instance  
026 alignment strategy, implementing instance-level alignment to ensure fine-grained  
027 perceptual consistency, and (b) user description feedback strategy, mitigating hal-  
028 lucinations through injecting user semantic textual feedback on instance images  
029 as prompt guidance. Our method surpasses both Real-ISR and preference align-  
030 ment baselines, demonstrating superior performance. As a plug-and-play solution,  
031 DSPO performs consistently across one-step and multi-step SR frameworks, high-  
032 lighting strong generalizability.

## 033 1 INTRODUCTION

036 Real-world Image Super-Resolution (Real-ISR) Chen et al. (2022); Zhang et al. (2023); Wang et al.  
037 (2024a) aims to reconstruct photo-realistic high-quality (HQ) images from low-quality (LQ) images  
038 with various degradations such as noise, blur, and low-resolution. Recently, diffusion models Ho  
039 et al. (2020); Dhariwal & Nichol (2021); Song et al. (2020) have made excellent progress in Real-  
040 ISR tasks Wu et al. (2025); Wang et al. (2024a); Yang et al. (2024); Lin et al. (2024); Wu et al.  
041 (2024); Yu et al. (2024), owing to their remarkable capability of generation. However, these models  
042 generally employ the supervised training paradigm that directly learns from paired LQ-HQ image  
043 datasets, omitting human feedback throughout the training cycle. Without human intervention, the  
044 optimization objectives of these models may misalign with human perceptual preferences, leading  
045 to potentially harmful content generation, hallucination phenomena, and visual artifacts.

046 Such misalignment between model outputs and human preferences also exists in other tasks. For in-  
047 stance, in the fields of Large Language Models (LLMs) Achiam et al. (2023); Touvron et al. (2023)  
048 and Text-to-Image (T2I) generation Wallace et al. (2024); Li et al. (2025), human preference align-  
049 ment techniques have been widely employed to mitigate misalignment issues by fine-tuning the  
050 pre-trained model through Reinforcement Learning from Human Feedback (RLHF) strategies. The  
051 classical RLHF paradigm (*e.g.*, PPO Schulman et al. (2017), DDPO Ho et al. (2020)) first trains a  
052 reward model on a fixed preference dataset, then optimizes the policy to maximize the predicted re-  
053 ward. However, relying on a reward model makes the process inherently complex and significantly  
increases computational overhead Rafailov et al. (2023). In contrast, Direct Preference Optimiza-  
tion (DPO) Rafailov et al. (2023) is proposed to directly optimize the policy model based on human



Figure 1: The dilemma between image-level preferences in DPO and pixel-level reconstruction objectives in Real-ISR: The preferred image, selected by the ‘winner of overall image visual pleasure’ rule, appears sharper in the yellow bbox and other areas but shows local hallucinations in the red bbox, where the dispreferred image performs better.

preference data without the reward model and demonstrate excellent performance on generative tasks Rafailov et al. (2023); Wallace et al. (2024).

Despite success in LLM and T2I, human preference alignment (*e.g.* DPO) remains unexplored in Real-ISR. Therefore, we introduce human preference alignment into Real-ISR for the first time through DPO. However, directly applying DPO to Real-ISR results in performance degradation due to the inherent dilemma between image-level preferences of existing DPO and the pixel-level reconstruction objectives of Real-ISR tasks. Specifically, as illustrated in Fig. 1, image-level preferences may lead to artifacts or hallucinations in preferred images within local regions, especially in high-frequency texture and complex regions. Such conflicts may lead to the models being overly sensitive to local anomalies, exhibiting fluctuations and ambiguity during training, which ultimately affects the quality of the generated performance.

To address this problem, we propose Direct Semantic Preference Optimization (DSPO), which deeply aligns instance-level human preferences by incorporating semantic guidance. Specifically, we propose the semantic instance alignment strategy that conducts human preference alignment at the instance level to achieve finer-grained alignment. An instance extractor is employed to extract individual instances from SR outputs, and then preferred and dispreferred instance-level cases are selected, followed by instance-level preference alignment. Additionally, to further mitigate the hallucination phenomenon, we propose the user description feedback strategy: we incorporate users’ semantic textual feedback on instance-level images and select hallucination semantic information texts as prompt injection.

Our contributions are as follows: (1) We pioneer introducing human preference alignment into Real-ISR, establishing the first methodological approach to incorporate human preference alignment in this field. (2) We propose DSPO, which achieves instance-level human preference alignment and significantly suppresses artifacts and hallucination phenomena. (3) Our method outperforms both existing Real-ISR approaches and preference alignment baselines, demonstrating its superior performance. (4) As a plug-and-play solution, DSPO achieves consistent effectiveness across both one-step and multi-step SR frameworks, highlighting its strong generalizability.

## 2 RELATED WORK

**Generative SR Models** Traditional super-resolution (SR) methods based on Convolutional Neural Networks (CNNs) Dong et al. (2014) and Generative Adversarial Networks (GANs) Ledig et al. (2017) focus on pixel fidelity and perceptual quality, while diffusion models achieve superior SR performance with stronger generative capabilities Saharia et al. (2022). Diffusion models have become central to Real-ISR by restoring high-quality images through stepwise denoising. While early methods based on Denoising Diffusion Probabilistic Models (DDPM) Kawar et al. (2022); Song et al. (2020) struggle with complex degradations, recent approaches Yu et al. (2024); Yang et al. (2024); Wang et al. (2024a); Wu et al. (2024) address these challenges. StableSR Wang et al. (2024a) integrates a temporal-aware encoder to improve recovery quality, and SeeSR Wu et al. (2024) leverages text guidance to improve semantic consistency and detail. One-step diffusion methods further accelerate inference. OSEDiff Wu et al. (2025) employs Variational Score Distillation (VSD) to boost efficiency and performance.

108 **Human Preference Alignment in LLMs** To align with human preferences, LLMs are typically  
 109 first supervised fine-tuned (SFT) and then optimized via RLHF Ouyang et al. (2022). Traditional  
 110 RLHF methods, such as Proximal Policy Optimization (PPO) Schulman et al. (2017), rely on reward  
 111 models to guide policy learning but struggle with challenges to train a reward model when the reward  
 112 signal is unclear, suffering from high computational costs and training instability. To overcome the  
 113 limitations, Direct Preference Optimization (DPO) serves as an alternative method, allowing LLMs  
 114 to optimize directly based on pairwise preference data without training a reward model Rafailov  
 115 et al. (2023). DPO has low computational overhead and stable optimization, demonstrating superior  
 116 performance on open-source models like Llama 2 Bai et al. (2022). Compared to reward model-  
 117 based methods, DPO is more efficient in optimizing LLM preferences, reducing training complexity  
 118 while maintaining competitive performance Touvron et al. (2019).

119 **Human Preference Alignment in T2I** Human preference alignment has emerged as a key direc-  
 120 tion for enhancing the subjective quality of T2I tasks. ImageReward Xu et al. (2023) trains reward  
 121 models using human rating data to optimize generative preferences. However, this method is sus-  
 122 ceptible to bias and has limited generalization capabilities Bai et al. (2022). DDPO Ho et al. (2020)  
 123 optimizes diffusion models within a small vocabulary range but struggles to adapt to complex text  
 124 prompts, highlighting the limitations associated with reward model-based approaches. In contrast,  
 125 Diffusion-DPO fine-tunes diffusion models directly based on human preference data without re-  
 126 quiring an explicit reward model Wallace et al. (2024), enhancing the generation quality for open  
 127 vocabulary without increasing inference costs, thereby aligning T2I tasks more closely with human  
 128 aesthetics and semantic consistency.

### 131 3 PRELIMINARIES

133 **DPO in LLM Tasks** Direct Preference Optimization (DPO) Rafailov et al. (2023) is a preference  
 134 alignment method that does not require training a reward model, and is applicable for optimizing  
 135 LLM. DPO optimizes the generation probabilities of paired preference data  $(x_w, x_l)$  such that the  
 136 preferred sample  $x_w$  has a higher probability than the non-preferred sample  $x_l$ . The DPO objective  
 137 can be expressed as:

$$138 \quad L = -\mathbb{E}_{(c, x_w, x_l) \sim D} \left[ \log \sigma \left( \beta \log \frac{p_\theta(x_w|c)}{p_{\text{ref}}(x_w|c)} - \beta \log \frac{p_\theta(x_l|c)}{p_{\text{ref}}(x_l|c)} \right) \right], \quad (1)$$

141 where  $p_\theta(x|c)$  and  $p_{\text{ref}}(x|c)$  represent the probability distribution generated by the DPO-trained  
 142 LLM and the reference (pre-trained) model, respectively. The function  $\sigma(x)$  is the sigmoid function,  
 143 and  $\beta$  controls the regularization strength.

146 **Diffusion-DPO in T2I Tasks** In Text-to-Image (T2I) tasks, the sampling process of diffusion  
 147 models is executed step-by-step, where the objective is not to directly optimize the final generated  
 148 image but to influence the denoising process at each time step  $t$ , enhancing the likelihood of recover-  
 149 ing preferred samples. Thus, the DPO objective can be extended to the diffusion process, optimizing  
 150 the denoising probability distribution at each time step  $t$ :

$$152 \quad L = -\mathbb{E}_{(c, x_w, x_l) \sim D, t \sim U(0, T)} \log \sigma \left[ \beta \mathbb{E}_{x_{1:T}^w \sim p_\theta(x_{1:T}^w|x_0^w)} \right. \\ 153 \quad \left. \log \frac{p_\theta(x_0^w|x_{1:T}^w)}{p_{\text{ref}}(x_0^w|x_{1:T}^w)} - \beta \mathbb{E}_{x_{1:T}^l \sim p_\theta(x_{1:T}^l|x_0^l)} \log \frac{p_\theta(x_0^l|x_{1:T}^l)}{p_{\text{ref}}(x_0^l|x_{1:T}^l)} \right], \quad (2)$$

157 Here, the condition text is compactness.  $x_{0:T}$  denotes the complete diffusion path,  $p_\theta(x_{1:T}|x_0)$  rep-  
 158 presents the diffusion process given the initial state  $x_0$ ,  $p_\theta(x_0|x_{1:T})$  is the denoising probability dis-  
 159 tribution after the given diffusion trajectory  $x_{1:T}$ , and  $p_{\text{ref}}(x_0|x_{1:T})$  refers to the corresponding dis-  
 160 tribution of the reference model. By optimizing the log probability ratio throughout the diffusion  
 161 process, DPO-T2I encourages the model to generate images that align more closely with human  
 162 preferences, thereby enhancing the quality of alignment in T2I tasks.

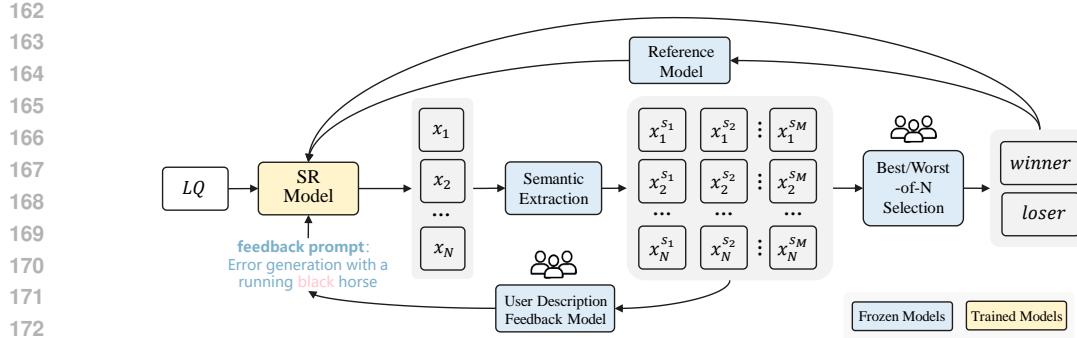


Figure 2: The overview of the proposed Direct Semantic Preference Optimization (DSPO) method.

## 4 METHODOLOGY

### 4.1 OVERVIEW

We propose Direct Semantic Preference Optimization (DSPO), which enhances instance-level human preference alignment by integrating semantic guidance. It is important to note that DSPO is designed as a fine-tuning approach for SR models. Therefore, DSPO is applied only during the training phase, while the inference stage remains identical to the pre-trained SR model to enable direct comparison. The overview of the proposed DSPO method is illustrated in Fig.2. Specifically, to achieve finer-grained alignment, we design the semantic instance alignment strategy (detailed introduced in Sec. 4.2): DSPO first generates a series of SR output with the same input LQ image using a pre-trained SR model under various settings and uses a semantic extraction model (*e.g.*, SAM Kirillov et al. (2023)) to extract instance-level semantics. By selecting the Best/Worst-of-N, it obtains the fine-grained winners and losers, which will align with SR models through DPO. Additionally, to mitigate hallucination in local regions, we propose a user description feedback strategy (detailed introduced in Sec. 4.3), which uses a Vision-Language Model(VLM) model to describe multiple instance-level samples and feeds semantically misaligned examples back to the prompt branch of the SR model by prompt injection.

### 4.2 SEMANTIC INSTANCE ALIGNMENT STRATEGY

We propose the semantic instance alignment strategy, which aligns human preferences at the instance level to achieve finer-grained alignment. As exhibited in Fig. 2, based on the pre-trained SR, we first generate a series of SR output with the same input LQ image using pre-trained SR model under various settings. For each SR output, we implement an semantic extraction model (*i.e.* Segment Anything (SAM) Kirillov et al. (2023)) to generate instances. Subsequently, we select instance-level preferred and dispreferred examples based on human evaluations and apply DPO at the instance level. The detailed implementation is as follows.

#### 4.2.1 OPTIMIZATION OBJECTIVE

For an input low-resolution image  $x_{LQ}$ , we first generate a series of SR outputs  $\{x_1, x_2, \dots, x_N\}$ . For each SR image  $x_i$  generated from the pre-trained model, we generate  $M$  semantic instance regions using SAM Kirillov et al. (2023):  $S = \{s_m\}_{m=1}^M$ ,  $\sum_{m=1}^M s_m = \mathbf{1}$ , where each region  $s_m$  represents to the mask of the  $m$ -th semantic instance, and  $s_m \in \{0, 1\}^{H \times W}$  is a binary mask matrix representing the spatial coverage of the semantic instance. Here,  $M$  is not a fixed constant but depends on the number of instances automatically segmented by SAM, which varies from image to image. In the construction process of the optimization objective, different semantic instances have different contributions to optimization due to their varying size of areas. Therefore, the weight  $w_m$  for optimization intensity of each semantic instance is defined as follows:

$$w_m = \frac{|s_m|}{\sum_{m=1}^M |s_m|}, \quad (3)$$

where  $|s_m|$  denotes the number of pixels in the semantic instance  $s_m$ .

216 After segment, each SR image  $x_i$  can be divided into different instances  $\{x_i^{s_1}, x_i^{s_2}, \dots, x_i^{s_M}\}$ . This  
 217 allows us to obtain the different instance-level image within the same instance  $s_m$  region across  
 218 different images:  $\{x_1^{s_m}, x_2^{s_m}, \dots, x_N^{s_m}\}$ . We then perform a human preference-based Best/Worst-of-  
 219 N selection and obtain  $x_w^{s_m}$  and  $x_l^{s_m}$ , respectively. The whole image  $x_w$  of the best instance  $x_w^{s_m}$   
 220 is defined as the preferred example, while the whole image  $x_l$  of  $x_l^{s_m}$  is dispreferred example. The  
 221 final optimization objective is as follows:

$$222 \max_{\theta} \mathbb{E}_{(x_{\text{LQ}}, x_w, x_l) \sim D} \sum_{m=1}^M w_m \cdot \left[ \log \sigma \left( \beta \log \frac{p_{\theta}(x_w | x_{\text{LQ}}, s_m)}{p_{\text{ref}}(x_w | x_{\text{LQ}}, s_m)} - \beta \log \frac{p_{\theta}(x_l | x_{\text{LQ}}, s_m)}{p_{\text{ref}}(x_l | x_{\text{LQ}}, s_m)} \right) \right], \quad (4)$$

225 where  $p_{\theta}(x | x_{\text{LQ}}, s_m)$  represents the probability of the target model generating an SR image  $x$  within  
 226 the semantic instance  $s_m$ , while  $p_{\text{ref}}(x | x_{\text{LQ}}, s_m)$  represents the same for the reference (pre-trained)  
 227 model.

#### 229 4.2.2 LOSS FUNCTION

231 Referring to Diffusion-DPO Wallace et al. (2024), the optimization objective of DPO is further re-  
 232 formulated into a loss function grounded in noise prediction error within the framework of diffusion  
 233 models, thereby ensuring that optimization is calculated progressively at each time step  $t$  throughout  
 234 the diffusion process. Therefore, our loss function can be expressed as follows:

$$235 L_{\text{SR}} = -\mathbb{E}_{(x_{\text{LQ}}, x_w, x_l) \sim D, t \sim U(0, T)} \left[ \sum_{m=1}^M w_m \log \sigma \left( -\beta T \times \left( L_{\text{diff}}^{\theta}(x_w, t, s_m | x_{\text{LQ}}) - \right. \right. \right. \\ 236 \left. \left. \left. L_{\text{diff}}^{\text{ref}}(x_w, t, s_m | x_{\text{LQ}}) - \left( L_{\text{diff}}^{\theta}(x_l, t, s_m | x_{\text{LQ}}) - L_{\text{diff}}^{\text{ref}}(x_l, t, s_m | x_{\text{LQ}}) \right) \right) \right) \right], \quad (5)$$

240 where  $L_{\text{diff}}(x, t, s_m | x_{\text{LQ}})$  represents the denoising error within the semantic instance  $s_m$ , serving as a  
 241 stability constraint during training to reduce distribution shift.  $L_{\text{diff}}^{\theta}$  and  $L_{\text{diff}}^{\text{ref}}$  calculate the prediction  
 242 error of the current model  $\theta$  and reference model, respectively, and are defined as follows:

$$244 L_{\text{diff}}^{\text{ref}}(x, t, s_m | x_{\text{LQ}}) = \gamma(\lambda_t) \|s_m \cdot (\epsilon - \epsilon_{\text{ref}}(x, t | x_{\text{LQ}}))\|^2, \quad (6)$$

$$245 L_{\text{diff}}^{\theta}(x, t, s_m | x_{\text{LQ}}) = \gamma(\lambda_t) \|s_m \cdot (\epsilon - \epsilon_{\theta}(x, t | x_{\text{LQ}}))\|^2, \quad (7)$$

246 where  $\epsilon_{\theta}(x, t | x_{\text{LQ}})$  denotes the noise predicted by the diffusion model at time step  $t$ , where  $\epsilon$  re-  
 247 presents the true noise.  $\lambda_t$  represents the signal-to-noise ratio Kingma et al. (2021), and  $\gamma(\lambda_t)$  is a  
 248 predefined weighting function, often set as constant Ho et al. (2020); Song & Ermon (2019). This  
 249 loss function enables optimization at the semantic instance level at each time step, enabling the SR  
 250 model to align with human perception in finer-grained regions. Additionally, it leverages the re-  
 251 ference model to prevent distribution drift. We compute the loss over the full image and apply it  
 252 selectively via the segmentation mask  $S_m$ . This preserves global context, allowing the pretrained  
 253 diffusion model to leverage global priors during DSPO optimization. In contrast, using segmented  
 254 patches lacks global context. Moreover, varying segment sizes disrupt positional encoding, degrad-  
 255 ing spatial modeling and training stability.

#### 256 4.3 USER DESCRIPTION FEEDBACK STRATEGY

258 We further propose the user description feedback strategy to relieve the hallucination problem of  
 259 generative SR models. The SR outputs  $x_i \in (x_1, x_2, \dots, x_N)$  are segmented to extract individual  
 260 semantic instances, which are then analyzed through the VLM for descriptive analysis. By employing  
 261 human evaluations, we identify semantic instances that do not align with the input low-quality (LQ)  
 262 content and gather their corresponding text descriptions to form error generation prompts. These  
 263 prompts are utilized to constrain the generation direction during the sampling process of the  
 264 diffusion model to avoid hallucination. This approach ensures that the diffusion model can minimize  
 265 hallucination generation throughout the optimization process, enhancing semantic consistency in the  
 266 super-resolution task.

#### 267 4.4 DSPO OBJECTIVES

268 The final loss function can be represented as follows:

270

271

272

$$L_{\text{DSPO}} = \sum_m L(x_w, x_l | x_{\text{LQ}}, s_m, p_{\text{negative}}). \quad (8)$$

273

The DSPO strategy combines semantic instance alignment strategy and user description feedback strategy significantly enhancing the fine-grained recovery capability of SR models through optimization at the semantic instance level, while effectively mitigating the issue of hallucination generation using feedback description prompts. DSPO enhances the model’s understanding of human preferences and improves its SR ability by addressing artifacts and hallucinations, especially in high-frequency texture and complex regions.

274

275

## 5 IMPLEMENTATION

276

277

### 5.1 TRAINING

278

#### 5.1.1 PRE-TRAINING CONFIGURATION

279

280

For pre-training, we evaluate DSPO across four distinct SR frameworks to assess its generalizability: OSEDiff, SD2.1<sup>1</sup>, SeeSR, and AddSR Xie et al. (2024). Each framework is trained on the LSDIR dataset Li et al. (2023), with model inputs randomly cropped to  $512 \times 512$ . Low-quality (LQ) images are generated using the degradation pipeline from Real-ESRGAN Wang et al. (2021), resulting in 84991 LQ-HQ pairs. The SD2.1 using the Adam optimizer Loshchilov & Hutter (2017) for 150K iterations, with a batch size of 192 and a learning rate of  $5 \times 10^{-5}$  to obtain the pre-trained multi-step SR model. During inference, we adopt spaced DDPM sampling Nichol & Dhariwal (2021) with 50 steps and set the cfg to 5.5. The pre-trained settings for OSEDiff, SeeSR, and AddSR remain consistent with their original settings in their paper. In the following experiments, we default to using OSEDiff for one-step frameworks and SD2.1 for multi-step frameworks unless otherwise specified.

281

282

**Dataset Preparation** The sampling distribution between preference pairs should not vary too much Guo et al. (2024). Therefore, we obtain preference data candidates by adjusting the hyperparameters (e.g., step, cfg) of the pre-trained model instead of changing the SR model, thereby avoiding excessive sample deviation. Specifically, we apply different hyperparameter settings to a pre-trained model to infer multiple SR outputs for one LQ image. These outputs are evaluated using four representative SR metrics: PSNR Wang et al. (2004), SSIM Wang et al. (2004), NIQE Zhang et al. (2015), and CLIP-IQA Wang et al. (2023), which reflect pixel fidelity, structural consistency, perceptual quality, and semantic alignment, respectively. All scores are normalized, and the top four results with the highest average scores are selected as candidates. To retain the model’s perception of negative samples, the default output of the pre-trained model is also included, replacing the lowest one if not already among the top four. After obtaining four different SR results, we use SAM Kirillov et al. (2023) to segment them into distinct instance regions. We then evaluate the same instance regions from the four results using two approaches: the human annotator method and the automatic scoring method, which are introduced as follows.

283

284

**Human Annotator Method** We invite ten professionals specialized in low-level tasks to perform instance-level rankings, selecting preferred and dispreferred instance images. In addition, for the user description feedback strategy, we include the text results generated by Qwen2.5-VL-max Bai et al. (2025) below each image in the interactive interface. If the generated text does not align with the instance image, the user will select it as the feedback textual prompt. To reduce annotation costs, we select the first 500 images from LSDIR and annotate the top 5 largest segmented instance regions in each image, resulting in 2500 regions in total.

285

286

**Automatic Scoring Method** To simulate human preference selection, we employ Qwen2.5-VL-max to compare SR results within each instance region. Specifically, four candidate images are input with a prompt asking the model to select the best and worst based on multiple aspects such as quality, realism, and consistency, forming a preference pair. Note that, unlike traditional IQA metrics that assess a single image from a single aspect, Qwen2.5-VL-max supports multi-image comparison and holistic evaluation across multiple dimensions, better aligning DSPO’s pairwise

<sup>1</sup><https://huggingface.co/stabilityai/stable-diffusion-2-1-base>

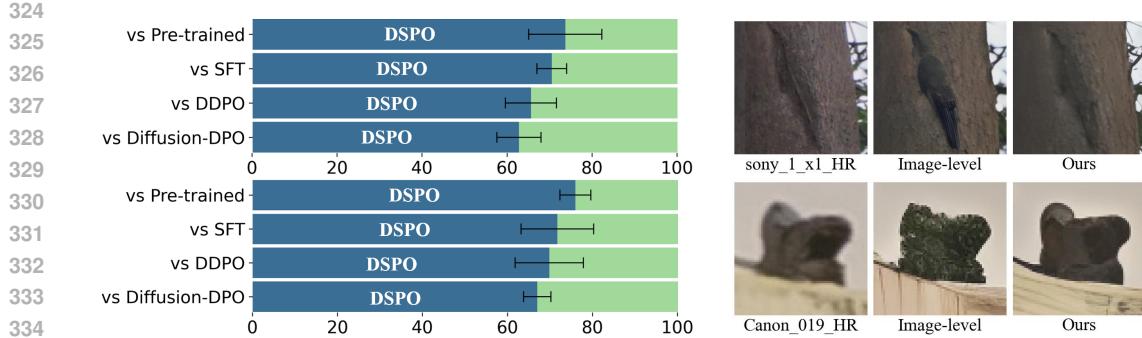


Figure 3: (Left) User preference win rates of DSPO over the pre-trained method, SFT, DDPO, and Diffusion-DPO on DRealSR (top) and RealSR (bottom), based on human annotations. Results include 95% confidence intervals from three independent annotation rounds. (Right) Qualitative comparison of DSPO with image-level preference alignment method.

preference modeling. Furthermore, our empirical results show that the proprietary Qwen2.5-VL-max (with hundreds of billions of parameters) yields more human-aligned scores than our fine-tuned 72B Qwen2.5-VL, while also providing significantly faster inference via remote interface access. Hence, we adopt Qwen2.5-VL-max as our preference scoring model. For the user description feedback strategy, we compute the similarity of the text generated by Qwen2.5-VL-max between the ground truth and the four candidate instance images. When the similarity is less than 0.1, we assume that the instance image is hallucinated, and the corresponding text is selected as the feedback prompt.

**Implementation Details.** During the training and inference of DSPO, we adopt the same hyper-parameter settings as used in the pre-training stage. The DSPO is trained on 8 NVIDIA A100 80GB GPUs, and we set  $\beta = 8000$ .

We evaluate DSPO against the following preference alignment baseline methods: the pre-trained method (one-step or multi-step SR frameworks), SFT, DDPO Ho et al. (2020), and Diffusion-DPO Wallace et al. (2024). Specifically, the SFT baseline fine-tunes the pre-trained method based only on the subset of images labeled as ‘preferred’. Additionally, we compare DSPO with existing Real-ISR methods, including StableSR Wang et al. (2024a), DiffBIR Lin et al. (2024), ResShift Yue et al. (2023), SinSR Wang et al. (2024b), PASD Khan et al. (2023), AddSR Xie et al. (2024), OSED-iff Wu et al. (2025), and SeeSR Wu et al. (2024). We evaluate the test set on both real-world and synthetic data. The real-world data come from RealSR Cai et al. (2019) and DRealSR Wei et al. (2020), containing LQ-HQ pairs at resolutions of  $128 \times 128$  and  $512 \times 512$ . The synthetic set includes 3000 DIV2K-val Agustsson & Timofte (2017) HQ images ( $512 \times 512$ ), with corresponding LQ images generated using Real-ESRGAN Wang et al. (2021).

**Evaluation of Human Annotator Method** We calculate the user preference win rates (i.e., the frequency with which the human prefers images generated by DSPO) for the human annotator method. We ask annotators to compare images generated by DSPO and another method under the same LQ condition and select the image they prefer (i.e., ‘Which image do you prefer given the LQ?’).

**Evaluation of Automatic Scoring Method** We utilize a series of metrics to evaluate the results of the automatic scoring method and other methods, including PSNR Wang et al. (2004), SSIM Wang et al. (2004), LPIPS Zhang et al. (2018), DISTs Ding et al. (2020), NIQE Zhang et al. (2015), MUSIQ Ke et al. (2021), MANIQA Yang et al. (2022), and CLIPQA Wang et al. (2023).

## 6 RESULTS

### 6.1 PREFERENCE ALIGNMENT FROM ANNOTATORS

Fig. 3 (left) shows the user preference win rates of DSPO compared to the pre-trained model and other preference alignment baseline models under the human annotator method, based on the one-

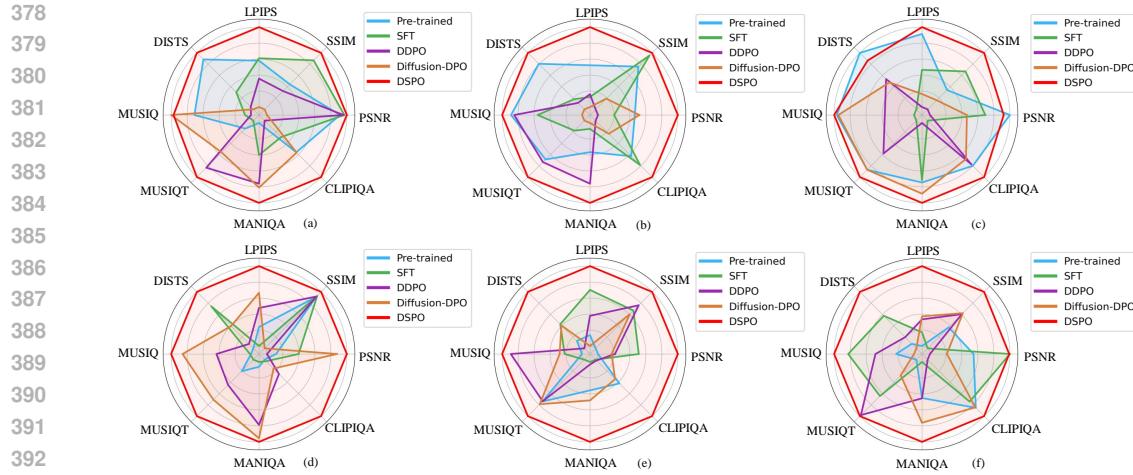


Figure 4: Quantitative comparison of DSPO with the preference alignment baselines on the automatic scoring method. (a)-(c) depict the radar plots for the one-step SR framework on RealSR, DRealSR, and DIV2K-val, while (d)-(f) show radar plots for the multi-step SR framework on the same datasets.

Table 1: Quantitative comparison of DSPO with Real-ISR baseline methods on the DRealSR Dataset. We use bold to emphasize the first, and underline to indicate the second.

| Metrics            | StableSR     | DiffBIR | ResShift      | SinSR  | PASD          | AddSR  | OSEDiff       | SeeSR         | Ours          |
|--------------------|--------------|---------|---------------|--------|---------------|--------|---------------|---------------|---------------|
| PSNR $\uparrow$    | 28.03        | 26.71   | <b>28.46</b>  | 28.36  | 27.36         | 27.77  | 27.92         | 28.17         | <b>28.54</b>  |
| SSIM $\uparrow$    | 0.7536       | 0.6571  | <b>0.7673</b> | 0.7515 | 0.7073        | 0.7722 | <b>0.7835</b> | 0.7691        | 0.7813        |
| LPIPS $\downarrow$ | 0.3284       | 0.4557  | 0.4006        | 0.3665 | 0.3760        | 0.3196 | <b>0.2968</b> | 0.3189        | <b>0.2931</b> |
| DISTS $\downarrow$ | 0.2269       | 0.2748  | 0.2656        | 0.2485 | 0.2531        | 0.2242 | <b>0.2165</b> | 0.2315        | <b>0.2102</b> |
| NIQE $\downarrow$  | 6.5239       | 6.3124  | 8.1249        | 6.9907 | <b>5.5474</b> | 6.9321 | 6.4902        | 6.3967        | <u>6.1330</u> |
| MUSIQ $\uparrow$   | <b>58.51</b> | 61.07   | 50.6          | 55.33  | 64.87         | 60.85  | 64.65         | <b>64.93</b>  | <b>66.01</b>  |
| MANIQA $\uparrow$  | 0.5601       | 0.5930  | 0.4586        | 0.4884 | <b>0.6169</b> | 0.5490 | 0.5899        | <u>0.6042</u> | <b>0.6203</b> |
| CLIPQA $\uparrow$  | 0.6356       | 0.6395  | 0.5342        | 0.6383 | 0.6808        | 0.6188 | <b>0.6963</b> | 0.6804        | <b>0.7045</b> |

step SR framework. Three independent annotation rounds are conducted and the 95% confidence interval of the win rate is provided. It can be observed that DSPO significantly improves the human preference alignment of the pre-trained model, achieving an average win rate of 73.5% and 75.1% on the DRealSR and RealSR, respectively. Furthermore, human annotators prefer the results generated by DSPO over those produced by SFT, DDPO, and Diffusion-DPO. This indicates that for SR-based tasks, the semantic-level DSPO approach is more effective in enhancing alignment with human preferences than image-level human preference alignment methods.

## 6.2 PREFERENCE ALIGNMENT FROM AUTOMATIC SCORING

Fig.4 illustrates the automatic scoring model method compared with the preference alignment baselines for both one-step and multi-step SR models, presented in a radar plot. It can be observed that DSPO consistently outperforms the pre-trained model across all metrics, regardless of one-step or multi-step frameworks. In addition, other image-level alignment methods (SFT, DDPO, Diffusion-DPO) offer inferior gains due to conflicts between image-level preferences and pixel-level objectives in Real-ISR. DSPO alleviates this by introducing instance-level semantic guidance, which better captures semantic structures, reduces sensitivity to local artifacts, and improves overall SR quality. We conduct a visual comparison with the image-level preference alignment method, as exhibited in Fig. 3 (right), with more results provided in the supplementary material. It can be observed that DSPO, through instance-level semantic guidance, avoids hallucinations and artifacts, resulting in a more natural SR image.

As shown in Table 1, we compare our method with existing Real-ISR methods on a general benchmark dataset. Our results are obtained by integrating the proposed DSPO into SeeSR. Through comparisons, DSPO achieves the best or second-best performance on all metrics, thereby fully demon-

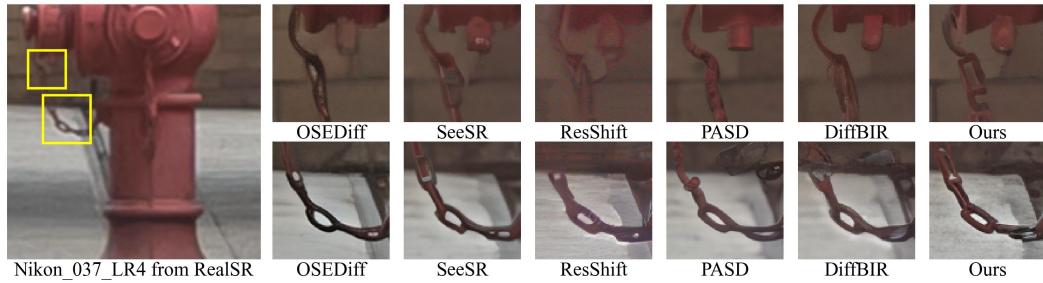


Figure 5: Qualitative comparison of DSPO with Real-ISR baseline methods.

Table 2: Plug-and-Play performance validation of DSPO across multiple SR methods on the DRealSR dataset.

| Method       | PSNR↑        | SSIM↑         | LPIPS↓        | DISTS↓        | NIQE↓         | MUSIQ↑       | MANIQA↑       | CLIPIQ↑       |
|--------------|--------------|---------------|---------------|---------------|---------------|--------------|---------------|---------------|
| OSEDiff      | 27.92        | 0.7835        | 0.2968        | 0.2165        | 6.4902        | 64.65        | 0.5895        | 0.6963        |
| OSEDiff+DSPO | <b>27.98</b> | <b>0.7919</b> | <b>0.2871</b> | <b>0.2150</b> | <b>6.4411</b> | <b>65.80</b> | <b>0.6058</b> | <b>0.7043</b> |
| SD2.1        | 27.21        | 0.7598        | 0.3380        | 0.2535        | 6.5110        | 61.16        | 0.5877        | 0.6675        |
| SD2.1+DSPO   | <b>28.08</b> | <b>0.7613</b> | <b>0.3154</b> | <b>0.2357</b> | <b>6.3724</b> | <b>64.26</b> | <b>0.6113</b> | <b>0.6819</b> |
| SeeSR        | 28.17        | 0.7691        | 0.3189        | 0.2315        | 6.3967        | 64.93        | 0.6042        | 0.6804        |
| SeeSR+DSPO   | <b>28.54</b> | <b>0.7813</b> | <b>0.2931</b> | <b>0.2102</b> | <b>6.1330</b> | <b>66.01</b> | <b>0.6203</b> | <b>0.7045</b> |
| AddSR        | 27.77        | 0.7722        | 0.3196        | 0.2242        | 6.9321        | 60.85        | 0.5490        | 0.6188        |
| AddSR+DSPO   | <b>28.20</b> | <b>0.7851</b> | <b>0.3056</b> | <b>0.2087</b> | <b>6.7451</b> | <b>62.28</b> | <b>0.5600</b> | <b>0.6352</b> |

strating its superior performance. The visualization in Fig. 5 contrasts DSPO with other Real-ISR methods. Image generated from DSPO closely aligns with human visual perception and preserves the edge details and texture of target objects.

In addition, DSPO, as a plug-and-play module, is integrated into four mainstream SR methods. Results in Table 2 show that DSPO significantly enhances key metrics, demonstrating its effectiveness and generalizability as a universal plug-and-play solution.

**Ablation of Different Strategy** To analyze the effects of the semantic instance alignment strategy and the user description feedback strategy, we conduct an ablation study, as exhibited in Table 3. The experimental results demonstrate that the semantic instance alignment strategy significantly improves preference and reduces artifacts and hallucinations. Incorporating the user description feedback strategy further enhances the image SR performance, leading to more refined results. The combination of both strategies achieves the best overall performance.

Table 3: Ablation study on different strategies. ‘M1’ represents the semantic instance alignment strategy and ‘M2’ represents the user description feedback strategy.

| Method      | PSNR↑        | SSIM↑         | MANIQA↑       | CLIPIQ↑       |
|-------------|--------------|---------------|---------------|---------------|
| Pre-trained | 28.17        | 0.7691        | 0.6042        | 0.6804        |
| M1          | 28.15        | 0.7755        | 0.6123        | 0.6932        |
| M1+M2       | <b>28.54</b> | <b>0.7813</b> | <b>0.6203</b> | <b>0.7045</b> |

## 7 CONCLUSION

This paper presents Direct Semantic Preference Optimization (DSPO), a novel framework that pioneers human preference alignment in Real-ISR. To address the dilemma between image-level preference of DPO and pixel-wise preference alignment, our method introduces two key innovations: (1) A semantic instance alignment strategy that optimizes semantic preference learning at the instance level to achieve finer-grained alignment, and (2) a user description feedback strategy that injects user-selected semantic hallucination texts as prompts. Comprehensive experiments demonstrate DSPO’s superiority over Real-ISR and preference alignment baselines, and its strong generalizability across both one-step and multi-step frameworks.

486 REFERENCES  
487

488 Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-  
489 man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical  
490 report. *arXiv preprint arXiv:2303.08774*, 2023.

491 Eirikur Agustsson and Radu Timofte. Ntire 2017 challenge on single image super-resolution:  
492 Dataset and study. In *Proceedings of the IEEE conference on computer vision and pattern recog-*  
493 *nition workshops*, pp. 126–135, 2017.

494

495 Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,  
496 Shijie Wang, Jun Tang, et al. Qwen2. 5-vl technical report. *arXiv preprint arXiv:2502.13923*,  
497 2025.

498 Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda Askell, Anna Chen, Nova DasSarma, Dawn  
499 Drain, Stanislav Fort, Deep Ganguli, Tom Henighan, et al. Training a helpful and harmless assis-  
500 tant with reinforcement learning from human feedback. *arXiv preprint arXiv:2204.05862*, 2022.

501

502 Jianrui Cai, Hui Zeng, Hongwei Yong, Zisheng Cao, and Lei Zhang. Toward real-world single  
503 image super-resolution: A new benchmark and a new model. In *Proceedings of the IEEE/CVF*  
504 *international conference on computer vision*, pp. 3086–3095, 2019.

505

506 Honggang Chen, Xiaohai He, Linbo Qing, Yuanyuan Wu, Chao Ren, Ray E Sheriff, and Ce Zhu.  
507 Real-world single image super-resolution: A brief review. *Information Fusion*, 79:124–145, 2022.

508 Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis. *Advances*  
509 *in neural information processing systems*, 34:8780–8794, 2021.

510

511 Keyan Ding, Kede Ma, Shiqi Wang, and Eero P Simoncelli. Image quality assessment: Unifying  
512 structure and texture similarity. *IEEE transactions on pattern analysis and machine intelligence*,  
513 44(5):2567–2581, 2020.

514

515 Chao Dong, Chen Change Loy, Kaiming He, and Xiaoou Tang. Learning a deep convolutional  
516 network for image super-resolution. In *Computer Vision–ECCV 2014: 13th European Conference,*  
517 *Zurich, Switzerland, September 6–12, 2014, Proceedings, Part IV 13*, pp. 184–199. Springer, 2014.

518

519 Shangmin Guo, Biao Zhang, Tianlin Liu, Tianqi Liu, Misha Khalman, Felipe Llinares, Alexandre  
520 Rame, Thomas Mesnard, Yao Zhao, Bilal Piot, et al. Direct language model alignment from  
521 online ai feedback. *arXiv preprint arXiv:2402.04792*, 2024.

522

523 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. *Advances in*  
*524 neural information processing systems*, 33:6840–6851, 2020.

525

526 Bahjat Kawar, Michael Elad, Stefano Ermon, and Jiaming Song. Denoising diffusion restoration  
527 models. *Advances in Neural Information Processing Systems*, 35:23593–23606, 2022.

528

529 Junjie Ke, Qifei Wang, Yilin Wang, Peyman Milanfar, and Feng Yang. Musiq: Multi-scale image  
530 quality transformer. In *Proceedings of the IEEE/CVF international conference on computer vi-*  
*531 sion*, pp. 5148–5157, 2021.

532

533 Mohammed Adib Khan, Morteza Noferesti, and Naser Ezzati-Jivan. Pasd: A performance analysis  
534 approach through the statistical debugging of kernel events. In *2023 IEEE 23rd International*  
*Working Conference on Source Code Analysis and Manipulation (SCAM)*, pp. 151–161. IEEE,  
2023.

535

536 Diederik Kingma, Tim Salimans, Ben Poole, and Jonathan Ho. Variational diffusion models. *Ad-*  
*537 vances in neural information processing systems*, 34:21696–21707, 2021.

538

539 Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete  
Xiao, Spencer Whitehead, Alexander C Berg, Wan-Yen Lo, et al. Segment anything. In *Proceed-  
ings of the IEEE/CVF international conference on computer vision*, pp. 4015–4026, 2023.

540 Christian Ledig, Lucas Theis, Ferenc Huszár, Jose Caballero, Andrew Cunningham, Alejandro  
 541 Acosta, Andrew Aitken, Alykhan Tejani, Johannes Totz, Zehan Wang, et al. Photo-realistic sin-  
 542 gle image super-resolution using a generative adversarial network. In *Proceedings of the IEEE*  
 543 *conference on computer vision and pattern recognition*, pp. 4681–4690, 2017.

544

545 Shufan Li, Konstantinos Kallidromitis, Akash Gokul, Yusuke Kato, and Kazuki Kozuka. Align-  
 546 ing diffusion models by optimizing human utility. *Advances in Neural Information Processing*  
 547 *Systems*, 37:24897–24925, 2025.

548 Yawei Li, Kai Zhang, Jingyun Liang, Jie Zhang Cao, Ce Liu, Rui Gong, Yulun Zhang, Hao Tang, Yun  
 549 Liu, Denis Demandolx, et al. Lsdir: A large scale dataset for image restoration. In *Proceedings of*  
 550 *the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 1775–1787, 2023.

551

552 Xinqi Lin, Jingwen He, Ziyan Chen, Zhaoyang Lyu, Bo Dai, Fanghua Yu, Yu Qiao, Wanli Ouyang,  
 553 and Chao Dong. Diffbir: Toward blind image restoration with generative diffusion prior. In  
 554 *European Conference on Computer Vision*, pp. 430–448. Springer, 2024.

555 Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. *arXiv preprint*  
 556 *arXiv:1711.05101*, 2017.

557

558 Alexander Quinn Nichol and Prafulla Dhariwal. Improved denoising diffusion probabilistic models.  
 559 In *International conference on machine learning*, pp. 8162–8171. PMLR, 2021.

560

561 Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong  
 562 Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to fol-  
 563 low instructions with human feedback. *Advances in neural information processing systems*, 35:  
 564 27730–27744, 2022.

565

566 Rafael Raffailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea  
 567 Finn. Direct preference optimization: Your language model is secretly a reward model. *Advances*  
 568 *in Neural Information Processing Systems*, 36:53728–53741, 2023.

569

570 Chitwan Saharia, Jonathan Ho, William Chan, Tim Salimans, David J Fleet, and Mohammad  
 571 Norouzi. Image super-resolution via iterative refinement. *IEEE transactions on pattern anal-  
 572 ysis and machine intelligence*, 45(4):4713–4726, 2022.

573

574 John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy  
 575 optimization algorithms. *arXiv preprint arXiv:1707.06347*, 2017.

576

577 Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data distribution.  
 578 *Advances in neural information processing systems*, 32, 2019.

579

580 Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben  
 581 Poole. Score-based generative modeling through stochastic differential equations. *arXiv preprint*  
 582 *arXiv:2011.13456*, 2020.

583

584 H Touvron, L Martin, K Stone, P Albert, A Almahairi, Y Babaei, et al. Open foundation and fine-  
 585 tuned chat models. *arXiv preprint arXiv:2307.09288*, 2019.

586

587 Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-  
 588 lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation  
 589 and fine-tuned chat models. *arXiv preprint arXiv:2307.09288*, 2023.

590

591 Bram Wallace, Meihua Dang, Rafael Raffailov, Linqi Zhou, Aaron Lou, Senthil Purushwalkam, Ste-  
 592 fano Ermon, Caiming Xiong, Shafiq Joty, and Nikhil Naik. Diffusion model alignment using  
 593 direct preference optimization. In *Proceedings of the IEEE/CVF Conference on Computer Vision  
 594 and Pattern Recognition*, pp. 8228–8238, 2024.

595

596 Jianyi Wang, Kelvin CK Chan, and Chen Change Loy. Exploring clip for assessing the look and  
 597 feel of images. In *Proceedings of the AAAI conference on artificial intelligence*, volume 37, pp.  
 598 2555–2563, 2023.

594 Jianyi Wang, Zongsheng Yue, Shangchen Zhou, Kelvin CK Chan, and Chen Change Loy. Exploiting  
 595 diffusion prior for real-world image super-resolution. *International Journal of Computer Vision*,  
 596 132(12):5929–5949, 2024a.

597 Xintao Wang, Liangbin Xie, Chao Dong, and Ying Shan. Real-esrgan: Training real-world blind  
 598 super-resolution with pure synthetic data. In *Proceedings of the IEEE/CVF international confer-  
 599 ence on computer vision*, pp. 1905–1914, 2021.

600 Yufei Wang, Wenhan Yang, Xinyuan Chen, Yaohui Wang, Lanqing Guo, Lap-Pui Chau, Ziwei Liu,  
 601 Yu Qiao, Alex C Kot, and Bihan Wen. Sinsr: diffusion-based image super-resolution in a single  
 602 step. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*,  
 603 pp. 25796–25805, 2024b.

604 Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli. Image quality assessment:  
 605 from error visibility to structural similarity. *IEEE transactions on image processing*, 13(4):600–  
 606 612, 2004.

607 Pengxu Wei, Ziwei Xie, Hannan Lu, Zongyuan Zhan, Qixiang Ye, Wangmeng Zuo, and Liang  
 608 Lin. Component divide-and-conquer for real-world image super-resolution. In *Computer Vision-  
 609 ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part  
 610 VIII 16*, pp. 101–117. Springer, 2020.

611 Rongyuan Wu, Tao Yang, Lingchen Sun, Zhengqiang Zhang, Shuai Li, and Lei Zhang. Seesr:  
 612 Towards semantics-aware real-world image super-resolution. In *Proceedings of the IEEE/CVF  
 613 conference on computer vision and pattern recognition*, pp. 25456–25467, 2024.

614 Rongyuan Wu, Lingchen Sun, Zhiyuan Ma, and Lei Zhang. One-step effective diffusion network  
 615 for real-world image super-resolution. *Advances in Neural Information Processing Systems*, 37:  
 616 92529–92553, 2025.

617 Rui Xie, Chen Zhao, Kai Zhang, Zhenyu Zhang, Jun Zhou, Jian Yang, and Ying Tai. Addsr: Acceler-  
 618 ating diffusion-based blind super-resolution with adversarial diffusion distillation. *arXiv preprint  
 619 arXiv:2404.01717*, 2024.

620 Jiazheng Xu, Xiao Liu, Yuchen Wu, Yuxuan Tong, Qinkai Li, Ming Ding, Jie Tang, and Yuxiao  
 621 Dong. Imagereward: Learning and evaluating human preferences for text-to-image generation.  
 622 *Advances in Neural Information Processing Systems*, 36:15903–15935, 2023.

623 Sidi Yang, Tianhe Wu, Shuwei Shi, Shanshan Lao, Yuan Gong, Mingdeng Cao, Jiahao Wang, and  
 624 Yujiu Yang. Maniqa: Multi-dimension attention network for no-reference image quality assess-  
 625 ment. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*,  
 626 pp. 1191–1200, 2022.

627 Tao Yang, Rongyuan Wu, Peiran Ren, Xuansong Xie, and Lei Zhang. Pixel-aware stable diffusion  
 628 for realistic image super-resolution and personalized stylization. In *European Conference on  
 629 Computer Vision*, pp. 74–91. Springer, 2024.

630 Fanghua Yu, Jinjin Gu, Zheyuan Li, Jinfan Hu, Xiangtao Kong, Xintao Wang, Jingwen He, Yu Qiao,  
 631 and Chao Dong. Scaling up to excellence: Practicing model scaling for photo-realistic image  
 632 restoration in the wild. In *Proceedings of the IEEE/CVF Conference on Computer Vision and  
 633 Pattern Recognition*, pp. 25669–25680, 2024.

634 Zongsheng Yue, Jianyi Wang, and Chen Change Loy. Resshift: Efficient diffusion model for image  
 635 super-resolution by residual shifting. *Advances in Neural Information Processing Systems*, 36:  
 636 13294–13307, 2023.

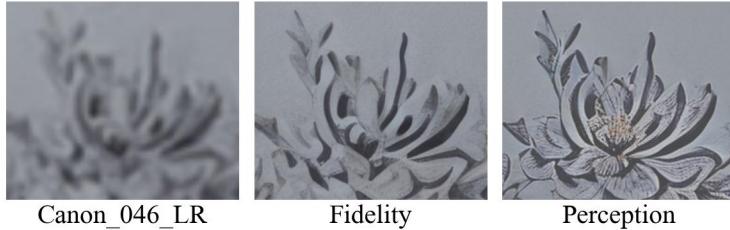
637 Lin Zhang, Lei Zhang, and Alan C Bovik. A feature-enriched completely blind image quality eval-  
 638 uator. *IEEE Transactions on Image Processing*, 24(8):2579–2591, 2015.

639 Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The unreasonable  
 640 effectiveness of deep features as a perceptual metric. In *Proceedings of the IEEE conference on  
 641 computer vision and pattern recognition*, pp. 586–595, 2018.

648 Wenlong Zhang, Xiaohui Li, Guangyuan Shi, Xiangyu Chen, Yu Qiao, Xiaoyun Zhang, Xiao-Ming  
 649 Wu, and Chao Dong. Real-world image super-resolution as multi-task learning. *Advances in*  
 650 *Neural Information Processing Systems*, 36:21003–21022, 2023.

## 654 A ABLATION ON DIFFERENT OPTIMIZATION OBJECTIVES

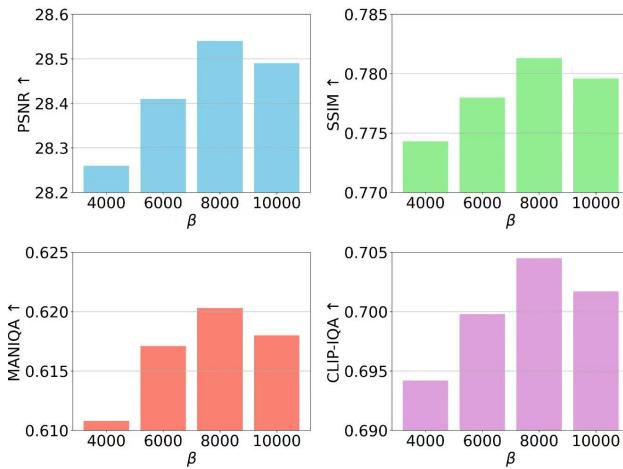
656 To illustrate the impact of different optimization objectives of DSPO on SR, we present visual analy-  
 657 ses in Fig. 6. DSPO can be optimized for either perceptual or fidelity. When optimized for perceptual  
 658 quality, the generated images produce highly realistic stamens, enriching visual details. Conversely,  
 659 optimizing for fidelity results in images that yield results closer to the GT, accurately preserving  
 660 structural integrity. These results highlight the adaptability and effectiveness of DSPO in SR tasks.



662  
 663  
 664  
 665  
 666  
 667  
 668  
 669  
 670  
 671 Figure 6: Ablation on different optimization objectives.

## 676 B ABLATION ON $\beta$ IN DSPO LOSS

678 As shown in Fig.7, an ablation study is presented that examines the impact of various  $\beta$  par-  
 679 ameter settings of DSPO. The results indicate that setting  $\beta$  to 8000 yields an overall better effect,  
 680 significantly enhancing the effectiveness of the SR task. When  $\beta$  is too small, the SR model degen-  
 681 erates into a pure reward scoring model. In contrast, overly large  $\beta$  imposes a strong KL-divergence  
 682 penalty, suppressing any appreciable adaptation.



700 Figure 7: Ablation on  $\beta$  in DSPO Loss.  
 701

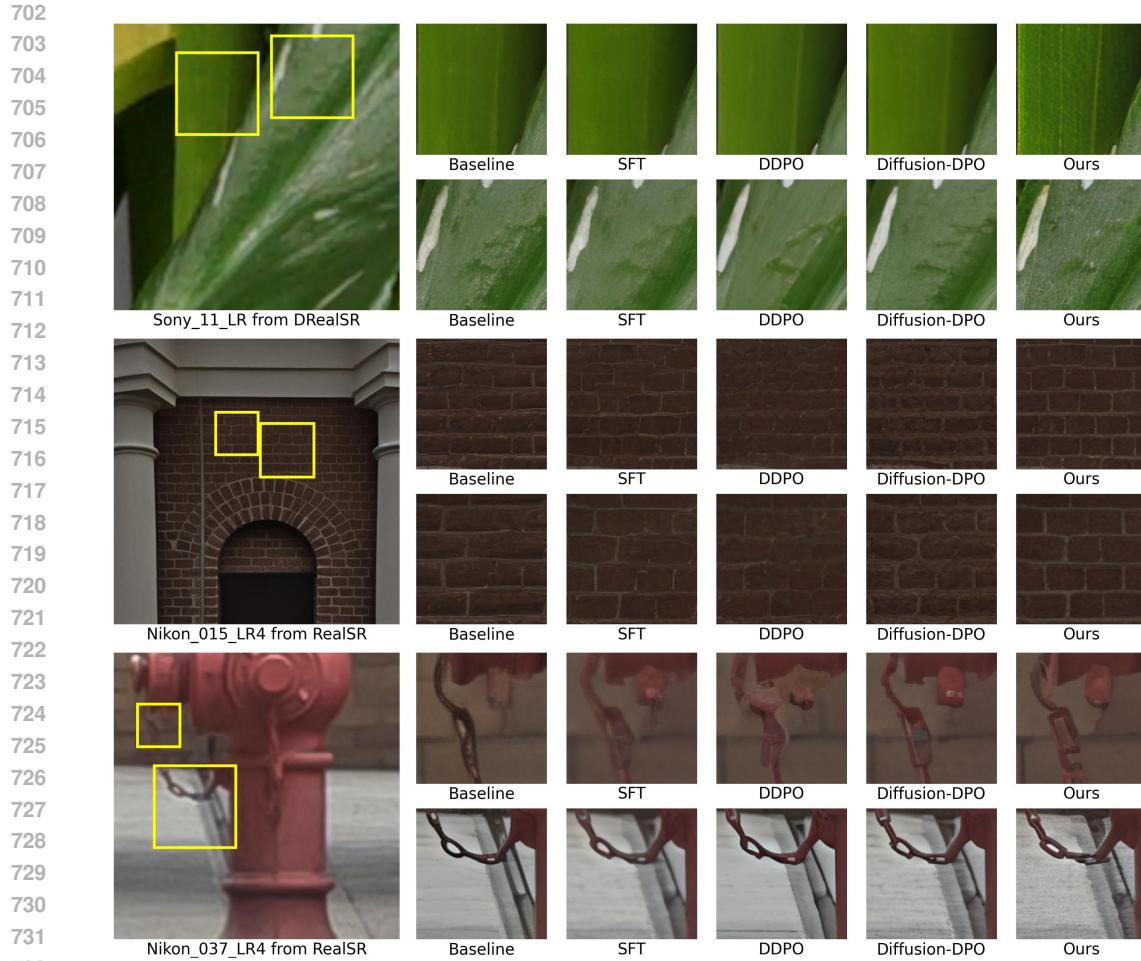


Figure 8: Visualization comparison of DSPO and other preference alignment methods.

### C VISUAL COMPARISON OF DSPO AND PREFERENCE ALIGNMENT BASELINES

Fig. 8 presents a visual comparison between DSPO and other preference alignment baselines. The results indicate that DSPO generates more realistic textures while effectively suppressing artifacts and blurriness.

### D REPRODUCIBILITY STATEMENT

We provide detailed descriptions of our model architecture, training procedure, and evaluation metrics in the main text. Additional ablation studies are included in the appendix. We plan to release the source code and pretrained models upon acceptance to facilitate reproducibility of our results.

### E THE USE OF LARGE LANGUAGE MODELS (LLMs)

We use a large language model (ChatGPT) solely for polishing the language of the paper. It does not contribute to research ideation, experiment design, analysis, or writing of the scientific content.