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ABSTRACT

Recent advances in diffusion models have improved Real-World Image Super-
Resolution (Real-ISR), but lack human feedback integration, risking misalign-
ment with human preference and potentially leading to artifacts, hallucinations,
and harmful content generation. To this end, we are the first to introduce human
preference alignment into Real-ISR, a technique that has been successfully ap-
plied in Large Language Models and Text-to-Image tasks to effectively enhance
the alignment of generated outputs with human preferences. Specifically, we intro-
duce Direct Preference Optimization (DPO) into Real-ISR to achieve alignment,
where DPO serves as a general alignment technique that directly optimizes from
the human preference. Nevertheless, the pixel-level reconstruction objectives of
Real-ISR are difficult to reconcile with the image-level preferences of DPO, which
can lead to the DPO being overly sensitive to local anomalies, leading to reduced
generation quality. To resolve this challenge, we propose Direct Semantic Prefer-
ence Optimization (DSPO) to align instance-level human preferences by incorpo-
rating semantic guidance, which consists of two strategies: (a) semantic instance
alignment strategy, implementing instance-level alignment to ensure fine-grained
perceptual consistency, and (b) user description feedback strategy, mitigating hal-
lucinations through injecting user semantic textual feedback on instance images
as prompt guidance. Our method surpasses both Real-ISR and preference align-
ment baselines, demonstrating superior performance. As a plug-and-play solution,
DSPO performs consistently across one-step and multi-step SR frameworks, high-
lighting strong generalizability.

1 INTRODUCTION

Real-world Image Super-Resolution (Real-ISR)|Chen et al.|(2022); [Zhang et al.|(2023)); Wang et al.
(20244) aims to reconstruct photo-realistic high-quality (HQ) images from low-quality (LQ) images
with various degradations such as noise, blur, and low-resolution. Recently, diffusion models [Ho
et al.| (2020); Dhariwal & Nichol (2021)); |Song et al.| (2020) have made excellent progress in Real-
ISR tasks [Wu et al.| (2025); [Wang et al.[ (2024a); |Yang et al.| (2024); Lin et al. (2024); [Wu et al.
(2024); |Yu et al.|(2024)), owing to their remarkable capability of generation. However, these models
generally employ the supervised training paradigm that directly learns from paired LQ-HQ image
datasets, omitting human feedback throughout the training cycle. Without human intervention, the
optimization objectives of these models may misalign with human perceptual preferences, leading
to potentially harmful content generation, hallucination phenomena, and visual artifacts.

Such misalignment between model outputs and human preferences also exists in other tasks. For in-
stance, in the fields of Large Language Models (LLMs)Achiam et al.| (2023)); Touvron et al.[(2023))
and Text-to-Image (T2I) generationWallace et al.| (2024); [Li et al.| (2025), human preference align-
ment techniques have been widely employed to mitigate misalignment issues by fine-tuning the
pre-trained model through Reinforcement Learning from Human Feedback (RLHF) strategies. The
classical RLHF paradigm (e.g., PPO Schulman et al.| (2017)), DDPO [Ho et al.| (2020)) first trains a
reward model on a fixed preference dataset, then optimizes the policy to maximize the predicted re-
ward. However, relying on a reward model makes the process inherently complex and significantly
increases computational overhead [Rafailov et al.| (2023)). In contrast, Direct Preference Optimiza-
tion (DPO) |Rafailov et al.|(2023)) is proposed to directly optimize the policy model based on human
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Figure 1: The dilemma between image-level preferences in DPO and pixel-level reconstruction ob-
jectives in Real-ISR: The preferred image, selected by the ‘winner of overall image visual pleasure’
rule, appears sharper in the yellow bbox and other areas but shows local hallucinations in the red
bbox, where the dispreferred image performs better.

preference data without the reward model and demonstrate excellent performance on generative

tasks [Rafailov et al| (2023)); Wallace et al.| (2024)).

Despite success in LLM and T2I, human preference alignment (e.g. DPO) remains unexplored in
Real-ISR. Therefore, we introduce human preference alignment into Real-ISR for the first time
through DPO. However, directly applying DPO to Real-ISR results in performance degradation due
to the inherent dilemma between image-level preferences of existing DPO and the pixel-level recon-
struction objectives of Real-ISR tasks. Specifically, as illustrated in Fig. [T} image-level preferences
may lead to artifacts or hallucinations in preferred images within local regions, especially in high-
frequency texture and complex regions. Such conflicts may lead to the models being overly sensitive
to local anomalies, exhibiting fluctuations and ambiguity during training, which ultimately affects
the quality of the generated performance.

To address this problem, we propose Direct Semantic Preference Optimization (DSPO), which
deeply aligns instance-level human preferences by incorporating semantic guidance. Specifically,
we propose the semantic instance alignment strategy that conducts human preference alignment at
the instance level to achieve finer-grained alignment. An instance extractor is employed to extract
individual instances from SR outputs, and then preferred and dispreferred instance-level cases are
selected, followed by instance-level preference alignment. Additionally, to further mitigate the hal-
lucination phenomenon, we propose the user description feedback strategy: we incorporate users’
semantic textual feedback on instance-level images and select hallucination semantic information
texts as prompt injection.

Our contributions are as follows: (1) We pioneer introducing human preference alignment into Real-
ISR, establishing the first methodological approach to incorporate human preference alignment in
this field. (2) We propose DSPO, which achieves instance-level human preference alignment and
significantly suppresses artifacts and hallucination phenomena. (3) Our method outperforms both
existing Real-ISR approaches and preference alignment baselines, demonstrating its superior per-
formance. (4) As a plug-and-play solution, DSPO achieves consistent effectiveness across both one-
step and multi-step SR frameworks, highlighting its strong generalizability.

2 RELATED WORK

Generative SR Models Traditional super-resolution (SR) methods based on Convolutional Neu-
ral Networks (CNNs) (2014) and Generative Adversarial Networks (GANs)
focus on pixel fidelity and perceptual quality, while diffusion models achieve superior SR per-
formance with stronger generative capabilities [Saharia et al| (2022)). Diffusion models have become
central to Real-ISR by restoring high-quality images through stepwise denoising. While early meth-

ods based on Denoising Diffusion Probabilistic Models (DDPM) (2022);
(2020)) struggle with complex degradations, recent approaches (2024); [Yang et al.| (2024);

Wang et al.| (2024a); Wu et al| (2024) address these challenges. StableSR Wang et al.| (2024a) inte-
grates a temporal-aware encoder to improve recovery quality, and SeeSR [Wu et al.| (2024) leverages

text guidance to improve semantic consistency and detail. One-step diffusion methods further ac-
celerate inference. OSEDiff (2025) employs Variational Score Distillation (VSD) to boost
efficiency and performance.
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Human Preference Alignment in LLMs To align with human preferences, LLMs are typically
first supervised fine-tuned (SFT) and then optimized via RLHF |Ouyang et al.| (2022). Traditional
RLHF methods, such as Proximal Policy Optimization (PPO)|Schulman et al.{(2017), rely on reward
models to guide policy learning but struggle with challenges to train a reward model when the reward
signal is unclear, suffering from high computational costs and training instability. To overcome the
limitations, Direct Preference Optimization (DPO) serves as an alternative method, allowing LLMs
to optimize directly based on pairwise preference data without training a reward model Rafailov
et al.|(2023). DPO has low computational overhead and stable optimization, demonstrating superior
performance on open-source models like Llama 2 Bai et al.| (2022). Compared to reward model-
based methods, DPO is more efficient in optimizing LLM preferences, reducing training complexity
while maintaining competitive performance [Touvron et al.[(2019).

Human Preference Alignment in T2I Human preference alignment has emerged as a key direc-
tion for enhancing the subjective quality of T2I tasks. ImageReward Xu et al.| (2023) trains reward
models using human rating data to optimize generative preferences. However, this method is sus-
ceptible to bias and has limited generalization capabilities Bai et al.| (2022). DDPO Ho et al.| (2020)
optimizes diffusion models within a small vocabulary range but struggles to adapt to complex text
prompts, highlighting the limitations associated with reward model-based approaches. In contrast,
Diffusion-DPO fine-tunes diffusion models directly based on human preference data without re-
quiring an explicit reward model Wallace et al.| (2024)), enhancing the generation quality for open
vocabulary without increasing inference costs, thereby aligning T2I tasks more closely with human
aesthetics and semantic consistency.

3 PRELIMINARIES

DPO in LLM Tasks Direct Preference Optimization (DPO) [Rafailov et al.|(2023) is a preference
alignment method that does not require training a reward model, and is applicable for optimizing
LLM. DPO optimizes the generation probabilities of paired preference data (z,,, ;) such that the
preferred sample z,, has a higher probability than the non-preferred sample z;. The DPO objective
can be expressed as:

L=—Eqas,onop|logo| Alog Pol@ule) gy, Polmle) ) | 0
Pref(Twlc) Dref(1]C)

where pg(z|c) and prr(x|c) represent the probability distribution generated by the DPO-trained
LLM and the reference (pre-trained) model, respectively. The function o (x) is the sigmoid function,
and (3 controls the regularization strength.

Diffusion-DPO in T2I Tasks In Text-to-Image (T2I) tasks, the sampling process of diffusion
models is executed step-by-step, where the objective is not to directly optimize the final generated
image but to influence the denoising process at each time step ¢, enhancing the likelihood of recover-
ing preferred samples. Thus, the DPO objective can be extended to the diffusion process, optimizing
the denoising probability distribution at each time step ¢:

L= _E(c,xw,mz)wD,tNU((],T) lOgO' /BEszTNpg(xi":ng’)
(2)
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Here, the condition text is compactness. xo. denotes the complete diffusion path, pg(z1.7|xo) rep-
resents the diffusion process given the initial state xq, pg(2zo|2z1.7) is the denoising probability dis-
tribution after the given diffusion trajectory 1.7, and pref(o|2z1.7) refers to the corresponding dis-
tribution of the reference model. By optimizing the log probability ratio throughout the diffusion
process, DPO-T2I encourages the model to generate images that align more closely with human
preferences, thereby enhancing the quality of alignment in T2I tasks.
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Figure 2: The overview of the proposed Direct Semantic Preference Optimization (DSPO) method.

4 METHODOLOGY

4.1 OVERVIEW

We propose Direct Semantic Preference Optimization (DSPO), which enhances instance-level hu-
man preference alignment by integrating semantic guidance. It is important to note that DSPO is
designed as a fine-tuning approach for SR models. Therefore, DSPO is applied only during the
training phase, while the inference stage remains identical to the pre-trained SR model to enable di-
rect comparison. The overview of the proposed DSPO method is illustrated in Fig[2] Specifically, to
achieve finer-grained alignment, we design the semantic instance alignment strategy (detailed intro-
duced in Sec.[d.2): DSPO first generates a series of SR output with the same input LQ image using
a pre-trained SR model under various settings and uses a semantic extraction model (e.g., SAM |Kir-
illov et al.[(2023)) to extract instance-level semantics. By selecting the Best/Worst-of-N, it obtains
the fine-grained winners and losers, which will align with SR models through DPO. Additionally,
to mitigate hallucination in local regions, we propose a user description feedback strategy (detailed
introduced in Sec. [4.3), which uses a Vision-Language Model(VLM) model to describe multiple
instance-level samples and feeds semantically misaligned examples back to the prompt branch of
the SR model by prompt injection.

4.2 SEMANTIC INSTANCE ALIGNMENT STRATEGY

We propose the semantic instance alignment strategy, which aligns human preferences at the instance
level to achieve finer-grained alignment. As exhibited in Fig.[2] based on the pre-trained SR, we first
generate a series of SR output with the same input LQ image using pre-trained SR model under
various settings. For each SR output, we implement an semantic extraction model (i.e. Segment
Anything (SAM) Kirillov et al.|(2023))) to generate instances. Subsequently, we select instance-level
preferred and dispreferred examples based on human evaluations and apply DPO at the instance
level. The detailed implementation is as follows.

4.2.1 OPTIMIZATION OBJECTIVE

For an input low-resolution image x1q, we first generate a series of SR outputs {x1, z2,...,2n}.
For each SR image x; generated from the pre-trained model, we generate M/ semantic instance

regions using SAM [Kirillov et al.| (2023): S = {s,,}M_,, Z%Zl sm = 1, where each region
Sy Tepresents to the mask of the m-th semantic instance, and s, € {0,1}*W is a binary mask
matrix representing the spatial coverage of the semantic instance. Here, M is not a fixed constant but
depends on the number of instances automatically segmented by SAM, which varies from image to
image. In the construction process of the optimization objective, different semantic instances have
different contributions to optimization due to their varying size of areas. Therefore, the weight w,,

for optimization intensity of each semantic instance is defined as follows:

. [Sm]
m= S
Zm:l ‘5m|

where |s,,| denotes the number of pixels in the semantic instance $;,.

3)
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After segment, each SR image x; can be divided into different instances {z;*, z;?,...,z;*}. This

7
allows us to obtain the different instance-level image within the same instance s, region across
different images: {z™, z5™, ...,z }. We then perform a human preference-based Best/Worst-of-
N selection and obtain « and z;™, respectively. The whole image x,, of the best instance x5
is defined as the preferred example, while the whole image x; of x;™ is dispreferred example. The

final optimization objective is as follows:

M
00 E(ryg 1, en D i [log(,(B log P0(Tul?Le 5m) mogm(fmlwwﬂ @)

m=1 pref(xw |93LQ7 Sm) pref(xl ‘ILQa sm)

where pg(x|zLg, Sm) represents the probability of the target model generating an SR image = within
the semantic instance s,,, while prer(2|zLqQ, $m ) represents the same for the reference (pre-trained)
model.

4.2.2 Loss FUNCTION

Referring to Diffusion-DPO Wallace et al.| (2024), the optimization objective of DPO is further re-
formulated into a loss function grounded in noise prediction error within the framework of diffusion
models, thereby ensuring that optimization is calculated progressively at each time step ¢ throughout

the diffusion process. Therefore, our loss function can be expressed as follows:
M

Lsg = — E(214,20,21)~D,t~U(0,T) l Z Wi 10g0< — BT x (Lgiff(xwy t, Sml|TLQ)—
m=1

&)
L{ieigf(xw’ t, sm‘xLQ) - (Lgiff(xh t, Sm‘xLQ) - L{ieigf(xh t, SmeQ)) > >‘| )

where Lt (, t, S |2Lq) represents the denoising error within the semantic instance s,,, serving as a
stability constraint during training to reduce distribution shift. Lgiff and L calculate the prediction
error of the current model # and reference model, respectively, and are defined as follows:

Lii(@,t, smlei) = y)l[sm - (€ = erer(w, tlaig)) 1%, (6)

Lgiff(xﬂtv Sm‘xLQ) = ’Y()‘t)HSm ’ (6 - 69($,t|$LQ))H2, (N
where eg(x, t|xLq) denotes the noise predicted by the diffusion model at time step ¢, where € rep-
resents the true noise. \; represents the signal-to-noise ratio Kingma et al.| (2021), and v()\;) is a
predefined weighting function, often set as constant |Ho et al.[(2020); Song & Ermon| (2019). This
loss function enables optimization at the semantic instance level at each time step, enabling the SR
model to align with human perception in finer-grained regions. Additionally, it leverages the ref-
erence model to prevent distribution drift. We compute the loss over the full image and apply it
selectively via the segmentation mask S,,,. This preserves global context, allowing the pretrained
diffusion model to leverage global priors during DSPO optimization. In contrast, using segmented
patches lacks global context. Moreover, varying segment sizes disrupt positional encoding, degrad-
ing spatial modeling and training stability.

4.3 USER DESCRIPTION FEEDBACK STRATEGY

We further propose the user description feedback strategy to relieve the hallucination problem of
generative SR models. The SR outputs z;€ (x1, x2, ..., x ) are segmented to extract individual se-
mantic instances, which are then analyzed through the VLM for descriptive analysis. By employing
human evaluations, we identify semantic instances that do not align with the input low-quality (LQ)
content and gather their corresponding text descriptions to form error generation prompts. These
prompts are utilized to constrain the generation direction during the sampling process of the dif-
fusion model to avoid hallucination. This approach ensures that the diffusion model can minimize
hallucination generation throughout the optimization process, enhancing semantic consistency in the
super-resolution task.

4.4 DSPO OBIJECTIVES

The final loss function can be represented as follows:
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The DSPO strategy combines semantic instance alignment strategy and user description feedback
strategy significantly enhancing the fine-grained recovery capability of SR models through opti-
mization at the semantic instance level, while effectively mitigating the issue of hallucination gen-
eration using feedback description prompts. DSPO enhances the model’s understanding of human
preferences and improves its SR ability by addressing artifacts and hallucinations, especially in
high-frequency texture and complex regions.

5 IMPLEMENTATION

5.1 TRAINING
5.1.1 PRE-TRAINING CONFIGURATION

For pre-training, we evaluate DSPO across four distinct SR frameworks to assess its generalizability:
OSEDiIff, SD2.1EI, SeeSR, and AddSR [Xie et al. (2024). Each framework is trained on the LSDIR
dataset|L1 et al.|(2023)), with model inputs randomly cropped to 512 x 512. Low-quality (LQ) images
are generated using the degradation pipeline from Real-ESRGAN (Wang et al.|(2021), resulting in
84991 LQ-HQ pairs. The SD2.1 using the Adam optimizer |Loshchilov & Hutter| (2017) for 150K
iterations, with a batch size of 192 and a learning rate of 5 x 10~ to obtain the pre-trained muti-step
SR model. During inference, we adopt spaced DDPM sampling Nichol & Dhariwal| (2021)) with
50 steps and set the cfg to 5.5. The pre-trained settings for OSEDiff, SeeSR, and AddSR remain
consistent with their original settings in their paper. In the following experiments, we default to using
OSED:iff for one-step frameworks and SD2.1 for multi-step frameworks unless otherwise specified.

Dataset Preparation The sampling distribution between preference pairs should not vary too
much |Guo et al.| (2024). Therefore, we obtain preference data candidates by adjusting the hyper-
parameters (e.g., step, cfg) of the pre-trained model instead of changing the SR model, thereby
avoiding excessive sample deviation. Specifically, we apply different hyperparameter settings to a
pre-trained model to infer multiple SR outputs for one LQ image. These outputs are evaluated using
four representative SR metrics: PSNR [Wang et al.| (2004), SSIM [Wang et al.[(2004), NIQE Zhang
et al.| (2015), and CLIP-IQA |Wang et al.| (2023)), which reflect pixel fidelity, structural consistency,
perceptual quality, and semantic alignment, respectively. All scores are normalized, and the top four
results with the highest average scores are selected as candidates. To retain the model’s perception of
negative samples, the default output of the pre-trained model is also included, replacing the lowest
one if not already among the top four. After obtaining four different SR results, we use SAM [Kir-
illov et al.|(2023)) to segment them into distinct instance regions. We then evaluate the same instance
regions from the four results using two approaches: the human annotator method and the automatic
scoring method, which are introduced as follows.

Human Annotator Method We invite ten professionals specialized in low-level tasks to perform
instance-level rankings, selecting preferred and dispreferred instance images. In addition, for the
user description feedback strategy, we include the text results generated by Qwen2.5-VL-max Bai
et al.|(2025) below each image in the interactive interface. If the generated text does not align with
the instance image, the user will select it as the feedback textual prompt. To reduce annotation costs,
we select the first 500 images from LSDIR and annotate the top 5 largest segmented instance regions
in each image, resulting in 2500 regions in total.

Automatic Scoring Method To simulate human preference selection, we employ Qwen2.5-VL-
max to compare SR results within each instance region. Specifically, four candidate images are
input with a prompt asking the model to select the best and worst based on multiple aspects such
as quality, realism, and consistency, forming a preference pair. Note that, unlike traditional IQA
metrics that assess a single image from a single aspect, Qwen2.5-VL-max supports multi-image
comparison and holistic evaluation across multiple dimensions, better aligning DSPO’s pairwise

"https://huggingface.co/stabilityai/stable-diffusion-2-1-base
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Figure 3: (Left) User preference win rates of DSPO over the pre-trained method, SFT, DDPO, and
Diffusion-DPO on DRealSR (top) and RealSR (bottom), based on human annotations. Results in-
clude 95% confidence intervals from three independent annotation rounds. (Right) Qualitative com-
parison of DSPO with image-level preference alignment method.

preference modeling. Furthermore, our empirical results show that the proprietary Qwen2.5-VL-max
(with hundreds of billions of parameters) yields more human-aligned scores than our fine-tuned 72B
Qwen2.5-VL, while also providing significantly faster inference via remote interface access. Hence,
we adopt Qwen2.5-VL-max as our preference scoring model. For the user description feedback
strategy, we compute the similarity of the text generated by Qwen2.5-VL-max between the ground
truth and the four candidate instance images. When the similarity is less than 0.1, we assume that
the instance image is hallucinated, and the corresponding text is selected as the feedback prompt.

Implementation Details. During the training and inference of DSPO, we adopt the same hyper-
parameter settings as used in the pre-training stage. The DSPO is trained on 8§ NVIDIA A100 80GB
GPUs, and we set 8 = 8000.

We evaluate DSPO against the following preference alignment baseline methods: the pre-trained
method (one-step or multi-step SR frameworks), SFT, DDPO (2020), and Diffusion-
DPO |Wallace et al.| (2024). Specifically, the SFT baseline fine-tunes the pre-trained method based
only on the subset of images labeled as ‘preferred’. Additionally, we compare DSPO with existing

Real-ISR methods, including StableSR Wang et al| (2024a), DiffBIR [Lin et al. (2024), ResShift[Yue|
(2023)), SinSR [Wang et al.| (2024b), PASD [Khan et al.| (2023), AddSR [Xie et al.| (2024), OSED-
iff 'Wu et al| (2025), and SeeSR Wu et al.|(2024). We evaluate the test set on both real-world and

synthetic data. The real-world data come from RealSR (2019) and DRealSR
(2020), containing LQ-HQ pairs at resolutions of 128 x 128 and 512 x 512. The synthetic set in-

cludes 3000 DIV2K-val |Agustsson & Timofte| (2017) HQ images (512x512), with corresponding
LQ images generated using Real-ESRGAN Wang et al.| (202T).

Evaluation of Human Annotator Method We calculate the user preference win rates (i.e., the
frequency with which the human prefers images generated by DSPO) for the human annotator
method. We ask annotators to compare images generated by DSPO and another method under the
same LQ condition and select the image they prefer (i.e., “Which image do you prefer given the

LQ?).

Evaluation of Automatic Scoring Method We utilize a series of metrics to evaluate the results of
the automatic scoring method and other methods, including PSNR [Wang et al.| (2004), SSIM

(2004), LPIPS [Zhang et al| (2018), DISTS Ding et al] (2020), NIQE Zhang et al] (2015),
MUSIQ Ke et al.| (2021), MANIQA |Yang et al.|(2022), and CLIPIQA Wang et al.| (2023).

6 RESULTS

6.1 PREFERENCE ALIGNMENT FROM ANNOTATORS

Fig. [3] (left) shows the user preference win rates of DSPO compared to the pre-trained model and
other preference alignment baseline models under the human annotator method, based on the one-
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Figure 4: Quantitative comparison of DSPO with the preference alignment baselines on the au-
tomatic scoring method. (a)-(c) depict the radar plots for the one-step SR framework on RealSR,
DRealSR, and DIV2K-val, while (d)-(f) show radar plots for the multi-step SR framework on the
same datasets.

Table 1: Quantitative comparison of DSPO with Real-ISR baseline methods on the DRealSR
Dataset. We use bold to emphasize the first, and underline to indicate the second.

Metrics | StableSR  DiffBIR ResShift SinSR  PASD AddSR OSEDiff SeeSR  Ours

PSNR 1 28.03 26.71 2846 2836 2736 27.77 2792  28.17 28.54
SSIM 1 0.7536  0.6571 0.7673 0.7515 0.7073 0.7722 0.7835 0.7691 0.7813
LPIPS | 0.3284  0.4557 0.4006 0.3665 0.3760 0.3196 0.2968 0.3189 0.2931
DISTS | 0.2269  0.2748 0.2656 0.2485 0.2531 0.2242 0.2165 0.2315 0.2102
NIQE| 6.5239 63124  8.1249 6.9907 5.5474 6.9321 6.4902 6.3967 6.1330
MUSIQT 58.51 61.07 50.6 55.33  64.87 60.85 64.65 6493 66.01
MANIQAT | 0.5601  0.5930 0.4586 0.4884 0.6169 0.5490 0.5899 0.6042 0.6203
CLIPIQAT | 0.6356  0.6395 0.5342 0.6383 0.6808 0.6188 0.6963 0.6804 0.7045

step SR framework. Three independent annotation rounds are conducted and the 95% confidence
interval of the win rate is provided. It can be observed that DSPO significantly improves the human
preference alignment of the pre-trained model, achieving an average win rate of 73.5% and 75.1% on
the DRealSR and RealSR, respectively. Furthermore, human annotators prefer the results generated
by DSPO over those produced by SFT, DDPO, and Diffusion-DPO. This indicates that for SR-based
tasks, the semantic-level DSPO approach is more effective in enhancing alignment with human
preferences than image-level human preference alignment methods.

6.2 PREFERENCE ALIGNMENT FROM AUTOMATIC SCORING

Fig[]illustrates the automatic scoring model method compared with the preference alignment base-
lines for both one-step and multi-step SR models, presented in a radar plot. It can be observed that
DSPO consistently outperforms the pre-trained model across all metrics, regardless of one-step or
multi-step frameworks. In addition, other image-level alignment methods (SFT, DDPO, Diffusion-
DPO) offer inferior gains due to conflicts between image-level preferences and pixel-level objectives
in Real-ISR. DSPO alleviates this by introducing instance-level semantic guidance, which better
captures semantic structures, reduces sensitivity to local artifacts, and improves overall SR quality.
We conduct a visual comparison with the image-level preference alignment method, as exhibited
in Fig. [3] (right), with more results provided in the supplementary material. It can be observed that
DSPO, through instance-level semantic guidance, avoids hallucinations and artifacts, resulting in a
more natural SR image.

As shown in Table[I] we compare our method with existing Real-ISR methods on a general bench-
mark dataset. Our results are obtained by integrating the proposed DSPO into SeeSR. Through com-
parisons, DSPO achieves the best or second-best performance on all metrics, thereby fully demon-
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Figure 5: Qualitative comparison of DSPO with Real-ISR baseline methods.

Table 2: Plug-and-Play performance validation of DSPO across multiple SR methods on the
DRealSR dataset.

Method | PSNRT SSIM{ LPIPS| DISTS| NIQE, MUSIQ? MANIQAT CLIPIQAT

OSEDiff 27.92  0.7835 0.2968 0.2165 6.4902  64.65 0.5895 0.6963
OSEDiff+DSPO | 27.98 0.7919 0.2871 0.2150 6.4411  65.80 0.6058 0.7043
SD2.1 2721 0.7598 0.3380 0.2535 6.5110  61.16 0.5877 0.6675
SD2.1+DSPO | 28.08 0.7613 0.3154 0.2357 6.3724  64.26 0.6113 0.6819
SeeSR 28.17 0.7691 0.3189 0.2315 6.3967  64.93 0.6042 0.6804
SeeSR+DSPO | 28.54 0.7813 0.2931 0.2102 6.1330  66.01 0.6203 0.7045
AddSR 27.77 0.7722 03196 0.2242  6.9321  60.85 0.5490 0.6188
AddSR+DSPO | 28.20 0.7851 0.3056 0.2087 6.7451  62.28 0.5600 0.6352

strating its superior performance. The visualization in Fig. [5] contrasts DSPO with other Real-ISR
methods. Image generated from DSPO closely aligns with human visual perception and preserves
the edge details and texture of target objects.

In addition, DSPO, as a plug-and-play module, is integrated into four mainstream SR methods. Re-
sults in Table 2] show that DSPO significantly enhances key metrics, demonstrating its effectiveness
and generalizability as a universal plug-and-play solution.

Ablation of Different Strategy To ana-

lyze the effects of the semantic instance Table 3: Ablation study on different strategies. ‘M1’
alignment strategy and the user descrip- represents the semantic instance alignment strategy

tion feedback strategy, we conduct an abla-  and ‘M2’ represents the user description feedback
tion study, as exhibited in Table [3] The ex- strategy.

perimental results demonstrate that the se-
mantic instance alignment strategy signifi- Method |PSNRT SSIMT MANIQAT CLIPIQAT

cantly improves preference and reduces ar- Protrained | 2817 07691 0.6042 0.6804
. . . . re-traine: . . . .
tifacts and hallucinations. Incorporating the M1 2815 07755 06123 0.6932

user description feedback strategy further MI+M2 | 28.54 0.7813  0.6203 0.7045
enhances the image SR performance, lead-
ing to more refined results. The combination of both strategies achieves the best overall performance.

7 CONCLUSION

This paper presents Direct Semantic Preference Optimization (DSPO), a novel framework that pio-
neers human preference alignment in Real-ISR. To address the dilemma between image-level pref-
erence of DPO and pixel-wise preference alignment, our method introduces two key innovations:
(1) A semantic instance alignment strategy that optimizes semantic preference learning at the in-
stance level to achieve finer-grained alignment, and (2) a user description feedback strategy that
injects user-selected semantic hallucination texts as prompts. Comprehensive experiments demon-
strate DSPO’s superiority over Real-ISR and preference alignment baselines, and its strong general-
izability across both one-step and multi-step frameworks.
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A ABLATION ON DIFFERENT OPTIMIZATION OBJECTIVES

To illustrate the impact of different optimization objectives of DSPO on SR, we present visual analy-
ses in Fig.[6] DSPO can be optimized for either perceptual or fidelity. When optimized for perceptual
quality, the generated images produce highly realistic stamens, enriching visual details. Conversely,
optimizing for fidelity results in images that yield results closer to the GT, accurately preserving
structural integrity. These results highlight the adaptability and effectiveness of DSPO in SR tasks.

Canon 046 LR Fidelity Perceptin

Figure 6: Ablation on different optimization objectives.

B ABLATION ON 3 IN DSPO Loss

As shown in Fig[7] an ablation study is presented that examines the impact of various 5 param-
eter settings of DSPO. The results indicate that setting 5 to 8000 yields an overall better effect,
significantly enhancing the effectiveness of the SR task. When (3 is too small, the SR model degen-
erates into a pure reward scoring model. In contrast, overly large /5 imposes a strong KL-divergence
penalty, suppressing any appreciable adaptation.
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Figure 7: Ablation on /3 in DSPO Loss.
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Figure 8: Visualization comparison of DSPO and other preference alignment methods.
C VISUAL COMPARISON OF DSPO AND PREFERENCE ALIGNMENT
BASELINES

Fig. [8] presents a visual comparison between DSPO and other preference alignment baselines. The
results indicate that DSPO generates more realistic textures while effectively suppressing artifacts
and blurriness.

D REPRODUCIBILITY STATEMENT

We provide detailed descriptions of our model architecture, training procedure, and evaluation met-
rics in the main text. Additional ablation studies are included in the appendix. We plan to release the
source code and pretrained models upon acceptance to facilitate reproducibility of our results.

E THE USE OF LARGE LANGUAGE MODELS (LLMS)

We use a large language model (ChatGPT) solely for polishing the language of the paper. It does not
contribute to research ideation, experiment design, analysis, or writing of the scientific content.
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