
ASYMQ: ASYMMETRIC Q-LOSS TO MITIGATE OVER-
ESTIMATION BIAS IN OFF-POLICY REINFORCEMENT
LEARNING

Qinsheng Zhang∗

Georgia Institute of Technology
qzhang419@gatech.edu

Arjun Krishna∗
Georgia Institute of Technology
akrishna49@gatech.edu

Sehoon Ha
Georgia Institute of Technology
sehoonha@gatech.edu

Yongxin Chen
Georgia Institute of Technology
yongchen@gatech.edu

ABSTRACT

It is well-known that off-policy deep reinforcement learning algorithms suffer
from overestimation bias in value function approximation. Existing methods to
reduce overestimation bias often utilize multiple value function estimators. Con-
sequently, these methods have a larger time and memory consumption. In this
work, we propose a new class of policy evaluation algorithms dubbed, AsymQ,
that use asymmetric loss functions to train the Q-value network. Departing from
the symmetric loss functions such as mean squared error (MSE) and Huber loss
on the Temporal difference (TD) error, we adopt asymmetric loss functions of
the TD-error to impose a higher penalty on overestimation error. We present one
such AsymQ loss called Softmax MSE (SMSE) that can be implemented with
minimal modifications to the standard policy evaluation. Empirically, we show
that using SMSE loss helps reduce estimation bias, and subsequently improves
policy performance when combined with standard reinforcement learning algo-
rithms. With SMSE, even the Deep Deterministic Policy Gradients (DDPG) al-
gorithm can achieve performance comparable to that of state-of-the-art methods
such as the Twin-Delayed DDPG (TD3) and Soft Actor Critic (SAC) on chal-
lenging environments in the OpenAI Gym MuJoCo benchmark. We additionally
demonstrate that the proposed SMSE loss can also boost the performance of Deep
Q learning (DQN) in Atari games with discrete action spaces.

1 INTRODUCTION

Learning an accurate value function in Deep Reinforcement Learning (DRL) is crucial; the value
function of a policy is not only important for policy improvement (Sutton & Barto, 2018) but also
useful for many downstream applications such as risk-aware planning (Kochenderfer, 2015) and
goal-based reachability planning (Nasiriany et al., 2019). However, most off-policy DRL algorithms
are accompanied by estimation bias in policy evaluation and how to remove this estimation bias
has been a long-standing challenge. In this work, we revisit the estimation bias problem in off-
policy DRL from a new perspective and propose a lightweight modification of the standard policy
evaluation algorithm to mitigate estimation bias.

Value estimation bias in DRL Thrun & Schwartz (1993) firstly shows that maximization of a
noisy value estimation consistently induces overestimation bias in Q-learning, where the learned
value function overestimates the learned policy, i.e., the prediction from the learned value function
is higher than the ground truth value of the policy. Several methods have been proposed to reduce
estimation bias in policy evaluation and policy improvement. Hasselt (2010); Van Hasselt et al.
(2016) propose double Q-learning, which trains two independent estimators to suppress overesti-
mation. In the continuous state-action space setting, Fujimoto et al. (2018) shows the existence of

∗These authors contributed equally to this work.

1

overestimation in popular Deep Deterministic Policy Gradient (DDPG) (Lillicrap et al., 2015) and
proposes Twin Delayed Deep Deterministic Policy Gradient (TD3) to alleviate the overestimation
issue, which utilizes the minimum value estimation from two critic networks to fit Q value function.
However, these approaches that involve multiple value function estimators together with a minimum
operator, may succumb to underestimation bias (Ciosek et al., 2019; Pan et al., 2020), where the
value prediction of the learned function is lower than the real policy performance. Lyu et al. (2022);
Wu et al. (2020); Wei et al. (2022) Kuznetsov et al. (2020); Chen et al. (2021); Liang et al. (2022);
Lee et al. (2021) propose new critic update schemes to reduce the estimation bias. However, all these
methods require multiple actors or an ensemble of critics and usually involve other convoluted tricks
that often incur additional computation and memory overheads to improve policy performance. In
this work, we explore an efficient approach that reduces value estimation bias without incurring
extra computational costs.

Loss function in policy evaluation The policy evaluation in DRL is typically based on the Bellman
update equation (Bellman, 1966) where the discrepancy between the predicted and target values
are minimized. The target value is the combination of the immediate reward and subsequent value
function prediction on future states. There are two main components in policy evaluation based
on Bellman temporal difference (TD) learning, the fitting target that acts as supervised signals to
train neural networks and the loss function that serves as an objective metric. Most of the existing
work in reducing estimation bias focuses on the first component, and typically try to construct a
more robust target value, such as a lagged target network (Mnih et al., 2015) and ensemble multiple
value networks (Fujimoto et al., 2018). The choice of the loss function used for value-function
fitting somehow receives much less attention. In practice, most RL algorithms choose symmetric
mean square error (MSE) or Huber loss (Patterson et al., 2022) as a metric in fitting value functions.
Once zero MSE loss is reached for each state, the prediction of the value network can match policy
performance exactly.

In this work, we propose a novel approach based on modifying the loss function to control estimation
bias in DRL. We discover that the optimization landscape used to train value networks, governed by
the loss functions, plays a crucial role in policy evaluation. A proper choice of the value-fitting loss
function can effectively control estimation bias. In particular, we show asymmetric functions can be
used for policy evaluation to reduce estimation bias and propose a class of algorithms called AsymQ.
We specifically evaluate one family of AsymQ loss functions called SoftMax MSE (SMSE) to learn
the Q value function in both continuous and discrete action environments, but we validate the benefit
of using other AsymQ loss functions as well. We find asymmetric loss functions can inject inductive
bias to the learning process and thereby control estimation bias present in DRL policy evaluation
updates. We highlight the intuition behind our approach in Fig 1, where asymmetry can assign
different weights for both overestimated and underestimated states and help alleviate bias in policy
evaluation. Notably, compared with existing methods (Hasselt, 2010; Fujimoto et al., 2018), our
approach needs only one critic and actor and negligible overhead computational and memory cost.

We summarize our contributions as follows: (1) We show asymmetric loss functions can be used for
learning the value function, and introduce a simple asymmetric loss for policy evaluation, namely,
Softmax MSE (SMSE) parameterized by a temperature parameter, that can be easily combined with
existing RL algorithms. (2) We further propose an auto-tuning algorithm for the temperature to
reduce the burden of tuning parameters for our proposed approach. (3) We show that SMSE can
significantly reduce estimation bias and improve the performance of popular baseline algorithms
such as DDPG on MuJuCo environments and DQN on Atari games. To the best of our knowledge,
this is the first algorithm that achieves such competitive performance without the need for other tricks
such as multiple critic networks and crafted exploration methods that often incur extra computational
and memory costs.

2 PRELIMINARIES: VALUE-BASED DEEP REINFORCEMENT LEARNING

The interaction of the RL agent with the environment can be formalized as a Markov Decision
Process (MDP). The MDP is represented as a tuple (S,A, p, r, γ), where S,A represents the set of
states and actions respectively, p represents the transition probabilities, r(s,a) the reward function,
and γ represents the discount factor. The goal of an RL agent is to learn a behavior policy πϕ(at|st)
such that the expected return J(πϕ) = E[

∑∞
t=0 γ

tr(st,at)|πϕ] is maximized.

2

Figure 1: Effect of asymmetric loss on estimation bias in DQN and DDPG. Aside from the gradients
from overestimated and underestimated state-action pairs, there exists an additional bias induced
by the maximum operator and random noise in policy improvement (Thrun & Schwartz, 1993).
Symmetric loss functions assign the same weights for the gradients from overestimated and under-
estimated state-action pairs thereby leading to overestimation in Q learning and DDPG. Whereas
asymmetric loss functions can assign different weights for these even when states-action pairs have
the same absolute TD error. The figure on the right illustrates the intuition for why AsymQ loss
functions can help counteract the overestimation bias.

In RL the value function is usually learned based on temporal difference (TD) learning, an update
scheme based on the Bellman equation Sutton & Barto (2018); Bellman (1966). The Bellman equa-
tion formulates the value of a state-action pair (s,a) in terms of the value of subsequent state-action
pairs (s′,a′):

Qπ(s,a) = r(s,a) + γEs′,a′ [Qπ(s′,a′)],a′ ∼ π(·|s′), (1)
where Qπ(s,a) = E[

∑∞
t=0 γ

tr(st,at)|s,a], denotes the expected return when performing action
a in state s at t = 0 and following policy π for all the subsequent states. Qπ is also known as the
value function or the critic.

A policy can be represented and learned explicitly as done in actor-critic methods or inferred implic-
itly from the value function in methods such as Q-learning. In continuous control, the parameterized
policy πϕ can be updated through the deterministic policy gradient algorithm Silver et al. (2014):

∇ϕJ(πϕ) = E[∇aQ
π(s,a)|a=πϕ(s)∇ϕπϕ(s)]. (2)

In DRL, the value function is estimated by a neural network, which we denote as Qθ(s,a) parame-
terized by network parameters θ. Based on temporal difference learning, existing works update θ by
minimizing the mean squared TD-error, θ ← θ − α∇θEs,a, [δ(s,a)

2] where the TD-error δ(s,a)
is defined by

δ(s,a) = r(s,a) + γQθ′(s′,a′)−Qθ(s,a),a
′ ∼ πϕ(s

′). (3)
Here Qθ′ is usually chosen as a frozen target network. The weights θ′ are usually updated in an
exponential moving average approach, i.e., θ′ ← τθ + (1− τ)θ′ for some 0 < τ < 1.

We start our investigation by revisiting estimation bias and necessary conditions for fitting the Q
value function in Section 3, and show there exist many asymmetric loss functions that also satisfy
these conditions. We demonstrate the advantage of using asymmetric loss functions by examining
a specific family of AsymQ loss functions that we term as SoftmaxMSE (SMSE) in Section 4 and
provide more empirical results and ablation studies in Section 5.

3 ESTIMATION BIAS AND ASYMMETRIC LOSS FUNCTION

Estimation bias and supervised target The overestimation bias in DRL is believed to be due to
its greedy update and the noise present in training. The overestimation issue was initially described
in Thrun & Schwartz (1993), where the value estimation is updated with a greedy target y = r +
γmaxa′ Q(s′,a′). When there exists noise or approximation error ϵ in the Q value function, the

3

maximum over it along with the error will generally be greater than the true maximum, namely,
Eϵ[maxa′(Q(s′,a′) + ϵ)] ≥ maxa′ Q(s′,a′). Similar results are also found in the continuous
setting. We briefly summarize these results in the following lemma (Fujimoto et al., 2018) (more
details are provided in Appendix A).

Lemma 1. For a pair of actor-critic {πϕ, Qθ}, assume one step update based on policy gradient
results in a new policy πϕ̄. Under mild assumptions, the value estimate will be overestimated:
E[Qθ(s, πϕ̄(s))] ≥ E[Qπ(s, πϕ̄(s))].

The overestimation bias turns out to be a serious problem in DRL. The bias may accumulate over
iterations and result in an inaccurate value function. Thus, an inaccurate value function will ex-
acerbate sub-optimal actions and lead to poor policies. To alleviate overestimation bias, a popular
approach is to construct robust supervised signals from multiple critics to fit the Q function. For
instance, TD3 takes a minimum of two critics to update the target in TD-error as

δ(s,a) = y −Qθ(s,a), y = r(s,a) + min{Qθ1(s
′, πϕ(s

′)), Qθ2(s
′, πϕ(s

′))}, (4)

which can effectively suppress overestimation. However, this pessimistic approach often induces
underestimation bias (Ciosek et al., 2019; Pan et al., 2020) as we demonstrate in Fig 3. A key
challenge in tackling this issue is that we do not know during training if a particular estimate is over-
estimated as computing the ground truth Q-value is expensive, therefore, we have to rely on proxy
TD error signals during training. If the supervised target value is close to ground truth values then
overestimated state-action pairs have negative TD errors, while underestimated pairs are associated
with positive TD errors.

Estimation bias and loss function Another important component of policy evaluation is the loss
landscape. MSE of TD errors is the default option for most existing works in learning value func-
tions. Based on Bellman update formula (Bellman, 1966), zero TD-error, i.e., δ(s,a) = 0 for every
state-action pair, indicates that the value network can predict value function perfectly. For MSE Q
loss, besides its simple formula, the global minima will coincide with a well-fitted value function
that has zero TD error. The magnitude of MSE fitting loss quantifies the discrepancy between the
learned Q value function and the value prediction target, such as Eq (4). However, the constructed
supervised target usually depends on bootstrapping as in Eq (4) and the loss is not the distance from
the ground truth value function of the policy. In fact, due to nonconvexity and the limited capacity of
neural networks, zero TD error is almost impossible to reach. In practice, finite or even one update
step of stochastic gradient descent is employed to optimize value networks after each policy update
in DRL.

However, symmetric losses like MSE or Huber are not the only options for optimizing the value
network so that zero TD error is reached at its global minimum. In this work, we investigate loss
functions that are asymmetric. Compared with MSE loss, in which overestimated states with neg-
ative TD error are indistinguishable from underestimated states with positive TD error, asymmetric
loss functions can create different loss landscapes for state-action pairs with positive and negative
TD errors.

Due to its asymmetry with respect to state-action pairs with positive and negative TD-error δ, we
coin our new losses as asymmetric Q (AsymQ) loss functions. Among many choices for AsymQ
loss functions, we start our investigation with a simple function that is obtained by making a small
modification to the standard MSE function. From MSE LMSE({δi}) =

∑B
i=1

1
B δ2i , we introduce

asymmetric loss whose global minimum coincides with zero TD-error

LSMSE({δi}, T) =
B∑
i=1

s.g.[Softmax({−δi
T
})]δ2i =

B∑
i

s.g.[
exp(− δi

T)∑B
i exp(− δi

T)
]δ2i , (5)

where the operator s.g.[·] denotes the stop gradient operator during backpropagation. The design of
this asymmetric loss has several merits. First, it parameterizes a family of loss functions including
MSE as a special case when T → ∞. Second, compared with standard MSE loss, it introduces
minimum overhead computation and can be interpreted as weighted MSE loss. Instead of assigning
the same weights for all samples, Eq (5) determines weights based on the TD-error distribution of
samples in one batch. Since the weights in Eq (5) are obtained from Softmax-operator on TD-errors,
we coin the asymmetric loss as Softmax MSE (SMSE).

4

Although Eq (5) depends on the samples in a batch, i.e., a particular sample’s weight with the same
TD-error can vary across batches, we can still compare samples in batches and their underlying base
functions. MSE loss function is based on quadratic function LMSE({δi}) ∝

∑B
i=1 δ

2
i , while the loss

function for SMSE is (the detailed derivation is included in Appendix A):

LSMSE({δi}, T) ∝
B∑
i=1

−δiT exp (−δi
T
) + T 2(1− exp (−δi

T
)). (6)

This loss landscape is depicted in Fig 2. Note the choice of SMSE is mainly due to its simplicity
and versatility as we can control the loss asymmetry and loss landscape by the sign and magnitude
of temperature. While in this paper we primarily explore the SMSE loss function, we investigate
some additional choices of AsymQ loss functions in Section 5.

Leveraging the asymmetric loss landscape of SMSE, we can effectively encode inductive bias for
policy evaluation. For the inherent overestimation bias present in algorithms such as DQN and
DDPG, SMSE with positive temperature will penalize states with negative TD error. We illustrate
this point with a toy example in Fig 2, where we simulate value function updates with varying
SMSE landscapes with all simulations starting with a batch where the TD-errors of all samples are
set to a constant negative value by fixing appropriate target values. We study how the TD errors of
sampled-batch evolve over updates and find that the loss landscape changes the value function fitting
dynamics significantly. Samples in the batch shift from negative TD-error to positive TD-error as
we lower the temperature. With the temperature in the right range, estimation bias can be lowered
quickly in our synthetic simulation of value function update. We demonstrate that this indeed scales
to mitigating estimation bias during RL training on challenging continuous control benchmarks in
the next section.

(a)

(b) (c)

(d)

Figure 2: SMSE loss parameterized by temperature T Eq (5) and (6). Though it shares the same
global minimum point with MSE, SMSE has a different and asymmetric loss landscape as in Fig 2a.
It reduces to MSE when T = ∞. Fig 2b,2c simulate SGD trajectories of TD-error on SMSE loss
landscape for 10 steps where sampled state-action pairs have a negative TD-error (note that negative
TD-error corresponds to overestimation). We further visualize the final histogram of TD-error for
different temperatures in Fig 2d. The shaded regions depict histograms for the final TD-error results
of each temperature with solid- lines indicating the fitted Gaussian distributions. The intuition found
in the toy example can be generalized to more general RL envs, where asymmetric Q loss function
can control bias preference of policy evaluation and alleviate inherited overestimation in DDPG and
DQN.

4 ASYMMETRIC Q LOSS: CONTROL ESTIMATION BIAS

In this section, we show that the small change in value-fitting loss has a large impact on reinforce-
ment learning and that different loss landscapes will lead to different estimation biases. Our simple
asymmetric loss can drastically boost policy learning in existing RL methods without involving
other computationally expensive tricks. We experiment with our algorithm on the suite of MuJoCo
continuous control tasks (Todorov et al., 2012), interfaced through OpenAI Gym (Brockman et al.,
2016).

5

4.1 CONTROL ESTIMATION BIAS

We visualize the estimation bias of DDPG, TD3, and DDPG+SMSE (ours) for the OpenAI gym
environments Walker2d-v3 and Ant-v3 in Fig 3. The estimation bias is measured by the average dif-
ference between Q network prediction and ground truth value for 10,000 randomly sampled action-
state pairs. More details regarding how the estimation bias is computed can be found in Appendix B.
Clearly, DDPG suffers significant overestimation, which is expected due to inherited maximum bias
(see lemma 1). In contrast, TD3 has a serious underestimation issue, a phenomenon that was also
reported in Pan et al. (2020); Lyu et al. (2022).

As different temperatures parameterize different loss landscapes, we conduct an ablation study on
estimation bias with different temperatures. Lower temperatures put more penalty on action-state
pairs whose predictions are larger than their supervised labels and more relaxed for pairs with pos-
itive TD-error. As it validates in Fig 3c and 3d, positive temperatures can relieve overestimation
issues in DDPG and extremely small positive temperatures even lead to slight underestimation. The
results suggest we can to some extent control estimation bias through the parameterized loss func-
tion, therefore these asymmetric loss functions can be used to introduce inductive bias for learning
value functions. When the temperature is within a proper range, we can significantly reduce estima-
tion bias and learn accurate value functions.

(a) Walker2d (b) Ant-v3 (c) Walker2d (d) Ant-v3

Figure 3: Effect of parameterized SMSE loss on estimation bias. Fig 3a and 3b depicts the estimation
bias of DDPG, TD3, and DDPG+SMSE in Walker2d-v3 and Ant-v3 respectively. The baseline (T =
∞) DDPG with default MSE loss shows a tremendous overestimation effect whereas TD3 exhibits
underestimation when compared with their value prediction with ground truth state-action Q value.
For SMSE, Fig 3c and 3d illustrates the effect of temperature on estimation bias and highlight the
significance of choosing a proper temperature to reduce estimate bias. The shaded region here
indicates 0.25 of the standard deviation of the estimation bias.

4.2 BOOST POLICY PERFORMANCE

We expect RL algorithms to benefit from more accurate value functions. We investigate the policy
performance of DDPG with our SMSE loss. Fig 4a and 4b show the effects of different temperature.
As T decreases from positive infinity, the more accurate value function helps boost policy perfor-
mance. At the same time, we also find learning at extremely small temperatures may deteriorate
policy performance. The issue may be explained by the following factors. A lower temperature
makes learning more pessimistic as learning may ignore samples with positive TD error and penal-
izes both true positive and false positive overestimation. As an extreme case, as T → 0, the weight
from softmax in Eq (5) of SMSE will concentrate on samples with the smallest TD-error, which suc-
cumb to outliers and noise in the training. To illustrate this effect, we introduce the metric effective
batch ratio (EBR),

EBR =
1

B(
∑B

i w2
i)
, (7)

where {wi} quantifies the contribution weights for each sample in one batch. Note that for MSE
(equivalently SMSE with T =∞) wi =

1
B and EBR = 1 so each sample contributes equally to the

value function update. On the other extreme, when T → 0, the weights {wi} = Softmax({− δi
T })

for SMSE concentrate on one sample and EBR = 1
B . In general, EBR can measure the effective

6

percentage of samples that contribute to the value function update. EBR is inspired by effective
sample size in statistics literature (Murphy, 2012). The statistics also indicate the variance of {wi}
in one batch.

We visualize EBR for different temperatures in Fig 4c during training. As expected, EBR decreases
as we decrease temperature. We additionally adopt clipped weights in our practical implementation
(Algorithm 1) to prevent very small EBR and improve training stability.

(a) Walker2d (b) Ant-v3 (c) EBR Ant-v3 (d) Auto tunning T Ant-v3

Figure 4: Impact of SMSE on policy learning with DDPG. Fig 4a and 4b shows policy performance
of DDPG and DDPG+SMSE in Walker2d-v3 and Ant-v3 environments. It depicts that by reducing
estimation bias through the parameterized SMSE loss, we are able to boost the learning efficiency
and policy performance of DDPG. Fig 4c depicts the effective batch ratio (EBR) for different tem-
peratures of DDPG+SMSE in Ant-v3. Fig 4d illustrates the automatically adjusted temperature
over the training steps for DDPG+SMSE* in Ant-v3. The learning curves for DDPG+SMSE* are
included in Fig 5 to contrast the performance against fixed temperature SMSE.

4.3 AUTOMATIC TEMPERATURE ADJUSTMENT FOR SMSE

The experiments on estimation bias demonstrate the importance of choosing the proper temperature
for various environments, and it can be expensive to do an exhaustive grid search for every envi-
ronment, so auto-tuning of this parameter should greatly reduce the burden of adopting our method.
Though there exist many metrics we can employ to perform automatic temperature adjustments
(Haarnoja et al., 2018), we present one auto-tuning algorithm tailored for SMSE DDPG with the
EBR metric.

In our experiments with DDPG, we find the optimal fixed temperatures for different environments
can vary from 3 to 50 for the proposed SMSE loss. An ideal temperature should balance the trade-
off between the estimation bias and variance, where a lower temperature puts more penalty on
overestimation than underestimation to counteract inherent bias while higher temperatures make
the weights uniform which is preferred to resist noise and reduce variance during learning. Here
we introduce one simple approach to adjust the temperature based on EBR. Empirically, we find
experiments with competitive performance usually have EBR in a fixed interval, which is around
[0.95, 0.98]. Therefore, a simple tuning scheme can be proposed based on EBR. We increase the
temperature when EBR is too small and decrease the hyperparameter when EBR is too large over
the expected interval. We summarize the final algorithm in Algorithm 1 (More discussions and
details of hyperparameters are included in Section 5 and Appendix B). We term the auto-tuned loss
as SMSE*, and illustrate the learning curve and the auto-tuned temperature for DDPG-SMSE* in
Ant-v3 in Fig 5 and Fig 4d respectively.

7

Algorithm 1 AsymQ: Policy evaluation with SMSE-loss with automatic temperature adjustment

Input: βup, βdown: interval for desired EBR, βmultiplier: temperature multiplier

Sample mini-batch of B transitions (si,ai, ri, s
′
i) from replay-buffer B

TD-error δi = ri + γQθ′(s′i, πϕ′(s′i))−Qθ(si,ai)

Weights {wi} = Softmax(clip(−{δi}
T ,− ln 2, ln 2))

Loss Lθ =

B∑
i=1

s.g.(wi)δ
2
i // s.g.: stop gradient

Update θ ← θ − α∇θL
Every d iterations

Calculate EBR based on Eq (7)
T ← T × βmultiplier if EBR > βup
T ← T/βmultiplier if EBR < βdown

5 EXPERIMENTS

We present more experiments to answer the following questions: (1) How is the performance of
DDPG+SMSE compared with the existing algorithms with multiple critics? (2) Can our auto-tuning
algorithm help find the proper temperature to reduce estimation bias? (3) Can other asymmetric loss
functions apart from SMSE improve policy learning? (4) Can our approach work for environments
with discrete action space?

5.1 MUJOCO ENVIRONMENTS

Figure 5: Learning curves for the OpenAI gym continuous control tasks. The shaded region repre-
sents half a standard deviation over 5 trials.

Benchmark We demonstrate the effectiveness of our approach in the six MuJoCo environments.
We compare our approach with popular baselines, DDPG, TD3, and Soft Actor-Critic with automat-
ing entropy adjustment (Haarnoja et al., 2018) (SAC). For SAC, we include two variants, SAC-D
which uses two critics, and the Clipped Double Q-Learning trick in Eq (4), and SAC-S which only
has one critic. For reproducibility, our implementation of selected baselines and our algorithm is
based on CleanRL (Huang et al., 2021). We use default hyperparameters unless stated otherwise
for all experiments. We apply the SMSE trick in DDPG, denoted as DDPG+SMSE. Our results are

8

presented in Tab 1 with learning curves in Fig 5. For each environment, we select the temperature by
sweeping temperature over values {3, 5, 10, 20, 50}. We include more details of our implementation
and hyperparameters for both our algorithms and compared baselines in Appendix B.

(RL with a single critic) The experiment results show our algorithm can significantly improve DDPG
by simply replacing MSE loss with the asymmetric SMSE loss for fitting Q functions. Our algorithm
achieves performance comparable with the SOTA algorithms with multiple critics. It indicates our
algorithm can save half of the computational resources (see Appendix for update time comparisons)
for policy evaluation while retaining policy performance, in some cases even outperforming existing
algorithms in challenging environments like Ant-v3. (Automating temperature adjustment) We also
include learning curves obtained by our proposed automating temperature adjustment, denoted as
DDPG+SMSE*. Our algorithm can find the proper temperature for most environments. (Composi-
tionality with other techniques) We also apply the SMSE trick in SAC-S, denoted as SAC-S+SMSE.
The asymmetric loss can also benefit the off-policy algorithm with a stochastic actor. (Other asym-
metric loss function) Our asymmetric algorithm is not limited to a specific loss. We experiment with
two new asymmetric losses:

L̂1({δi}, T) = Softmax({−δi
T
})δ2i , L̂2({δi}, T) =

∑
i

T−sign(δi)δ2i , (T > 1). (8)

Though these new asymmetric losses have different landscapes, they also penalize negative TD-
error more and positive TD-error less. Tab 1 shows DDPG with these new asymmetric losses can
also boost policy learning of DDPG in challenging environments. Interestingly, we find the fixed
temperature T = 1.5 for L̂2 works for all environments.

Environment DDPG SAC-D SAC-S TD3 DDPG+SMSE SAC-S+SMSE DDPG+SMSE* DDPG+L̂1 DDPG+L̂2

Swimmer-v3 (×102) 1.47±0.06 0.76±0.24 1.30±0.12 0.65±0.27 1.43±0.09 1.33±0.10 1.16±0.21 1.21±0.09 1.46 ± 0.08
HalfCheetah-v3 (×104) 1.12±0.03 1.09±0.04 1.08±0.10 0.93±0.13 1.02±0.05 1.01±0.10 1.03±0.06 1.01±0.11 1.07±0.05
Walker2d-v3 (×103) 1.67±0.37 4.10±0.48 3.07±0.55 3.78±0.33 4.15±0.46 4.65±0.18 4.16±0.50 3.67±0.25 4.26±0.38
Hopper-v3 (×103) 1.87±0.33 3.23±0.26 1.83±0.24 3.40±0.41 3.59±0.27 3.21±0.16 3.24±0.18 3.27±0.23 3.34±0.31
Ant-v3 (×103) 1.29±0.49 3.83±1.11 1.12±0.41 5.37±0.48 5.66±0.25 5.15±1.12 5.42±0.32 5.24±0.44 4.98±0.38
Humanoid-v3 (×103) 1.74±0.11 5.00±0.37 1.37±0.17 5.34±0.21 5.16±0.20 4.85±0.28 5.16±0.40 4.29±0.43 4.95±0.47

Table 1: Average Return over 5 seeds with± corresponding to one standard deviation. SMSE* uses
automatic temperature adjustment while for SMSE we report best performance from a fixed grid-
searched temperature. We also include results for DDPG with asymmetric losses in Eq (8), which
validates the benefit of using asymmetric loss functions in general

5.2 DQN EXPERIMENTS

We demonstrate that our proposed SMSE loss can also be beneficial for discrete action scenarios
by demonstrating it’s effectiveness when combined with the DQN algorithmMnih et al. (2015).
We evaluate our proposed method on the MinAtar benchmark Young & Tian (2019) and some
Atari games Bellemare et al. (2013) comparing it against both baseline DQN and DoubleDQN up-
dateVan Hasselt et al. (2016) with all the variants operating with a common set of hyperparameters.
In Fig 6 we report the best-performing learning curves for some of the games in benchmarks ob-
tained by a grid search in (0.5, 1, 5, 10, 20, 100) for the temperature hyperparameter in DQN+SMSE
keeping the clip parameter at ln 2. Results for more games in the benchmarks are available in Ap-
pendix B.7.

6 CONCLUSIONS AND LIMITATIONS

We introduce a lightweight approach to control estimation bias for policy evaluation in DRL. Instead
of constructing robust supervised targets at the cost of multiple value networks, we find the fitting
loss function in policy evaluation has a surprising effect on controlling estimation bias. We are
able to reduce estimation bias and boost policy performance by simply changing MSE loss to an
asymmetric loss in DDPG without increasing the computation cost by much. We point out several
limitations of our approach here. Though we propose SMSE which includes MSE as a special
case and an automatic temperature adjustment algorithm for SMSE, how to design a proper or even
optimal loss function is out of the scope of our work. In fact, We actually find SMSE is not so

9

Figure 6: Learning curves for some games in MinAtar and Atari benchmarks. The shaded region
represents one standard deviation of the average evaluations over 5 trials.

robust in DQN setting, several fail cases and possible explanations are included in Appendix B. Our
results provide one approach to inject inductive bias in DRL via loss functions for policy evaluation.
It remains an open problem to adjust and customize the loss landscape automatically for different
environments.

7 REPRODUCIBILITY STATEMENT

The detailed discussion on assumptions and proofs are included in Appendix A. For experiments,
hyperparameters and other implementation details of Algorithm 1 and compared algorithms are
included in the main paper and Appendix B. This should provide sufficient information for the
reader of interest to reproduce our results.

REFERENCES

Marc G Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The arcade learning environ-
ment: An evaluation platform for general agents. Journal of Artificial Intelligence Research, 47:
253–279, 2013.

Richard Bellman. Dynamic programming. Science, 153(3731):34–37, 1966.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. Openai gym. arXiv preprint arXiv:1606.01540, 2016.

Xinyue Chen, Che Wang, Zijian Zhou, and Keith Ross. Randomized ensembled double q-learning:
Learning fast without a model. arXiv preprint arXiv:2101.05982, 2021.

Kamil Ciosek, Quan Vuong, Robert Loftin, and Katja Hofmann. Better exploration with optimistic
actor critic. Advances in Neural Information Processing Systems, 32, 2019.

Scott Fujimoto, Herke Hoof, and David Meger. Addressing function approximation error in actor-
critic methods. In International conference on machine learning, pp. 1587–1596. PMLR, 2018.

Tuomas Haarnoja, Aurick Zhou, Kristian Hartikainen, George Tucker, Sehoon Ha, Jie Tan, Vikash
Kumar, Henry Zhu, Abhishek Gupta, Pieter Abbeel, and Sergey Levine. Soft actor-critic algo-
rithms and applications. Technical report, 2018.

Hado Hasselt. Double q-learning. Advances in neural information processing systems, 23, 2010.

Shengyi Huang, Rousslan Fernand Julien Dossa, Chang Ye, and Jeff Braga. Cleanrl: High-quality
single-file implementations of deep reinforcement learning algorithms. 2021.

Mykel J Kochenderfer. Decision making under uncertainty: theory and application. MIT press,
2015.

Arsenii Kuznetsov, Pavel Shvechikov, Alexander Grishin, and Dmitry Vetrov. Controlling overesti-
mation bias with truncated mixture of continuous distributional quantile critics. In International
Conference on Machine Learning, pp. 5556–5566. PMLR, 2020.

10

Qingfeng Lan, Yangchen Pan, Alona Fyshe, and Martha White. Maxmin q-learning: Controlling
the estimation bias of q-learning. arXiv preprint arXiv:2002.06487, 2020.

Kimin Lee, Michael Laskin, Aravind Srinivas, and Pieter Abbeel. Sunrise: A simple unified frame-
work for ensemble learning in deep reinforcement learning. In International Conference on
Machine Learning, pp. 6131–6141. PMLR, 2021.

Litian Liang, Yaosheng Xu, Stephen McAleer, Dailin Hu, Alexander Ihler, Pieter Abbeel, and Roy
Fox. Reducing variance in temporal-difference value estimation via ensemble of deep networks.
In International Conference on Machine Learning, pp. 13285–13301. PMLR, 2022.

Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. arXiv
preprint arXiv:1509.02971, 2015.

Jiafei Lyu, Xiaoteng Ma, Jiangpeng Yan, and Xiu Li. Efficient continuous control with double
actors and regularized critics. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 36, pp. 7655–7663, 2022.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level
control through deep reinforcement learning. nature, 518(7540):529–533, 2015.

Kevin P Murphy. Machine learning: a probabilistic perspective. MIT press, 2012.

Soroush Nasiriany, Vitchyr Pong, Steven Lin, and Sergey Levine. Planning with goal-conditioned
policies. Advances in Neural Information Processing Systems, 32, 2019.

Ling Pan, Qingpeng Cai, and Longbo Huang. Softmax deep double deterministic policy gradients.
Advances in Neural Information Processing Systems, 33:11767–11777, 2020.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-
performance deep learning library. Advances in neural information processing systems, 32, 2019.

Andrew Patterson, Victor Liao, and Martha White. Robust losses for learning value functions. arXiv
preprint arXiv:2205.08464, 2022.

David Silver, Guy Lever, Nicolas Heess, Thomas Degris, Daan Wierstra, and Martin Riedmiller.
Deterministic policy gradient algorithms. In International conference on machine learning, pp.
387–395. PMLR, 2014.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

Sebastian Thrun and Anton Schwartz. Issues in using function approximation for reinforcement
learning. In Proceedings of the 1993 Connectionist Models Summer School Hillsdale, NJ.
Lawrence Erlbaum, volume 6, pp. 1–9, 1993.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
In 2012 IEEE/RSJ international conference on intelligent robots and systems, pp. 5026–5033.
IEEE, 2012.

Hado Van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with double q-
learning. In Proceedings of the AAAI conference on artificial intelligence, volume 30, 2016.

Wei Wei, Yujia Zhang, Jiye Liang, Lin Li, and Yyuze Li. Controlling underestimation bias in
reinforcement learning via quasi-median operation. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 36, pp. 8621–8628, 2022.

Jiayi Weng, Huayu Chen, Dong Yan, Kaichao You, Alexis Duburcq, Minghao Zhang, Yi Su, Hang
Su, and Jun Zhu. Tianshou: A highly modularized deep reinforcement learning library. arXiv
preprint arXiv:2107.14171, 2021.

11

Jiayi Weng, Min Lin, Shengyi Huang, Bo Liu, Denys Makoviichuk, Viktor Makoviychuk, Zichen
Liu, Yufan Song, Ting Luo, Yukun Jiang, Zhongwen Xu, and Shuicheng Yan. EnvPool: A highly
parallel reinforcement learning environment execution engine. arXiv preprint arXiv:2206.10558,
2022.

Dongming Wu, Xingping Dong, Jianbing Shen, and Steven CH Hoi. Reducing estimation bias
via triplet-average deep deterministic policy gradient. IEEE transactions on neural networks and
learning systems, 31(11):4933–4945, 2020.

Kenny Young and Tian Tian. Minatar: An atari-inspired testbed for thorough and reproducible
reinforcement learning experiments. arXiv preprint arXiv:1903.03176, 2019.

12

A PROOF

A.1 LEMMA 1

The proof is heavily based on conclusions from Section 4.1 and Appendix B from Fujimoto et al.
(2018). We summarize the finding below. Given a pair of actor (πϕ, Qθ), we can define two new
actors from the policy gradient algorithm

ϕ̄ = ϕ+
α

Z1
Evs[∇ϕπϕ(s)∇aQθ(s,a)|a=πϕ(s)], (9)

ϕ̂ = ϕ+
α

Z2
Evs[∇ϕπϕ(s)∇aQ

π(s,a)|a=πϕ(s)]. (10)

We note ϕ̄ is based on estimated value function Qθ while ϕ̂ is for ground truth value function Qπ .
Qπ is only for analysis purposes and not available during training. We assume Z1 and Z2 are chosen
to normalize the gradient. Due to gradient ascend, there exists ϵ1 such that if α ≤ ϵ1 the estimated
value of πϕ̄ will be bounded below by the estimated value of πϕ̂:

E[Qθ(s, πϕ̄(s)] ≥ E[Qθ(s, πϕ̂(s)] (11)

Similarly, there exists ϵ2 such that if α ≤ ϵ2 then the true value of πϕ̄ will be bounded above by the
true value of πϕ̂:

E[Qπ(s, πϕ̂(s)] ≥ E[Qπ(s, πϕ̄(s)]. (12)

If in expectation the Qθ is at least as large as the Qπ for policy πϕ̂ E[Qθ(s, ϕϕ̂(s)] ≥
E[Qπ(s, ϕϕ̂(s)], then Eq (11) and (12) indicate that policy ϕ̄ will also be overestimated if step
size α ≤ min(ϵ1, ϵ2):

E[Qθ(s, πϕ̂(s)] ≥ E[Qπ(s, πϕ̄(s)]. (13)
The above conclusion is possible when we have the normalized gradient during gradient ascent.
For the unnormalized gradient, a stronger assumption on Qπ and Qθ to make Eq (13) hold (Fuji-
moto et al., 2018). Although Eq (13) is made on one step policy gradient, the overestimation may
accumulate as we train policy for more steps.

A.2 EQ (6)

To prove Eq (6) equivalent to Eq (5) up to normalization constants, we show their gradients with
respect to δ are equivalent.

We denote loss in Eq (5) as L1 and Eq (6) as L2. Therefore, the gradients can be obtained

dL1

dδi
=

2 exp(− δi
T)∑B

i exp(− δi
T)

δi ∝ exp(−δi
T
)δi. (14)

where
∑B

i exp(− δi
T) is a normalization constants shared for every sample δi in one batch. On the

other hand,
dL2

dδi
= −T exp (−δi

T
) + δi exp (−

δi
T
) + T exp (−δi

T
) = δi exp (−

δi
T
). (15)

Based on Eq (14) and (15), we can conclude that gradient during one step gradient descent for L1

and L2 are equivalent up to normalization constants.

B EXPERIMENT DETAILS AND DISCUSSIONS

B.1 IMPLEMENTATION OF SMSE FOR POLICY EVALUATION

For Softmax MSE loss, we include the key modification based on PyTorch (Paszke et al., 2019)
in Fig 7. We clip the weight logits for numerical stability. For all experiments, we find clipping
range [− log 2, log 2] works best for various experiments. log 2 is chosen to guarantee the ratio
between the largest weight and the smallest weight is less than 4. Without clipping, our Softmax
MSE may assign unreasonable large and small weights for samples in one batch and result in small
EBR which leads to very noisy updates and could destabilize the training.

13

td_error = target_q - estimated_q
errors = torch.pow(td_error, 2.0)
q_loss = errors.mean() ; MSE implementation
+ with torch.no_grad():
+ # clip weights value for numerical stability
+ weight_logits = torch.clip(-td_error / T, math.log(1.0/thres), math.log(thres))
+ weights = torch.softmax(weight_logits) * batch_size
+ q_loss = (weights * errors).mean()
q_loss.backward()

Figure 7: PyTorch code sample for modifying MSE loss to SMSE loss with fixed temperature

B.2 COMPARED BASELINES IN MUJOCO ENVIRONMENTS

For DDPG, SAC-D, and TD3, our implementation is based on CleanRL (Huang et al., 2021) 1,
which provides a single-file implementation for each algorithm. We add an extra evaluating step
that tests each RL agent in the same environments with 10 different random seeds. All learning
curves and reward return numbers are based on experiments in testing environments despite we find
that episode return curves during training are similar to testing ones. For DDPG, we use the imple-
mentation from Fujimoto et al. (2018) instead of the original DDPG (Lillicrap et al., 2015), which
includes several tricks that improve DDPG performance. Our SAC-D implementation matches the
performance of the official codebase 2. For a fair comparison, we use the same learning rate 3×10−4

and start-timesteps 25000 for all experiments. SAC-S is based on SAC-D but it only uses one critic
instead of taking the same minimum value of two independent critics. Unless stated otherwise, the
hyperparameters and implementation details follow the default choice in CleanRL.

B.3 HYPERPARAMETERS FOR SMSE

For SMSE algorithm with fixed temperatures for policy evaluation, we sweep the temperature op-
tions across environments. For each environment, we report the performance with the best tempera-
ture and present the best performing temperature parameter in Tab 2.

For weights’ clip value, we try (− ln 2, ln 2), (− ln 3, ln 3), (− ln 5, ln 5) and (− ln 10, ln 10), and
find (− ln 2, ln 2) and (− ln 3, ln 3) can learn good policies most of the time, therefore we use
(− ln 2, ln 2) by default across environments. In Fig 8, we compare policy performance and EBR
for different clipping ranges for a fixed temperature T = 3 in Walker2d-V3. The experiment shows
that clipping helps stabilize training and learn better policies. We also note that clipping plays a less
important role when we use higher temperatures in SMSE.

For auto-tuned temperature SMSE*, we use interval (0.95, 0.98) for desired EBR range in Algo-
rithm 1. The range is selected based on EBR curves for different environments. We have not further
swept EBR options and better performance may be possible with fine-tuned hyperparameters.

We believe that the above hyperparameters might not be optimal for SMSE and better hyperpa-
rameters can be obtained through a more extensive search. However, our results still demonstrate
a surprising performance boost obtained by simply replacing MSE with SMSE, warranting further
investigation of asymmetric loss landscapes for value function learning.

Sensitivity of βmultiplier : For Ant-v3 we try three different βmultiplier parameters and report the per-
formance curves for DDPG+SMSE* in Fig 9. We see that the performance is robust to the choice of
this hyperparameter when contrasted with the difference in performance observed while tuning the
temperature parameter directly.

B.4 OTHER ASYMMETRIC LOSS

We also conduct some initial experiments with more asymmetric loss functions Eq (8). It is worth
noting the main difference between L̂1 and SMSE is that SMSE has a stop gradient operator in
calculating SoftMax. Although they appear to be very similar, L̂1 still presents a different loss
landscape and has different gradient descent dynamics. L̂2 is another even simpler asymmetric

1https://github.com/vwxyzjn/cleanrl/commit/eba64521299060dd89587a8cee31cba0a8afe930
2https://github.com/rail-berkeley/softlearning/pull/127#issuecomment-602748849

14

Figure 8: Effect of clipping on policy learning and EBR with T = 3. Clipping can help stabilize
learning when using SMSE with a lower temperature by avoiding very small EBR. Without clipping,
SMSE may assign large weights for overestimated samples and ignore underestimated samples.

Figure 9: Performance obtained with different βmultiplier on Ant-v3 (average over 3 seeds are re-
ported) with DDPG+SMSE* (auto-tune algorithm). We observe reasonable performance for differ-
ent multiplier hyperparameters demonstrating that the performance sensitivity is lower

Environment DDPG+SMSE SAC-S+SMSE
Ant-v3 20.0 5.0

Walker2d-v3 3.0 5.0
Hopper-v3 3.0 5.0

Swimmer-v3 50.0 10.0
Humanoid-v3 20.0 5.0

HalfCheetah-v3 50.0 50.0

Table 2: Temperature for different environments

15

loss function, which can be interpreted as a combination of two quadratic functions. We initially
parameterize it as

L({δi}, T) =
∑
i

T−sign(δi)δ2i (16)

We perform a grid-search for T over {1.2, 1.5, 2.0}, and find that T = 1.5 works well for all
environments. We emphasize that both functions put more penalization on state-action pairs whose
TD-Error is negative.

B.5 ESTIMATION BIAS FOR FIG 3

For each environment, we pick 20 checkpoints uniformly from the train steps to test RL agents’
performance. For each checkpoint, we evaluate the learned Q values on 10,000 state-action pairs
that are uniformly sampled from the replay buffer. The predicted Q-value is obtained by simply
feed-forwarding the state-action pair into the Q-network from the checkpoint. The ground truth Qπ

is estimated in Monte-Carlo fashion, where we execute the policy checkpoint and collect rewards
along trajectories to estimate the average discounted return J(π), the trajectories are clipped at 500
steps and the average over 3 such trajectories are treated as the ground truth value, we use only 3
trajectories because the variance observed across trajectories were low as the policy is deterministic.
We plot the mean and standard derivation of estimation bias over 10,000 state-action pairs in Fig 3.
The pseudo-code for this procedure is provided in Algorithm 2.

Algorithm 2 checking estimation bias in the value function for a given checkpoint

Let π, Qπ be the policy and value function to evaluate.
Explore environment with π +N (0, ϵ) and store N transitions to replay-buffer B
Sample M state-action pairs {(si, ai)} from B
Let Q PRED =

[
0
]
1×M

and Q TRUE =
[
0
]
1×M

for i = 1 to M do
Q PRED[i] = Qπ(si, ai)
Q TRUE[i] = Monte-Carlo-estimate(discounted return(si, ai, π))

end for
return mean and standard deviation of

(
Q PRED - Q TRUE

)

B.6 UPDATE TIME ANALYSIS

We benchmark the average update time for the algorithms DDPG, TD3, SAC-D, SAC-S, DDPG +
SMSE, and SAC-S + SMSE for training on the Ant-v3 environment. All algorithms are run with the
same batch-size hyperparameter on an Intel i9-9900 16 core + RTX 2080 Ti desktop. From Fig 10,
we observe that our SMSE loss function adds very minimal cost (0.2 ms/step) to the update time
on-top of DDPG but still achieves performance comparable to the state-of-the-art algorithms.

B.7 ENVIRONMENTS WITH DISCRETE ACTIONS

The DQN implementation for the Atari benchmark is based on the Tianshou(Weng et al., 2021)
package that leverages envpool(Weng et al., 2022) implementations of the Atari environments to
speed up the run-time. The architecture and pre-processing of frames are similar to the ones found
in the original DQN paper(Mnih et al., 2015). The hyperparameters used to come from the default
parameters present in the Tianshou code-base, we just experimented with different temperature pa-
rameters of the additionally introduced SMSE loss, and temperatures from the set (0.5, 1, 5, 10, 20,
100) were tried. In Tab 3 we outline the best performing run’s temperature and final performances
for Atari games and contrast it against the baseline DQN (T = ∞) and DoubleDQN. The results
reported are the mean and standard deviation of returns over 5 random seeds.

16

Figure 10: Average update time for each training step for different algorithms. DDPG + SMSE adds
very little computational cost over DDPG but achieves performance comparable to that of TD3 or
SAC

Environment Temperature DQN + SMSE DQN DoubleDQN
Breakout 1 205.31±21.52 101.56±15.70 118.64±17.35
SpaceInvaders 1 596.75±41.89 533.14±96.60 502.17±75.90
Seaquest 1 2920.42±413.79 2939.12±389.32 2904.19±354.87
RoadRunner 10 33990.19±1235.37 31016.93±1786.06 30798.37±3308.80
BeamRider 20 3379.35±611.30 3368.27±571.66 2026.12±465.88
Riverraid 100 7463.80±1002.75 7651.94±681.38 8274.78±778.29
Asterix 10 2983.21±685.62 2714.63±407.57 2079.31±344.00

Table 3: Temperature for best-performing DQN + SMSE Loss on Atari games benchmark
(Gym:NoFrameskip-v4). We report the average Return over 5 seeds with ± corresponding to one
standard deviation.

For the MinAtar (Young & Tian, 2019) games benchmark, we use the CleanRL (Huang et al., 2021)
implementation of DQN and leverage the hyperparameters suggested in the MinAtar paper along
with additionally limiting the environment steps for the MinAtar/Seaquest-v0 environment to 10,000
steps as done in (Lan et al., 2020). Similar to the Atari games benchmark we try different temper-
ature parameters from the set (0.5, 1, 5, 10, 20, 100) and report the best performing run in Tab 4,
where the result represents the mean and standard deviation over 5 random seeds.

Environment Temperature DQN + SMSE DQN DoubleDQN
MinAtar/Asterix-v0 1 26.79±1.85 11.26±1.85 11.77±2.19
MinAtar/SpaceInvaders-v0 1 52.48±4.74 44.86±4.25 39.92±3.84
MinAtar/Breakout-v0 20 17.53±2.28 17.15±0.94 14.98±0.84
MinAtar/Seaquest-v0 10 4.56±0.73 4.53±1.41 3.24±0.53
MinAtar/Freeway-v0 20 48.60±0.41 48.74±0.52 48.07±1.44

Table 4: Temperature for best-performing DQN + SMSE Loss on MinAtar benchmark. We report
the average Return over 5 seeds with ± corresponding to one standard deviation.

While the performance improvement is observed on some of the games in both the Atari and Mi-
nAtar benchmarks, it still fails to show major improvements for a good fraction of the environments,
unlike the continuous control MuJoCo benchmark. This could be due to several reasons, one major
factor is that estimation bias in DQN is different from that of DDPG, and the loss developed and

17

Environment Algorithm Performance Steps Wall-clock Time
(hours)

Estimated Total
FLOPs (×1018)

Hopper-v3 REDQ 3528.57±134.14 125K 20.46 3.303
Hopper-v3 SAC-S+SMSE 3213.84±205.56 1000K 11.93 0.161

Walker2d-v3 REDQ 5426.60±626.55 300K 50.32 8.291
Walker2d-v3 SAC-S+SMSE 4653.17±187.51 1000K 11.21 0.168

Ant-v3 REDQ 6086.05±122.02 300K 53.31 11.144
Ant-v3 SAC-S+SMSE 5172.35±112.12 1500K 16.16 0.338

Table 5: Comparison against REDQ (Chen et al., 2021). Our SAC-S+SMSE can achieve competitive
results with much fewer computational resources measured in wall-clock time and estimated FLOPs
count.

tested extensively in DDPG doesn’t simply transfer and work for all DQN environments. It is to be
noted that even DoubleDQN updates sometimes result in lower performance compared to DQN so
it can be expected that just reducing estimation bias does not always necessarily translate to higher
performance. Additionally, we leverage the hyper-parameters suggested in popular open-source
packages and do not perform any tuning apart from a small grid search on the SMSE-temperature
parameter. An extensive hyper-parameter search along with the exploration of new asymmetric loss
functions for environments with discrete action spaces is an exciting direction for future work.

B.8 SMSE WITH ENSEMBLE Q-NETWORKS

Arguably one of the most effective approaches to reducing the bias and having stable value-function
targets is the usage of an ensemble of critics (Kuznetsov et al., 2020; Chen et al., 2021; Liang et al.,
2022; Lee et al., 2021; Lyu et al., 2022; Wu et al., 2020; Wei et al., 2022). In this section, we com-
pare SMSE with state-of-the-art algorithms based on an ensemble of critics. We find our approach
can achieve competitive results in a much more computational efficiency approach. Besides, we
surprisingly find our asymmetric loss is orthogonal to the ensemble method to some extends.

SMSE vs REDQ (Chen et al., 2021) We first compare our work with an ensemble Q algorithm
called Randomized Ensembled Double Q-Learning (REDQ) (Chen et al., 2021). REDQ leverages
an ensemble of Q-networks with additional tricks such as high update-to-data ratio and target-
minimization from a subset of these Q-networks to demonstrate strong performance in a sample-
efficient manner. In Tab 5 we compare the best performance (mean across 3 seeds) of REDQ and
our proposed SAC-S+SMSE on some Mujoco environments and report the number of environment
steps and wall-clock time duration to achieve the same. For this comparison, we use the same un-
derlying hyperparameters such as architecture, learning rate, etc., with REDQ specifically using 10
networks, a random subset size of 2 for target construction, and an update-to-data (UTD) ratio of
20. The performance of SAC-S+SMSE is reported for the best temperature parameter selected by
the procedure outlined in Appendix B.2 as done in the main paper.

REDQ indeed achieves a very high performance, which can be attributed to stable targets obtained
from ensemble networks and the high UTD ratio. While a sample-efficient performance is
achieved, the run-time and memory consumed by such ensemble techniques are high. If we
use N networks, compare M networks to provide a target estimate, and perform G updates per
step (UTD ratio) - we can approximate the FLOPs used in REDQ for the network size used
in our experiments as ≈ G × ((2 × FwdPass × M) + N × (FwdPass + (2 × BckwdPass))).
The FLOPs count of SAC-S+SMSE can estimated with G = 1, M = 1, and N = 1. We obtain
the FLOPS for FwdPass from fvcore library and approximate the cost of BckwdPass as 3×FwdPass.

SMSE improves Ensemble To experiment if we can incorporate an ensemble of networks into
the SMSE framework, we improve on the ensemble averaging target (AVG) baseline also used in
(Chen et al., 2021), by plugging in our proposed SMSE loss to update the Q-networks from targets
predisposed to overestimation bias. In Fig 11 we compare the impact of using SMSE loss instead
of the baseline MSE loss. We see that the proposed loss function significantly improves the AVG
baseline. To further see if our method helps reduce estimation bias we compare REDQ, AVG,

18

https://github.com/facebookresearch/fvcore/blob/main/docs/flop_count.md

Figure 11: Impact of SMSE loss on the performance of ensemble average targets (AVG).

Figure 12: The plot of the top-left indicates the average value function bias (i.e. prediction - esti-
mated true value). The plot on the top-right indicates the average normalized bias (i.e average bias
divided by estimated true value). The plot at the bottom compares the performance of REDQ, AVG,
and AVG + SMSE. While we observe slight underestimation in REDQ and overestimation in AVG,
the average bias in AVG + SMSE is close to 0, showing that the proposed loss function effectively
reduces bias in using averaged ensemble target estimates.

and AVG+SMSE on Hopper-v3 and present the results in Fig 12. Average bias is the mean of
the differences between the predicted Q-values and the estimated true Q-values (estimated by a
Monte Carlo simulation) over state-action pair samples. The normalized bias divides the bias by
the estimated true Q-value to visualize the scale of the bias in terms of the value function. We
observe that the proposed SMSE loss can effectively reduce the bias in the action-value function by
keeping the average bias close to 0 and providing competitive performance improvements. These
findings indicate that SMSE is better than the default MSE loss, and the improvement is orthogonal
to other methods proposed to address the estimation bias problem in RL. We are optimistic that
further investigation into Asymmetric loss functions can benefit many algorithms and downstream
applications that rely on value functions for further optimization and planning.

19

	Introduction
	Preliminaries: Value-based Deep Reinforcement Learning
	Estimation bias and asymmetric loss function
	Asymmetric Q Loss: control estimation bias
	Control estimation bias
	Boost policy performance
	Automatic temperature adjustment for SMSE

	Experiments
	MuJoCo Environments
	DQN experiments

	Conclusions and limitations
	Reproducibility Statement
	Proof
	lemma:td3
	eq:base-loss-fn

	Experiment details and discussions
	Implementation of SMSE for policy evaluation
	Compared baselines in Mujoco environments
	Hyperparameters for SMSE
	Other asymmetric loss
	Estimation bias for fig:estimation-bias
	Update time analysis
	Environments with discrete actions
	SMSE with ensemble Q-networks

