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Abstract

Uncertainty quantification (UQ) is essential for safe deployment of generative Al
models such as large language models (LLMs), especially in high-stakes appli-
cations. Conformal prediction (CP) offers a principled uncertainty quantification
framework, but classical methods focus on regression and classification, relying
on geometric distances or softmax scores—tools that presuppose structured outputs.
We depart from this paradigm by studying CP in a query-only setting, where pre-
diction sets must be constructed solely from finite queries to a black-box generative
model, introducing a new trade-off between coverage, test-time query budget, and
informativeness. We introduce Conformal Prediction with Query Oracle (CPQ),
a framework characterizing the optimal interplay between these objectives. Our
finite-sample algorithm is built on two core principles: one governs the optimal
query policy, and the other defines the optimal mapping from queried samples
to prediction sets. Remarkably, both are rooted in the classical missing mass
problem in statistics. Specifically, the optimal query policy depends on the rate
of decay—or the derivative—of the missing mass, for which we develop a novel
estimator. Meanwhile, the optimal mapping hinges on the missing mass itself,
which we estimate using Good-Turing estimators. We then turn our focus to imple-
menting our method for language models, particularly in open-ended LLM tasks
involving question answering, multi-step reasoning, and structured information
extraction, where outputs are vast, variable, and often under-specified. Fine-grained
experiments’on three real-world open-ended tasks and two LLMs, show CPQ’s
applicability to any black-box LLM and highlight: (1) individual contribution of
each principle to CPQ’s performance, and (2) CPQ’s ability to yield significantly
more informative prediction sets than existing conformal methods for language
uncertainty quantification.

1 Introduction

Generative models such as LLMs and diffusion models are widely deployed in high-stakes applica-
tions, yet they often produce unreliable outputs. These models may generate plausible but incorrect
information, hallucinate facts, or exhibit inconsistency across runs [1-4]. Uncertainty quantifica-
tion (UQ) is therefore essential for safe and trustworthy deployment of generative Al, enabling
downstream users to detect unreliable outputs and make informed decisions under uncertainty.
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Conformal prediction (CP) is a statistical framework for UQ in supervised learning [5—7], where
input-output pairs (X, Y") are drawn from an unknown distribution. Instead of a single prediction, CP
produces prediction sets calibrated to include the true label with high probability. Formally, given a
miscoverage level o € (0,1), CP guarantees P(Y € C(X)) > 1 — «, where C'(X) is the prediction
set for input X. This holds under minimal assumptions: CP is distribution-free and model-agnostic,
making it widely applicable. These properties have made CP a key tool in deploying ML systems in
high-stakes settings. Recent work also shows that CP sets are essential for risk-sensitive decision
making, where decisions must account for predictive uncertainty in a principled way [8].

CP has been extensively studied for classical tasks such as classification and regression [9—12]. In
these settings, uncertainty is typically expressed through prediction sets of the form {y : S(z,y) < ¢},
where S(z,y) is a nonconformity score measuring how atypical a label y is for a given input z,
and ¢ is a calibrated threshold. In regression, S(z,y) might be |y — f(x)|, where f(z) is a trained
model. In classification, the score is often based on softmax probabilities, such as 1 — f, (z), where
fyy(x) is the predicted probability for class y. However, this approach does not directly carry over to
generative modeling—such as open-ended text generation—where outputs come from an immense,
unstructured space of discrete sequences. While one can define similarity metrics over text or images,
the core difficulty lies not in the absence of a distance, but in the fact that sets defined via these
distances—such as “all outputs within a radius of ¢”—are typically intractable and hard to represent.
In generative models like LLMs, the model does not expose a full probability distribution over the
output space, but instead only provides a query oracle—a mechanism for sampling one output at a
time. These challenges motivate the question: Can we design conformal prediction procedures that
meaningfully quantify uncertainty when the model only provides samples of its output space?

Recent works have made progress toward adapting CP to query-based generative models [13, 14].
However, two key challenges remain mainly unresolved. First, querying at test time is resource
intensive—more queries improve output exploration but incur substantial computational cost. Second,
users often seek uncertainty quantification at high coverage levels (e.g., 90%), even when the model’s
few-shot accuracy is much lower (e.g., 60 — 70%). In such regimes, some prediction sets are
necessarily non-informative—effectively suggesting that the true output could be anything—because
the model fails to produce it within the query budget. These challenges highlight a fundamental trade-
off between coverage, informativeness, and test-time query cost. Our goal is to design conformal
procedures that navigate this trade-off by minimizing the number of non-informative prediction sets
while maintaining valid coverage under a limited query budget.

A central insight in addressing this challenge is recognizing that the notion of missing mass plays a
foundational role. When only a few outputs are sampled from a generative model-such as querying
an LLM a handful of times for a prompt—the key question becomes: have we already seen a correct
answer, or could the correct output still lie in the part of the distribution we haven’t sampled yet?
This uncertainty about the correct label remaining unseen—the missing mass—is critical in deciding
both whether to keep querying and how much confidence to place in the outputs we have.

To formalize the trade-off between coverage, informativeness, and query cost, we introduce an
optimization framework that jointly designs a query policy (how many queries to allocate per test
point) and a set map (how to turn sampled outputs into calibrated prediction sets). Remarkably, both
components connect to the classical missing mass problem in statistics (see [15—18]). The optimal
query policy corresponds to controlling the rate of decrease in missing mass, while the optimal set
construction relies on estimating the missing mass itself. We now summarize our main contributions:

1) We introduce a novel optimization framework (Section 2) that formally captures the trade-off
between coverage, informativeness, and test-time query budget in generative modeling UQ. This
reinterprets conformal prediction from a budgeted query perspective and defines two interacting
components: the query policy and the prediction set map, which connects sampled outputs to sets.

2) We identify two key algorithmic principles that emerge from this framework. First, the optimal
query policy prescribes querying each test input until the rate of decrease in missing mass falls below
a threshold—that is, one should keep querying as long as an additional sample significantly reduces
uncertainty. Second, the optimal map from sampled outputs to a set is defined by thresholding a
particular conformity score that properly accounts for the missing mass. These principles extend
conformal prediction to a fundamentally new setting and may be of independent theoretical interest.



3) In Section 4, we design a finite-sample algorithm that combines these principles, integrating the
estimation of missing mass (and its rate of reduction) into the conformal prediction pipeline while
provably maintaining valid, distribution-free coverage guarantees. A key technical contribution
is a novel estimator for the rate of decrease in missing mass, derived by revisiting the classical
Good-Turing estimator—originally developed to estimate the missing mass itself.

4) We show the practical value of our approach through experiments on open-ended LLM tasks.
Across three benchmark datasets, we quantify how each algorithmic principle contributes to prediction
set informativeness under varying query and coverage constraints. Compared to recent query-based
CP baselines [13, 14], our method significantly reduces non-informative sets while maintaining valid
coverage guarantees. These highlight the foundational role of our missing mass perspective in CP.

1.1 Related works

We briefly discuss closely related works here and defer a full discussion to Appendix A.

Conformal Language Modeling. Conformal Language Modeling (CLM) was introduced by [13]
and similar ideas further studied by [14, 19-21]. CLM adapts conformal prediction to LLMs by
calibrating a set of stopping rules that determine how many outputs to include in a prediction set.
However, these methods do not account for uncertainty over unseen generations, and thus only
provide valid sets for coverage levels less or equal than the few-shot accuracy of the underlying
model. Furthermore, they do not explicitly optimize how the query budget is used across different
prompts. In contrast, we provide valid prediction sets for any user-defined coverage level and query
budget, using a principled framework that bridges conformal prediction with classical missing mass
estimation to optimize set informativeness and query efficiency. We also compare against CLM
methods in Section 5, demonstrating substantial gains in informativeness, under fixed query budgets.

Conformal Abstention and Conformal Factuality. Conformal abstention algorithms refrain from
generating a response when uncertainty is high [22-24]. Other works focus on aligning CP with LLM
factuality in structured tasks [25-27], or filtering long-form generations by validating sub-claims [28—
31]. However, these methods do not construct prediction sets and are thus not directly comparable to
ours, though connecting our framework with theirs presents an interesting direction for future work.

2 Problem formulation

In this section, we formalize the problem of conformal prediction with a query oracle. Consider a
covariate space X" and a potentially infinite label space ). An input-output pair (X,Y) € X x Y
is drawn from an unknown joint distribution p(z,y), which represents the true data-generating
process. For instance, in a text generation task, X could be a prompt and Y the correct or intended
response. We assume access to a generative model, referred to as a query oracle, which allows us
to sample from a conditional distribution 7(y | ). That is, querying the oracle at input x yields
an independent sample y ~ 7 (- | z). Our goal is to construct prediction sets that provide rigorous
coverage guarantees while querying the oracle a finite number of times per test input.

More formally, for a user-specified miscoverage level o € (0, 1), we seek to ensure the following
coverage guarantee:

Pixyymp Y €C(X) 21— a. 1

Even though C'(X) should be constructed using only a finite number of queries to 7 (y|x), which
may differ from p(y|x), the coverage constraint in (1) is with respect to p(y|z). This distinction is
crucial: while 7 governs the observable behavior of the model, coverage must be guaranteed with
respect to the true, unknown distribution p.

In classical CP, one defines a nonconformity score function S : X x ) — R to measure how atypical
a label y is for an input x, and constructs prediction sets of the form C'(z) = {y € Y : S(x,y) < ¢},
where ¢ is a calibrated threshold. To use such a construction in practice, one must either enumerate
the label space )/, as in multi-class classification, or describe the set compactly, such as an interval
when ) = R. However, in tasks such as text generation, sets defined as {y € J : S(z,y) < ¢}, when
Y is the space of all the text sequences, are not a tractable representation for uncertainty. That is, there
is no clear practical way to list all these labels or describe them using an interpretable structure (like
an interval). Hence, the standard paradigm of defining a score function and calibrating a threshold



may not fully capture the nature of uncertainty in generative models. Instead, generative models
allow for exploring the output space by multiple queries.

What is missing is a perspective that views uncertainty through the lens of querying the generative
model-that is, sampling from the oracle. In this view, the information about the true label comes from
a finite set of queries: Z;(z) = {y7,...,yF}, where x is a test point and ¢ is the number of queries.
This multiple-query setting introduces a key limitation: the correct label Y may not be among the
queried outputs. This scenario is common in practice—e.g., when using an LLM as the oracle to
generate possible responses to a prompt. If none of the generated completions contains the correct
answer, we have no signal to recover it. In such cases, there is no choice but to admit high uncertainty
and acknowledge that the correct label could lie anywhere in the vast, unseen remainder of ).

To address this, we introduce a special abstract label EE, short for “Everything Else”, which denotes
the collection ) \ Z(x). Intuitively, when the model has not yet produced the correct output in
its first ¢ queries, the only way to ensure coverage is to include EE in the prediction set. With
this formulation, the prediction set C'(x) is a subset of Z(z) U EE. The CP coverage guarantee
P(Y € C(X)) > 1 — « then admits the interpretation: either the true label Y is among the sampled
outputs, or it is captured by EE. Including EE ensures valid coverage even when the true label has
not been observed. The key challenge, then, is to avoid including EE unnecessarily—so as to keep
prediction sets informative—while still maintaining coverage guarantees across all test points. This
creates a fundamental trade-off: querying the oracle more increases the chance of capturing the correct
label explicitly, reducing reliance on EE; querying less conserves resources but often necessitates
including EE, resulting in less informative predictions. To rigorously navigate this trade-off, we
formalize an optimization framework that balances coverage, query cost, and informativeness.

Our framework consists of two components. The first is a query policy 7' : X — N U {0}, which
determines how many i.i.d. queries to make to the oracle for each input x. This effectively allocates
the total query budget across test inputs. For each input x, we query the oracle 7 (y|z) independently
T(x) times, producing a sampled label set Z(T'; ) = {yf, ..., yp(,} for each z.

The second component is a set map f : X x 2 — 2V ', which converts the queried labels into a
prediction set C(x) = f(x, Z(T;x)), where ) = Y UEE. Given a finite computational query budget
B and a user-defined miscoverage rate « € [0, 1], our goal is to design 7" and f jointly to ensure valid
coverage while maximizing the informativeness of the prediction sets under the budget constraint.

( Conformal Prediction with Query Oracle (CPQ) )
n}tn)n%l}z)e Ex~p [/\]l{EE €CX)+> ml{y € C(X)}}
subject to PrixyvyplY € C(X)] 21—«
Ex~p[T(X)] < B
. J

We minimize two forms of uninformative prediction sets: one by the inclusion of EE, the other by the
size of the prediction set. Whenever EE € C(z), the conditional coverage at « is trivially satisfied:
PlY € C(z) | X = z] = 1. Thus, including EE guarantees coverage but offers no useful information.
Penalizing EE is therefore essential: the challenge lies not in achieving coverage, but in doing so
while using EE as infrequently as possible. The parameter A > 0 controls the penalty ratio. We focus
on the regime where A >> 1, expressing a strong preference for minimizing the use of EE across the
population. However, the second term remains important to prioritize smaller sets among those that
avoid EE maximally. In the next section, we analyze this objective to uncover two key algorithmic
principles. These principles will ultimately guide the design of our practical, finite-sample algorithm.

3 Algorithmic Principles

The CPQ problem introduced above is a joint optimization over two components: the query policy
T'(-) and set map f(-). In this section, we adopt a decoupled analysis, splitting the problem into two
stages. First, we fix a query budget and ask: What is the optimal query policy for allocating queries
to minimize the chance of missing the correct label? Then, given a fixed query policy, we ask: What
is the optimal set map for constructing informative prediction sets while ensuring valid coverage?



It is worth noting that this decoupled analysis only approximates the full CPQ solution, as it breaks
the joint optimization over 1" and f. Accordingly, optimality in this section refers to the best solution
within each stage, rather than the overall joint optimum.

To answer these questions, we work in the population regime, assuming the query oracle 7(y | x)
is the same as the true conditional distribution p(y | ). Consequently, we assume throughout this
section that ™ = p; i.e., the query oracle is perfect. This idealized setting allows us to derive two
algorithmic principles—one for query policy and one for prediction set construction—that form the
foundation of our finite-sample algorithm. In Section 4, we show how to apply these principles with
any black-box query oracle (e.g., an LLM), particularly when 7 (y|z) # p(y|x), to construct practical
prediction sets with finite-sample coverage guarantees. Proofs are deferred to Appendix B.

3.1 Principle 1: Optimal Querying Policy by Missing Mass Minimization

We now focus on the query policy, aiming to allocate queries across covariate points to minimize the
chance of missing the correct label. If computational resources were unlimited, we could query the
oracle exhaustively for each input z, fully uncovering the label distribution and removing the need
for the abstract label EE. But under a finite budget, we must query strategically—balancing where
and how much to query—an objective naturally captured by the concept of missing mass.

Formally, the missing mass for a covariate x after ¢ queries is defined as the probability that the true
label Y is not among the sampled set Z;(x):

oa.t) = Pr [V ¢ Zi(x) | X =a]

where Z;(x) consists of ¢ i.i.d. samples from p(y | z). Intuitively, 6(z,t) measures residual
uncertainty—the chance that ¢ independent draws from p(y | ) fail to capture the true label. As ¢
increases, 0(x, t) naturally decreases, and does so with diminishing returns: each additional query
is less likely to reduce uncertainty than the previous one. To make this precise, define the finite
difference as A(x,t) := 0(x,t + 1) — 6(x,t). For each x, A(z,t) is negative and non-decreasing in
t, meaning 6(z, t) is non-increasing with diminishing returns (see Appendix B for proofs).

These properties make missing mass a natural objective for query policy. For each input z, increasing
the number of queries ¢ reduces the probability of missing the true label—i.e., lowers 6(x, t)—and
eventually, we may no longer need to include EE in the prediction set for that x. However, since
our total query budget is limited, we cannot afford to exhaustively query all inputs. This raises
the core question: how should we allocate our finite budget across different covariates to minimize
overall uncertainty? That is, which inputs should receive more queries to reduce reliance on EE most
effectively? This naturally leads to the following optimization problem:

subjectto Ex[T(X)] < B.

Theorem 3.1 (Optimal Query Policy). Assuming X is a continuous random variable, let T*(-) be
the optimal solution to the optimization problem (2). Then, there exists a constant 3* € R such that,
Sorall x € X almost surely, the optimal query size T*(x) satisfies:

Az, T"(x) = 1) < 8" < Az, T"(z) + 1) 3)

This condition implies that at the optimal query number 7™ (z) for each x, the discrete derivative
A(x, T*(x)) from one more query is approximately equal to the threshold 8* (note that A(z, ) is
non-decreasing in t). This result suggests a simple and intuitive principle: continue querying the
oracle for a given x as long as doing so substantially reduces the missing mass. In other words,
we should stop sampling when the gain from an additional query falls below a threshold 5*. This
behavior is directly driven by the diminishing returns property of 6(x,t) and constitutes our first
algorithmic principle. This insight guides the query policy in our finite-sample algorithm in Section 4,
where we replace the exact derivative A(x, ¢) with a data-driven estimate A(z, ¢), and stop querying

when A(:z:7 t) < B*, with 8* calibrated from finite samples to satisfy the query budget B.



3.2 Principle 2: Optimal Prediction Sets by Missing Mass Estimation

In this section, we assume we are given access to a predetermined and known query policy function
T : X — N, which specifies the number of i.i.d. queries made to the oracle for each input x. For each
x € X, we denote the resulting set of sampled labels by Z(T,z) = {v7,... 79%(1)}' With these
samples in hand, our goal is to construct prediction sets that satisfy the desired coverage guarantee
while being as informative as possible.

To achieve this, we formulate an optimization problem to determine the best possible prediction sets
under coverage constraints. The primary goal is twofold: (1) minimize the inclusion of the abstract
label EE, as its presence indicates complete uncertainty, and (2) among sets with minimal inclusion of
EE, minimizing the prediction set sizes. Reminding f : X x 2¥ — 2¥" and C(z) = f(x, Z(T; z))
from Section 2, we introduce:

min Ex [AI{EE€ C(X)} + > 1{y € C(X)}
£C) YAEE 4)

subjectto  Pr [Y € C(X)] > 1 —a,
XY

The parameter A > 0 balances the trade-off between avoiding EE and keeping prediction sets small.
We are particularly interested in the regime where )\ is large. This reflects a strict preference for
minimizing the use of EE, while still allowing the optimization to differentiate among prediction sets
that achieve the same frequency of EE inclusion. The inclusion of the second term ensures that among
all valid prediction rules minimizing EE, we favor the most informative ones with smaller set sizes.
Next, we characterize the structure of the optimal set map solution to (4) in the following theorem.

Theorem 3.2 (Optimal Set-Assignment Policy). Assuming X is a continuous random variable, for
sufficiently large values of A, the optimal solution f3 to the optimization problem (4) has the following
structure: there exists a scalar threshold q* € R satisfying

f(x,Z(z)) ={y € Z(x) U{EE} : S(z,y) < q*}, almost surely for every x.
Also, defining p(EE|z) = Pry [Y ¢ Zy(z) | X = x|, we have,

S(e.y) = {1 Py | ), lfnyE, )
2—-pylz), ify=EE

Theorem 3.2 shows that the optimal prediction sets can be constructed by thresholding a conformity
score S(x,y). This score prioritizes explicitly sampled labels over the abstract label EE, ensuring
that EE is included only if necessary. Specifically, EE is assigned a score of 2 — p(EE | x), where
p(EE | x) corresponds exactly to the missing mass. This means EE is most likely to be included when
the missing mass is high—an intuitive and desirable behavior. Moreover, this result generalizes the
classic finding in conformal prediction that optimal prediction sets minimizing size under a coverage
constraint are obtained by thresholding 1 — p(y | ), in classification and regression [32, 33].

To summarize, we have derived two foundational principles: one connecting the optimal query policy
to the derivative of the missing mass, and the other connecting the optimal set map to the missing
mass itself through an optimal conformity score. In the next section, we build upon these principles
to design a practical finite-sample algorithm.

4 Finite Sample Algorithm

In this section, we present our finite-sample algorithm, which consists of two modules, each carefully
built upon the algorithmic principles derived in Section 3. The query module relies on an estimator of

the missing mass derivative, denoted A(x, t), while the calibration module uses an estimator of the
missing mass itself, (x, t)-both of which we detail below.

Estimating Missing Mass and Its Derivative. Let ) be the label space, and suppose we observe
a sequence of ¢ i.i.d samples Z;(z) = {y7,...,vF} ~ 7(y|z), i.e., samples from the oracle. The



missing mass, 6(z, t), is defined as the total probability of all labels in ) that have not been observed
in the sample Z;(x). For each integer r > 0, let N,-(z, t) denote the number of distinct labels that
occur exactly r times in the sample Z;(z). In other words, N, (x,t) = |[{y € Z:(z) : #(y) = r}|,
where #(y) denotes the number of times the label y appears in the sample Z;(z).

The classical Good-Turing estimator approximates the missing mass based on the labels seen exactly
once, aka singletons. The intuition is simple in that if many labels appear only once, it is likely
that there are more yet-unseen labels with comparable probabilities. This yields the estimator

9(33, t) := % . In fact, Good-Turing estimators also provide estimates for seen labels. For y €

Zy(x), we estimate p(y | z) using the Good-Turing formula: &(y | ) = “H - NJQ'TH,

number of times y appears in Z;(x). Hence, we estimate the conformity score derived in our optimal

A 1—-& if Z,
set construction (see Eq. (5)) by S(z,y) = { o:)(y |2), ify € Zi(x)

where 7 is the

2 —0(z,t), ify & Zy(z)

On the other hand, the query module requires an estimate for the missing mass derivative A(z,t) =
O(x,t + 1) — O(x,t), which captures the reduction in missing mass from drawing an additional
sample. By revisiting the original calculations behind the classical Good-Turing estimator, we derive

the following novel estimator for the derivative: A (x, ) := — L

Interestingly, we see that while the Good-Turing estimator relates the missing mass to the count of
singletons, our estimator for the derivative reveals that the count of doubletons, number of unique
labels that appear twice, is a good proxy for the rate at which the missing mass decreases. A detailed
derivation is provided in Appendix D.1. Furthermore, we will showcase the empirical performance
of this estimator on two synthetic distributions in Appendix D.2, along with comparisons against a
natural baseline: the plug-in estimate of the derivative computed by taking finite differences of the
Good-Turing missing mass estimates at successive values of ¢.

Algorithm. Assume we have access to a query oracle 7 (y|x) that approximates—but may not perfectly
match—the true conditional distribution p(y|z). By querying this oracle, we can draw independent
samples from 7 (y|z) for each input z, and compute quantities such as the missing mass (or its
derivative) as needed. Additionally, we are given calibration data D.,; = (X, Yi)il\;l drawn from the
ground truth distribution p(z, y), as is standard in CP.

To tune the query threshold 5*, we first partition the calibration data D, into two disjoint subsets
Dea1, and De,y,. The first subset D.,, is used exclusively for tuning 5* as follows: for each input
x € Decal,, draw a set of queries yy.7(,) ~ m(y|x), where T'(x) is the smallest integer number at

which A(z, T(z)) < B*. Given a query budget constraint B, select 3* such that the average number
of queries \Dilll Y. T(xz) < B. Since 3* is a scalar, this can be done via exhaustive search on a
caly

grid of values. Once 5* is fixed, we apply our algorithm presented in Algorithm 1.

Algorithm 1 Conformal Prediction with Query Oracle (CPQ)

Input: Query oracle w(y | x), conformity score S (z,y), calibration data D.,), , test point Ziest,
miscoverage «, query budget B, missing-mass estimator A(x, t), threshold 8*

Query Module — Principle 1

* Foreach x € Deay, U {Xest }:
* Sample y1.7(z) ~ 7(y | ) until A(z, T'(x)) < g% Let Z(x) = {y1, ..., Yr(z)}-

Calibration Module — Principle 2

¢ For each (z;,y;) € Dcal, compute s; = S’(mz, Yi)-
* Set ¢* = Quantile;_, (817 R 5|Dcalz|,oo).

Olltpllt: C(xtest> = {y € Z(xtest) U {EE} S’(xtesmy) S q* }




The algorithm consists of two stages, each directly motivated by the algorithmic principles derived in
Section 3. In the first stage-the query module-we determine how many queries to draw for each input
x. We query sequentially from the query oracle 7(y | ) (e.g. an LLM), one at a time, and after each

draw, we update the estimated missing mass derivative A(m, t). Guided by principle 1, we continue

sampling until A(a:, t) falls below the threshold 8*. The result of this stage is a set Z(x) of observed
labels for each input x, along with the associated estimated missing mass for the fallback label EE.
In the second stage- the calibration module-motivated by principle 2, we calculate the conformity

scores S (z,y) on a held-out calibration set D, as described earlier in this Section. We then compute
the (1 — «)-quantile of the conformity scores on D, (adjusted with co for proper debiasing), and
use this threshold to construct prediction sets for test inputs, following the standard split conformal
procedure.

The following theorem guarantees the distribution-free coverage validity of our algorithm.

Theorem 4.1 (Coverage Validity). Assuming Dyes and D1, are exchangeable, we have:
Pr[Ylest € O(Xtest)] >1-aq,

where the probability is over (Xiest, Yiest) and D,

In summary, CPQ adaptively query the oracle guided by an estimation of derivative of the missing
mass, and then make prediction sets guided by Good-Turing estimate of the missing mass itself.

5 Experimental Results

We begin by outlining our experimental setup, then present empirical evaluations along two main
axes: (i) a component-wise analysis isolating the impact of optimal querying and optimal conformal
calibration (Section 3), and (ii) a comparison against state-of-the-art conformal language modeling
baselines, including CLM [13] and its recent variant, SCOPE-Gen [14].

Datsets and Models. We evaluate on three benchmark datasets using two leading LLMs, adapting all
tasks to open-eneded generation by removing any multiple-choice structure. Generations are lexically
normalized and marked correct only if they exactly match the ground truth answer; i.e evaluating
using the exact match metric. The datasets are: (i) BBH Geometric Shapes [34] (250 prompts):
Visual reasoning from SVG paths, with responses generated using LLaMA-3 8B-Instruct [35].
(i) GSM8K [36] (300 randomly selected prompts). Multi-step arithmetic reasoning, answers from
Mixtral-8x7B-Instruct [37]. (iii) BBH Date Understanding [34] (250 prompts): Temporal reasoning;
responses generated using LLaMA-3 8B-Instruct.

Evaluation Metrics. Our goal is to construct prediction sets that are both valid and informative.
We report three key evaluation metrics. First, Empirical Coverage: the fraction of test examples
whose prediction set contains either the correct answer or EE, either ensures validity ( see Section 2).
Second, EE fraction measures how often EE appears; lower fractions indicate the model more often
explicitly captures the correct answer without relying on fallback coverage via EE. Third, Average
set size: the average number of seen labels per prediction set. While larger sets generally imply less
informative sets, a larger set without EE conveys more information than a smaller set with EE, as the
former expresses uncertainty within observed outputs, whereas the latter signals residual uncertainty
over the entire unobserved label space. Together, these metrics capture the tradeoff between coverage
and informativeness. An ideal prediction set achieves target coverage with minimal reliance on EE.

Clustering. Clustering is a key step in our pipeline. Since LLMs produce lexically varied outputs
that convey the same meaning, we group generations into semantic equivalence classes (clusters),
each corresponding to a single label y € ). We use LLaMA-3-8B-Instruct model to decide if two
generations semantically equivalant and assign them to the same cluster if so. This approach has
proven effective for handling complex and unstructured outputs [19, 38]. Prompts and implementation
details are provided in Appendix C.5. Each cluster’s frequency is used to estimate the missing mass
(probability of unseen clusters) and its derivative (see Section 4). Probabilities for seen clusters are
computed by normalizing frequencies and scaling to form a valid distribution over both seen and
unseen clusters. Importantly, our finite sample algorithm is modular: it works with any clustering or
probability estimation method. As long as clustering and associated probabilities are well defined
and valid, our method applies.

Calibration and sampling procedures. For each dataset, we randomly split examples equally into
calibration and test sets. On the calibration set, we tune CPQ’s sampling threshold 3* to meet the
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Figure 1: Performance of the three algorithmic variants (Vanilla, P1, P14+P2 : corresponds to our full
finite sample algorithm, i.e CPQ) across Geo Shapes (B = 30), GSM8k (B = 7), and BBH-Date
(B = 20). Each row shows coverage, EE fraction, and average set size as a function of 1 — a.

target average query budget and estimate the threshold ¢* for constructing prediction sets. All results
are averaged over 50 random splits of calibration and test data.

5.1 Fine-grained Component-wise Analysis

To assess contributions of each algorithmic principle (Section 3), we compare three progressively
refined variants: (i) Vanilla: A baseline with a fixed, non-adaptive querying strategy—the same
number of generations per input—and a simple, yet valid calibration rule. While not optimal, this
baseline serves as a reasonable starting point. Calibration details are provided in the Appendix C.1.
(ii) Principle 1: Adds our adaptive querying, adjusting the number of queries based on the estimated
missing mass derivative, with calibration unchanged. (iii) Principle 1 + 2: Combines both optimal
querying and conformal calibration, representing the full CPQ algorithm in Section 4. Figure 1 shows
results on all benchmark datasets. We observe consistent gains from incorporating each algorithmic
principle, with the full CPQ algorithm (both principles combined) achieving the largest reduction in
the fraction of prediction sets that include the fallback label EE, while maintaining valid coverage.
The query budget B is fixed per dataset, while the coverage level 1 — « is varied. Budgets were
chosen to reflect reasonable intermediate values based on the few-shot model accuracy for each
dataset. Additional results across a range of budgets can be found in Appendix C.2.

We see that CPQ effectively manages the trade-off between relying on observed labels and falling back
on EE. As coverage increases, CPQ includes more seen labels—reducing reliance on EE. However,
when inclusion of EE is unavoidable, CPQ compensates by removing other labels. This is a principled
choice: once included, EE already accounts for the entire remaining label space, and adding more
labels offers no further benefit. Thus, CPQ adjusts set size based on the structure of uncertainty.



Dataset Algorithm  Nom. Cov. Emp. Cov. EE Frac.

CLM 0.60 0.58 £0.038  0.40 4 0.047
Geo Scope-Gen 0.60 0.68 £0.080 0.38 £0.22
CPQ 0.60 0.61£0.06 0.07+0.07
CLM 0.95 0.93 £0.03 0.70£0.11
GSM8K  Scope-Gen 0.95 0.93 £0.05 0.61 £0.26
CPQ 0.95 0.95+£0.02 0.16+0.14
CLM 0.70 0.68 £ 0.07 0.32£0.11
Date Scope-Gen 0.70 0.78 £ 0.07 0.51 +0.11
CPQ 0.70 0.71£0.07 0.25+0.08

Table 1: Comparison of nominal coverage, empirical coverage, and the fraction of sets that contain
the fallback label (EE) across three benchmark datasets (Geometric shapes (Geo), GSMS8K, Date
understanding (Date)) for three methods: CLM, Scope-Gen, and our proposed CPQ.

5.2 Comparison with Conformal Baselines

We now compare CPQ to two recent conformal prediction methods for large language models:
CLM [13] and its variant SCOPE-Gen [14]. While both represent state-of-the-art in this space, they
are not out-of-the-box comparable with CPQ in two key ways. First, neither accounts for the missing
mass—the residual probability over unseen labels represented by EE in our framework. As a result,
they may fail to provide valid configurations at higher coverage levels, especially when the correct
answer isn’t among the sampled outputs. Second, they lack an explicit mechanism to control query
budget: the number of model queries varies across coverage levels and is not directly tunable.

To enable a meaningful comparison, we evaluate CLM and SCOPE-Gen using their original
procedures, with one adjustment: we augment their output space to include the abstract label EE
alongside sampled responses. The underlying logic and mechanisms remain unchanged; we simply
extend the prediction space to reflect the possibility of unseen correct label, which is necessary for a
complete coverage analysis. This enables us to assess how often these baselines would have needed to
include EE to satisfy coverage validity. Since, there is no principled way to configure these baselines
to target a specific budget, we first measure their average query usage. We then tune CPQ’s querying
threshold 8* to match this budget. All methods are thus evaluated on equal footing at the same
nominal coverage level and under the same average query budget.

As shown in Table 1, CPQ dramatically reduces reliance on EE. For example, on GSMS8k at 95%
nominal coverage, CPQ achieves the desired coverage with an EE fraction of 16.5%, versus 70.4% for
CLM and 61% for SCOPE-Gen under the same budget constraints. Moreover, CPQ not only offers
more informative prediction sets but also maintains tighter coverage, especially in high-coverage
regimes where baselines struggle.

6 Conclusion and Limitations

We presented a principled framework for UQ by introducing a novel missing mass perspective. we
derived two algorithmic principles that guide optimal query policy and prediction set construction. Our
finite-sample algorithm integrates these insights and yields significantly more informative prediction
sets compared to existing conformal methods for LLM UQ. Our method relies on estimation of
missing mass and its derivative, which can be challenging in very low query regimes.
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A Extended Related Works

Conformal Prediction. The notion of prediction sets originates from classical work on tolerance
regions in statistics [39, 40]. However, the modern formulation of Conformal Prediction (CP), which
provides distribution-free, finite-sample validity guarantees, was introduced by [5, 7, 41]. Since then,
CP has emerged as a standard framework for uncertainty quantification, particularly in classification
[11, 42, 43] and regression tasks [44—46]. A growing body of work have then focused on improving
the set size (length) efficiency of conformal prediction sets [28, 32, 33, 47, 48]. These developments
reflect the increasing demand for flexible and reliable uncertainty quantification in modern predictive
systems.

Conformal Prediction for LLLMs. Recent work has explored conformal prediction as a principled
tool for uncertainty quantification in Large Language Models (LLMs), where outputs are open-ended
and unbounded. Conformal Language Modeling [13] introduced a sampling-and-filtering approach
that generates candidate responses until a calibrated stopping rule guarantees, with high probability,
that at least one correct answer lies in the set. Generative Prediction Sets (GPS) [20] recasts the
problem as conformal regression on the number of samples required for a correct output, using the
resulting distribution to infer minimal draw count needed to achieve nominal coverage. SCOPE-Gen
[14] proposes a sequential pruning strategy using greedy admissibility filters, leveraging a Markov
factorization to reduce verification costs during calibration. APIlisEnough [21] offers a black-box
approach that defines nonconformity via sampling frequencies and semantic similarity; their approach
can be integrated in our modular framework seamlessly.

Several complementary directions have further adapted CP to the generative language setting: token-
level CP for non-exchangeable generation [25], representation-level conformal alignment, filtering
methods for long-form factuality guarantees [28, 29, 31], multi-group uncertainty quantification in
structured text [30], and CP for enumerable, discrete output spaces such as multiple-choice tasks
[27]. While all these methods offer valid coverage, they vary in efficiency, granularity, and scope,
and none explicitly incorporate missing mass estimation as a means to reason about unseen correct
responses to capture the full output space. Moreover, they do not account for or optimize under an
explicit query budget, a central component of our framework. In contrast, out method address both
dimensions-coverage in the presence of unobserved labels and efficient query allocation-through a
unified, theoretically grounded approach.

Conformal abstention for LLMs. An alternative to constructing prediction sets is to enable selective
prediction: allowing the LLM to abstain from responding when uncertain. This line of work aims
to mitigate erroneous outputs by identifying in puts where the model’s predictions are unreliable.
In particular, [22] apply conformal risk control to bound the probability of hallucination and derive
abstention rules that trigger whenever the estimated risk exceeds a calibrated threshold.Moreover, [23]
integrate CP with reinforcement learning to learn abstention policies that adaptively respond to task
difficulty and distributional shifts. Separately, [24] introduce an information-theoretic decomposition
of uncertainty into epistemic and aleatoric components, leveraging the epistemic signal to guide
abstention decisions.

While these methods share the goal of reliable decision-making under uncertainty in LLMs, they
differ from our approach in that they do not produce explicit prediction sets, and therefore cannot
be directly compares. One could, in principle, adapt intermediate quantities from our method-such
as prediction set size or estimated missing mass-as abstention criteria, which can be an interesting
venue for future work.

Broader Uncertainty Quantification for LLMs. Our work is informed by a broad literature on
uncertain quantification (UQ) for LLMs that extends beyond conformal prediction. A substantial
body of research focuses on mitigating hallucinations in LLM outputs, employing techniques ranging
from direct uncertainty estimation [4, 49-51] to strategies that generate multiple responses to probe
and analyze the output space [52]. Prior research has observed that semantic disagreement among
sampled responses correlates with hallucinations risk, motivating a suite of detection methods based
on self-consistency, token-level log-probability, or verifier-based models [30, 38, 53]. While these
heuristics have demonstrated empirical success, they generally lack formal coverage guarantees and
often require extensive sampling or auxiliary models.

Missing Mass. The missing mass problem- estimating the total probability of outcomes not observed
in a given sample- has been extensively studied under the assumption of independent and identically
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distribution (i.i.d) data. Theoretical results have established concentration inequalities for the missing
mass around its expectation [54-57], studying the stability and predictability of this quantity in
large-sample regimes. Central to practical estimation, the classical Good-Turing (GT) estimator, first
introduced by [58], has been analyzed extensively, with multiple variants developed to improve its
finite-sample performance [59-64]. Confidence intervals for missing mass were obtained using the
GT estimator in [65] and subsequently refined by [66]. Building upon these ideas, [67] developed
the "Good-Toulmin" estimator, extending the missing mass framework to the species-discovery
problem. Though conceptually related, species discovery-estimating how many new previously
unseen categories are expected to appear in an enlarged sample-and missing mass estimation-which
quantifies unseen probability mass-are fundamentally different in objective and interpretation.

B Proofs

B.1 Proof of Theorem 3.1

We first start by reviewing the theorem statement. Let 6(z, t) be the missing—mass curve defined in
Section 3.1, and A(x,t) = 6(z,t+ 1) — 0(x,t). There exists a threshold §* < 0 such that, almost
surely,

Az, T (z) - 1) < < Az, T"(z) + 1),

or, T"(x) = 0 whenever A(z,0) < S*.
Let T := {T : X - N> measurable | E[T'(X)] < B} and let T* € T be an optimal solution.
For g < 0 define the measurable sets
Ag :={z: A(z, T"(x) — 1) > B,and T™(z) > 0}, Bg :={z: A(z, T"(x) +1) < 8}
Because A(z, T*(x)) < Az, T*(x) + 1), the sets Ag and B are disjoint. We can now prove the

following claim.

Claim. p(Ag) p(Bg) = 0 for every 5 < 0.

Proof of the claim. Assume p(Ag), p(Bg) > 0. Take measurable A C Ag, B C Bg with p(A) =
p(B) = n > 0 (this exists due to the assumption that X is a continuous random variable) and set

T*(:E) -1, ze€ A@,
T'(z):=¢T*(z)+1, z € By,
T*(x), otherwise.

Then we have,
E[T"(X)] = Ex [T"(X) — 1[X € Ag] + 1[X € Bg]| =E[T"(X)] < B,
therefore, T” € T. Furthermore,
E[0(X,T"(X))—0(X, T"(X))]
@ _ E[1[X € Ag]A(X,T*(X) — )]+ E[1[X € Bg] A(X,T*(X))]

Y UB[AIX € 4] A(X, TH(X) — 1)] + E[L[X € By] AX, T*(X) + 1)

(QIE[I[X € Ag| ]+ E[1[X € Bg| f]

(d)

where (a) follows from the definition of T”, (b) stems from Lemma B.1 which indicates the dimin-
ishing return property, (c) follows from the definitions of Ag and Bg, and finally, (d) is due to the
definition of . This is a contradiction with the optimality of 7", hence we proved the claim.

Existence and characterization of the threshold 5*. Define the threshold 5* by setting
g = inf{ﬂ <0:p(4g) = O}.
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Intuitively, this threshold separates covariate points into two groups: those for which an additional
query would yield a marginal improvement strictly greater than 5*, and those for which the marginal
improvement from additional queries is at most 5*. To see why 3* is indeed the correct threshold,
suppose there existed covariates violating the threshold condition at this 3*. Then, we could slightly
perturb the threshold, obtaining a nearby threshold 5’ such that both sets Az and B/ simultaneously
have positive probability. But this situation would directly contradict the claim we proved earlier,
which ensures that at no threshold can both Az and B3 have positive probability. Thus, no violation
at threshold 3* can occur, confirming that 3* is precisely the desired threshold.

We now formalize this intuition precisely. Define the violation probabilities

f(B) := p(Ap) and g(B) := p(Bg), B<0.

Observe that enlarging the threshold /5 reduces the set Ag and expands the set Bg. Therefore, the
function f (/) is non-increasing and right-continuous, and g(/3) is non-decreasing and left-continuous.
Additionally, at 8 = 0, we have f(0) = 0, since by construction A(x,t) < 0.

By right-continuity of f(-), it follows immediately from the definition of 8* that
p(Ag-) = f(B") = 0.

Next, assume towards contradiction that p(Bg~) > 0. By left-continuity of g(-), there would exist
an ¢ > 0 sufficiently small so that p(Bg«_.) > 0. However, by the definition of 3*, lowering the
threshold to 5* — ¢ would yield p(Ag«_.) > 0. Thus, at threshold 3* — ¢, both Ag+_. and Bg~_.
would simultaneously have positive probability, contradicting the claim we previously established.
Hence, we must have

p(Bg+) = 0.
Finally, since p(Ag+) = 0 and p(Bg+) = 0, we have for almost every x:
Az, T"(z) - 1) < B* < Az, T"(z) +1).

In the corner case where A(z,0) < /%, the definition of Ag- forces the optimal query count
T*(x) = 0. This establishes precisely the threshold characterization asserted in the theorem, thereby
completing the proof. O

We now prove the following lemma, which we used in the above proof.

Lemma B.1 (Diminishing Returns). For every fixed covariate x € X, the marginal
Az, t) = 0(x,t+1) —0(x,t), t>0,
is strictly negative and non-decreasing in t; that is,

Alx,t) < 0 and Az, t+1) > Ax,t) Vt>0.

Lemma B.1 establishes that as ¢ increases, the missing mass 6(x, t) naturally decreases, and does
so with diminishing returns, meaning each additional query is less likely to reduce the uncertainty
than the previous one. Thus the derivative of the missing mass, namely A(x,t) is negative and
non-decreasing in ¢.

Proof. The missing mass is
0(z,t) = vy )[Y ¢ Zi(x) | X = 2] = By z,(0)|x=[H{Y ¢ Zi(2)}].
34t (T
Applying law of total expectation
0(x,t) = By x—¢ Ez, (2))y, x=2[1{Y ¢ Zi(2)}].

and evaluating the inner expectation Conditioned on Y = y, the ¢ draws in Z;(z) miss y with
probability (1 — p(y | z))?, hence

0(z,t) = By x=[(1 - p(Y | 2))"].
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The, the finite difference becomes:
Az, t) =0(z,t + 1) — 0(x, 1)
=Ey[(1 - p(Y | 2)"™ = (1 = p(Y | 2))']
= —Ey[(1 —p(Y | 2))' p(Y | z)].

For each y, (1 — p(y | x)) is decreasing in ¢. Multiplying by the positive p(y | = preserves this
property, and expectation is linear; therefore the sequence gi(z) :=Ey[(1—p(Y | 2))ip(Y | x)] is
non-increasing, so A(z,t) = —g¢(x) is non-decreasing. O

B.2 Proof of Theorem 3.2

Let’s start by restating the optimisation problem: For every input x € X the fixed query policy
T : X — N returns the random multiset Z(z) = Z(T(z),z) = {yf,...,yf(,)} A set map f

outputs the prediction set C(z) = f(x, Z(z)) C Z(x) U {EE}. The goal is

min  E[A{EE€ C(X)} +)  I{y € C(X)}
d yAEE (6)

s.t. Pr[lY e C(X)] > 1—o.

Let us first outline the strategy for the proof clearly. The optimization problem (4) involves selecting
subsets of labels to minimize the frequency of including the abstract label EE and the size of the
prediction sets, subject to a coverage constraint. To solve this precisely, we begin by introducing
arelaxation to a linear programming problem, argue strong duality and optimality conditions, and
then show the relaxation introduces no strictly better fractional solutions, hence the relaxation is
actually equivalent to the original problem. Finally, we identify the optimal solution explicitly and
demonstrate it has the threshold-based structure stated in the theorem.

Relaxation to a Linear Program. For each 2 € X and realized set Z(z), define a selection
variable,
gz, Z(x),y) € [0,1], y e Z(x) U{EE}

which represents the probability of including label y in the prediction set for covariate = and sampled
set Z(x). Replacing f by g and allowing the full interval [0, 1], the optimization problem (4) can
then be relaxed to:

min  E|{Ag(X,Z(X),EE) + ) 9(X,Z(X),y)
I y7#EE 0

S.t. E[g()@Z(X),Y)] > 1—a,

This relaxation enlarges the feasible region, i.e., its feasible region contains that of the discrete
problem (6) (simply restrict g to {0, 1}), hence the optimal value of (7) is no larger than the optimum
of the original integer-valued problem (6).

Both objective and constraint are linear in g, so (LP) is a linear programme. In particular, This is a
linear programme with one linear constraint, identical in form to the Neyman—Pearson allocation
problem. The classical lemma (see, [68] for the case of finite dimensional optimization and Theorem
1, Section 8.3 of [69] for infinite dimensional optimization) states that an optimal solution is obtained
by selecting those labels with largest benefit—to—cost ratio until the coverage constraint is met, possibly
randomizing on a single tie. As we assumed that there is no mass-point in the underlying distribution,
tie-breaking randomization is not necessary, a situation that similarly arises in the original derivation
of Neyman—Pearson lemma.

Here the benefit of label y (EE or not) is p(y | ). However, the cost is 1 when y # EE and A when
y = EE. The benefit—to—cost ratio ordering is therefore equivalent to ordering by the non-conformity

score
O(I7y) = 1— p(E}]:Z\J,), Y= EE.
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As a result of Neyman—Pearson lemma, there exists a threshold ¢; € R such that,

9" (x, Z,y) == 1{So(,y) < qo}, ®
where g* is the optimal solution to (7). This automatically results that the relaxed optimization
problem (7) is equivalent to the original integer problem (6), as the optimal solution to (7) is of the
integer form. That is to say, f* := g* is also the optimal solution to (6). We now focus on g* and
show that one can rewrite the same decision rule in the form that is described in Theorem 3.2.

The decision rule, g*, depends solely on the level sets of Sy. Here, the key observation is the set of
selected labels depends on the level-sets of the function g*, rather than the values it takes. We may
therefore apply any strictly decreasing transformation to Sy without changing the selected labels.
First, translate the EE row by +1 to obtain

1—ply|z), y#EE,

To ensure this transformation does not interfere with the ordering of the original labels, we require that
P(EE | )
—— >1-plyla),

so the EE score in Sy is strictly greater than the scores assigned to any concrete label (here we also
used the fact that p(y | ) > 0, which is true as y is one of the "seen" samples, hence the probability
of it should be non-zero). Then, shifting the EE score by +1 preserves the separation of score ranges:
all concrete labels lie in (0, 1] and EE lies in (1, 2].

A is sufficiently large. This guarantees that for any y # EE, we have 1 —

Next, apply the strictly decreasing map ¢ — 2 — A(2 — t) on (1, 2]; this leaves the concrete labels
untouched and sends the EE score to 2 — p(EE | z). The resulting score

_Jl1-plylz), y#EE
o) = {2 ~p(EE|z), y=EE

induces exactly the same selection rule and matches (5). That is, the optimal solution to is of the

form: {y : S(z,y) < ¢*} for some ¢* € R. This concludes the Theorem 3.2.

B.3 Proof of Theorem 4.1

Proof of Theorem 4.1 (Coverage Validity).
Define the conformity scores:
si=5(Xi,Yi), V(Xi,Yi) € Deatyy,  and  spest = S(Xrests Yiest)-

The prediction set is defined as:
C(Xtest) = {y € Z(Xtest)H{EE} : S(Xiest,y) < ¢}, where ¢* = Quantile; (s1,...,sn,,00).

We now derive a chain of equalities and inequalities:

Pr[Yiest € C(Xtest)] W Pr[stest < q7] @ p [Stest < Quantile; ,(s1,...,5n,,00)]

®) 1 No+1

= E[N2 1 ; I [s; < Quantile; ,(s1,- .., SNy, Stest)] |
(@

>1—aq,

where,

(a) By definition of the prediction set and g*.

(b) Follows from exchangeability of the scores {s1,...,SN,, Stest }» Since (Xtest, Yeest) 1S
exchangeable with the calibration pairs.

(c) By definition of the (1 — «) quantile, at least a 1 — « fraction of the Ny + 1 values are less
than or equal to it.
Therefore, we conclude:
Pr[Yiest € C(Xtest)] > 1 -,
as required. |
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C Further Experiments and Details

C.1 Sub-optimal calibration procedure

In our fine-grained, component-wise comparisons, we employ a simple yet valid calibration rule to
ensure empirical coverage at the target level 1 — .. This serves as a sub-optimal but interpretable
baseline for evaluating the contributions of each algorithmic principle.

To calibrate, we perform a grid search over a set of candidate thresholds {r1,...,7,} C [0,1],
uniformly spaced across the interval. For each candidate threshold 7;, we apply the following
two-step procedure on the calibration data (x;,y;)" ;: (i) include the fallback EE cluster in the
prediction set if its estimated probability satisfies P(EE) > 7. (ii) sort the remaining clusters by their
probabilities in descending order, and sequentially add them to the prediction set until the cumulative
probability mass exceeds 1 — 7;. We then compute the empirical coverage at each threshold:

cou(r;) = %Z {yi € Cr(z0)}

where C, (z;) denotes the prediction set constructed with threshold 7;. We choose 7% = min{r €
{T, .., Tm} rcov(m;) > 1 —a}.

At test time, we construct prediction sets using the calibrated threshold 7* via the same two-step
strategy: include EE if its predicted probability satisfies P(EE) > 7*, and then add remaining non-EE
clusters in order of decreasing probability until the cumulative mass exceeds 1 — 7*.

C.2 Performance across different budget values

To assess the robustness of each algorithmic component under varying resource limits, we conduct
experiments at two additional budget levels for every dataset. These settings are chosen to span
regimes where additional queries provide substantial gains (low budget) versus diminishing returns
(high budget). Figure 2 shows that in all settings, progressively adding adaptive optimal querying
(principle 1) and conformal calibration (principle 2) consistently improves or maintains performance
relative to the vanilla baseline. Notably, the largest reductions in EE—fraction occur under tighter
budget constraints—when the average number of queries per input is small relative to the model’s
inherent uncertainty and the difficulty of the dataset. In these regimes, adaptive querying provides the
greatest benefit by allocating queries more strategically, thus increasing the likelihood of observing
informative labels. In contrast, when the budget is generous enough that most correct answers are
already revealed through uniform sampling, the marginal gains from adaptive querying diminish—but
are never harmful.

Conformal calibration (principle 2) consistently improves performance across all budgets. By
explicitly trading off set size and fallback inclusion of EE, it ensures that the prediction sets remain
compact while preserving valid coverage.

These results collectively reinforce that CPQ delivers targeted gains with the addition of each optimal
modular component.

C.3 Additional comparison with baselines

In this section, we provide further comparison of our algorithm CPQ with CLM and SCOPE-Gen
across varying nominal coverage levels for each dataset. Since scope-gen and CLM do not explicitly
control the query budget; their number of queries varies depending on the dataset and the desired
coverage level. To ensure a fair comparison under shared resource constraints, we first compute the
average number of queries used by both CLM and SCOPE-Gen at each coverage level, and configure
CPQ to operate under the minimum of these two query budgets. While this setup may disadvantage
CPQ in cases where a baseline uses a larger query budget, Table 2 shows that CPQ still consistently
achieves tighter empirical coverage and lower EE fractions.

C.4 Robustness under high hallucination rates

LLMs are inherently prone to hallucinations. While all of our experiments involve black-box LLMs
which already exhibit nontrivial hallucination behavior, we additionally evaluate robustness under
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Figure 2: Comparison of the fine-grained variants—vanilla baseline, optimal adaptive querying
strategy (Principle 1), and full CPQ (Principles 1 + 2)—under two different budget levels for each
dataset. For BBH-Geometric Shapes, the corresponding budget levels are 20 and 40 ; for BBH Date
Understanding, 10 and 30; and for GSM8K, 20 and 30. Shaded regions correspond to the standard
deviation over ten independent runs.
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Dataset ~ Algorithm  Nom. Cov.  Emp. Cov. EE Frac.

GSMSK
CLM 0.97 0.93£0.02 0.74+0.09
Scope-Gen 0.97 0.93+£0.05 0.56 +=0.32
CPQ 0.97 0.96£0.02 0.48+0.15
CLM 0.90 0.89£0.05 0.54+0.14
Scope-Gen 0.90 0.86 £0.06 0.10+0.12
CPQ 0.90 0.89+0.03 0.00=+0.00
CLM 0.85 0.86£0.05 0.48 £0.04
Scope-Gen 0.85 0.854+0.07 0.01 £0.02
CPQ 0.85 0.84 +0.04 0.00=+0.00
CLM 0.80 0.83£0.03 0.48+0.04
Scope-Gen 0.80 0.84 £0.02 0.00 = 0.00
CPQ 0.80 0.79£0.03 0.00 +0.00

BBH - Geometric Shapes
CLM 0.90 0.88+0.05 0.77+0.05
Scope-Gen 0.90 0.95+0.03 0.934+0.05
CPQ 0.90 0.90+0.03 0.76 +0.06
CLM 0.80 0.73£0.08 0.60 +0.09
Scope-Gen 0.80 0.85+0.04 0.76 £0.04
CPQ 0.80 0.81£0.05 0.52+0.10
CLM 0.70 0.65£0.07 0.4940.08
Scope-Gen 0.70 0.80 £0.05 0.70 £0.08
CPQ 0.70 0.70£0.06 0.20+0.12
CLM 0.50 0.424+0.08 0.214+0.06
Scope-Gen 0.50 0.58£0.10 0.12+0.19
CPQ 0.50 0.50 £ 0.07 0.00 +0.00

BBH - Date Understanding
CLM 0.90 0.84 £0.06 0.63 4+ 0.08
Scope-Gen 0.90 0.96 £0.05 0.92+0.10
CPQ 0.90 0.90£0.03 0.72+0.06
CLM 0.80 0.724+0.10 0.414+0.12
Scope-Gen 0.80 0.88+0.04 0.71+0.05
CPQ 0.80 0.81 £0.04 0.47+0.06
CLM 0.60 0.52£0.08 0.12+0.05
Scope-Gen 0.60 0.68 +£0.06 0.33+0.08
CPQ 0.60 0.61£0.06 0.06+0.04
CLM 0.50 0.45£0.08 0.0540.05
Scope-Gen 0.50 0.60 £0.08 0.17+0.05
CPQ 0.50 0.51£0.08 0.00+0.01

Table 2: Comparison of CPQ with CLM and SCOPE-Gen across nominal coverage levels on GSM8K,
BBH-Geometric Shapes, and BBH-Date Understanding. CPQ is constrained to the lowest average
query budget used by the baselines at each coverage level. Despite this restriction, CPQ maintains
tighter empirical coverage and lower EE fractions.
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settings with elevated hallucination rates. To this end, in this section we consider SimpleQA, an
adversarial benchmark specifically designed to expose hallucination failures in GPT models.

Table ?? reports our results on GPT-40 generations under this high-hallucination setting. Even in this
challenging regime, we observe consistent improvement using our method, following the same trends
observed in the main body.

Algorithm 1—a EmpCov+Std EE+Std Avg Set Size £ Std
Vanilla 0.60 0.62 + 0.04 0.16 £ 0.03 0.85 £ 0.02
P1 0.60 0.59 £ 0.06 0.11 £0.03 1.20 £ 0.14
P1+P2(CPQ) 0.60 0.61 + 0.05 0.04 + 0.04 3.47 £ 0.53
Vanilla 0.65 0.65 £ 0.06 0.19 £ 0.05 0.89 £ 0.07
P1 0.65 0.63 £+ 0.06 0.16 £ 0.05 1.28 £0.14
P1+P2(CPQ) 0.65 0.65 + 0.05 0.11 + 0.06 2.89 + 0.67
Vanilla 0.70 0.68 = 0.07 0.23 £ 0.06 0.89 £ 0.03
P1 0.70 0.68 £+ 0.05 0.22 £ 0.04 1.04 £ 0.04
P1+P2(CPQ) 0.70 0.69 + 0.04 0.18 + 0.06 1.93 + 0.58
Vanilla 0.80 0.82 £+ 0.06 0.48 +£0.10 1.15+0.21
P1 0.80 0.79 £ 0.06 041 +0.11 1.77 £+ 0.80
P1+P2(CPQ) 0.80 0.79 £+ 0.05 0.40 £+ 0.09 0.70 = 0.18

Table 3: Performance under high hallucination rates (SimpleQA, GPT-40)

C.5 Clustering algorithm

To group semantically equivalent answers, we apply a relaxed clustering procedure based on pairwise
entailment checks using LLaMA-3-8B [35]. Given a question x and two candidate responses ¥
and y», we query LLaMA-3-8B twice: once to determine whether y; entails y», and once for the
reverse direction. We declare two responses as a match under a relaxed bidirectional entailment
criterion: one direction must return entailment, and the other must return either entailment or
neutral. This relaxation tolerates mild asymmetries when one answer adds detail without changing
the core meaning. Using this matching function, we construct clusters through a simple iterative
merging process. Each response is compares against existing clusters, and added to the first cluster
containing a match; otherwise it initiates a new cluster. This bucket-merge strategy, while simple,
produced highly coherent clusters in practice and was robust across datasets. We emphasize that CPQ
is agnostic to the particular clustering routine used. Any method that produces coherent and valid
clusters—whether heuristic, learned, or rule-based—can be substituted.

Below we provide the exact system and user prompts used for LLaMA entailment checks, followed
by the pseudo code for our relaxed clustering procedure:

System:

You are an expert at determining semantic entailment between answers to questioms.
Given a question and two answers, determine if Answer 1 entails Answer 2.

Respond with only one word:

entailment, contradiction, or neutral.

User:

Question: <QUESTION>
Answer 1: <RESP1>
Answer 2: <RESP2>

Does Answer 1 semantically entail Answer 27
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Algorithm 2 Relaxed Entailment Clustering
T
i=1

Input: question z, responses {y; }

MATCH Function (via LLaMA)

1: function MATCH(x, a, b)
2 entl < LLaMAEntail(z,a,b)
3: ent2 < LLaMAEntail(x, b, a)
4 return (ent] == entailment and ent2 € {entailment,neutral})
or (ent2 == entailment and entl € {entailment,neutral})
5: end function

« Initialize empty cluster set: C < ()

* for each response y; € {y1,...,yr}:
» if 3¢ € C,y € ¢ such that MATCH(z, y;, y) returns True:  add y; to cluster ¢
* else: create new cluster {y; } and add it to C

Output: clusters C

C.5.1 Comparison of alternative clustering methods

Although clustering is not the primary focus of our work, it serves as a necessary pre-processing
step when applying our method to natural language outputs. To ensure that our conclusions are
not sensitive to the particular clustering strategy used, we conducted an ablation study comparing
several representative methods on the TriviaQA dataset and evaluated their effect on our algorithm’s
downstream performance. We considered the following clustering methods:

LLaMA-3-8B Entailment (default): Pairwise entailment queries between responses using
LLaMA-3-8B.

W2V: Averaging 300-dimensional Word2Vec embeddings per response and clustering with
KMeans

* Cosine similarity: Embedding each response with a MiniLM encoder and linking responses with
cosine similarity > 0.85.

* NLI-based: using a fine-tuned RoBERTa-Large model instead for entailment.

We evaluate across two metrics, namely pairwise overlap and Jaccard similarity (intersection-over-
union of clusters across methods), as well as downstream CP metrics (coverage, EE fraction) to
evaluate the impact of clustering variation on the behavior of our algorithm. As shown in Table 4, all
clustering methods produced highly consistent partitions of the model outputs, with pairwise overlaps
exceeding 0.88 and Jaccard similarities above 0.80. The downstream CP results in Table 5 confirm
that these differences in clustering had only a minimal effect on the final results. Across all methods,
the coverage and EE fraction difference remained statistically insignificant. These results suggest
that as long as semantically similar outputs are grouped reasonably well, the specific clustering
method has little effect on overall performance. That said, clustering remains an active research area,
especially for very long-form or domain-specific generations, and users can leverage advances in
NLP to fit their particular use cases.

D Missing Mass and Missing Mass Derivative

In this section, we will first derive an estimator for the missing mass derivative introduced in Section 4,
and then empirically evaluate its performance on two synthetic distributions.
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Method Pair Overlap Jaccard

RoBERTa vs Cosine-MiniLM 0.91 0.91
RoBERTa vs W2V 0.90 0.83
RoBERTa vs LLaMA 0.88 0.81
Cosine-MiniLM vs W2V 0.95 0.82
Cosine-MiniLM vs LLaMA 0.94 0.83
W2V vs LLaMA 0.93 0.87

Table 4: Average Pairwise Overlap and Jaccard Similarity Between Clustering Methods

Clustering Method 1 —«a  Coverage EE Fraction

RoBERTa 0.8 0.81 £0.03 0.42+0.05
0.6 0.61 £0.02 0.09 £ 0.02
Ww2v 0.8 0.81 £0.02 0.44 £ 0.04
0.6 0.62+£0.03 0.10+0.02
Cosine-MiniLM 0.8 0.82+0.02 0.44 +£0.05

06 0.62+£0.03 0.09=+0.02
LLaMA (default) 08 0.80+0.02 042 =+0.02
06 0.61£0.02 0.08=+0.01

Table 5: Performance of CPQ with Different Clustering Methods on TriviaQA (LLaMA-3-8B
Generations)

D.1 Derivation

In this section, we study the problem of estimating the missing mass and its rate of change. We
abstract away from any specific context (such as input ) and define the missing mass problem in a
general form. The missing mass is the probability of observing a previously unseen label if we were to
draw one additional sample after observing ¢ i.i.d. samples from a discrete distribution. The classical
Good-Turing estimator addresses this problem. Here, we derive an estimator for the derivative of
the missing mass, which quantifies the rate at which the mass of unseen labels is shrinking as more
samples are collected.

We begin by introducing some key quantities and explaining a generative process that mirrors the
derivation of the classical Good-Turing estimator, following the notation and exposition from [70].
We then use similar principles to derive an estimator for the rate of change in the missing mass.

Let ) be the label space, and W denote the sequence of T" independent samples W = {wy, ..., w;}
where wy, € V. Let 0; be the probability that a future sample will be y;, where we’d like to account
for the probability of y; occurring even if it has not appeared in the sample W. Thus, a simple

frequency % does not suffice, where #(y;) is defined as the number of times label y; € ) appears

in W. Throughout this derivation, we assume that 0; = 0/ if #(y;) = #(y, ), thus two samples
appear the same amount of times if they have the same probability of occurring. This assumption
is also needed for the classical derivation of the Good-Turing estimator. Though not realistic, this
assumption reduces the number of parameters significantly.

Let N, = [{y; : #(y;) = r}| be the number of labels that occur exactly r times in . Let 6(r)
denote the probability of a label occuring given that it appeared r times in W .To derive an estimate for
6(r), consider the following generative process: assume we have access to 6;. Draw j and hence also
6; uniformly at random from the label space ). Then. flip a coin ¢ times, where §; is the probability
of success. Then the number of successes is the number of times y; appears. if y; appears r times,
put 0; in 6(r). At the end 6(r) will approximately be the average of the §; for which #(y;) = r.

Precisely

0(r) =E[0;|#(y;) =r] = Z%PWH#(%) =]
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Now, condition on ¢; by applying Bayes rules , and given the uniform prior on IP(¢;) = %, we obtain
the following for the probability of a y; appearing given that it has appeared 7 times is

> 05 P[#(y;) =7 6]
Zj’ 9]'/ P[#(?Jj’) =r| ej’]

We can rewrite both the numerator and the denominator in terms of the pdf of the binomial distribution:

250(;)05(1 =0,
2y 0y ()65 (1= 0,

We can rewrite the denominator in terms of E;, ;[V,.], the expected value of N,. given that we flipped
t coins at each step of our experiments, yielding the following equation:

}:9()w1—9)7

This quantity is estimating the probability of a label conditioned on it appearing exactly 7 times in
the sample—that is, the expected value of 6, given #(y;) = r. However, what we actually want is
the total probability mass of all such labels. To obtain that, we need to multiply the average by the
number of labels that appeared r times. Notably, the denominator of the expression we derived is
E[N,], the expected number of such labels. So in fact, the numerator alone gives an estimation of the
total probability mass.

mt

Furthermore, we’d like to derive and estimate of the change in missing mass, we set r = 0,thus we
are interested in the following quantity:

Ze (1—6,)" Ze (1—6 Z —0%(1— 0

—2 t42 .
R ICENY ZJ:( )912'(103')

(a) -2

= iy 42N
t+2)(t+1) rr2[Ne]

(b) —2N,

~

where (a) follows from the fact that Eiy 442 [N2] = > (%7 0%(1 — 6;)" which is due to a simple
counting argument. (b) is due to an approximation for sufficiently large ¢, and plugging N, as
Ein 42| N2].

Hence, this yields our proposed estimator introduced in Section 4 for the missing mass rate of decay

A —2N.
Alt) = 5~

D.2 Empirical evaluation

We conduct experiments on two synthetic distributions over a support of size 100: (i) a uniform
distribution, 7r; = 1/100 for all 4, and (ii) a geometric distribution, 7; = p (1 — p)*~! with p = 0.05.
Figure 3 presents two panels for each distribution. In the left panels, we compare the true missing
mass 6(t) (red dashed) against the Good—Turing estimate 6(t) (blue solid). In the right panels, we

compare the true derivative (red dashed) against our proposed derivative estimator A(t) = *%V 2
(blue) and the naive finite-difference of the Good-Turing estimator baseline A(¢) = 0(¢t + 1) — 0(¢)
(Green). Across both distributions, the Good—Turing estimator closely tracks the ground truth and
its variance decays as more observations are collected. Similarly, our estimator closely captures the
decay rate of the missing-mass derivative with substantially lower variance and fluctuations than the
naive difference-based baseline.
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Figure 3: Empirical comparison of missing mass and its derivative estimators on two synthetic

distributions:

uniform (top panels) and geometric with p = 0.05 (bottom panels). Left panels: true

missing mass (red dashed line) versus the Good—Turing estimator (blue solid line). Right panels:
true derivative (red dashed line) compared to our proposed derivative estimator (blue) and the naive
finite-difference baseline (green). The standard deviation after averaging across 100 independent
trials is represented by the shaded region in each corresponding color.
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* The paper should point out any strong assumptions and how robust the results are to
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» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
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* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Our experimental setting is well explained in the main body of the paper, with
specifics and all extra details of the implementations provided in the supplementary material
due to space limit. Further, we will publish our code for the camera ready version in case of
acceptance.
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(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We will publish our code for the camera ready version in case of acceptance,
and we will ensure instructions are clearly stated.
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* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.
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* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: All details needed for a self-contained experiments section are provided, the
main body. Further specifics are provided in the appendix for completeness and exact
reproducibility.
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* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Yes, we provide all necessary statistics including error-bars for a fair compari-
son.
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* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
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e It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
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Justification: To generate responses from the LLM, we can rely on API access which would
remove the need for local GPU resources. The estimated total run-time of the experiments
for this paper is in order of 3-5 hours, with majority of the time spent querying the LLM.
The algorithm itself after these generations, runs in a matter of few minutes.
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* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: This paper has no forseeable ethical issues.
Guidelines:

* The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We propose a general framework for quantifying the uncertainty with LLMs,
which can have positive direct societal impact and applications in all application of LLMs,
including areas such as healthcare. We do not anticipate any negative societal impact.

Guidelines:

» The answer NA means that there is no societal impact of the work performed.

o If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).
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Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: We do not see any foreseeable need for safeguards.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]
Justification: We have cite and credited all models and datasets used in our experiments.
Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: There is no new asset as an output.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.
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* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
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Answer: [NA]
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tion of the paper involves human subjects, then as much detail as possible should be
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* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: Our paper does not include such studies.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core methods do not involve LLM as any important, original, or non-
standard component.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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