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Abstract

We propose Mono3D-VLDL, a novel single-stage frame-
work for language-visual fusion in robotic vision, address-
ing the limitations of traditional two-stage methods that
separately perform image registration and feature fusion.
These methods are computationally intensive, hardware-
demanding, and struggle with the modality gap between
language and visual data, particularly in dynamic environ-
ments. Mono3D-VLDL integrates image registration and
feature fusion into a unified stage, eliminating explicit reg-
istration. The framework employs a Cross-Modality Dictio-
nary to compensate for missing textual information while
preserving modality-specific features. Additionally, it uses
parallel cross-attention mechanisms to effectively integrate
depth, text, and visual information for robust 3D object
attribute prediction. Experiments on the Mono3DRefer
dataset demonstrate that our method achieves superior ef-
ficiency and accuracy compared to existing one-stage ap-
proaches, making it highly suitable for real-time robotic ap-
plications in resource-constrained settings.

1. Introduction
In recent years, 3D vision technology has received increas-
ing attention[12]. For robot perception systems[2], acquir-
ing 3D spatial information of the real world is extremely
important. Accompanied by the development of Natural
Language Processing[20], collaboration and communica-
tion between humans and robots in shared physical spaces
become more natural and efficient, allowing robots to more
accurately understand task scenarios and human intentions
based on verbal instructions.

However, existing 3D vision-language fusion meth-
ods typically use a two-stage process: image registration
first, followed by feature fusion[4]. This approach not
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only increases computational complexity and hardware de-
mands but also significantly limits its application in robotic
scenarios[7]. Current solutions, relying on high-quality
synthetic data, often fail to achieve robust performance in
dynamic environments. To address these issues, we pro-
pose Mono3D-VLDL, a novel single-stage framework. It
integrates image registration and feature fusion into one
stage, achieving SOTA performance on specific evalua-
tion components of the Mono3DRefer test set[20], where
the vehicle-mounted perspective data align with outdoor
robot visual perception images, further demonstrating its
superiority in multimodal fusion and 3D object localiza-
tion. Moreover, it designs a learnable modality dictio-
nary for cross-modal alignment and uses parallel cross-
attention mechanisms to integrate depth, text, and visual in-
formation, achieving efficient and robust 3D object attribute
prediction[1]. Our key contributions are as follows:

• Cross-Modality Dictionary Alignment: A CMD-ASP
encoder with a learnable dictionary compensates for
missing textual information while preserving modality-
specific features.

• 3D Grounding-Aware Query: Parallel cross-attention
mechanisms integrate depth, text, and visual information
for accurate object attribute prediction.

• SOTA Performance: Achieving state-of-the-art (SOTA)
performance on specific evaluation components of the
Mono3DRefer test set, demonstrating superior capability
in multimodal fusion and 3D object localization tasks.

In summary, the application prospects of 3D vision-
language fusion technology in robotic perception systems
are broad. However, existing methods have many lim-
itations. The proposed Mono3D-VLDL framework[22],
with its innovative single stage design, effectively addresses
these issues and demonstrates superior performance in mul-
timodal fusion and 3D object localization.
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Figure 1. The proposed framework processes monocular images (blue lines) and 3D text descriptions (green lines), with black lines
indicating fusion pathways. Initially, visual and textual inputs are encoded using Swin Transformer[14] and RoBERTa[13] backbones,
respectively, extracting spatial-visual and geometric-semantic features. The CMD-ASP encoder then aligns these modalities via a learnable
cross-modal dictionary, enabling fusion-aware feature integration. During decoding, depth embeddings from depth maps are fused with
cross-modal features, followed by cross- and self-attention operations on a trainable query to produce a 3D grounding-aware query. Finally,
the Grounding Head processes this query through a detection module to jointly predict 2D and 3D object attributes.

2. Method

In Figure 1, we illustrate that Mono3D-VLDL comprises
three primary components: the CMD-ASP encoder, the
Grounding decoder, and the Grounding head.

2.1. CMD-ASP encoder

The Cross-Modality Dictionary Alignment Fusion Percep-
tion Encoder comprises multiple modules. The Feature Ex-
tractor module consists of three distinct feature extraction
blocks: a Base block, a Visual Feature Extraction block,
and a Perceptual Alignment Feature Extraction (EN) block.
These blocks share the same architecture but differ in the
number of layers. Each layer includes a convolutional layer
with a kernel size of 3×3 and a stride of 1, followed by
a batch normalization layer and a ReLU activation func-
tion layer. The visual features Fvis ∈ RB×(H×W )×C ob-
tained through the Swin Transforme[14] are reshaped into
Fvis ∈ RB×H×W×C to pass through the Feature Extractor
module, obtaining features Fvis en that complement shal-
low and deep features. Due to the inherent modality differ-
ences between text and images, aligning image text at the
pixel level is significantly challenging. We employ a learn-
able modality dictionary[9] to compensate for the lack of
textual modality information. It aims to preserve the unique
characteristics of each specific modality as much as possible
while ensuring that the features extracted from one modal-
ity contain relevant information from the other modality. As

shown in the figure 1, Dt is a learnable modality dictio-
nary, and WQ

vis , WK
t , WV

t are linear mappings performed
on Fvis en. Therefore, we have Qvis = WQ

visFvis en,
Kt = WK

t Dt, and Vt = WV
t Dt. With the assistance of

Dt, Fvis←t can be expressed as:

Fvis←t = softmax

(
QvisKt√

d

)
Vt (1)

where vis ← t denotes injecting textual information into
visual features. After compensating with the modality dic-
tionary, the generated features Fvis←t inject specific infor-
mation missing from the textual modality. Subsequently,
to prevent the generated features from losing the original
features, we design a Fusion Model module that simply
achieves a residual effect by fusing with the original fea-
tures Fvis. In the proposed approach, the two image fea-
tures are first combined through layer-wise summation, fol-
lowed by a Layer LayerNorm operation to achieve the de-
sired feature fusion effect. Finally, the obtained features are
processed with BiAttention[11] along with the text feature
input to generate fused-visual feature Evis and fused-text
feature Et outputs that provide more comprehensive knowl-
edge for the query.In this block, we employed BiMultiHea-
dAttention six times to enhance the fine-grained correlation
between fused-text features and fused-visual features.
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2.2. Grounding decoder
As shown in Figure 1, we define a learnable query Q ∈
R1×C as the 3D grounding-aware query for detection. We
also design a sequence consisting of four decoder blocks,
including depth-based cross-attention, text-based cross-
attention, self-attention, vision-based cross-attention, and
the final KAN[15]. To enable the query to better integrate
depth, text, and visual information, we modify the structure
to use these four decoder sequences in parallel. Specifi-
cally, the query first collects basic geometric features from
depth prediction information through a depth-based cross-
attention layer, and then combines with the original query
in a residual-like manner. Subsequently, it integrates 3D de-
scription information through a text-based cross-attention
layer to achieve the parallel use of the four decoders. Fi-
nally, in the same manner, the query goes through self-
attention and vision-based cross-attention layers to combine
positional and content queries, acquiring visual semantics
from multiscale visual embeddings. In the output fusion
phase of the four-way parallel decoder architecture, we in-
troduce a state-of-the-art KAN module to replace the con-
ventional MLP. This innovative substitution leverages the
KAN module’s learnable nonlinear functional structure to
achieve more adaptive integration of multimodal features,
specifically incorporating geometric, semantic, and visual
modalities.

2.3. Grounding heads and loss
Referencing MonoDETR[21], The grounding head is based
on learnable 3D grounding-aware queries that regress target
attributes through a multibranchprediction head. As shown
in Figure 1, the query vector Q ∈ R1×C output by the de-
coder is fed into the following prediction branches: 1) The
2D attribute branch includes a linear classification layer (for
target category prediction), a 3-layer MLP (for regressing
2D bounding box parameters (l, r, t, b) representing the dis-
tance from the projected center to the four sides), and a 2-
layer MLP (for predicting the projected 3D center coordi-
nates (x3D, y3D)); 2) The 3D attribute branch includes a 2-
layer MLP (for regressing 3D dimensions (h3D, w3D, l3D)),
a 2-layer MLP (for orientation angle θ estimation), and
a depth prediction module based on Laplace uncertainty
modeling (refer to the method[21] to calculate the final
depth value d). By fusing the above parameters with cam-
era intrinsics, a complete 3D bounding box can be recon-
structed. The supervision signal adopts a component-wise
loss mechanism: the 2D supervision term L2D integrates
Focal Loss[10] for classification, L1 loss for projected cen-
ter, and L1 + GIoU loss[16] for 2D calibration box; the 3D
supervision term L3D includes IoU alignment loss[16] for
3D dimension, Multi-Bin orientation loss[3], and depth un-
certainty loss[5], achieving fine-grained optimization of ge-
ometric constraints.

3. Experiments

3.1. Dataset and metrics
Our experimental evaluation is conducted on the widely
adopted Mono3DRefer[20] benchmark, strictly following
its official split strategy: the training set contains 29,990
samples, while the validation and test sets contain 5,735 and
5,415 samples, respectively. This dataset is derived from
2,025 frames of images from the KITTI[8] benchmark, cov-
ering a total of 41,140 annotated referring expressions and
constructing a semantic dictionary containing 5,271 words.
The experimental evaluation employs a multidimensional
analysis framework: 1) The object distribution subset in-
cludes a “unique” subset (containing only a single instance
within a category) and a “multiple” subset (containing mul-
tiple instances of the same category). 2) The spatial distri-
bution stratification includes depth stratification (near (0-15
m), medium (15-30 m), far (30 m +)) and difficulty strat-
ification (easy/medium/hard based on the degree of occlu-
sion/truncation). The evaluation protocol is strictly aligned
with the Mono3DRefer standard, using precision metrics
with 3D Intersection over Union (3D IoU) thresholds of
0.25 and 0.50, denoted as Acc@0.25 and Acc@0.5, respec-
tively. This stratified evaluation mechanism can compre-
hensively reflect the fine-grained performance of the model
under different complexities of the scene.

3.2. Implementation details
We initialize the model using pre-trained weights from
Mono3DVG-TR. A small portion of the weights from the
unmodified sections are loaded to facilitate faster learn-
ing and convergence of the parameters of the modified en-
coder and decoder components. For the feature extraction
part, the parameters of the RoBERTa[13] text encoder and
SwinL[14] visual backbone are directly used as pre-trained
weights without any further learning, which highlights the
effect of the modified encoder component. On a single RTX
3090 GPU, we train the model for over 60 epochs with a
batch size of 10 and an initial learning rate of 10−4. We also
set an initial warm-up period of 500 steps, with the learning
rate decreasing according to a cosine function. This strategy
stabilizes training by preventing large gradient updates dur-
ing the early stages when the model is still highly unstable,
ensuring smoother convergence.

3.3. Comparison With One-stage Methods
As shown in Tables 1 and 2, Mono3DVG-VLDL achieves
state-of-the-art (SOTA) performance on specific evalua-
tion components of the Mono3DRefer test set. Specif-
ically, it demonstrates significant improvements in accu-
racy across various subsets, with increases of +9.08%,
+0.91%, and +2.45% in Acc@0.25 for the “unique”, “mul-
tiple”, and “overall” subsets, respectively. Under Acc@0.5,
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A black car, approximately 2 meters in height, 
is parked approximately 10 meters away on 
the left/right side of the road, directly facing 
us from our front position.

A white car, approximately 2 meters in height, 
is positioned approximately 2 meters away 
from me, directly to my right front, facing 
away from me and pointing in a direction 
northeast of my position by about 10 degrees.

A black car, approximately 1.5 meters in height, 
is parked approximately 15 meters away on 
the left side of the road, directly facing us from 
our left front, oriented towards a direction 
southwest of our position by about 20 degrees.

3D bounding box Depth prediction 3D description

Figure 2. visualization of the three spatial partitions task (near/middle/far). Based on the 3D description, a batch of target objects can be
screened out from depth map, and finally, the objects are locked on the monocular image in combination with the text information.

Table 1. Comparison with one-stage baselines. Best results are
bolded.

Method Unique Multiple Overall

Acc@0.25 Acc@0.5

ZSGNet[17]+backproj 9.02 0.29 16.56 2.23 15.14 1.87
FAOA[18]+backproj 11.96 2.06 13.79 2.12 13.44 2.11
ReSC[19]+backproj 11.96 0.49 23.69 3.94 21.48 3.29
TransVG[6]+backproj 15.78 4.02 21.84 4.16 20.70 4.14
Mono3DVG-TR[20] 57.65 33.04 65.92 46.85 64.36 44.25
Mono3D-VLDL (Ours) 66.73 41.37 66.83 44.94 66.81 44.26

Table 2. Evaluation across three spatial partitions
(near/medium/far) and three difficulty levels (easy/normal/hard).
Best results are bolded.

Method Near/easy Med/normal Far/hard

Acc@0.25 Acc@0.5 Acc@0.25 Acc@0.5 Acc@0.25 Acc@0.5

ZSGNet 24.87/21.33 0.59/3.35 16.74/13.87 3.71/0.63 2.15/7.57 0.07/0.84
FAOA 18.03/17.51 0.53/3.43 15.64/12.18 3.95/1.34 4.86/8.83 0.62/0.09
ReSC 33.68/27.90 0.59/5.71 24.03/19.23 6.15/1.97 4.24/14.4 1.25/1.02
TransVG 29.34/28.88 0.86/6.95 25.05/16.41 8.02/2.75 4.17/12.9 0.97/1.38
3DVG 64.74/72.36 53.5/51.8 75.44/69.23 55.5/48.7 45.1/49.0 15.3/29.9
(Ours) 69.28/75.97 52.3/53.9 73.28/66.27 51.8/45.7 53.2/54.4 23.0/29.5

apart from a decrease in the Multiple metric, there were
increases of 8.33% and 0.01% in the Unique and Over-
all metrics, respectively. Notably, in distant scenarios
(> 30m), Mono3DVG-VLDL demonstrated significant
performance improvements compared to Mono3DVG-TR,
increasing from 45.1%/49% to 53.2%/54.4%. However,
depth-sensitive analysis reveals that performance degrades
for medium objects (15 − 30m), primarily due to accu-
mulated errors in monocular depth estimation. In con-
trast, performance improves remarkably for near-distance
objects (< 15m), with increases of +4.54% and +3.61% in
Acc@0.25 and Acc@0.5, respectively. For near-distance,

detection accuracy plays a dominant role, and depth predic-
tion contributes minimally. The advantages of multimodal
fusion are evident in challenging scenarios with severe oc-
clusion (hard), where visual-textual feature fusion enhances
Acc@0.25 by +7.7%, respectively. Key factors contributing
to these improvements include a cross-modal enhancement
mechanism that reduces depth prediction errors, through
collaborative encoding of independent visual features and
text-guided features, as well as a multimodal temporal at-
tention module that effectively alleviates depth ambiguity.
These results indicate that a joint visual-textual encoding ar-
chitecture designed for complex monocular scenes can sig-
nificantly enhance 3D spatial reasoning capabilities.

4. Conclusion

In this study, we introduce Mono3D-VLDL, a novel single-
stage framework for language-visual fusion in robotic vi-
sion. By integrating image registration and feature fusion
into one stage, it is highly suitable in resource-constrained
scenarios. Our framework’s learnable modality dictionary
and parallel cross-attention mechanisms enable efficient
and robust 3D object attribute prediction.

To validate its effectiveness, we conducted extensive ex-
periments on the Mono3DRefer dataset, which closely re-
sembles outdoor robot visual perception data. The results
show that Mono3D-VLDL outperforms existing two-stage
methods in efficiency and accuracy, particularly in dynamic
and complex environments.

Looking ahead, we plan to enhance the framework’s
adaptability to dynamic environments by refining cross-
modal alignment. Future work will focus on expanding the
framework to support more complex robotic applications,
including multi-object manipulation and scene understand-
ing.
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