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Abstract
Large language models in the past have typi-
cally relied on some form of reinforcement learn-
ing with human feedback (RLHF) to better align
model responses with human preferences. How-
ever, because of oft-observed instabilities when
implementing these RLHF pipelines, various repa-
rameterization techniques have recently been in-
troduced to sidestep the need for separately learn-
ing an RL reward model. Instead, directly fine-
tuning for human preferences is achieved via
the minimization of a single closed-form train-
ing objective, a process originally referred to as
direct preference optimization (DPO). Although
effective in certain real-world settings, we de-
tail how the foundational DPO reparameteriza-
tion no longer holds once inevitable optimization
constraints are introduced during model training.
This then motivates alternative derivations and
analysis of DPO that remain intact even in the
presence of such constraints. As initial steps in
this direction, we re-derive DPO from a simple
Gaussian estimation perspective, with strong ties
to classical constrained optimization problems in-
volving noise-adaptive, concave regularization.

1. Introduction
Although pre-trained large language models (LLMs) often
display remarkable capabilities (Bubeck et al., 2023; Chang
et al., 2024; OpenAI et al., 2024; Zhao et al., 2023a), it is
well-established that they are prone to responding in ways
that may be at odds with human preferences for rationale
discourse (Bai et al., 2022b; Gallegos et al., 2023). To
this end, after an initial supervised fine-tuning phase that
produces a reference model or policy πref(y|x), it is now
commonplace to apply reinforcement learning with human
feedback (RLHF) to further refine the LLM responses y to
input prompts x (Ziegler et al., 2019; Stiennon et al., 2009;
Bai et al., 2022a; Ouyang et al., 2022). This multi-step
process involves first learning a reward model that reflects
human inclinations culled from labeled preference data, and
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then subsequently training a new policy that balances reward
maximization with proximity to πref(y|x).

Because RLHF introduces additional complexity, compu-
tational overhead, and entry points for instability, clever
reparameterization techniques have recently been proposed
that sidestep the need for separately learning a reward model
altogether. Instead, increased alignment with human pref-
erences is achieved via the minimization of a single closed-
form training objective, a process originally referred to as
direct preference optimization (DPO) (Rafailov et al., 2024)
followed by several notable descendants and generalizations
(Azar et al., 2024; Tang et al., 2024; Wang et al., 2024; Zhao
et al., 2023b). While dramatically economizing model de-
velopment, with recency comes the potential that the conse-
quences of less obvious properties of DPO-based objectives
may still be under-explored.

In particular, we prove that once inevitable model/learning
constraints are introduced during training (explicitly or im-
plicitly, e.g., early-stopping, weight decay, etc.), the core
reparameterizations that underpin DPO models no longer
strictly hold (Section 3). This then motivates alternative
DPO derivations and supporting analyses that are not be-
holden to the impact of such constraints. We provide two
such examples herein: (i) The re-derivation of DPO from
a simple Gaussian estimation perspective independent of
RLHF and attendant reparameterizations (Section 4); and
(ii) The contextualization of DPO as an example of classical
constrained optimization involving noise-adaptive, concave
regularization (Section 5).

2. Background
We adopt x ∼ Dx to denote an input prompt x drawn from
some distribution Dx. From here, conditioned on such
prompts we may then generate responses y using, for exam-
ple, a pre-trained reference language model/policy πref(y|x).
Moreover, given a pair of such responses y1 ̸= y2, we adopt
y1 ≻ y2 to convey the notion that a human evaluator prefers
y1 over y2. Given a population of such evaluations, we
express the corresponding ground-truth human preference
distribution as p∗(y1 ≻ y2|y1, y2, x). And finally, we define
a set of human labeled tuples drawn from a training distribu-
tion Dtr as {yw, yl, x} ∼ Dtr, where yw ≻ yl; subscripts
here stand for ‘win’ and ‘lose’.
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2.1. Reinforcement Learning with Human Feedback

Reward Function Estimation: Given two candidate re-
sponses y1 ̸= y2 sampled using prompt x, the Bradley-Terry
(BT) model (Bradley & Terry, 1952) for human preferences
stipulates that

p∗(y1 ≻ y2|x) =
exp[r∗(y1, x)]

exp[r∗(y1, x)] + exp[r∗(y2, x)]

= σ
[
r∗(y1, x)− r∗(y2, x)

]
, (1)

where r∗(y, x) is a so-called latent reward model and σ is
the logistic function. Because r∗(y, x) is unobservable, it
is not possible to directly compute p∗(y1 ≻ y2|x); however,
we can train an approximation pϕ(y1 ≻ y2|x) defined by a
parameterized proxy reward rϕ(y, x). Specifically, we can
minimize the loss

ℓBT(rϕ) := E{yw,yl,x}∼Dtr

[
− log pϕ(yw ≻ yl|x)

]
(2)

= E{yw,yl,x}∼Dtr

[
− log σ

[
rϕ(yw, x)− rϕ(yl, x)

]]
.

The optimized reward r̂ϕ(y, x) := argminrϕ ℓBT(rϕ) ≈
r∗(y, x) can then be applied to fine-tuning the pre-trained
reference model πref(y|x) as described next.

RL Fine-Tuning with Estimated Reward Function:
The goal here is to improve upon a given πref(y|x) using
a separate trainable model πθ(y|x), the high-level desider-
ata being: (i) Maximize the previously-estimated reward
function r̂ϕ(y, x) when following πθ(y|x), while (ii) Min-
imizing some measure of distance between πθ(y|x) and
πref(y|x) to avoid overfitting merely to preference rewards.
These objectives materialize through the minimization of

ℓRLHF (πθ, πref, r̂ϕ, λ) := Ey∼πθ(y|x),x∼Dx

[
− r̂ϕ(y, x)

]
+ λ Ex∼Dx

[
KL
[
πθ(y|x)||πref(y|x)

]]
, (3)

where λ > 0 is a trade-off parameter. Although not differen-
tiable, starting from an initialization such as πθ = πref, the
loss ℓRLHF (πθ, πref, r̂ϕ, λ) can be optimized over πθ using
various forms of RL (Schulman et al., 2017; Ramamurthy
et al., 2022)

2.2. Direct Preference Optimization (DPO)

Consider now the reward-dependent RLHF loss ℓRLHF from
(3) defined w.r.t. and arbitrary reward function r(y, x). DPO
(Rafailov et al., 2024) is based on the observation that, pro-
vided πθ is sufficiently flexible such that we may treat it
as an arbitrary function for optimization purposes (we will
return to this pivotal assumption in Section 3), the minimum
of ℓRLHF (πθ, πref, r, λ) w.r.t. πθ can be directly computed as

πr(y|x) := argmin
πθ

ℓRLHF (πθ, πref, r, λ)

=
1

Z(x)
πref(y|x) exp

[
1

λ
r(y, x)

]
, (4)

where Z(x) :=
∑

y πref(y|x) exp
[
1
λr(y, x)

]
is the partition

function ensuring that πr(y|x) forms a proper distribution
(Peng et al., 2019; Peters & Schaal, 2007). From here,
assuming πref(y|x) > 0, we can rearrange (4) to equivalently
establish that

r(y, x) = λ log
πr(y|x)
πref(y|x)

+ λ logZ(x). (5)

Because thus far r has remained unspecified, it naturally
follows that these policy/reward relationships hold even
for the ground-truth reward r∗ and the associated optimal
policy π∗∗(y|x) := argminπθ

ℓRLHF (πθ, πref, r
∗, λ). Hence

instead of approximating r∗(y, x) with rϕ(y, x) as in (1), we
may equivalently approximate π∗∗(y|x) with some πθ(y|x)
leading to the DPO loss

ℓDPO(πθ, πref, λ) := ℓBT

(
λ log

πθ(y|x)
πref(y|x)

)
= E{yw,yl,x}∼Dtr

[
− log σ

(
λ log

πθ(yw|x)
πref(yw|x)

− λ log
πθ(yl|x)
πref(yl|x)

)]
, (6)

noting that the partition function Z(x) conveniently cancels
out and can be excluded from further consideration. It is now
possible to directly optimize (6) over πθ using SGD without
the need for any challenging RLHF procedure. The basic
intuition here is that the parameterized policy πθ induces
an implicit reward λ log

[
πθ(y|x)π−1

ref (y|x)
]

that is being
optimized via the original BT preference model.

3. Impact of Optimization Constraints
It has been previously shown that minimizing the DPO loss
ℓDPO(πθ, πref, λ) is effectively the same as minimizing the
RLHF loss ℓRLHF (πθ, πref, r

∗, λ) with optimal reward model
r∗ (Rafailov et al., 2024). But there is a pivotal assumption
underlying this association which previous analysis has not
rigorously accounted for. Specifically, the key equality that
facilitates the DPO reparameterization, namely (5), is pred-
icated on the solution of an uncononstrained optimization
problem from (4) over an arbitrary policy πθ.

However, when actually training models in real-world set-
tings, constraints will always exist, whether implicitly or
explicitly. Such constraints stem from any number of fac-
tors including the model architecture/capacity limitations,
weight decay, drop-out regularization, machine precision,
and so on. Additionally, the DPO loss can have degener-
ate unconstrained minimizers that completely ignore πref

on real-world datasets (Azar et al., 2024), and so counter-
measures like early stopping are imposed that effectively
introduce a Sπ and substantially alter the estimated policy.

Therefore in reality we are never exactly minimizing the
loss ℓDPO(πθ, πref, λ) over any possible πθ (as assumed by
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DPO). Instead, we must consider properties of the con-
strained problem minπθ∈Sπ ℓDPO(πθ, πref, λ), where Sπ is a
constraint set. For example, if we restrict training to a single
epoch with a fixed learning rate, then Sπ can be viewed as
the set of all points reachable within a limited number of
SGD updates. Consider now the following:

Proposition 3.1. Let Sπ denote a constraint set on the
learnable policy πθ. Then we can have that

arg min
πθ∈Sπ

ℓRLHF (πθ, πref, r
∗, λ) (7)

̸= arg min
πθ∈Sπ

ℓDPO(πθ, πref, λ).

As can be observed by the proof in Appendix C, the dif-
ference between the two is akin to the difference between
applying a constraint to a trainable policy in either the for-
ward or backward KL divergence, which is generally quite
distinct (Bishop, 2006); see also Figure 1 in Appendix A.

Consequently, once a constraint is introduced and the in-
equality from (7) activated, we can no longer say that DPO
provides an optimal implicit reward for the original RLHF
problem, i.e., the original connection is now ambiguous.
And so the value of DPO in practice (and indeed it of-
ten does work well) cannot be unreservedly attributed to
its motivational affiliation with an optimal RLHF solution,
and instead, should be evaluated based on properties of
minπθ∈Sπ

ℓDPO(πθ, πref, λ) itself. We take two steps in this
direction as follows:

1. In Section 4 we rederive the DPO loss from scratch
based solely on a Gaussian estimation perspective that
is completely unrelated to RLHF-based reparameter-
izations. Importantly, this derivation is orthogonal to
whether or not constraints are included, and hence is
not compromised when they inevitably are.

2. Of course what matters most are the properties of the
underlying loss when deployed in practice, not nec-
essarily the assumptions made in deriving the loss in
the first place. To this end, Section 5 demonstrates
how the constrained DPO loss can be interpreted as a
well-studied instance of robust estimation using a noise-
adaptive regularization factor, where the implicit noise
is determined by the reference policy performance.

4. Rederiving DPO from Scratch Via a Naive
Gaussian Estimation Perspective

Any preference probability given by the BT model in (1)
can be equivalently re-expressed as

p∗(y1 ≻ y2|x) = µ

[
π∗(y2|x)
π∗(y1|x)

]
, (8)

where π∗(y|x) is a conditional probability of y given x
and µ : R → [0, 1] is a monotonically increasing function.
While we may optionally choose µ to exactly reproduce
the BT model, it is of course reasonable to consider other
monotonically increasing choices to explore the additional
generality of (8) (and indeed we will exploit one such alter-
native choice below).

Given a trainable policy πθ we can always minimize the
negative log-likelihood − logµ

[
πθ(y2|x)
πθ(y1|x)

]
averaged over

preference samples {yw, yl, x} ∼ Dtr to approximate
p∗(y1 ≻ y2|x); however, this procedure would be com-
pletely independent of any regularization effects of a ref-
erence policy πref. We now examine how to introduce the
reference policy by relying only on a simple Gaussian model
with trainable variances, rather than any association with
RLHF or implicit reward modeling. The end result is an
independent re-derivation of DPO using basic Gaussian as-
sumptions.

For convenience, we first define functions ξθ(y1, y2, x) :=

µ

[
πθ(y2|x)
πθ(y1|x)

]
, ξref(y1, y2, x) := µ

[
πref(y2|x)
πref(y1|x)

]
. (9)

Now suppose we assume the naive joint distribution given

by p

([
ξθ(y1, y2, x)
ξref(y1, y2, x)

])

= N
([

ξθ(y1, y2, x)
ξref(y1, y2, x)

]∣∣∣∣ 0, γ(y1, y2, x)I) , (10)

where N (·|0,Σ) denotes a 2D, zero-mean Gaussian with
covariance Σ ∈ R2×2, and γ(y1, y2, x) ∈ R+ is a variance
parameter that depends on the tuple {y1, y2, x}. Since each
γ(y1, y2, x) is unknown, we can group them together with
πθ and estimate all unknowns jointly. In the context of la-
beled human preference data drawn from Dtr, this involves
minimizing

min
πθ∈Sπ, {γ(yw,yl,x)>0}

{
E{yw,yl,x}∼Dtr (11)

− logN
([

ξθ(yw, yl, x)
ξref(yw, yl, x)

] ∣∣∣ 0, γ(yw, yl, x)I) }
,

where I is a 2×2 identity matrix and Sπ is any constraint set
on πθ as introduced in Section 3. The intuition here is that,
although γ(yw, yl, x) is unknown, sharing this parameter
across both ξθ and ξref and estimating jointly will induce
a reference policy-dependent regularization effect. And
indeed, this simple Gaussian model exactly reproduces DPO
per the following straightforward result:

Proposition 4.1. Joinly minimizing (11) over πθ ∈ Sπ

and {γ(yw, yl, x) > 0} with µ(·) = (·)λ
2 is equivalent to

solving minπθ∈Sπ ℓDPO(πθ, πref, λ).
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5. The DPO Loss Induces Noise Adaptive
Regularization

The results of the previous section provide an alternative
lens with which to probe properties of the DPO loss. Of
particular interest here, the proof of Proposition 4.1 involves
re-expressing the DPO loss from (6) as

ℓDPO(πθ, πref, λ) ≡ (12)

E{yw,yl,x}∼Dtr

[
log

([
πref(yl|x)
πref(yw|x)

]λ
+

[
πθ(yl|x)
πθ(yw|x)

]λ)]
,

excluding constants independent of πθ. This expression
represents an expectation over a regularization factor in the

form log(γ + u), where γ corresponding to
[

πref(yl|x)
πref(yw|x)

]λ
is fixed, and u corresponding to

[
πθ(yl|x)
πθ(yw|x)

]λ
is the variable

of interest to be optimized. We will now examine several
notable properties of log(γ + u) that serve to elucidate
underappreciated DPO regularization characteristics. For
this purpose, we first introduce the following definition from
(Palmer, 2003):

Definition 5.1. Let f be a strictly increasing differentiable
function on the interval [a, b]. Then the differentiable func-
tion g is concave relative to f on [a, b] iff

g(u2) ≤ g(u1) +
g′(u1)

f ′(u1)
[f(u2)− f(u1)] , (13)

where g′ and f ′ denote the respective derivatives.

Intuitively, this definition indicates that if g is concave rel-
ative to f , it has greater curvature at any evaluation point
u once normalizing (via an affine transformation of f or g)
such that g(u) = f(u) and g′(u) = f ′(u). Equipped with
this definition, we then point out the following observations
linking DPO with prior work on robust estimation in the
presence of noise:

• log(γ + u) is a concave non-decreasing function of
u ∈ [0,∞), which represents a well-known characteris-
tic of sparsity-favoring penalty factors commonly used
in robust estimation (Chartrand & Yin, 2008; Chen et al.,
2017; Fan & Li, 2001; Rao et al., 2003).1 Such penal-
ties introduce a steep gradient around zero, but then
flatten away from zero to avoid incurring significant
additional loss (as would occur, for example, with a
common quadratic loss).

• For any γ1 < γ2, log(γ1 + u) is concave relative to
log(γ2 + u) per Definition 5.1. Figure 2 in Appendix
B illustrates this phenomena by contrasting with two

1Most prior work involves parameters that can be negative,
which can be accommodated by simply replacing u with |u|.

extremes producing the convex ℓ1 norm and the non-
convex ℓ0 norm.

• Prior work (Candes et al., 2008; Wipf & Nagarajan,
2010) has investigated general optimization problems of
the form

min
{ui}∈Su

∑
i

log(γ + |ui|), (14)

sometimes generalized to min{ui}∈Su

∑
i f(|ui|, γ)

over a concave, non-decreasing function f of |ui|, where
Su is some constraint set.2 Moreover, γ reflects a noise
parameter or an analogous measure of uncertainty, with
relative concavity dictated by γ as above. In these con-
texts, it has been argued that adjusting the curvature
of the regularization factor based on noise levels can
provide additional robustness to bad local minima and
high noise regimes (Candes et al., 2008; Dai et al., 2018;
Wipf & Zhang, 2014). The basic intuition here is that
when noise is high, a more convex shape is preferable,
while when the noise is low, a more concave alternative
may be appropriate.

• Regarding DPO, it is natural to treat
[

πref(yl|x)
πref(yw|x)

]λ
as

an analogous noise factor, given that whenever this ra-
tio is large, it implies that our reference policy is poor.
Hence, once we introduce a constraint Sπ on πθ (as
will always occur in practice; see Section 3), solving
minπθ∈Sπ

ℓDPO(πθ, πref, λ) can be viewed as a special
case of (14), involving a robust regularization factor
with noise-adaptive curvature.

6. Conclusion
We have argued that optimization constraints have the poten-
tial to interfere with the interpretation of DPO as implicitly
minimizing the RLHF loss defined with an optimal reward
function. As such constraints are unavoidable in practice, it
therefore behooves us to consider alternative foundational
entry points for quantifying DPO properties that withstand
the introduction of constraints. We consider two such entry
points herein, namely, a Gaussian estimation perspective
and a complementary bridge to classical constrained opti-
mization with noise-adaptive, concave regularization.

We close by remarking that, although our focus was largely
on the original DPO formulation (Rafailov et al., 2024), it
nonetheless remains relevant to the foundations of follow-
up work that relies on analogous DPO-like reparameteri-
zations; recently published examples include (Azar et al.,
2024; Wang et al., 2024). In these and other cases, con-
straints can obfuscate the degree to which model behavior
can be directly traced back to a RLHF-based loss archetype.

2In some applications the constraint set may be replaced by an
additional regularization factor, and there is often an equivalency
between the two.
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A. Visualization of Constraint Impact
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Figure 1: Visualization of learned policies with and without constraints as discussed in Section 3. On the top, no constraints
are present and minimizing the respective DPO and RLHF losses leads to the same policy (green distribution over responses).
In contrast, when the minimization is restricted to policies πθ ∈ Sπ , the RLHF solution (pink distribution) and DPO solution
(blue distribution) are no longer the same. We emphasize that in all cases RLHF is instantiated with the optimal reward r∗,
so the discrepancy is entirely a consequence of policy constraints, not sub-optimal reward usage.

B. Visualization of Different Penalty Factors

lo
ss

 v
al

ue

loss input

0

1

 norm

 norm

log-based

Figure 2: Visualization of different penalty factors associated with the DPO loss as discussed in Section 5. When γ → 0,
log(γ + |u|) → log |u| = limp→0

1
p [|u|

p − 1] ∝ I[u ̸= 0] mimicking an ℓ0 norm (red curve) w.r.t. relative concavity (if
u ≥ 0 as with DPO, we can remove the absolute value, but we nonetheless include the general case here.). In contrast,
limγ→∞ γ log(γ+ |u|) = |u| reflecting the relative concavity of the convex ℓ1 norm (green curve). Note that in both limiting
cases, affine transformations do not impact relative concavity. For a fixed γ value, the relative concavity of log(γ + |u|) lies
within these two extremes.
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C. Proof of Proposition 3.1
Our strategy here is to construct a situation whereby we can pinpoint emergent differences between RLHF and DPO losses
in the presence of policy constraints. We note that while obviously simplified for transparency, the chosen formulation is
nonetheless emblematic of behavior in broader regimes. To this end, we assume the following:

• For all x ∼ Dx, where Dx is an arbitrary prompt distribution, there exists two unique responses y1 and y2 with equal
probability under πref;

• Preference data {yw, yl, x} ∼ Dtr are sampled according to z ∼ p∗(y1 ≻ y2|x), {y1, y2} ∼ πref(y|x), x ∼ Dx, where
z = I[y1 ≻ y2|y1, y2, x] is a binary indicator variable that determines yw and yl assignments;3

• The loss trade-off parameter satisfies λ = 1; and

• p∗(y1 ≻ y2|x) ∈ (0, 1) for all {y1, y2} ∼ πref(y|x) and x ∈ Dx.

With regard to the latter, we note that the preference distribution can be expressed as

p∗(y1 ≻ y2|x) =
exp[r∗(y1, x)]

exp[r∗(y1, x)] + exp[r∗(y2, x)]
=

exp[r∗(y1,x)]
Z(x)

exp[r∗(y1,x)]
Z(x) + exp[r∗(y2,x)]

Z(x)

=
π∗(y1|x)

π∗(y1|x) + π∗(y2|x)
, (15)

where π∗(y|x) := exp[r∗(y1,x)]
Z(x) and Z(x) :=

∑
y exp[r

∗(y, x)].

RLHF loss processing: When evaluated with optimal reward model r∗, we have that

ℓRLHF (πθ, πref, r
∗, λ) = Ey∼πθ(y|x),x∼Dx

[
− r∗(y, x)

]
+ λ Ex∼Dx

[
KL
[
πθ(y|x)||πref(y|x)

]]
≡ Ex∼Dx

[
KL
[
πθ(y|x)||π∗∗(y|x)

]]
, (16)

where

π∗∗(y|x) :=
1

Z(x)
πref(y|x) exp

[
1

λ
r∗(y, x)

]
. (17)

This stems directly from the analysis in (Peng et al., 2019; Peters & Schaal, 2007). However, because we are assuming
λ = 1 and πref(y|x) is constant for any given x, it follows that

π∗∗(y|x) = exp [r∗(y, x)]∑
y exp [r

∗(y, x)]
, (18)

where the denominator is independent of y. Since the so-called BT-optimal solution π∗ from above satisfies

π∗(y1|x)
π∗(y1|x) + π∗(y2|x)

= p∗(y1 ≻ y2|x) =
exp [r∗(y1, x)]

exp [r∗(y1, x)] + exp [r∗(y2, x)]
, (19)

we may conclude that π∗∗ = π∗, and therefore

ℓRLHF (πθ, πref, r
∗, λ) = Ex∼Dx

[
KL
[
πθ(y|x)||π∗(y|x)

]]
(20)

under the stated conditions.
3We generally assume that y1 ̸= y2; however, the y1 = y2 case can nonetheless be handled by simply assigning p∗(y ≻ y|x) = 1/2,

inclusion of which does not effect the analysis that follows. In particular, such cases merely introduce an irrelevant constant into the
human preference loss functions under consideration.
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DPO loss processing: When λ = 1 and πref(y|x) is constant, we have that

ℓDPO(πθ, πref, λ) = E{yw,yl,x}∼Dtr

[
− log σ

(
λ log

πθ(yw|x)
πref(yw|x)

− λ log
πθ(yl|x)
πref(yl|x)

)]
= E{yw,yl,x}∼Dtr

[
log

(
πθ(yw|x) + πθ(yl|x)

πθ(yw|x)

)]
. (21)

Next, given the additional data generation assumptions, it follows that πθ(yw|x) + πθ(yl|x) = 1, and so the DPO loss can
be further modified as

ℓDPO(πθ, πref, λ) = E{yw,yl,x}∼Dtr

[
log

(
1

πθ(yw|x)

)]
= Ex∼Dx

[
p∗(z = 1|y1, y2, x) log

(
1

πθ(y1|x)

)
+ (p∗(z = 0|y1, y2, x) log

(
1

πθ(y2|x)

)]
= Ex∼Dx

[
π∗(y1|x) log

(
1

πθ(y1|x)

)
+ π∗(y2|x) log

(
1

πθ(y2|x)

)]
= Ex∼Dx

[
π∗(y1|x) log

(
π∗(y1|x)
πθ(y1|x)

)
+ π∗(y2|x) log

(
π∗(y2|x)
πθ(y2|x)

)]
+ C

≡ Ex∼Dx

[
KL
[
π∗(y|x)||πθ(y|x)

]]
, (22)

where C is an irrelevant constant. Note that in progressing from the first to second equality, we can ignore cases where
where sampled responses satisfy y1 = y2, since these contribute only another irrelevant constant to the loss. Along with our
stated response data assumptions, this allows us to remove expectation over {y1, y2} without loss of generality.

Final step: From (20) and (22) we observe that the only difference between the RLHF and DPO losses under the given
conditions is whether a forward or backward KL divergence is used. And of course without any constraints, the minimizing
solutions are equivalent as expected, consistent with the analysis from (Rafailov et al., 2024), i.e.,

argmin
πθ

ℓRLHF (πθ, πref, r
∗, λ) = argmin

πθ

ℓDPO(πθ, πref, λ). (23)

Critically though, this KL equivalence transparently need not still hold once constraints are introduced, as the forward KL
will favor mode covering while the backward KL will push mode following (Bishop, 2006). ■

D. Proof of Proposition 4.1
For an arbitrary real vector v we have that

argmin
γ>0

− logN (v|0, γI) ≡ argmin
γ>0

[
v⊤v

γ
+ log |γI|

]
=

1

2
v⊤v. (24)

And therefore, we have
min
γ>0

− logN (v|0, γI) ≡ log(v⊤v) (25)

excluding irrelevant constants. Returning to (11), if we first optimize over γ(yw, yl, x) for each tuple, we obtain the loss
factor

log
[
ξref(yw, yl, x)

2 + ξθ(yw, yl, x)
2
]

= log

[
µ

[
πθ(yl|x)
πθ(yw|x)

]2
+ µ

[
πref(yl|x)
πref(yw|x)

]2]
. (26)
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From here, by choosing µ(·) = (·)λ
2 we can modify (26) as

log

[
πθ(yl|x)λ

πθ(yw|x)λ
+

πref(yl|x)λ

πref(yw|x)λ

]
= log

[
1 +

(
πθ(yl|x)
πref(yl|x)

)λ(
πref(yw|x)
πθ(yw|x)

)λ
]
+ C

≡ − log σ

(
λ log

πθ(yw|x)
πref(yw|x)

− λ log
πθ(yl|x)
πref(yl|x)

)
, (27)

ignoring the irrelevant constant C which is independent of πθ. Hence we have recovered the DPO loss for each tuple
{yw, yl, x} and once the requisite expectation is reintroduced, we exactly recover the full DPO loss from (6). From here it
directly follows that minimizing (27) over πθ ∈ Sπ is equivalent to minπθ∈Sπ ℓDPO(πθ, πref, λ). ■
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