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ABSTRACT

While graph neural networks have exhibited remarkable performance in various
graph tasks, a significant concern is their vulnerability to adversarial attacks. Con-
sequently, many defense methods have been proposed to alleviate the deleterious
effects of adversarial attacks and learn robust graph representations. However, most
of them are difficult to simultaneously avoid two major limitations: 1) an emergent
and severe degradation in robustness when exposed to very intense attacks, and
2) heavy computation complexity hinders them from scaling to large graphs. In
response to these challenges, we introduce an innovative graph defense method for
unpredictable real-world scenarios by designing a graph robust learning frame-
work that is resistant to robustness degradation and refraining from the unscalable
designs with heavy computation: specifically, our method employs a denoising
module, which eliminates edges that are associated with attacked nodes to recon-
struct a cleaner graph; Then, it applies Mixture-of-Experts to select differentially
private noises with varying magnitudes to counteract the hidden features attacked
at different intensities toward robust predictions; Moreover, our overall design
avoids the reliance on heavy adjacency matrix computations, such as SVD, thus
facilitating its applicability even on large graphs. Comprehensive experiments have
been conducted to demonstrate the anti-degraded robustness and scalability of our
method, as compared to popular graph adversarial learning methods, under diverse
attack intensities and various datasets of different sizes.

1 INTRODUCTION

Graph Neural Networks (GNNs) are potent tools for learning relational data, excelling in tasks like
node and graph classification (Kipf & Welling, 2017; Veličković et al., 2018; Hamilton et al., 2017;
Ying et al., 2018; You et al., 2020; Guo et al., 2023b). They employ message-passing to iteratively
update node representations by aggregating neighbor information. GNNs find widespread use, such
as social media (Wu et al., 2022; Zhang et al., 2022; Qian et al., 2022; Wen et al., 2022b; Li et al.,
2023a), recommender systems (Huang et al., 2021; Tian et al., 2022; Fan et al., 2019; Ouyang et al.,
2024, 2023), and molecular prediction (Jin et al., 2018; Guo et al., 2023a; Wang et al., 2023).

While GNNs have excelled in various tasks, they are vulnerable to adversarial attacks (Zügner &
Günnemann, 2019; Zheng et al., 2021; Tian et al., 2023b; Zügner et al., 2018) that manipulate their
performance through tactics like edge modifications (Geisler et al., 2021), node perturbations (Zügner
& Günnemann, 2019; Sun et al., 2020), or malicious node injections (Zou et al., 2021). To address
these vulnerabilities, several defense mechanisms have emerged, but they often face two significant
challenges: 1) severe robustness degradation: many existing defense methods, such as RGCN (Zhu
et al., 2019) and GNN-SVD (Entezari et al., 2020), effectively handle mild node injection attacks but
experience an emergent decline in robustness as attack intensity increases. As shown in Figure 1,
when attack intensity surpasses a threshold of 300 injected nodes, error rates for many models surge
by more than 50%. This limits their suitability for real-world scenarios (Goodfellow et al., 2015;
Zheng et al., 2021; Madry et al., 2018; Zou et al., 2021). 2) limited scalability: scalability is a
notable concern, particularly for widely used methods like GNN-SVD (Entezari et al., 2020) and
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GNNGuard (Zhang & Zitnik, 2020), which require dense adjacency matrix computations. This
can result in substantial computational overhead, as shown in the experiment section, leading to
out-of-memory problems when applied to larger datasets like Flick, Reddit, and AMiner, especially
when using a 32 GB GPU. These challenges necessitate innovative solutions to enhance the robustness
and scalability of GNNs against adversarial attacks.
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Figure 1: The performance of different methods
when FGSM attack intensity on grb-Cora is in-
creasing. DRAGON outperforms other robust base-
lines with negligible robustness degradation even
under extreme-intensity attack.

Therefore, we propose a novel framework called
DRAGON (i.e., Differentially Private Masked Graph
Auto-Encoder for Anti-degraded Robustness): To ad-
dress (i) the emergent robustness degradation under
increasing-intensity graph attacks, DRAGON utilizes
a denoise masked auto-encoder to reconstruct the
given attacked graph towards cleaner node connec-
tions, and further uses Mixture-of-Experts Liu et al.
(2023); Zhang et al. (2023c), which is specifically
differential privacy-based, to eliminate the impact
of injected nodes hidden in an attacked graph. For
dealing with (ii) the limited scalability issue on large
graph datasets, DRAGON avoids the heavy computa-
tion of large adjacency matrices, which is achieved by
making all designs not require large-scale adjacency
matrices like GNNSVD (Entezari et al., 2020) and
GNNGuard (Zhang & Zitnik, 2020), thereby we pre-
vent out-of-memory from occurring in our framework
while scaling our framework to large graph datasets.

The above effects are delivered in two steps: First,
given an attack graph as input, a masked graph auto-encoder is applied to eliminate malicious
edges connected to injected nodes, resulting in a (nearly) clean graph with very few injected nodes
connected to clean nodes; Second, we ensemble the differential privacy (DP) mechanism in each
GNN layer, which introduces random noises into the graph features while counteracting the attacked
node features and constraining the change of the model’s output, thus against attack perturbations
in injected nodes. Additionally, the Mixture-of-Experts (MoEs) technique is used to manipulate
multiple DP expert networks, each holding Gaussian DP noise of different magnitudes. These expert
networks are then assigned to injected node features attacked at different intensities, providing an
appropriate level of noise to improve robustness. Our major contributions are summarized as follows:

• Our solution, DRAGON framework, addresses both severe robustness degradation and scalability
constraints in adversarial graph learning. Existing techniques often struggle with GNN scalability
on large datasets and maintaining robustness against various attack intensities.

• Our framework comprises two key components: a denoise auto-encoder for cleaning attacked
graphs by removing malicious edges connected to injected nodes and a differentially-private MoE
that adapts the level of differential privacy noise to counteract attacks of different intensities.

• We extensively test DRAGON on diverse graph datasets and varying-intensity attacks, where it
outperforms popular baselines, ensuring robustness in unpredictable real-world scenarios while
preventing emergent phenomena – severe robustness degradation.

2 RELATED WORK

Graph Neural Networks. GNNs distinguish in various graph mining tasks (Hamilton et al., 2017;
Battaglia et al., 2018; Xu et al., 2019; Zhang et al., 2023b,a; Jia et al., 2024) due to their prowess in
learning non-Euclidean data. Early GNN variants like GCN (Kipf & Welling, 2017; Gao et al., 2018;
Wu et al., 2019a) introduced convolutional concepts to graph data. Subsequently, graph attention
networks(Veličković et al., 2018; Wang et al., 2019) incorporated attention mechanisms. Moreover,
masked autoencoders (He et al., 2022) found application in the graph domain (Li et al., 2023b; Tian
et al., 2023a), inspiring our work in constructing clean graphs from attacked ones.

Adversarial Learning on Graphs. Graph attacks disrupt structural or semantic graph properties
via connection manipulation (Du et al., 2017; Chen et al., 2018; Waniek et al., 2018), node feature
perturbation (Zügner et al., 2018; Zügner & Günnemann, 2019; Sun et al., 2020; Zhang et al., 2023c;
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Jia et al., 2023), or malicious node insertion (Wang et al., 2020; Zou et al., 2021). In response to these
attacks, researchers have proposed a range of defense methods for GNNs. These include learning
robust GNNs (Zhu et al., 2019; Feng et al., 2020; Jin et al., 2020), adversarial training (Yue et al., 2022;
Wen et al., 2022a; Zhang et al., 2023c), and removing attacked inputs during preprocessing (Entezari
et al., 2020; Zhang & Zitnik, 2020). However, two critical challenges persist: severe robustness
degradation under intense attacks and limited scalability on large graph datasets. These inspire us to
design the DRAGON framework to uniquely address both challenges.

3 PRELIMINARIES

Sparse Mixture-of-Experts. The Mixture-of-Experts (MoE) combines multiple models to make
predictions by partitioning the input space and assigning experts to these partitions. Each expert
specializes in a specific input subset, and their predictions are weighted and assembled using a gating
mechanism. Given input space h and an MoE layer with N experts E = {Ei(·)}Ni=1, the MoE
output is: y =

∑N
i=1 pi(h)Ei(h), where Ei is an expert model, pi(h) is the expert’s weight, typically

determined by a gating network.

Node Injection Attacks. In node injection attacks, malicious nodes are inserted into an undirected
attributed graph G = (V, E ,X ). As GRB benchmark (Zheng et al., 2021) formally defined, the goal
is to maximize the number of error predictions without modifying existing edges or node features:

max
G′

|argmax f(G′) ̸= argmax f(G)| , (1)

where G′ = (V ′, E ′,X ′), and V ′ includes malicious nodes. Constraints on E ′ and X ′ limit edge
changes and node feature modifications too.

Differential Privacy. Differential Privacy (DP) protects individual data during computations by
adding randomness. It ensures that the output of a function f(·) on neighboring datasets is indis-
tinguishable. Formally, a mechanism M is (ϵ, δ)-differentially private if, for neighboring datasets
D ∼ D′ and events in the output space O:

Pr [M (D) ∈ O] ≤ eϵPr [M (D′) ∈ O] + δ, (2)

with parameters ϵ and δ controlling privacy strength and budget. For any σ, δ ∈ (0, 1), the deviation
of the classical Gaussian DP mechanism has the form σ =

√
2 ln(1.25/δ)/ϵ (Dwork et al., 2006;

Balle & Wang, 2018; Dwork et al., 2014). DP introduces noise to the function output, maintaining
output consistency despite input perturbations, aligning with adversarial robustness in deep learning.

4 METHODOLOGY

We introduce DRAGON for enhancing GNN robustness. Figure 2 depicts the framework’s two key
components: first, DMGAN serves as an attacked graph preprocessing module, removing malicious
edges linked to injected nodes, thus restoring a cleaner graph for the defender GNN; second, the
framework combines the DP mechanism with GConv to form a DP-GConv layer, enhancing the
defense module. Given unpredictable attack intensities, we partition DP-GConv into multiple experts,
each with varying DP noise magnitudes, enabling defense against attacks of varying strengths.

4.1 DENOISE MASKED GRAPH AUTO-ENCODER

Denoise Masked Graph Auto-Encoder (DMGAN) eliminates the negative influence of injected nodes
by removing the malicious edges associated with the injected nodes. And its pipeline can be divided
into three steps: masking the input (attacked) graph, encoding and decoding, and self-supervising.

Mask the Input Graph. Given an input graph G, we first adopt the widely used random walk (Perozzi
et al., 2014) as a path-masking strategy to mask the graph. We denote the masked subgraph as
Gm = (Vm, Em,Xm), and the visible subgraph as Gv = (Vv, Ev,Xv), where they complement each
other, i.e., Gm ∪ Gv = G. To illustrate, the path masking strategy selects and masks multiple adjacent
edges via random walk. This process is formulated as follows: Em ∼ RandomWalk(Vr, nw, lw),
where Vr ⊆ V is the set of root nodes, nw and lw represent the number of walks per node and the walk
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Figure 2: Our framework. First, (1) in Denoise MGAN, a cleaner graph is recovered by removing the edges
connected to injected nodes, preventing their message-passing interactions with clean nodes. Second, the
cleaner graph is classified using (2) in DPMoE GNN, which consists of a DP graph convolutional layer split
into multiple DP expert networks with adjustable noise coefficients to handle attacks of different intensities.

lengths, respectively. By disrupting edges between a sequence of adjacent nodes, the path masking
strategy encourages the model to capture structured dependencies and high-order node proximities.
This enables the model to subsequently reconstruct a cleaner graph from the attacked one.

Generate the Clean Graph via Auto-Encoder. To construct a scalable DMGAN, we adopt GCN
as the encoder and multilayer perceptrons (MLP) as the decoder. The decoder has a dual purpose:
reconstructing the graph structures and predicting node degrees. To demonstrate, we first obtain the
encoded representations H obtained from the encoder for nodes Vv . Then, the decoder leverages the
representations of a pair of nodes as link representations to reconstruct the connections of the original
graph. We use MLP to reconstruct the graph structure, and define the structure decoder as Decω
with weight parameters ω as follows: Decω(hi, hj) = Sigmoid(MLP(hi ◦hj)), where ◦ denotes the
element-wise product, hi ∈ H and hj ∈ H are the representations of node i and node j, respectively.
Subsequently, to predict node degrees in the masked graph, we employ another MLP-based decoder
for degree regression. We denote this as Decϕ with weight parameters ϕ: Decϕ(hv) = MLP(hv),
Here, hv corresponds to the representation of the target node v ∈ Vv, obtained through the previous
encoder. This approach allows the DMGAN module to learn the connection patterns of nodes in the
original clean graph, aiding in the detection of malicious edges linked to injected nodes when the
DMGAN module operates on the attacked graph.

Self-Supervised Loss for Denoise Auto-Encoder. The loss function for the decoder, responsible for
both graph structure reconstruction and node degree regression, consists of two terms. First, a binary
cross-entropy loss term is used to predict the edge for graph structure decoding:

Le =−

 1

|Em|
∑

(u,v)∈Em

log(Decω(hu, hv)) +
1

|En|
∑

(u′,v′)∈En

log(1−Decω(hu′ , hv′))

 , (3)

where h is the node representation output from the encoder, En is a set of nonexistent negative edges
sampled from training graph G. Second, a regression loss term is applied to measure how accurately
the node degree prediction matches the original in the masked graph:

Ld =
1

|Vm|
∑
v∈Vm

||Decϕ(hv)− deg(v)||22, (4)
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where deg(·) and Vm denote the masked node degree and the masked nodes in the graph, respectively.
The overall objective L to be minimized during training is the combination of Ld and Le. After
using the loss L to train the auto-encoder DMGAN, during attack evaluation, an attacked graph
G′

= (V ′
, E ′

,X ′
) is perturbed from G and used as an input. Then we use the trained DMGAN to

decode the reconstructed edges of G′
, i.e., Er. We use Er to index the reconstructed subgraph Gr from

G′
, and then use Gr for downstream tasks.

4.2 DEFENDER TO ATTACKS OF DIFFERENT INTENSITIES: DP-BASED MIXTURE OF EXPERTS

After cleaning the attacked graph with DMGAN, if any injected nodes remain in Gr and negatively
affect predictions, we deploy the DP mechanism in the Defender GNN for robust predictions on
Gr. This involves introducing the DP mechanism into the GNN layer to create DP-GConv, which is
further divided into DPMoE with different DP experts to handle various attack intensities.

Differentially-Private Graph Convolution. For tackling attacked graph outputs from DMGAN, we
introduce Differentially-Private Graph Convolution (DP-GConv). DP-GConv updates the representa-
tion of a target node, h(l−1)

v , output by the (l − 1)-th layer, in three steps:

First, a Gaussian differentially-private noise module M(·) computes Gaussian noise N , added
to h

(l−1)
v : M(h

(l−1)
v ) = h

(l−1)
v + µN , where µ is the scaling coefficient, and N follows a

Gaussian distribution with mean zero and standard deviation σ =
√

2 ln(1.25/δ)/ϵ. Second,
M(h

(l−1)
v ) is multiplied by a learnable weight matrix W (l), performed by the DPLinear(·)l module:

DPLinear(l)(h
(l−1)
v ) = W(l)M(h

(l−1)
v ). This transformation is applied to all neighboring nodes

linked with the current target node. Third, after aggregating the features of all transformed neighbor-
ing nodes, DP-GConv combines the feature of the target node and neighboring nodes, updating the
target node representation from h

(l−1)
v to h

(l)
v :

h(l)
v =COM(l)

(
DPLinear(l)(h(l−1)

v ), AGG
({

DPLinear(l)(h(l−1)
u ),∀u ∈ Nv

}))
, (5)

where AGG(·) and COM(·) represent neighbor aggregation and combination functions, respectively.
Nv is the set of all neighboring nodes u of node v.

In our implementation, the Gaussian DP noise module M(·) can be placed in front of DP-GConv’s
weight matrix, randomizing attack node features and constraining output results closer to predictions
based on the original clean input, effectively neutralizing the influence of injected nodes.

Splitted Differentially-Private Mixture-of-Experts. To enhance the robustness of the defender
GNN against node injection attacks of varying intensities, we introduce a novel approach known as
Splitted Differentially-Private Mixture-of-Experts (DPMoE). This design divides each DP-GConv
layer, denoted as DPLinear(·), into multiple expert networks. Each of these expert networks is
equipped with a specific magnitude of Gaussian DP module, allowing the defender GNN to effectively
handle node injection attacks of differing strengths. The DPMoE module, which is a split from
DPLinear(·), is formulated as follows:

DPMoE(h) =
∑
i∈T

pi(h) ·DPLineari(h), (6)

where T represents the set of activated top-k expert indices. DPMoE(·) combines the outputs of
multiple DP expert networks, each with a different scaling coefficient µi for the Gaussian DP noise
N at various magnitudes. µi increases linearly as the index i of the expert increases. The top-k
activated expert indices are determined by the gate values pi(h), which can be obtained using a
softmax function as described below:

pi(h) =
exp(t(h)i + εi)∑N

k=1 exp(t(hi)k + εk)
, (7)

where t(·) denotes a linear transformation, and N is the total number of experts. The activated expert
indices in the DPMoE module are determined by gate values pi(h), which compute the activation
probability of each expert. Logits are weighted by the i-th value t(h)i of the linear transformation, and
a random noise term εi is added to ensure randomness in the expert activation procedure. Typically,
εi is sampled from a Gaussian distribution.
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To update the features of a target node, the DPMoE layer combines feature transformation and
aggregation operations. First, it transforms the features of the target node and its neighboring nodes
using DPMoE(l)(·) and then aggregates the transformed features of the neighboring nodes using
AGG(·). The final representation of the target node is obtained by combining the transformed
characteristic of the target node and the aggregated characteristic of its neighboring nodes:

h(l)
v =COM(l)

(
DPMoE(l)(h(l−1)

v ), AGG
({

DPMoE(l)(h(l−1)
u ),∀u ∈ Nv

}))
. (8)

In comparison to the previous DP-GConv formulation in Equation (5), the proposed DPMoE layer
employs a gating mechanism to control multiple experts, each equipped with multi-scale DP Gaussian
noises. This allows it to effectively handle node injection attacks of varying intensities while
maintaining higher anti-degraded robustness.

Theoretical Analysis of DPMoE Robustness. Let’s denote k ∈ K as the ground-truth class label for
node v; ϵ, δ as two differential privacy parameters of Gaussian DP mechanism; h(l)

v as the feature of
node v in layer l after aggregating from the injection nodes. When Equation (9) in Proposition 1 is
satisfied, we can theoretically ensure the robustness of the model.
Proposition 1. Robustness Guarantee for DPMoE. For a GNN f(·) containing DPMoE which
utilizes Gaussian DP, assume this mechanism lets the model output satisfy (σ, δ)-DP. If the expected
value E of the model output satisfies the following property:

E(fk(h(l)
v )) > e2ϵ max

i:i ̸=k
E(fi(h(l)

v )) + (1 + eϵ)δ, (9)

then the label probability output vector p(h(l)
v ) = (E(f1(h(l)

v )), . . . ,E(fK(h
(l)
v ))) of f(·) for node v

satisfies the robustness: E(fk(h(l)
v )) ≥ maxi:i ̸=k E(fi(h(l)

v )).

This proposition sheds light on how upholding DP can bolster the model’s robustness against
adversarial perturbations. By adhering to the (ϵ, δ)-DP constraints, the model’s vulnerability to
perturbations induced by adversarial injections is significantly reduced. The complete proof is in
Appendix A.

In a brief proof sketch, we begin by confirming the (ϵ, δ)-DP of a GNN model that solely consists
of DP-GConv. Utilizing previous propositions and equations, the proof establishes bounds on the
model’s expected outputs. These bounds are instrumental in deriving inequalities, which compare
the expected output of the genuine class k to that of any other class under adversarial perturbations.
By examining these inequalities, we uncover the necessary conditions for the model to maintain
robustness—specifically, that the expected output for class k significantly surpasses that of any other
class. The proof then extends these findings to models incorporating DPMoE, demonstrating that if a
DPMoE model meets the specified conditions, its robustness is established.

5 EXPERIMENTS

5.1 SETTINGS

Datasets. We evaluate the robustness and scalability of our proposed DRAGON framework using
the Graph Robustness Benchmark (GRB) dataset (Zheng et al., 2021), which includes graphs of
varying scales, such as grb-cora (small-scale), grb-citeseer (small-scale), grb-flickr (medium-scale),
grb-reddit (large-scale), and grb-aminer (large-scale). The statistics of the datasets are in Appendix C.

Baselines Methods. We evaluate the robustness of DRAGON against several baseline methods from
two perspectives: First, for baselines that have been applied on robustness against injection attacks,
we consider GCN-SVD (Entezari et al., 2020), GNNGuard (Zhang & Zitnik, 2020), RGCN (Zhu et al.,
2019), EvenNet (Lei et al., 2022). Second, we compare against general GNN models (i.e., GCN (Kipf
& Welling, 2017), GAT (Veličković et al., 2018)), RGCN (Zhu et al., 2019) and GAME (Zhang et al.,
2023c) that are integrated with a generic defense approach, Adversarial Training (AT) (Madry et al.,
2018). Configurations of all methods are included in Appendix C. In addition, many other graph
robust learning methods such as Jaccard GCN (Wu et al., 2019b), SoftMedian (Geisler et al., 2021)
and GARNET (Deng et al., 2022) are only effective for specific attacks with ad hoc designs, making
the results less generalizable and practical, thus we do not include them as our primary baselines and
compare them with DRAGON in Appendix G.
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Table 1: Overall assessments of all methods among five GRB datasets with different-intensitiy FGSM attacks.
The best result is bolded and the runner-up is underlined. Inten. denotes Attack Intensity and OOM represents
Out-of-Memory. Method+AT means integrating the method with adversarial training.

Inten. GCN GAT RGCN GCNSVD GATGuard EvenNet GCN+AT GAT+AT RGCN+AT GAME+AT Ours Ours+AT

Cora
(small)

nulla 84.2±0.6 83.6±0.5 84.0±0.7 64.5±1.0 81.7±1.0 82.4±0.7 83.5±0.1 79.6±0.9 85.4±0.5 85.5±0.8 84.1±0.7 81.6±0.7
I 65.6±3.2 58.9±4.2 51.8±1.5 44.1±0.4 80.6±1.1 67.7±2.2 82.5±1.1 79.4±0.8 79.1±2.1 81.7±0.4 84.2±0.6 82.0±0.7
II 57.3±3.0 38.9±3.7 23.0±0.7 42.0±2.0 80.7±1.0 53.3±2.1 79.6±0.8 79.2±0.7 72.8±4.6 80.1±0.7 84.1±0.3 81.6±1.4
III 33.6±3.0 24.3±4.3 13.6±0.3 37.5±2.9 80.7±1.0 39.6±1.7 71.4±4.7 79.5±0.8 49.7±7.2 79.1±0.8 84.0±0.5 81.7±0.5
IV 17.9±0.8 15.8±2.5 12.0±0.1 33.7±1.4 79.4±1.2 28.9±0.8 47.9±3.9 78.3±0.1 25.0±2.6 78.3±0.2 84.0±0.3 81.0±0.9
V 12.4±0.1 14.3±1.6 11.9±0.1 33.0±0.4 79.4±1.5 23.8±0.2 35.6±4.4 79.3±0.6 24.7±8.9 77.3±0.6 83.3±0.3 80.4±0.8

Citeseer
(small)

nulla 71.6±0.8 72.0±0.6 73.7±0.7 68.2±1.2 72.8±0.3 69.0±0.5 73.8±0.6 69.6±1.5 73.9±0.3 76.1±1.3 75.9±0.6 71.1±0.3
I 37.9±6.5 19.4±0.6 62.4±2.0 23.4±2.1 72.5±0.6 57.3±2.3 59.7±2.9 69.2±0.7 71.4±1.4 72.4±0.8 75.6±0.2 70.6±0.6
II 33.3±8.4 21.1±2.5 45.9±5.5 22.6±0.6 72.4±0.6 49.0±3.0 28.0±1.6 68.8±0.7 64.4±1.4 69.3±0.9 74.7±0.3 70.4±0.7
III 17.8±1.3 19.7±3.8 35.1±3.9 21.7±2.0 72.5±0.6 36.8±3.1 27.1±3.5 68.7±0.3 58.7±3.6 66.7±1.2 75.9±0.5 70.7±1.5
IV 16.2±1.0 19.6±5.6 31.4±5.1 19.4±1.8 72.4±0.6 28.6±1.9 23.6±6.4 68.7±0.3 51.9±2.8 64.6±0.3 75.6±0.5 70.3±1.0
V 21.0±4.0 13.5±4.7 32.7±2.4 14.6±1.0 72.5±0.6 24.0±3.3 26.7±9.0 68.8±0.8 47.3±4.3 62.8±0.7 75.3±0.3 70.6±1.1

Flickr
(medium)

nulla 47.1±0.5 50.0±1.2 50.8±0.7 OOM OOM 49.0±0.6 45.4±0.3 44.2±1.8 43.1±5.6 52.2±0.9 52.7±0.1 51.1±0.0
I 39.6±0.9 47.8±2.6 48.2±1.0 OOM OOM 48.2±0.7 46.3±0.8 44.3±2.1 40.3±4.6 45.6±1.1 52.0±0.2 51.0±0.1
II 30.6±0.1 44.1±3.9 43.7±2.1 OOM OOM 45.1±1.4 44.3±1.2 44.0±2.4 40.0±2.8 43.0±1.4 51.8±2.1 50.3±0.0
III 13.5±1.0 34.2±7.3 18.9±2.5 OOM OOM 37.2±2.3 27.1±7.6 43.1±3.1 45.9±3.6 41.1±1.1 51.2±1.5 49.8±0.0
IV 9.6±0.3 24.5±9.6 12.6±1.3 OOM OOM 29.5±3.4 15.2±2.7 42.8±3.5 43.5±1.2 40.8±0.9 50.3±1.8 48.7±0.3
V 9.1±0.1 24.9±9.8 15.7±4.5 OOM OOM 26.9±3.8 14.4±5.6 42.4±4.1 43.8±1.5 38.4±2.1 48.8±1.7 47.5±0.1

Reddit
(large)

nulla 95.6±0.0 95.8±0.0 95.5±0.1 OOM OOM 95.1±0.0 95.6±0.0 95.4±0.0 95.7±0.0 96.1±0.0 96.2±0.0 95.7±0.0
I 95.6 ±0.1 95.4±0.1 93.0±0.1 OOM OOM 95.0±0.1 95.4±0.1 95.4±0.2 93.2±0.0 95.3±0.0 96.1±0.0 95.6±0.1
II 94.7±0.0 95.2±0.2 85.8±1.4 OOM OOM 94.9±0.2 95.1±0.0 95.4±0.1 85.0±0.3 95.1±0.1 96.1±0.0 95.6±0.0
III 93.6±0.1 94.2±0.1 75.4±1.4 OOM OOM 93.8±0.2 94.4±0.2 95.3±0.0 72.0±0.1 94.8±0.0 96.0±0.0 95.5±0.0
IV 91.7±0.3 93.9±1.0 59.1±1.0 OOM OOM 93.7±0.1 93.2±0.3 95.2±0.1 51.5±0.1 94.2±0.2 95.9±0.1 95.5±0.0
V 88.6±0.1 93.1±0.5 49.6±1.3 OOM OOM 93.2±0.1 88.9±0.2 95.2±0.0 42.8±0.0 93.0±0.1 95.8±0.1 95.5±0.1

AMiner
(large)

nulla 63.4±0.1 66.8±0.7 63.6±0.2 OOM OOM 62.7±0.0 64.1±0.0 63.9±0.0 64.4±0.2 64.5±0.2 64.3±0.8 64.3±0.0
I 61.0±0.5 59.3±0.3 51.2±0.6 OOM OOM 61.0±0.2 62.7±0.0 63.8±0.2 61.0±1.0 63.0±0.1 61.7±0.5 64.1±0.0
II 51.2±0.3 46.9±1.0 32.6±0.3 OOM OOM 52.3±0.1 57.4±0.0 63.4±0.1 50.6±2.2 62.1±0.0 56.1±0.2 63.7±0.1
III 39.3±0.1 35.6±0.8 21.9±0.3 OOM OOM 42.7±0.0 48.6±0.0 62.7±0.0 38.3±1.2 60.8±0.1 49.0±0.4 63.1±0.1
IV 32.2±1.2 30.2±2.5 16.51±1.2 OOM OOM 32.2±0.1 41.3±0.0 62.1±0.1 31.0±0.7 58.6±0.2 42.5±0.3 62.6±0.3
V 24.5±0.7 23.8±2.3 13.0±0.9 OOM OOM 26.3±0.2 32.4±0.0 61.1±0.3 22.0±2.3 56.7±0.3 49.7±0.2 62.0±0.5

Attack Strategies. In this section, we examine five effective and distinct graph injection attack
methods, including FGSM (Goodfellow et al., 2015), SPEIT (Zheng et al., 2020), PGD (Madry
et al., 2018), TDGIA (Zou et al., 2021), HAO (Chen et al., 2022), that can degrade the performance
of victim GNNs, including our proposed DRAGON framework and other baselines. Note that we
focus primarily on injection attacks, which have received considerable attention due to their ease of
deployment and cost-effectiveness compared to modifying the original graph input.

In configuring attack strategies, we maintain consistency with the default GRB configuration, varying
attack intensities by multiplying the number of injected nodes to create five intensities from 1 to 5 as
detailed in Appendix C.1, while keeping hyperparameters consistent with GRB for generating attacks
and surrogate models, with additional specifics in Appendix C.2. The code can be accessed through
https://github.com/chunhuizng/emergent-degradation.

5.2 OVERALL ROBUSTNESS AND SCALABILITY ON GRB

We first assess DRAGON’s robustness and scalability, comparing it against state-of-the-art (SOTA)
baseline methods. Results are summarized in Table 1. Table 1 reveals DRAGON’s comprehensive
superiority over other baselines in terms of robust accuracy across five distinct attack intensities
(ranging from I to V ). Additionally, DRAGON achieves these results without encountering out-of-
memory issues while handling five graph datasets of varying scales on the same hardware platform.

Specifically, with regards to anti-degraded robustness, DRAGON demonstrates consistent and im-
pressive robust accuracy under five different attack intensities among various datasets, while other
baseline methods, including robust GNNs, adversarial trained GNNs, and general GNNs, experience
severe degradation in robustness as the attack intensity increases. For instance, on the small-scale
grb-citeseer dataset, DRAGON outperforms the most competitive baseline GAME+AT by 3.2% when
the attack intensity is I and by 12.5% when the attack intensity increases to V ; On the medium
grb-flickr dataset, compared to the most competitive baseline GAME+AT, DRAGON outperforms this
baseline by 6.4% when the attack intensity is I and by 10.4% when the attack intensity increases to V ;
On the large grb-reddit dataset, DRAGON outperforms the most competitive baseline, GAT+AT, by
0.7% when the attack intensity is I and by 0.6% when the attack intensity increases to V ; In addition,
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our DRAGON also demonstrates strong representation ability on clean graphs and outperforms
other baselines in the nulla (i.e., without attack) setting. Moreover, some baseline methods, such as
GCNSVD and GATGuard, struggle with GPU memory limitations due to their reliance on heavy
computation complexity and run into out-of-memory problems on medium and large datasets, unlike
our DRAGON, which shows reliable scalability. We note that DRAGON exhibits relatively lower
robustness on the AMiner dataset and we provide the explanation in Appendix B.

5.3 ABLATION STUDY

Table 2: Ablation studies for DRAGON on graphs of
varying scales and under FGSM attack of varying inten-
sities. Base model denotes backbone w.o. DRAGON.

Int. Base model w.o. denoise w.o. DPMoE DRAGON

Cora
(small)

nulla 83.1±0.5 84.2±0.2 83.9±0.6 84.1±0.3
I 81.6±4.2 84.1±1.3 81.8±1.4 84.2±0.4
II 80.7±3.7 83.9±1.9 80.9±0.8 84.1±1.6
III 79.7±4.3 83.9±3.7 80.1±0.7 84.0±2.0
IV 76.4±2.5 83.5±1.3 77.0±1.6 84.0±1.3
V 75.2±1.6 83.0±2.1 76.1±2.3 83.3±2.9

Citeseer
(small)

nulla 74.1±0.6 76.0±0.5 75.8±0.3 75.9±0.5
I 73.4±0.6 75.5±3.1 73.5±1.1 75.6±1.8
II 72.7±2.5 75.6±0.7 72.9±2.0 74.7±2.1
III 71.3±3.8 75.7±3.5 71.7±1.2 75.9±1.8
IV 70.5±5.6 75.4±2.5 70.8±2.7 75.6±0.7
V 69.6±4.7 75.0±2.4 71.1±3.2 75.3±2.4

AMiner
(large)

nulla 66.8±0.1 66.3±0.1 64.8±0.0 64.3±0.8
I 59.3±0.5 61.7±0.4 60.9±0.8 61.7±0.5
II 46.9±0.3 52.4±0.7 51.9±0.2 56.1±0.2
III 35.6±0.1 42.4±1.7 40.9±0.4 49.0±0.4
IV 30.1±1.2 34.0±0.5 34.6±0.3 42.5±0.3
V 23.8±0.7 26.5±2.2 28.1±0.9 39.7±0.2

We examine the contributions of DRAGON’s
individual components, namely the denoising
preprocessing component (DMGAN) and the
defender component (DPMoE), we perform
ablation experiments. We systematically re-
move each component to observe its impact on
DRAGON’s performance. The ablated models
are denoted as: (a) without denoise, (b) without
DPMoE, and (c) the GNN backbone, represent-
ing the base model without both denoise and
DPMoE, as shown in Table 2 (a fine-grained
ablation study on DMGAN is in Appendix D).

Our experiments reveal that removing any com-
ponent from DRAGON leads to decreased per-
formance in node injection attacks, particularly
as the attack intensity increases. This empha-
sizes the critical role each component plays in
enhancing the model’s robustness and providing
anti-degraded robustness:

For (a) w.o. denoise, eliminating the DMGAN
component significantly impairs DRAGON’s
ability to recover clean graph information from
an attacked graph input. For instance, on the small grb-cora dataset, the model experiences a 0.1%
loss in accuracy at an attack intensity of I and a 0.3% loss at an intensity of V . This illustrates that
a cleaner graph reconstructed by DMGAN is easier for defense. For (b) w.o. DPMoE, disabling
the DPMoE component entirely hinders DRAGON’s capacity to manipulate Gaussian DP noises of
varying magnitudes to counteract attacks of different intensities. On the grb-citeseer, the removal of
this component results in a 2.1% loss in accuracy at an attack intensity of I and a 4.2% loss at an
intensity of V . This demonstrates that DPMoE enhances the robustness of GNNs against adversarial
node injections of varying strengths by providing diverse yet effective Gaussian DP noises. Finally,
for (c) w.o. denoise and DPMoE, removing both components reduces DRAGON to a vanilla GAT
model. On the larger grb-aminer, this leads to a 2.5% increase in accuracy at an attack intensity of I
and a 15.9% loss at an intensity of V .

Above results highlight the effectiveness of DRAGON in denoising and enhancing a base model’s
capacity to learn robust representations against attacks of different intensities.

5.4 WHAT WINS ANTI-DEGRADED ROBUSTNESS?

We investigate the denoising module (DGMGAN) in recovering attacked graphs and the capability
of the defender component (DPMoE) in manipulating the magnitude of the Gaussian Differential
Privacy mechanisms and analyze how they improve DRAGON’s anti-degradation robustness.

Denoising Injected Nodes by DMGAN. To gauge the effectiveness of DMGAN in DRAGON,
we visually compare the attacked graph input with the denoised version produced by DMGAN in
Figure 3, and specific statistics for this edge denoising process are listed in Appendix D. The results
illustrate that as the attack intensity increases, DMGAN continues to efficiently remove numerous
malicious edges associated with injected nodes. This reduction in the negative impact of the attack
showcases DMGAN’s robustness against node injection attacks of varying intensities.
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Before delving into the DPMoE design, it is crucial to acknowledge that relying solely on
the DP mechanism within a standard GNN backbone, without MoE, poses challenges in strik-
ing a balance between performance in attack and non-attack scenarios. As shown in Fig-
ure 4, models with higher DP scaling coefficients display flatter performance curves, indicat-
ing robustness in high-intensity attack scenarios but reduced accuracy in non-attack scenarios.

A
tta
ck
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h

D
en
oi
se
d
gr
ap
h

Attack Intensity I Attack Intensity V

Figure 3: The visualization of sampled Cora graph at
attack intensity I and V and their DMGAN-denoised
version. The black edges denote normal edges and the
red edges represent malicious edges.

Effectiveness of DPMoE. To attain a more fa-
vorable trade-off between non-attack and attack
scenarios of varying intensity, DPMoE is intro-
duced to dynamically balance these scenarios.
This is achieved by employing multiple experts
that integrate DP scaling coefficients of varying
magnitudes. Such an approach allows the activa-
tion of the appropriate expert network with the
corresponding DP scaling coefficient, yielding
an (more) optimal solution for both non-attack
and varying-intensity attack scenarios: (i) in
non-attack scenarios, DPMoE activates the ex-
pert with minimal DP noise; (ii) as attack inten-
sity increases, it activates the expert with larger
DP noise magnitudes. This adaptive adjustment
of the DP scaling coefficient by DPMoE for
non-attack and varying-intensity attack inputs
results in impressive performance under varying-
intensity attack evaluations and non-attack eval-
uations.

Figure 4: Different DP rates (scaling coefficients) on DRAGON w.
single DP rate and w. multiple DP rates via DPMoE using standard
training (left) and adversarial training (right) on Cora dataset.

In addition to the above experi-
ments, we present more comprehen-
sive findings and clarifications, in-
cluding evaluations against SPEIT,
PGD, TDGIA, and HAO attacks,
in Appendix B. Appendix C eluci-
dates all dataset and attack strategy
settings. Further insight into the
trade-offs within the denoise mod-
ule is offered in Appendix D. Ad-
ditionally, Appendix E and F delve
into discussions about GNNs under
modification and adaptive attacks,
although these discussions slightly
extend beyond the scope of this pa-
per, as explained in the appendix. Detailed analyses demonstrating our method’s linear time and
memory complexities, contributing to its scalability and efficiency, can be found in Appendix H.
Furthermore, the realistic importance of considering high-intensity graph attacks in the real world is
discussed in Appendix I.

6 CONCLUSION

We begin by identifying two practical issues: severe robustness degradation and limited scalability
in current adversarial graph learning. Then to address them simultaneously, we propose a novel
framework named DRAGON by utilizing a denoising masked graph auto-encoder and a differential
privacy mechanism. Our experimental results show the effectiveness of DRAGON in denoising
malicious edges, counteracting the injected attack node features through differential privacy, and
navigating graph data of varying scales and attacks of different intensities. Overall, DRAGON is a
robust and scalable solution for avoiding GNN’s emergent robustness degradation in unpredictable
real-world applications.
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ETHICS STATEMENTS

We emphasize the critical importance of considering high-intensity graph attacks and the emergent
severe robustness degradation, which is a bitter lesson from unpredictable real-world scenarios. We
discuss this in detail in Appendix I. Therefore, we improve the robustness of GNNs with respect
to severe robustness degradation, ensuring their effectiveness against adversarial attacks even in
high-intensity scenarios and with large graph datasets.

Furthermore, advances in graph adversarial learning may lead to potential vulnerabilities in GNNs.
Therefore, it is imperative to develop robust graph defense methods and advocate for responsible
GNN deployment and management. Our novel defense framework, DRAGON, paves the way for
future research on trustworthy graph learning. We emphasize the need for comprehensive strategies
to address possible implications and threats in future research and applications.
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A PROOF

This section provides a rigorous proof and analysis to elucidate the robustness of the DPMoE module.
The proof of Lemma 1 is adapted from Lemma 1 in the research (Lecuyer et al., 2019), aligning the
notations and the scope of this paper.

We first assume the composition model f(·) with classical Gaussian mechanism satisfies (ϵ, δ)-DP
property. This assumption follows precedents in NLP (Wang et al., 2021) and CV (Lecuyer et al.,
2019), where language/vision models composed of the DP module can be assumed to satisfy (ϵ, δ)-DP.
The (ϵ, δ)-DP can be justified through its use of the classical Gaussian DP output perturbation (this
mechanism is inherently (ϵ, δ)-DP), due to the post-processing invariance of differential privacy (i.e.,
any computation on the output of the DP mechanism remains DP).

Given Bp(r) representing a p-norm ball with radius r, defined as:

Bp(r) = {∆h(l)
v ∈ RN : ∥∆h(l)

v ∥p ≤ r}, (10)

where ∆h
(l)
v represents the noise affecting h

(l)
v at layer l after message passing for node v. Suppose a

node classification model f(·) is robust to this perturbation if, for all ∆h
(l)
v ∈ Bp(r),

fk(h
′(l)
v ) > max

i:i ̸=k
fi(h

′(l)
v ). (11)

Lemma 1. (Expected Output Bound)
Let f(·) be a GNN incorporating DP-GConv and having bounded output f(h(l)

v ) ∈ [0, b], b ∈ R+,
that satisfies (ϵ, δ)-DP. Then, the expected output E[f(h(l)

v )] has the following property:

E[f(h(l)
v )] ≤ eϵE[f(h′(l)

v )] + bδ, ∀∆h(l)
v ∈ Bp(b). (12)

Proof. For ∆h
(l)
v ∈ Bp(b) that modifies h(l)

v to h′(l)
v , the expected output of f(·) is

E[f(h(l)
v )] =

∫ b

0

Pr(f(h(l)
v ) > t)dt. (13)

Using the post-processing property of (ϵ, δ)-DP algorithms and applying this to f(·), we deduce:

E[f(h(l)
v )] ≤ eϵ

(∫ b

0

Pr(f(h′(l)
v ) > t)dt

)
+ bδ

= eϵE[f(h′(l)
v )] + bδ.

(14)

Assuming f(·) incorporating DP-GConv satisfies (ϵ, δ)-DP and f(h
(l)
v ) = (f1(h

(l)
v ), . . . , fK(h

(l)
v )),

where fk(h
(l)
v ) ∈ [0, 1], applying Lemma 1 with b = 1, we have

E[fk(h(l)
v )] ≤ eϵE[fk(h′(l)

v )] + δ, ∀k, ∀∆h(l)
v ∈ Bp(1). (15)

Proposition 1. Robustness Guarantee for DPMoE. For a GNN f(·) containing DPMoE which
utilizes Gaussian DP, assume this mechanism lets the model output satisfy (σ, δ)-DP. If the expected
value E of the model output satisfies the following property:

E(fk(h(l)
v )) > e2ϵ max

i:i ̸=k
E(fi(h(l)

v )) + (1 + eϵ)δ, (16)

then the label probability output vector p(h(l)
v ) = (E(f1(h(l)

v )), . . . ,E(fK(h
(l)
v ))) of f(·) for node v

satisfies the robustness: E(fk(h(l)
v )) ≥ maxi:i ̸=k E(fi(h(l)

v )).

Proof. We first consider a GNN, f(·), containing only DP-GConv. By Equation (15), derived from
Lemma 1, we have:

E(fk(h(l)
v ) ≤ eϵE(fk(h′(l)

v ) + δ, (17)

E(fi(h′(l)
v ) ≤ eϵE(fi(h(l)

v ) + δ. (18)
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Given the lower-bound on E(fk(h′(l)
v ) by Equation (17) and the upper-bound on maxi̸=k E(fi(h′(l)

v )
by Equation (18), we deduce:

E(fk(h′(l)
v ))

equation 17

≥ E(fk(h(l)
v ))− δ

eϵ

>
e2ϵ maxi:i ̸=k E(fi(h(l)

v )) + (1 + eϵ)δ − δ

eϵ

= eϵ max
i:i̸=k

E(fi(h(l)
v )) + δ

≥ max
i:i̸=k

E(fi(h′(l)
v )),

(19)

aligning with Equation (20), implying robustness of the model f(·) containing DP-GConv.

To further prove the robustness of f(·) containing DPMoE, we simplify Equation (8) to h
(l+1)
v =

Update(h
(l)
v ) and substitute it into Equation (16), to yield:

E[Update(fk(h
(l)
v ))] > e2ϵ max

i:i ̸=k
E[Update(fi(h

(l)
v )) + (1 + eϵ)δ. (20)

Thus, when f(·) containing DPMoE satisfies Equation (20), it satisfies robustness. Note that we set
µi to 1 to obtain a more concise proof.

Proposition 1 explicates the interrelation between the model’s robustness and the perturbations in the
features. This interrelation enables the identification of a maximum solution, denoted as ∆h

(l)
v(max),

ensuring the model’s robustness. Post injection attacks, let’s denote h
(l)
v as:

h(l)
v = COM(l)

(
DPMoE(l)h(l−1)

v ,AGG
({

DPMoE(l)h(l−1)
u ,DPMoE(l)h(l−1)

w

}))
, (21)

where ∀u ∈ Nv ∧ u ∈ G, and ∀w ∈ Nv ∧ w ∈ G
′ ∧ w /∈ G. Denote the attack method as Att(·)

and the altered graph as:

G
′
= Att(∆E,∆N,G), (22)

where ∆E and ∆N represent the budget of edges per injected node and the budget of injected nodes,
respectively, and G is the input graph.

According to Proposition 1, there exists a maximum solution ∆h
(l)
v(max) that certifies the robustness

of the model, provided Equation (16) holds true, and the (ϵ, δ)-DP in DP-GConv is maintained. Here,
∆h

(l)
v(max) = Equation (8) - Equation (21). By solving Equations (16) and (21) along with ∆h

(l)
v(max),

a maximum ∆N can also be found to guarantee model robustness with a fixed ∆E. Importantly,
there is no necessity to inversely solve for the explicit maximum ∆N .

B ADDITIONAL PERFORMANCE COMPARISONS

We also test the robustness of DRAGON under the PGD attack and the SPEIT attack. The results
are shown in Figure 6, 7 and 5. The figures show our method outperforms all baselines under
representative attacks as a scalable and robust framework for GNNs.
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Figure 5: The performance of top-5 baselines and our method under the SPEIT Attack.
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Figure 6: The performance of top-5 baselines and our method under the PGD Attack.
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Figure 7: The performance of top-5 baselines and our method under the TDGIA Attack.
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Figure 8: The performance of top-5 baselines and our method under the HAO Attack.

We note that DRAGON exhibits relatively lower robustness on the AMiner dataset compared to
others. This outcome can be attributed to the distinctive characteristics of our DPMoE module. By
incorporating DP noise into the feature space, our approach effectively mitigates the adverse effects
stemming from the malicious aggregation of injected node features. This mechanism enhances
robustness, especially on datasets with larger feature dimensions, as evidenced by our empirical
findings. Notably, the AMiner dataset has a modest feature dimension (#Feat 100). In contrast,
datasets like Citeseer (#Feat 768) and Reddit (#Feat 602), characterized by richer feature dimensions,
show minimal performance degradation. This highlights the strength of our method in handling
datasets with more extensive feature information - a common scenario in real-world data.

C IMPLEMENTATION DETAILS

C.1 REPRODUCIBILITY SETTINGS

Training and Evaluation Configuration. In our experiments, we maintain consistency with the
default hyperparameters of the GRB benchmark for the baseline methods. To ensure reliable results,
we conduct 5 runs for each experimental result and report the mean value and standard deviation.
Additionally, we adhere to the GRB benchmark’s data splitting protocol, with 60% of the graph data
as the training set, 10% as the validation set, and 30% as the test set for each benchmark dataset.
Statistics of GRB data covering small to large graphs are listed in Table 4. All experiments are
performed on an NVIDIA V100 GPU with 32 GB of memory.

To ensure reproducibility, we follow the hyperparameter settings of baselines used in GRB (Zheng
et al., 2021) and other original papers (Chen et al., 2022; Zhang et al., 2023c). The hyperparameters
of DPMoE are given in Table 5, including hyperparameters of adversarial training listed in Table 3
Specifically, for Cora, we set the total number of experts to N = 10 and the number of activated
experts to k = 2. For other datasets, by default, we set the total number of experts to N = 4 and the
number of activated experts to k = 1. Note that the DP scaling coefficient µi for each individual
expert is linearly increased via multiplying the minimum coefficient by i as the index i of that expert
increases. The number of experts is determined by evaluating the performance of the validation set.
The experiment results on the Cora dataset in Table 6 assess the DPMoE module’s performance with
varying numbers of experts. We find that when the number of experts (num) is set to 10, the accuracy
of the validation set approaches a marginal effect. However, when the number of experts exceeds
10, uncertainty increases, potentially leading to instability in optimizing a larger number of expert
models. Therefore, we set the number of expert models to 10, which allows us to achieve acceptable
differential privacy rates.

Additionally, hyperparameters of DMGAN are shown in Table 10. The mask rate is 0.7, the walks
per node is 1, and the walk length is 3.
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Table 3: Hyperparameters for adversarial training. The settings follow the GRB benchmark.

Datasets Cora Citeseer Flickr Reddit AMiner

Injections 20 30 200 500 500
Edges 20 20 100 200 100
Step size 0.01 0.01 0.01 0.01 0.01
Iteration 10 10 10 10 10
Attack FGSM FGSM FGSM FGSM FGSM

Table 4: Statistics of GRB data covering small to large graphs.

GRB
Datasets Scale Nodes Edges Feat. Classes Feat. Range

(normalized)

Cora Small 2,680 5,148 302 7 [-0.94, 0.94]
Citeseer Small 3,191 4,172 768 6 [-0.96, 0.89]
Flickr Medium 89,250 449,878 500 7 [-0.47, 1.00]
Reddit Large 232,965 11,606,919 602 41 [-0.98, 0.99]
AMiner Large 659,574 2,878,577 100 18 [-0.93, 0.93]

Table 5: Hyperparameters of the DPMoE defender GNN.

Datasets Layer num. Hidden size Heads Dropout LR Backbone layer Minimal DP rate

w.o. AT w. AT w.o. AT w. AT w.o. AT w. AT

Cora 3 128 4 0.5 0.001 0.01 GATGuard GAT 0.3 0.1
Citeseer 3 64 6 0.5 0.001 0.01 GATGuard GAT 0.3 0.1
Flickr 3 64 8 0.5 0.0001 0.0001 GAT GAT 0.3 0.1
Reddit 2 64 8 0.5 0.01 0.01 GAT GAT 0.1 0.1
AMiner 3 64 4 0.5 0.01 0.01 GAT GAT 0.1 0.1

Table 6: The results of DPMoE module with different numbers of experts on Cora dataset under FGSM attack I.

num. of experts 3 5 10 75 150

Accuracy 0.825 0.841 0.842 0.841 0.839

C.2 MORE DETAILS ABOUT ATTACK STRATEGIES

We examine three effective and diverse graph attack methods that can impair the performance of
victim GNNs, including our proposed DRAGON framework and other baselines. The details of these
attack strategies are listed as follows:

• FGSM: The Fast Gradient Sign Method (FGSM) (Goodfellow et al., 2015) computes the optimal
max-norm constrained perturbation as attacks by linearizing the loss function around the current
value of the parameters.

• SPEIT: SPEIT (Zheng et al., 2020) emerges as the first-place winner in the KDD-CUP 2020 Graph
Adversarial Attack & Defense competition. It generates perturbed adjacent matrix and feature
gradient attacks for a global black-box node injection attack.

• PGD: The Projected Gradient Descent (PGD) (Madry et al., 2018) is an adversary method that
leverages local first-order gradient information about the network to generate the strongest attack
inputs.

• TDGIA: Topological Defective Graph Injection Attack (Zou et al., 2021) introduces the topological
defective edge selection strategy and the smooth feature optimization objective to generate the
features for the injected nodes.

• HAO: Harmonious Adversarial Objective (HAO) (Chen et al., 2022) introduces homophily unno-
ticeability that enforces graph injection attack to preserve the homophily, thereby enabling stronger
attacks.
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In order to generate gradient-based attacks, we follow previous research (Zheng et al., 2021) and use
GCN as the surrogate model. To enhance the strength, stability, and transferability of the attacks, we
also add layer normalization (LN) layers provided by the GRB benchmark to the GCN surrogate
model. The hyperparameters of the surrogate model are presented in Table 7. The step size is 0.01
and iteration is 1000 when attacks are generated. In addition, We provide details of node injection
attack intensities from nulla to V in Table 8.

Regarding attacks, in our setting, integrating other single-node injection attacks such as SNI (Tao
et al., 2021) as a baseline proves challenging due to limited edge scope, which differs significantly
from other baselines that involve injected nodes with multiple edges. Furthermore, Table 9 shows
that these baselines exhibit stronger attacks than Tao et al. (2021)’s method. Notably, our method’s
robustness is demonstrated against the latest and most advanced injection attacks in Appendix B.

Table 7: Hyperparameters of the surrogate model (the settings follow the GRB benchmark).

Datasets Cora Citeseer Flickr Reddit AMiner

Hidden Size 64 64 128 128 128
Layer Number 3 3 3 3 3
Learning Rate 0.01 0.01 0.01 0.01 0.01
Dropout 0.5 0.5 0.5 0.5 0.5

Table 8: The configurations about attacks of five intensities and without attacks: # node represents the number of
injected nodes, # edge/n. represent the max number of edges per injected node, and nulla represents without any
attack injections into the graph input.

Dataset Injection Attack Intensity

nulla I II III IV V

Cora # node 0 1*135 2*135 3*135 4*135 5*135
# edge/n. 0 20 20 20 20 20

Citeseer # node 0 1*160 1*160 1*160 1*160 1*160
# edge/n. 0 20 20 20 20 20

Flickr # node 0 1*1000 2*1000 3*1000 4*1000 5*1000
# edge/n. 0 100 100 100 100 100

Reddit # node 0 1*3000 2*3000 3*3000 4*3000 5*3000
# edge/n. 0 200 200 200 200 200

AMiner # node 0 1*4000 2*4000 3*4000 4*4000 5*4000
# edge/n. 0 100 100 100 100 100

Table 9: DRAGON’s performance under attacks at Intensity V. Other methods exhibit stronger attacks than
Single Node Injection Attack (SNI) (Tao et al., 2021).

SNI FGSM SPEIT PGD TDGIA HAO

Ours 52.5 48.8 51.2 51.3 48.7 48.1

D TRADE-OFFS OF DMGAN

According to Figure 9, the trade-off associated with using DMGAN as a denoising module needs
to be considered: there is a risk of removing the original edges along with the malicious edges,
which may affect the performance of the model when it is used in a non-attack setting. After careful
study, we find that a reconstruction rate of 0.3 provides a good balance between these trade-offs.
For example, compared with DRAGON integrated with a vanilla graph autoencoder, our DRAGON
integrated with DMGAN sacrifices only little accuracy under non-attack settings, but shows a larger
accuracy improvement when the graph is under attack. The improvement of our DRAGON increases
as the attack intensity increases, demonstrating the robustness of our DPMoE design from several
perspectives.

To further explore the denoise ability of DMGAN, we conduct the experiment and report the results in
Table 11. Let’s denote TPR-N↑ (FNR-N↑) as TPR (FNR) for link prediction between normal/original
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nodes; and TPR-A↑ (FNR-A↑) as TPR (FNR) for link prediction between original nodes and
injection/attack nodes. FNR-N (less than 7.4%) indicates how many edges between original nodes
are wrongly removed by DMGAN. According to the previous research (Jin et al., 2018), the edge
noise of this level between original nodes only causes a small robustness degradation (less than 3%)
on GNNs. FNR-A (more than 25.1%) indicates how many more harmful malicious edges of attack
nodes are removed by DMGAN.

In order to explore the sensitivity of hyperparameters of DMGAN and how each loss term contributes
to denoising on the attacked graph, we present sensitivity analysis in Table 12, Figure 10 and a
fine-grained ablation study in Table 13.

Table 10: Hyperparameters of DMGAN. We use a simple graph auto-encoder model design to ensure scalability.

Auto-encoder Model Layers Num. Hidden Size LR Dropout

Encoder GCN 1 128 0.01 0.8
Decoder MLP 2 64 0.01 0.2

Table 11: TPRs and FNRs of DMGAN under FGSM attack on Cora dataset.

nulla I II III IV V

TPR-N↑ 0.954 0.941 0.935 0.931 0.929 0.926
FNR-N↓ 0.046 0.059 0.065 0.069 0.071 0.074
TPR-A↓ N.A. 0.638 0.674 0.691 0.724 0.749
FNR-A↑ N.A. 0.362 0.326 0.309 0.276 0.251

Figure 9: The effect of DMGAN with different reconstruction rates on the performance of GAT (left) and
DPMoE (right) as defender GNNs in the Cora dataset under the FGSM attack (the DPMoE module uses the
GAT layer as the backbone layer of each expert network).

Table 12: Sensitivity analysis for hyperparameter of DMGAN loss α of L = Ld + αLe.

α 0.000 0.005 0.010 0.015 0.020

DMGAN 48.31 48.63 48.56 48.48 48.41
DRAGON 51.63 52.02 51.90 51.88 51.87
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Figure 10: The effect of DMGAN with different walk lengths and number of walks under FGSM attack on
Flickr datasets. I-V represents attack intensities.
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Table 13: Fine-grained Ablation studies under FGSM attack of varying intensities on Flickr dataset. DM-
GAN(Link) denotes only using link prediction loss in DMGAN and DMGAN(Link + Degree) denotes incorpo-
rating both link prediction loss and degree regression loss.

Models nulla I II III IV V

Vanilla GAT 50.0 47.8 44.1 34.2 24.5 24.9
+DPMoE 52.9 51.6 49.4 49.1 48.5 47.7
+DMGAN(Link) 49.8 48.3 46.5 39.6 28.7 30.3
+DMGAN(Link + Degree) 50.2 48.6 47.0 41.2 33.3 33.7
+DPMoE+DMGAN(Link) 52.2 51.6 51.2 50.4 49.5 47.6
+DPMoE+DMGAN(Link+Degree) 52.7 52.0 51.8 51.2 50.3 48.8

E DEFENSE AGAINST GRAPH MODIFICATION ATTACKS

In the main section of the paper, we mainly present the performance of DRAGON under graph injec-
tion attacks. To evaluate the effectiveness of DRAGON under graph modification attacks, we apply
GR-BCD and BR-BCD attacks (Geisler et al., 2021) on our method and baselines, including SOTAs
(Soft-Medoid/Soft-Median GDCs (Geisler et al., 2021) and GAME). The results are summarized
below in Table 14.

Table 14: The robust accuracy of Soft-Median GDC and Soft-Medoid GDC without or with our GAME
framework on the Cora dataset with the global attacks (GR-BCD & PR-BCD, ϵ = 0.1) proposed by Soft-Medoid
GDC. We set the number of experts to 10 and the hidden units of each expert to 32. We run them on three
random splits and report the mean and standard error results.

GR-BCD PR-BCD

GCN 0.622 ± 0.003 0.645 ± 0.002
GDC 0.677 ± 0.005 0.674 ± 0.004
PPRGo 0.726 ± 0.002 0.700 ± 0.002
SVD GCN 0.755 ± 0.006 0.724 ± 0.006
Jaccard GCN 0.664 ± 0.001 0.667 ± 0.003
RGCN 0.665 ± 0.005 0.664 ± 0.004
Soft-Median GDC 0.765 ± 0.001 0.752 ± 0.002
Soft-Medoid GDC 0.775 ± 0.003 0.761 ± 0.003
Soft-Median GDC (+GAME) 0.772 ± 0.005 0.759 ± 0.005
Soft-Medoid GDC (+GAME) 0.780 ± 0.007 0.772 ± 0.006
DRAGON 0.788 ± 0.012 0.784 ± 0.007

F DEFENSE AGAINST GRAPH ADAPTIVE ATTACK

In our paper, we primarily focus on more advanced and scalable injection attacks involving malicious
node features and edges. On the other hand, adaptive attacks LowBlow (Entezari et al., 2020) and
the method from Mujkanovic et al. (2022) primarily focus on structure (edge) perturbations and are
usually limited to small graphs due to their cubic complexity in computing the full set of adjacency
eigenpairs. Consequently, adaptive attacks fail to scale to medium-sized graph datasets like Flickr
and large graph datasets like Reddit. Additionally, they cannot be easily scaled with higher intensity,
which is essential for our investigation into the emergence of robustness degradation. Moreover, our
DMGAN module is non-differentiable during graph reconstruction, making adaptive attacks difficult
to optimize a specific loss function on our model. Table 15 provides a referential comparison when
models are attacked by adaptive attacks.

Table 15: The robust performance of our method under adaptive attacks on the Cora dataset.

Model Vanilla SVD ProGNN GNNGuard GARNET Soft-Median-GDC Ours

Entezari et al. (2020) 74.77 ± 0.71 26.03 ± 2.76 69.88 ± 1.61 74.80 ± 0.95 77.71 ± 0.95 77.62 ± 0.80 80.28 ± 1.08
Mujkanovic et al. (2022) 75.32 ± 0.71 20.11 ± 3.32 74.87 ± 2.02 72.53 ± 0.25 75.27 ± 0.74 77.15 ± 0.56 79.92 ± 1.35
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G EXPLORATION OF ALTERNATIVE GRAPH ROBUST LEARNING METHODS
(SLIGHTLY OUTSIDE THE SCOPE OF OUR PAPER)

In Appendix E and Appendix F, we have assessed several of these baselines under different types of
attacks, furnishing a comprehensive discussion along with experimental results. Therefore, here, we
aim to elucidate the rationale behind not selecting some recent methods as our primary baselines.

Many methods are only effective for specific attacks with ad hoc designs, making the results less
generalizable and practical. SoftMedian (Geisler et al., 2021) and GARNET (Deng et al., 2022) are
only designed to defend against structure (edge) perturbations between original nodes by cleaning the
structure, and GCN-Jaccard (Wu et al., 2019b) uses structure-based preprocessing. Although structure-
based solutions handle structure perturbations well and can scale to large graphs by considering only
structure, they fail to defend against advanced node injection attacks with both malicious features
and edges. Table 16 shows that the performances of these structure-based methods are less robust
than GAT with adversarial training and even close to vanilla GAT under node injection attacks. This
structure-based weakness has been discussed in the benchmark (Zheng et al., 2021), which also
avoids them as baselines.

Current graph anomaly detection methods still face the accuracy problem when used to remove
malicious nodes, i.e., they falsely identify too many original nodes as anomaly nodes. The recent
method CoLA (Liu et al., 2021) provides a detection performance of 0.751 on the Flickr dataset,
which means that when using it to remove attacks, it may introduce even more extra node noise
(0.249) than the highest intensity attacks (0.056). Table 16 shows that anomaly detection cannot be
easily generalized to our scenario, i.e., the emergence of robustness degradation.

Table 16: The performance of DRAGON and other methods under FGSM attack of varying intensities on the
Flickr dataset. GAD is a representative graph anomaly detection method and Struc. represents methods are
only designed for graph structure attacks or only defend in structural ways.

Methods nulla I II III IV V

Vanilla GAT 50.0 47.8 44.1 34.2 24.5 24.9
CoLA (GAD Anomaly Detection) 38.2 25.7 19.8 17.6 14.5 15.2
GCN-Jaccard (Struc.) 47.3 41.2 33.6 18.3 14.8 15.4
SoftMedian (Struc.) 51.0 48.3 46.2 39.8 27.2 28.7
GARNET (Struc.) 51.8 49.9 42.1 35.6 29.2 30.1
GAT+AT 44.2 44.3 44.0 43.1 42.8 42.4
Ours 52.7 52.0 51.8 51.2 50.3 48.8

H COMPLEXITIES

Here we analyze the time and memory complexities of our method. Let N be the number of nodes,
N ′ be the number of nodes after masking, E be the number of edges, E′ be the number of edges
after masking, d be the size of the hidden channels (we assume it is of the same order as the size of
the input features), l1 be the number of encoder layers in the DMGAN, l2 be the number of MLP
layers in the DMGAN decoder, l3 be the number of DPMoE layers, k be the number of experts, our
comprehensive complexity analysis is structured as follows:

DMGAN Module. DMGAN encoder part obtains encoded representations with time complexity
O(l1d

2N ′) and memory complexity O(l1dN
′+ l1d

2). - The DMGAN MLP decoder part decodes the
degree regression with time complexity O(l2d

2N ′) and memory complexity O(l2dN
′ + l2d

2). MLP
also predicts whether edges exist or not by decoding 2E′ times node feature element-wise product,
with O(2l2d

3E′) time and O(2l2dE
′ + l2d

2) memory complexity. - The total time complexity of
the DMGAN module is O(l1d

2N ′ + l2d
2(N ′ + 2dE′)), and the memory complexity is O(l1d(N

′ +
d) + l2d(N

′ + 2E′ + 2d)).

DPMoE Module. In one layer DPMoE, N/k nodes are distributed into each expert, resulting in
O(d2N/k) time and O(d2 + dN/k) memory complexity. For all k experts, the total time complexity
is O(d2N) and memory complexity is O(kd2 + dN) - Gating network is trained with O(dkN) time
complexity and constant O(dk) memory complexity for gating in one layer. - Overall time complexity
of DPMoE module is O(l3dN(d+ k)) and memory complexity is O(l3d(N + kd+ k)).
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DRAGON (Complete Model). Overall time complexity of DRAGON is O(l1d
2N ′ + l2d

2(N +
2dE′)+ (l3dN(d+ k), and memory complexity is O(l1d(N

′+ d)+ l2d(N
′+2E′+2d)+ l3d(N +

kd+ k)).

Given these additions and clarifications, when constants are stripped away (i.e., mask rate), the
complexities for our methodology remain linear (i.e., O(N+N ′+E′)), matching our earlier simplified
analysis and empirical outcomes. Empirical assessments, as presented in Table 1, underscore that most
baselines with O(N2) complexities (e.g., GCNSVD and GNNGuard) find scalability challenging,
especially with medium to large graphs. This contrasts with our linear complexity method which
demonstrates better scalability. For brevity, the comparison between some representative baselines
and our method is listed in Table 17. In addition, comparing the standard training time, DRAGON
shows better performance and less training time compared to GNNGuard and GCNSVD since they
have a significantly higher time complexity of O(N2). The details of training time are listed in
Table 18.

Table 17: Time and Memory Complexity of representative graph robust learning methods.

Complexity RGCN GAME EvenNet GCNSVD GNNGuard Ours

Time O(E) O(N + E) O(E) O(N2 + E) O(E) O(N + E)
Memory O(E) O(N) O(N + E) O(N2) O(N2) O(N + E)

Table 18: The training times for models on the Cora dataset.

Model Name RGCN GAT EvenNet GAME DRAGON GNNGuard GCNSVD

Training Time (s) 00:03 00:04 00:11 00:18 00:23 01:03 05:28

I A BITTER LESSON FROM THE REAL WORLD: MASSIVE NODE INJECTION
ATTACK IS POSSIBLE

Learning from the highly corrupted graph is important. In representation learning, the ability to
derive effective representations from highly corrupted data has been a subject of great interest. This
pursuit is evident in various domains, including computer vision, where the goal is to recover original
images from heavily noisy pictures, and natural language processing, where the challenge is to learn
useful language representations from low-quality Internet corpora. Similarly, in the context of graphs,
the significance of learning effective representations from highly corrupted data cannot be overstated.
Therefore, the ability to learn high-quality representations from highly noisy Internet social graphs is
of immense practical importance.

Massive node injection on the graph is possible. The notion of "unnoticeability" or "imperceptibil-
ity" is indeed critical in general adversarial attacks, which constrains the attack intensity. However,
transposing this concept directly from computer vision to graph scenarios brings about its own set of
challenges, which allows strong attack intensity to be realistic on graphs:

(i) Ill-definition in Graph Scenarios: As highlighted by research on adversarial learning on non-
Euclidean data, specifically on graphs (Zheng et al., 2021):

• "However, this assumption is controversial: If defenders have the original graph, they can simply
train the model on that one; If defenders do not have the original graph (the general case for data
poisoning where defenders can not tell whether the data are benign or not), then it does not make
sense to keep unnoticeability. This is different from the case of images, where unnoticeability can
be easily judged by humans even without ground-truth images."

• "The attackers may perturb the graph structure or attributes within the scope of unnoticeability
defined by themselves, while defenders have to depend on their own observations to discover.
However, even if defenders notice that the degree distribution is different, it is still hard to identify
specific malicious nodes or edges from the entire graph."

• "Thus, we do not add too many constraints and we insist that the notion like “unnoticeability” will
be refined during the arms race between attackers and defenders. For example, if an advanced
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defense proposes a measure to identify malicious nodes with high probability, then the attackers
can decide by themselves to refine the constraints based on this measure."

(ii) Dynamics of Real-world Graphs: Networks like those on the internet undergo constant mod-
ifications, often through the addition of new nodes. This continual change provides a conducive
environment for malicious node insertions, often without the constraints of "unnoticeability". Identify-
ing these alterations, especially the specific malicious nodes and edges, is challenging, as highlighted
in Global-Response Section 3.

(iii) High-Intensity Attacks in Reality: Contrary to the notion of limited attack budgets, real-world
scenarios, especially on Internet social platforms, have demonstrated intense attacks. For instance,
media outlets have reported massive bot influxes on platforms like Twitter. These bots, operating
at high intensities, spread disinformation on an unprecedented scale, and interact with other users
without being detected (same with injection attacks). One real-world report1 have shown that bots
present on these platforms at high intensities (20%). In such scenarios, where attacks are noticeable,
classifying new nodes on attacked graphs remains a crucial challenge. The societal concerns derived
from social media are always at the forefront of machine learning research (Vosoughi et al., 2016,
2017, 2018; Liu et al., 2024).

In conclusion, our work primarily emphasizes high-intensity attack scenarios, given their growing
relevance in real-world graph contexts. These scenarios differ significantly from traditional attack
situations in vision or language domains. Our approach, designed to address the emergence of severe
robustness degradation, gains notable importance in these graph-related contexts.

1Twitter Bots Poised to Spread Disinformation Before Election, The New York Times, October 29, 2020.
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