
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

LANGUAGE-CONDITIONED MULTI-STYLE POLICIES
WITH REINFORCEMENT LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Recent studies have explored the application of large language models (LLMs)
in language-conditioned reinforcement learning (LC-RL). These studies typically
involve training RL agents to follow human instructions in domains such as object
manipulation, navigation, or text-based environments. To extend these capabili-
ties for following high-level and abstract language instructions with diverse style
policies in complex environments, we propose a novel method called LCMSP,
which can generate language-conditioned multi-style policies. LCMSP first trains
a multi-style RL policy capable of achieving different meta-behaviors, which can
be controlled by corresponding style parameters. Subsequently, LCMSP leverages
the reasoning capabilities and common knowledge of LLMs to align language in-
structions with style parameters, thereby realizing language-controlled multi-style
policies. Experiments conducted in various environments and with different types
of instructions demonstrate that the proposed LCMSP is capable of understanding
high-level abstract instructions and executing corresponding behavioral styles in
complex environments. 1

1 INTRODUCTION

Natural language serves as a bridge between agent behavior and human instructions. Training agents
to follow natural language instructions has been a long-standing problem (Winograd, 1972). Recent
research has explored this problem using language-conditioned reinforcement learning (LC-RL)
(Luketina et al., 2019), demonstrating remarkable performance in tasks such as navigation, object
manipulation, and arrangement (Tellex et al., 2011; Hill et al., 2020; Brohan et al., 2023; Pang et al.,
2024; Szot et al., 2024).

Beyond these tasks, reinforcement learning (RL) has shown outstanding performance in more com-
plex environments such as Dota 2 (Berner et al., 2019), StarCraft (Vinyals et al., 2019), Gran Tur-
ismo (Wurman et al., 2022), and Google Research Football (GRF) (Song et al., 2024). Despite the
effectiveness of RL in these complex environments, controlling these RL policies to follow instruc-
tions and achieve specific desirable behaviors remains very challenging. This is because instructions
in such scenarios can involve long-horizon planning, combinatorial action spaces, and require spe-
cific behavioral styles. For example, in the 5v5 scenario of the GRF environment, agents need to
control five players over 3,000 steps per episode. The instruction “Prioritize defensive duties and
perform a quick counterattack when opportunities arise.” involves team formation, division of of-
fensive and defensive roles, and preferences on ball possession, passing, dribbling, scoring, etc. In
such complex environments, human instructions can be high-level2 and abstract, specifying not only
task completion but also describing a behavioral style.

Recent LC-RL studies still cannot achieve RL policies in complex environments to follow high-level
instructions. This is because training LC-RL often requires determining whether the instruction has
been successfully executed as a form of reward. In tasks like navigation and object manipulation,
rules can be used to judge whether an instruction is completed (Hill et al., 2020; Driess et al., 2023;
Tan et al., 2024; Pang et al., 2024; Szot et al., 2024). However, for abstract instructions in complex

1The code can be found in the Supplementary Material.
2In this study, low-level instructions represent target instructions that can be completed by a few meta-

behaviors, while high-level instructions are complex and require more meta-behaviors to participate.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

environments, it is challenging to use rules to determine whether instructions are completed and
if the agent’s behavior aligns with the specified style. Some methods use human annotation to
determine the success of each episode (Brohan et al., 2023) or employ expert data for inverse-RL
to obtain rewards (Fu et al., 2019; Bahdanau et al., 2019), eliminating the need for predefined rules
but requiring additional labor costs. Moreover, their environments still focus on simple navigation
and object arrangement tasks. Apart from instruction evaluation, executing abstract instructions
in complex environments still faces the following two challenges: understanding instructions and
aligning them within the target environment, and executing the correct behaviors specified by the
corresponding instructions in the environment.

In response to these challenges, we propose a novel LC-RL method named Language-Conditioned
Multi-Style Policies (LCMSP). This method enables a single model to be trained with diverse be-
havioral styles that can be flexibly controlled by multi-style parameters. Before the training process,
we design a series of meta-behaviors that encompass the main behaviors of the agent in the target
environment. Then, a multi-style RL approach is designed to train a policy capable of executing
meta-behaviors with different degrees and combinations. It also provides a controllable mechanism
to switch between these styles (Mysore et al., 2022; Le Pelletier et al., 2021). The trained policy
can follow diverse instructions without needing to evaluate instruction completion during training.
During inference, by leveraging the language understanding capabilities of large language mod-
els (LLMs), language instructions are translated into corresponding multi-style parameters using
a Degree-to-Parameter (DTP) prompting method. Figure 1 presents an overview of the inference
process for the proposed method.

The proposed LCMSP endows agents with diverse behaviors in complex environments while achiev-
ing fine-grained control over RL policies through language instructions. Experiments conducted
both in the autonomous driving environment Highway and across various scenarios in GRF demon-
strate the method’s robust instruction follow capabilities and high performance. Our main contribu-
tions are: (1) We propose a novel method that combines multi-style RL policies with LLMs to fol-
low language instructions in complex environments; (2) Our method can accept high-level abstract
language instructions, enabling not only task completion but also the expression of corresponding
behavioral styles, with the degree of style adjustable at a fine-grained level; (3) Extensive experi-
ments across multiple environments, various instruction types, and policy evaluations demonstrate
the effectiveness and generality of this method, also showing insensitivity to different LLMs. 3

2 RELATED WORKS

Multi-Style Reinforcement Learning. Multi-style RL methods aim to train a single policy model
capable of exhibiting diverse behavioral styles, with applications in various scenarios including
game AI (Mao et al., 2024; Mysore et al., 2022; Le Pelletier et al., 2021; Shen et al., 2020), robotic
control (Abdolmaleki et al., 2020), autonomous driving (Zhang et al., 2023), and text generation
(de Langis et al., 2024; Cho et al., 2022). Multi-objective RL (MORL) is an RL training framework
that also attempts to generate policies with varying behaviors (Abdolmaleki et al., 2020; Mossalam
et al., 2016). The goal of MORL is to learn policies that simultaneously optimize multiple compet-
ing objectives. Some research efforts focus on learning a set of policies to approximate the Pareto
frontier (Pirotta et al., 2015) of optimal solutions (Zuluaga et al., 2016; Chen et al., 2019). Other ap-
proaches, such as Yang et al. (2019) and Basaklar et al. (2023), train a single preference-conditioned
policy using vectorized variants of standard RL algorithms. The key difference between our pro-
posed method and MORL is that MORL seeks optimal solutions on the Pareto frontier under a set
of given objectives, whereas our method achieves different style policies by varying reward settings
with their style parameters. Multi-task RL (MTRL) is another closely related approach to generating
multi-style policies (Lan et al., 2024; Liu et al., 2021). MTRL trains a single model to complete a
number of distinct tasks, each requiring specific skills, where each skill can be treated as a distinct
behavioral style. Yang et al. (2020) and He et al. (2024) use a routing network that estimates differ-
ent routing strategies to reconfigure the base network for each task. Sodhani et al. (2021) and Cho
et al. (2022) learn a task embedding network in addition to the policy network, allowing for knowl-
edge sharing across tasks. MTRL is commonly trained on limited independent tasks such as those in
Meta-World (Yu et al., 2020). In contrast, our multi-style policy integrates diverse meta-behaviors

3Demonstration videos showing our multi-style policies are available at: https://sourl.cn/vwgFMk.

2

https://sourl.cn/vwgFMk

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Figure 1: Overview of the inference process of LCMSP. When an instruction is provided to the
system, the LLM combines the pre-prepared prompt with the instruction to generate a corresponding
response. This response is then transformed into a style parameter, denoted as ω. Upon receiving
the current state St and the style parameter ω, the agent determines the appropriate action at, which
is executed in the environment, leading to the next state St+1. Unless new instructions are received,
the agent continues to operate using the last set of style parameters.

and style parameters, enabling combinations that produce a wide range of behaviors, rather than just
completing a limited set of tasks.

Language-Conditioned Reinforcement Learning. Early works addressed the issue by parsing
language instructions into semantic vectors that represent the structure of the instruction in relation
to world entities (Tellex et al., 2011; Chen & Mooney, 2011). Recent approaches tend to embed both
the instruction and observation to condition the policy (Jiang et al., 2019; Pang et al., 2024; Brohan
et al., 2023; Hill et al., 2020; Song et al., 2023). Hill et al. (2020) encode natural language human
instructions using BERT (Devlin et al., 2019), which are then fed into the policy. TALAR (Pang
et al., 2024) develops a task language for policy training and a translator to convert natural language
into the task language. SayCan (Brohan et al., 2023) grounds LLMs through value functions to select
low-level language-conditioned policies. Most prior works focus on simple low-level instructions,
such as object manipulation tasks like picking and placing objects (Pang et al., 2024; Hill et al.,
2020; Jiang et al., 2019), or navigation tasks where the goal is to reach a specific entity (Tellex et al.,
2011). Though some approaches combine object picking and navigation tasks to form long-horizon
tasks (Brohan et al., 2023; Song et al., 2023), they remain sequential combinations of low-level
instructions. In contrast, our method can understand and execute high-level abstract instructions by
leveraging the knowledge of LLMs combined with multi-style RL policies.

Large Language Models for RL. LLMs exhibit exceptional natural language understanding and
logical reasoning abilities (Zhao et al., 2023), which can facilitate downstream decision-making
tasks in RL. In certain navigation and object manipulation tasks, some approaches leverage the
reasoning capabilities of LLMs to generate high-level plans (Huang et al., 2022; Brohan et al., 2023;
Song et al., 2023), while others directly utilize LLMs to output actions (Szot et al., 2024; Tan et al.,
2024). For instance, LLaRP (Szot et al., 2024) appends fully-connected layers trained using RL after
the LLM to output actions and value functions. TWOSOME (Tan et al., 2024) outputs corresponding
action tokens in a text-based environment and fine-tunes the LLM. Additionally, several methods
in robotic control environments use LLMs to generate rewards for RL training (Ma et al., 2024;
Yu et al., 2023). Our approach integrates LLMs with multi-style RL policies. By leveraging the
comprehension and reasoning capabilities of LLMs, we translate instructions with hidden meanings
and varying degrees into corresponding style parameters, thereby fulfilling human intentions.

3 PRELIMINARIES

Reinforcement Learning is typically formulated as a Markov Decision Process (MDP), defined by
the tuple ⟨S,A, P, r, γ⟩. Here, S represents the state space, and A denotes the action space. The

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

transition function P : S × A × S → [0, 1] captures the environment dynamics, specifying the
probability of transitioning to state st+1 ∈ S from state st ∈ S by taking action a ∈ A. The reward
function r : S × A → R assigns a reward to each state-action pair. A policy π(a|s) is the agent’s
behavior function, mapping states to actions or providing a probability distribution over actions. The
value function V π(s) evaluates the quality of a state by predicting future rewards. In RL, the goal
is to learn an optimal policy π∗ that maximizes the expected discounted sum of rewards. Formally,
the optimal policy is defined as: π∗ = argmaxEs [V

π(s)], where the value function V π(s) is given
by: V π(s) = Eτ∼π,P (s) [

∑∞
t=0 γ

tr (st, at)]. Here, γ ∈ [0, 1) is the discount factor, and τ ∼ π with
P (s) indicates sampling a trajectory τ for a horizon T starting from initial state s0 using policy π,
and st ∈ τ represents the state at t-th time step in the trajectory τ .

Conditioned RL can be formulated as an augmented MDP, which is defined by the tuple
⟨S,C,A, P, rc, γ⟩. The additional tuple element C is the space of conditions, and other elements
retain their definitions from the standard MDP. The reward function rc: S × A × C → R assigns
the reward to each state-action-condition triplet. Similarly, the policy π(a|s, c) maps both states and
conditions to actions. The objective in conditioned RL is to find a policy π(a|s, c) that maximizes
the expected discounted sum of rewards: Eτ∼π,P (s),Pc(c) [

∑∞
t=0 γ

tr (st, at, c)], where Pc(c) repre-
sents a distribution over conditions in C. This objective can also be expressed with a standard MDP
by augmenting the state vector with a condition vector, explicitly conditioning the policy on c allows
the agent to adapt its behavior based on different conditions.

4 METHOD

4.1 REWARD SHAPING WITH META-BEHAVIOR

Before the training process, it is essential to define the agent’s meta-behaviors, which represent
the key behaviors the agent can perform in the training environment. A meta-behavior can sig-
nify an “objective”, a “task”, or even a “behavioral process” of the agent within the environment.
The agent’s preference for a particular meta-behavior indicates the frequency or degree to which
the agent employs that meta-behavior. By appropriately combining meta-behaviors, the agent can
deal with most conditions in the target environments. For instance, in the Highway scenario, an
autonomous driving environment, we can design four meta-behaviors: Speed, Time to Collision,
Change Lane, and Lane Preference. A human instruction like “Increase speed, minimize lane
changes” relates to the Speed and Change Lane meta-behaviors in this environment. To achieve
fine control over meta-behaviors, we perform reward shaping for each one, allowing the prefer-
ence for a meta-behavior to be adjusted through a corresponding parameter in the reward function.
For example, we can assign a reward parameter ω1 for speed and another reward parameter ω2

for changing lanes. When ω1 and ω2 are set to 1, the agent will frequently change lanes at high
speed due to these high positive rewards. Conversely, when ω1 and ω2 are set to 0, the agent will
have less preference for changing lanes or maintaining high speed because there are no benefits for
these behaviors. The combination of preferences for various meta-behaviors formulates a “style”
of policy. The parameters that control the preferences of meta-behaviors in the reward function
are called “style parameters” in this study. We denote the style parameters as ω, which is a vector
[ω1, ω2, . . . , ωn], where ωi is the i-th parameter controlling the preference of the i-th meta-behavior.
A specific set of ω values can form a distinct policy. The design of meta-behaviors and their reward
shaping processes are preparatory steps in the training of LCMSP, as shown in Figure 2. Details of
these steps are provided in Appendix A.3.

4.2 MULTI-STYLE POLICY GENERATION

Style parameters play a crucial role in generating multi-style policies within a single model. These
parameters, denoted as ω, can be viewed as conditions within the RL training process. For each
training scenario, at the beginning of an episode, a set of style parameters is randomly generated by
the style generator. Throughout the episode, the agent receives the state s and style parameters ω
from the environment as inputs to produce actions. The reward obtained by the agent in this episode
is modulated by the style parameters ω, enabling the agent to execute different policy styles under
identical states due to varying style parameters.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Figure 2: Overview of the training process of LCMSP. For each training scenario, we initially de-
sign the agent’s meta-behaviors, followed by a reward shaping process for these meta-behaviors.
This process establishes the relationship between the style parameters and the corresponding meta-
behaviors. Before each episode, the style generator produces a set of style parameters. These
parameters dictate the magnitude of the rewards obtained when the agent executes the associated
meta-behaviors within the environment. Upon receiving the environment’s state and style parame-
ters, the agent get the corresponding action from the policy model and executes it. Subsequently,
the environment provides the reward for the current action and the next state. These data is then fed
into the RL algorithm for training, and through continuous iterations, new policies are generated.

Based on the categorization of RL algorithms, the style-conditioned policy optimization criteria can
be divided into two classes. For RL algorithms optimized by policy gradient methods, the policy
optimization criterion Jπθ

is proportional to the advantage function Aπθ , as shown below:

Jπθ
∝ log (πθ(a | s, ω))Aπθ (s, ω, a) = log (πθ(a | s, ω)) (Qπθ (s, ω, a)− V πθ (s, ω)) (1)

where the policy π is parameterized by θ, V πθ (s, ω) is the value-function, and Qπθ (s, ω, a) is the
Q-function representing the expected return of taking action a in state s under style parameters ω.

The value estimator Vϕ, parameterized by ϕ, is optimized with optimization criteria JV π
ϕ

:

JV π
ϕ
∝ ∥

(
V π
ϕ (s, ω)−

(
rω(s, π(s, ω)) + V π

ϕ (s′, ω) ∥ (2)

where s′ is the next state obtained from the environment after taking action a, and rω is the reward
function adjusted by style parameters ω.

For RL algorithms optimized by Q-value-based methods, the policy optimization criterion is pro-
portional to the Q-value:

Jπθ
∝ Qπθ (s, ω, a) = EP (s′) [r

ω(s, a) + γQπθ (s′, ω, π (s′, ω))] (3)

where Qπθ is parameterized by θ, and γ is the discount of the next Q-value.

The representation of style parameters can be learned through a style encoder. The encoded repre-
sentations of the style parameters are then concatenated with the state features and forwarded to the
subsequent network layers for processing. This process ultimately yields the actions and value/Q-
values. When the values of the style parameters change, the state features remain unaffected. The
policy change is produced by the subsequent network parameters, which facilitates the learning of
both state and style features.

4.3 ALIGNING LANGUAGE INSTRUCTIONS WITH TARGET POLICIES

When applying trained multi-style policies, selecting an appropriate target behavior typically de-
pends on the specific requirements of the instruction. For example, in autonomous driving, individ-
uals in a hurry might opt for a policy favoring higher speeds, while those who prioritize safety may
prefer a more cautious approach. However, the complexity of the environment and instructions often
complicates the determination of a suitable target behavior. Utilizing LLMs to guide the application
of multi-style policies in specific environments shows promise. Nonetheless, as the conditions in

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

multi-style policy training become increasingly complex and numerous, and as the behaviors speci-
fied by instructions grow more abstract, it becomes crucial for LLMs to understand both the instruc-
tions and the conditions. Additionally, generating style parameters directly from instructions poses
a significant challenge for LLMs. This process requires understanding each parameter’s meaning,
identifying those relevant to the instruction, and determining their specific values.

To address these challenges, we propose a prompt method capable of interpreting the instruction
and generating appropriate style parameters to guide the multi-style policy. We refer to this method
as the Degree-to-Parameter prompt (DTP). The process of generating style parameters using DTP is
illustrated in Figure 3. In this approach, background information introduces the application scenario
and the concept of multi-style parameters to the LLM. These style parameters are categorized into
two types: Float and Bool. A Float-type parameter is continuous, ranging from 0 to 1, whereas
a Bool-type parameter is binary, taking values of either 0 or 1. The Float-type parameters are
mapped to 11 preference degrees ranging from 0 to 10. Smaller values indicate lower preference,
and larger values indicate higher preference; for instance, 0 and 10 can represent “unwilling” and
“enthusiastic” preferences, respectively. The Bool-type parameters have two preference degrees:
deactivate and activate. The introduction of style parameters provides their parameter types and
controlled meta-behaviors in the scenario for all style parameters.

Figure 3: An illustration of the process for generating style parameters using DTP prompt engineer-
ing. The process consists of three fundamental modules: background information, an introduction
of style parameters, and an introduction table of style types. For a given scenario, the contents of
these modules remain constant. User instructions are integrated with these modules to form the
complete prompt, which is then input into the LLM to obtain a style degree table. A new set of style
parameters is then generated based on the style degree table.

The LLM identifies the meta-behaviors related to the instructions and presents the degree scores. For
example, the instruction “full defense!” implies that the user wants the agent to fully defend. Con-
sequently, meta-behaviors related to defense should have a high preference, while meta-behaviors
related to offense should have a low preference. Finally, new style parameters can be automatically
mapped based on the generated degree scores. An example about DTP method’s prompt is provided
in Appendix B.

The DTP method offers several advantages: 1) Ease of prompt design: It only requires explanations
of the environment and meta-behaviors. 2) Generalization across environments: By leveraging the
common sense and reasoning capabilities of LLMs, it adapts effectively to various environments. 3)
Controllability and interpretability: Humans can observe the intermediate process in which the LLM
aligns instructions with the relevant meta-behaviors, evaluating the degree of each style parameter.
Moreover, if the behavior does not satisfy human expectations, the corresponding style parameters
can be adjusted. 4) Robustness to LLM choice: Different LLMs demonstrate similar understanding
of instructions, as illustrated in Figures 5 and 11.

5 EXPERIMENTS

To evaluate the proposed LCMSP method, we designed four scenarios based on two popular RL
environments: Highway and GRF. In the GRF environment, we developed three scenarios involving
single-player, two-player, and 5v5. Initially, we conducted experiments to test LCMSP’s ability to
follow low-level human instructions in the Highway environment and in the single-player and two-

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

player GRF scenarios. Subsequently, we evaluated LCMSP on the 5v5 scenario of GRF, a complex
environment characterized by long-horizon, multi-agents, to demonstrate its capability in under-
standing and executing high-level human instructions. Additionally, we performed experiments to
assess the method’s ability to align instructions with style parameters as well as the diversity and
controllability of multi-style policy behaviors.

5.1 HIGHWAY ENVIRONMENT

Environment: The Highway environment is a 2D top-down view autonomous driving simulation
that supports multiple tasks. In this study, we utilize the highway-v0 task, where the controlled
vehicle navigates a multilane highway populated with other vehicles. The agent is responsible for
controlling its speed and driving direction, aiming to reach a target speed while avoiding collisions.
The primary meta-behaviors include speed, time to collision (TTC), lane change, and lane prefer-
ence. We design four rewards to regulate these meta-behaviors, which can be adjusted using style
parameters. Additionally, a collision penalty is imposed on agents that collide with other vehicles.
By selectively combining different styles of these four meta-behaviors, we derive distinct behavior
styles to evaluate the LCMSP’s ability of following human instructions. Detailed information about
the scenario settings, state and action spaces, and reward shaping can be found in Appendix A.

Instructions: To thoroughly assess LCMSP’s capability to comprehend and execute natural lan-
guage instructions, we constructed five distinct instruction types, summarized in Table 1. The Nor-
mal, Long, and Short instruction types encompass all designed behavior styles, while the Unseen
and Inference types cover only a subset. For each behavior style in the Normal, Long, Short, and In-
ference types, we generated ten instructions, and for the Unseen type, we generated 30 instructions
per behavior style. To automate instruction generation, we first created several examples, designed
a generation prompt, and then employed a LLM to generate the remaining instructions for all be-
havior styles in each instruction type. The Highway experiment utilized a total of 810 instructions.
Detailed information on instruction generation and examples can be found in Appendices C and E.

Table 1: Explanation and examples of all instruction types.
Instruction Type Explanation Instruction Examples
Normal Describe the desired behavior

set.
Let the car decelerate as it transitions to the slow
lane.

Long Incorporated lengthy instruc-
tions with additional adjectives
and expressions.

Navigate into the right lane for a leisurely drive.
With caution, and smoothly decelerate as you merge
with the slower vehicles traveling there.

Short Extremely concise instructions. Right lane, slow driving.
Unseen Unseen behavior styles during

baseline method training.
While taking the wheel, slow your speed but not
your lane changes.

Inference Instructions that require infer-
ence without directly stating the
behavior style.

My destination is calling me; I ought to make the
journey brisker.

Results: To demonstrate the instruction-following capability of the LCMSP method, we report
both alignment accuracy and execution success rate. Alignment accuracy reflects the ability to
match instructions with the ground truth style parameters. Execution success rate is assessed using
criteria specifically designed for each behavior style within the environment, with details provided
in Appendix D.1. As shown in Table 2, the LCMSP method achieves a high alignment accuracy
of 91.4% in the Highway environment and correctly aligns most instructions requiring inference.
The overall execution success rate is 88.8%, indicating effective execution of the corresponding
instructions based on the aligned style parameters.

The performance of multi-style policies is crucial for execution success. Therefore, we tested the
trained policies with different styles. Table 3 presents statistical indicators under various style pa-
rameters. In this experiment, we adjusted the target style parameters and recorded their related
indicators, while other style parameters were randomly sampled. We observed that variations in
each style parameter effectively influenced the corresponding indicators. For example, the agent’s
speed significantly increased as the style parameter for Speed became larger. This indicates that the
multi-style RL training process can effectively produce policies exhibiting distinctly different styles,
adjustable according to the meaning and extent of the style parameters. Furthermore, to demonstrate

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 2: Alignment accuracy and execution success rates across instruction types
Instruction Type Alignment Accuracy Execution Success
Normal 97.4% ± 0.3% 91.5% ± 1.6%
Long 83.0% ± 0.5% 92.4% ± 2.1%
Short 96.2% ± 0.3% 88.3% ± 3.7%
Inference 73.3% ± 3.3% 77.8% ± 3.5%
Unseen 97.8% ± 1.1% 81.9% ± 3.2%
Total 91.4% ± 0.6% 88.8% ± 0.7%

the performance of multi-style policy, we report the execution success rates of behaviors correspond-
ing to given style parameters, as shown in Appendix D.2. Detailed information on the multi-style
training process can be found in Appendices A.4 and A.6.

Table 3: Indicator values for target style parameters across different settings

Target parameters Indicators Indicator value at different style parameters
0 / Deactivate 0.5 1 / Activate

Speed Speed value (m/s) 19.6 ± 0.0 24.2 ± 0.3 28.9 ± 0.2
TTC TTC value (s) 7.7 ± 0.9 7.8 ± 1.1 8.2 ± 1.1
Change lane Change action ratio (%) 38.6 ± 5.7 39.3 ± 6.0 40.3 ± 6.0
Lane preference (Left) In left lane ratio (%) 8.9 ± 9.5 / 33.1 ± 19.6
Lane preference (Middle) In middle lane ratio (%) 60.0 ± 23.7 / 89.8 ± 3.0
Lane preference (Right) In right lane ratio (%) 7.2 ± 7.7 / 28.3 ± 6.1

5.2 SINGLE-PLAYER AND TWO-PLAYER SCENARIOS IN THE GRF ENVIRONMENT

Environment: To verify LCMSP’s ability to follow low-level instructions in the GRF environment,
we design two simple scenarios: single-player and two-player. In these scenarios, the controlled
team consists of one player and two players, respectively. For the single-player scenario, we apply
four meta-behaviors: Area X, Area Y, Move type, and Shot type. For the two-player scenario, we
apply five meta-behaviors: Hold ball preference, Pass preference, Formation type, Shot type, and
Move type. These meta-behaviors reflect most actions in football and can be controlled by their
corresponding style parameters. More details about these two scenarios are provided in Appendix A.

Instructions: The construction process of the instructions is similar to that in the Highway envi-
ronment, resulting in 1,760 instructions for the single-player scenario and 620 for the two-player
scenario. Generation details and examples are provided in Appendices C and E, respectively.

Baselines: We compare LCMSP with another LC-RL method, TALAR(Pang et al., 2024), which
fine-tunes a BERT model(Devlin et al., 2019) as a translator to encode natural language instructions
into inputs for RL policies. Additionally, we test LCMSP with three different LLMs: GPT-4o
(OpenAI, 2024), Claude 3.5-Sonnet (Anthropic, 2024), and Llama 3.1-8b (Dubey et al., 2024). The
implementation details of these baselines are given in Appendix D.3.

Results: Figure 4 shows the execution success rates of all baselines on five types of instructions. The
results demonstrate that, for Normal and Short instructions, TALAR performs slightly worse than
the LCMSP method. On the Unseen instruction sets, LCMSP significantly outperforms TALAR,
which may be attributed to the excellent zero-shot capabilities of LLMs. TALAR also performs
poorly on long instruction sets. This is due to the BERT model summarizing long sequences into a
single [CLS] token. Moreover, the LCMSP method exhibits lower variance on inference instructions
and demonstrates robustness across different LLMs with minimal performance differences.

5.3 5V5 SCENARIO IN GRF ENVIRONMENT

Environment: We designed ten meta-behaviors to train a multi-style policy in the 5v5 scenario: Win
Preference, Goal, Lose Goal, Hold Ball, Get Possession, Pass, Spacing, Shot, Move, and Formation.
Accordingly, ten style parameters and their corresponding reward functions are employed, details
are provided in Appendix A.3. The multi-style policy in the 5v5 scenario is trained by competing
against built-in AI and further improved through a self-play approach due to its adversarial nature.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Figure 4: Execution success rates of all baselines on five types of instructions. SP and TP represent
single player and two player scenarios, respectively.

More details regarding the training algorithms, hyperparameters, and configurations are provided in
Appendices A.4 and A.6.

Instructions: To demonstrate that the LCMSP method can understand and execute abstract high-
level instructions, we designed six tactics analogous to real-world football strategies: Positive Attack,
All-out Attack, Balanced Play, Counter Attack, Park the Bus, and Tiki-Taka. For each tactic, we
generated 30 natural language instructions, each articulated with a brief sentence to elucidate the
corresponding strategy. Examples of instructions for each tactic are provided in Table 16.

Results: In the complex 5v5 scenario with high-level instructions, it is not feasible to use rules to
determine whether the instructions have been successfully executed. We used in-game metrics to
evaluate whether LCMSP behaves according to the specified tactics (see Figure 5). The number of
goals and shot attempts for both the Positive Attack and All-out Attack tactics exceed those of the
Balanced Play tactic. However, the All-out Attack tactic results in a lower win rate due to a higher
number of conceded goals and fewer draws, attributable to its overly aggressive style. The Counter
Attack tactic exhibits a higher draw rate; to facilitate counter-attacks, the formation is positioned
deeper, with a larger space between forwards and defenders. The Park the Bus tactic features more
compact spacing and results in a very high draw rate. The Tiki-Taka tactic boasts the highest pos-
session ratio and number of pass attempts, with closer spacing facilitating short passes; however, its
overly cautious approach results in fewer goals. These results indicate that the LCMSP method can
accurately comprehend high-level instructions and execute corresponding behavior styles.

Figure 5: Comparison of in-game metrics under different tactical instructions. The metric values are
normalized based on maximum and minimum values.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

The performance across different LLMs is largely similar, though there are differences in the de-
gree of meta-behavior in certain cases. For instance, Claude sacrifices more defense in the All-out
Attack tactic, while Llama3.1 exhibits more extreme passing attempts in Tiki-Taka. Appendix D.4.1
offers a detailed analysis of the degree of style parameters across various tactics. Figure 6 illustrates
examples of rendered frames during the execution of the Counter Attack and Tiki-Taka tactics, re-
spectively. These visualizations demonstrate that the trained multi-style policy effectively executes
the desired tactics.

Figure 6: Rendered frames showcasing the Counter Attack and Tiki-Taka tactics. Red, blue, and
yellow represent our team, the opposing team, and the ball, respectively. Circles denote players and
the ball, while lines indicate movement and passing directions. As intended, the Counter Attack
executes a long pass following a defensive interception in a deep position, while the Tiki-Taka tactic
advances through compact spaces using a series of short passes.

Policies trained using the LCMSP method are capable of exhibiting multiple styles in complex envi-
ronment, and their behavior can be finely adjusted through the corresponding style parameters. The
variations in in-game metrics resulting from fine-grained adjustments of these style parameters are
detailed in Appendix D.4.2. Furthermore, to better illustrate the representations of meta-behaviors
under different style parameters, we present the in-game statistical metrics for extreme style param-
eters in Appendix D.4.3.

6 CONCLUSION AND DISCUSSION

In this study, we introduced the Language-Conditioned Multi-Style Policy (LCMSP), which enables
agents to exhibit highly diverse behaviors with fine-grained control through natural language in-
structions. The policy is trained using a specially designed multi-style RL method, and alignment
between natural language and multi-style policies is achieved via the Degree-to-Parameter (DTP)
prompt with LLMs. Previous LC-RL methods have primarily focused on environments involving
object manipulation and navigation. In contrast, LCMSP is capable of executing abstract, high-level
instructions in complex environments. Experiments across multiple environments and instruction
types demonstrate the effectiveness and generality of our method. A limitation of LCMSP is its long
inference time, exceeding one second, primarily due to the alignment process with LLMs, despite
our relatively small RL model. As LLMs continue to evolve, we are interested in exploring more
efficient ways to integrate natural language comprehension into policy control, potentially reducing
inference time and enhancing overall performance in future work.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Abbas Abdolmaleki, Sandy Huang, Leonard Hasenclever, Michael Neunert, Francis Song, Martina
Zambelli, Murilo Martins, Nicolas Heess, Raia Hadsell, and Martin Riedmiller. A distributional
view on multi-objective policy optimization. In International conference on machine learning,
pp. 11–22. PMLR, 2020.

Anthropic. Claude 3.5 sonnet, 2024. URL https://www.anthropic.com/news/
claude-3-5-sonnet.

Dzmitry Bahdanau, Felix Hill, Jan Leike, Edward Hughes, Pushmeet Kohli, and Edward Grefen-
stette. Learning to understand goal specifications by modelling reward. In International Confer-
ence on Learning Representations, 2019.

Toygun Basaklar, Suat Gumussoy, and Umit Ogras. PD-MORL: Preference-driven multi-objective
reinforcement learning algorithm. In The Eleventh International Conference on Learning Repre-
sentations, 2023.

Christopher Berner, Greg Brockman, Brooke Chan, Vicki Cheung, Przemysław Dkebiak, Christy
Dennison, David Farhi, Quirin Fischer, Shariq Hashme, Chris Hesse, et al. Dota 2 with large
scale deep reinforcement learning. arXiv preprint arXiv:1912.06680, 2019.

Anthony Brohan, Yevgen Chebotar, Chelsea Finn, Karol Hausman, Alexander Herzog, Daniel Ho,
Julian Ibarz, Alex Irpan, Eric Jang, Ryan Julian, et al. Do as i can, not as i say: Grounding
language in robotic affordances. In Conference on robot learning, pp. 287–318. PMLR, 2023.

David Chen and Raymond Mooney. Learning to interpret natural language navigation instructions
from observations. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 25,
pp. 859–865, 2011.

Xi Chen, Ali Ghadirzadeh, Mårten Björkman, and Patric Jensfelt. Meta-learning for multi-objective
reinforcement learning. In 2019 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pp. 977–983. IEEE, 2019.

Myungsik Cho, Whiyoung Jung, and Youngchul Sung. Multi-task reinforcement learning with task
representation method. In ICLR 2022 Workshop on Generalizable Policy Learning in Physical
World, 2022.

Karin de Langis, Ryan Koo, and Dongyeop Kang. Reinforcement learning with dynamic multi-
reward weighting for multi-style controllable generation, 2024.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: pre-training of
deep bidirectional transformers for language understanding. In Jill Burstein, Christy Doran, and
Thamar Solorio (eds.), Proceedings of the 2019 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019,
Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pp. 4171–4186.
Association for Computational Linguistics, 2019.

Danny Driess, Fei Xia, Mehdi S. M. Sajjadi, Corey Lynch, Aakanksha Chowdhery, Brian Ichter,
Ayzaan Wahid, Jonathan Tompson, Quan Vuong, Tianhe Yu, Wenlong Huang, Yevgen Chebotar,
Pierre Sermanet, Daniel Duckworth, Sergey Levine, Vincent Vanhoucke, Karol Hausman, Marc
Toussaint, Klaus Greff, Andy Zeng, Igor Mordatch, and Pete Florence. Palm-e: an embodied
multimodal language model. In Proceedings of the 40th International Conference on Machine
Learning, ICML’23. JMLR.org, 2023.

Abhimanyu Dubey, Abhinav Jauhri, and Abhinav Pandey et al. The llama 3 herd of models, 2024.

Justin Fu, Anoop Korattikara, Sergey Levine, and Sergio Guadarrama. From language to goals: In-
verse reinforcement learning for vision-based instruction following. In International Conference
on Learning Representations, 2019.

Jinmin He, Kai Li, Yifan Zang, Haobo Fu, Qiang Fu, Junliang Xing, and Jian Cheng. Not all
tasks are equally difficult: Multi-task deep reinforcement learning with dynamic depth routing.
In Proceedings of the AAAI Conference on Artificial Intelligence, volume 38, pp. 12376–12384,
2024.

11

https://www.anthropic.com/news/claude-3-5-sonnet
https://www.anthropic.com/news/claude-3-5-sonnet

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Felix Hill, Sona Mokra, Nathaniel Wong, and Tim Harley. Human instruction-following with deep
reinforcement learning via transfer-learning from text. arXiv preprint arXiv:2005.09382, 2020.

Wenlong Huang, Pieter Abbeel, Deepak Pathak, and Igor Mordatch. Language models as zero-shot
planners: Extracting actionable knowledge for embodied agents. In International conference on
machine learning, pp. 9118–9147. PMLR, 2022.

Yiding Jiang, Shixiang Shane Gu, Kevin P Murphy, and Chelsea Finn. Language as an abstrac-
tion for hierarchical deep reinforcement learning. Advances in Neural Information Processing
Systems, 32, 2019.

Siming Lan, Rui Zhang, Qi Yi, Jiaming Guo, Shaohui Peng, Yunkai Gao, Fan Wu, Ruizhi Chen,
Zidong Du, Xing Hu, et al. Contrastive modules with temporal attention for multi-task reinforce-
ment learning. Advances in Neural Information Processing Systems, 36, 2024.

de Woillemont Pierre Le Pelletier, Remi Labory, and Vincent Corruble. Configurable agent with
reward as input: A play-style continuum generation. In 2021 IEEE Conference on Games (CoG).
IEEE, August 2021. doi: 10.1109/cog52621.2021.9619127.

Bo Liu, Xingchao Liu, Xiaojie Jin, Peter Stone, and Qiang Liu. Conflict-averse gradient descent
for multi-task learning. Advances in Neural Information Processing Systems, 34:18878–18890,
2021.

Jelena Luketina, Nantas Nardelli, Gregory Farquhar, Jakob Foerster, Jacob Andreas, Edward Grefen-
stette, Shimon Whiteson, and Tim Rocktäschel. A survey of reinforcement learning informed by
natural language. In Proceedings of the Twenty-Eighth International Joint Conference on Artifi-
cial Intelligence, IJCAI-19, pp. 6309–6317. International Joint Conferences on Artificial Intelli-
gence Organization, 7 2019.

Yecheng Jason Ma, William Liang, Guanzhi Wang, De-An Huang, Osbert Bastani, Dinesh Jayara-
man, Yuke Zhu, Linxi Fan, and Anima Anandkumar. Eureka: Human-level reward design via
coding large language models. In The Twelfth International Conference on Learning Representa-
tions, 2024.

Yihuan Mao, Chengjie Wu, Xi Chen, Hao Hu, Ji Jiang, Tianze Zhou, Tangjie Lv, Changjie Fan,
Zhipeng Hu, Yi Wu, Yujing Hu, and Chongjie Zhang. Stylized offline reinforcement learning:
Extracting diverse high-quality behaviors from heterogeneous datasets. In The Twelfth Interna-
tional Conference on Learning Representations, 2024.

Hossam Mossalam, Yannis M Assael, Diederik M Roijers, and Shimon Whiteson. Multi-objective
deep reinforcement learning. arXiv preprint arXiv:1610.02707, 2016.

Siddharth Mysore, George Cheng, Yunqi Zhao, Kate Saenko, and Meng Wu. Multi-critic actor
learning: Teaching RL policies to act with style. In International Conference on Learning Repre-
sentations, 2022.

OpenAI. Gpt-4 technical report, 2024.

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser Kel-
ton, Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul Christiano, Jan Leike,
and Ryan Lowe. Training language models to follow instructions with human feedback. In Pro-
ceedings of the 36th International Conference on Neural Information Processing Systems, 2022.

Jing-Cheng Pang, Xin-Yu Yang, Si-Hang Yang, Xiong-Hui Chen, and Yang Yu. Natural language
instruction-following with task-related language development and translation. Advances in Neural
Information Processing Systems, 36, 2024.

Matteo Pirotta, Simone Parisi, and Marcello Restelli. Multi-objective reinforcement learning with
continuous pareto frontier approximation. In Proceedings of the AAAI conference on artificial
intelligence, volume 29, 2015.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter Abbeel. High-
dimensional continuous control using generalized advantage estimation. In Proceedings of the
International Conference on Learning Representations (ICLR), 2016.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Ruimin Shen, Yan Zheng, Jianye Hao, Zhaopeng Meng, Yingfeng Chen, Changjie Fan, and Yang
Liu. Generating behavior-diverse game ais with evolutionary multi-objective deep reinforcement
learning. In IJCAI, pp. 3371–3377, 2020.

Shagun Sodhani, Amy Zhang, and Joelle Pineau. Multi-task reinforcement learning with context-
based representations. In International Conference on Machine Learning, pp. 9767–9779. PMLR,
2021.

Chan Hee Song, Jiaman Wu, Clayton Washington, Brian M Sadler, Wei-Lun Chao, and Yu Su.
Llm-planner: Few-shot grounded planning for embodied agents with large language models. In
Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 2998–3009,
2023.

Yan Song, He Jiang, Zheng Tian, Haifeng Zhang, Yingping Zhang, Jiangcheng Zhu, Zonghong
Dai, Weinan Zhang, and Jun Wang. An empirical study on google research football multi-agent
scenarios. Machine Intelligence Research, pp. 1–22, 2024.

Andrew Szot, Max Schwarzer, Harsh Agrawal, Bogdan Mazoure, Rin Metcalf, Walter Talbott, Na-
talie Mackraz, R Devon Hjelm, and Alexander T Toshev. Large language models as generalizable
policies for embodied tasks. In The Twelfth International Conference on Learning Representa-
tions, 2024.

Weihao Tan, Wentao Zhang, Shanqi Liu, Longtao Zheng, Xinrun Wang, and Bo An. True knowledge
comes from practice: Aligning large language models with embodied environments via reinforce-
ment learning. In The Twelfth International Conference on Learning Representations, 2024.

Stefanie Tellex, Thomas Kollar, Steven Dickerson, Matthew Walter, Ashis Banerjee, Seth Teller,
and Nicholas Roy. Understanding natural language commands for robotic navigation and mobile
manipulation. In Proceedings of the AAAI conference on artificial intelligence, volume 25, pp.
1507–1514, 2011.

Oriol Vinyals, Igor Babuschkin, Wojciech M Czarnecki, Michaël Mathieu, Andrew Dudzik, Juny-
oung Chung, David H Choi, Richard Powell, Timo Ewalds, Petko Georgiev, Junhyuk Oh, Dan
Horgan, Manuel Kroiss, Ivo Danihelka, Aja Huang, Laurent Sifre, Trevor Cai, John P Agapiou,
Max Jaderberg, Alexander S Vezhnevets, Rémi Leblond, Tobias Pohlen, Valentin Dalibard, David
Budden, Yury Sulsky, James Molloy, Tom L Paine, Caglar Gulcehre, Ziyu Wang, Tobias Pfaff,
Yuhuai Wu, Roman Ring, Dani Yogatama, Dario Wünsch, Katrina McKinney, Oliver Smith, Tom
Schaul, Timothy Lillicrap, Koray Kavukcuoglu, Demis Hassabis, Chris Apps, and David Silver.
Grandmaster level in StarCraft II using multi-agent reinforcement learning. Nature, 575(7782):
350–354, November 2019.

Terry Winograd. Understanding natural language. Cognitive Psychology, 3(1):1–191, 1972. ISSN
0010-0285.

Peter R Wurman, Samuel Barrett, Kenta Kawamoto, James MacGlashan, Kaushik Subramanian,
Thomas J Walsh, Roberto Capobianco, Alisa Devlic, Franziska Eckert, Florian Fuchs, Leilani
Gilpin, Piyush Khandelwal, Varun Kompella, Haochih Lin, Patrick MacAlpine, Declan Oller,
Takuma Seno, Craig Sherstan, Michael D Thomure, Houmehr Aghabozorgi, Leon Barrett, Rory
Douglas, Dion Whitehead, Peter Dürr, Peter Stone, Michael Spranger, and Hiroaki Kitano. Out-
racing champion gran turismo drivers with deep reinforcement learning. Nature, 602(7896):223–
228, February 2022.

Ruihan Yang, Huazhe Xu, Yi Wu, and Xiaolong Wang. Multi-task reinforcement learning with soft
modularization. Advances in Neural Information Processing Systems, 33:4767–4777, 2020.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Runzhe Yang, Xingyuan Sun, and Karthik Narasimhan. A generalized algorithm for multi-objective
reinforcement learning and policy adaptation. Advances in neural information processing systems,
32, 2019.

Deheng Ye, Zhao Liu, Mingfei Sun, Bei Shi, Peilin Zhao, Hao Wu, Hongsheng Yu, Shaojie Yang,
Xipeng Wu, Qingwei Guo, et al. Mastering complex control in moba games with deep reinforce-
ment learning. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 34, pp.
6672–6679, 2020.

Tianhe Yu, Deirdre Quillen, Zhanpeng He, Ryan Julian, Karol Hausman, Chelsea Finn, and Sergey
Levine. Meta-world: A benchmark and evaluation for multi-task and meta reinforcement learning.
In Conference on robot learning, pp. 1094–1100. PMLR, 2020.

Wenhao Yu, Nimrod Gileadi, Chuyuan Fu, Sean Kirmani, Kuang-Huei Lee, Montserrat Gonzalez
Arenas, Hao-Tien Lewis Chiang, Tom Erez, Leonard Hasenclever, Jan Humplik, et al. Language
to rewards for robotic skill synthesis. In Conference on Robot Learning, pp. 374–404. PMLR,
2023.

Hengrui Zhang, Youfang Lin, Sheng Han, and Kai Lv. Lexicographic actor-critic deep reinforcement
learning for urban autonomous driving. IEEE Transactions on Vehicular Technology, 72(4):4308–
4319, 2023.

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang, Yupeng Hou, Yingqian Min,
Beichen Zhang, Junjie Zhang, Zican Dong, Yifan Du, Chen Yang, Yushuo Chen, Zhipeng Chen,
Jinhao Jiang, Ruiyang Ren, Yifan Li, Xinyu Tang, Zikang Liu, Peiyu Liu, Jian-Yun Nie, and
Ji-Rong Wen. A survey of large language models, 2023.

Marcela Zuluaga, Andreas Krause, et al. e-pal: An active learning approach to the multi-objective
optimization problem. Journal of Machine Learning Research, 17(104):1–32, 2016.

A TRAINING ARCHITECTURE OF MULTI-STYLE POLICIES

A.1 TRAINING SCENARIOS

To evaluate the effectiveness of the proposed LCMSP method, we utilized two open-source RL
environments: the Highway environment4 and the GRF environment5. Specifically, we employed
the highway-v0 task from the Highway environment. In the GRF environment, we designed
single-player, two-player, and 5v5 scenarios to evaluate various multi-style policies and instructions.
In total, four training scenarios were used in this study, as illustrated in Figure 7.

Highway: The Highway environment involves controlling a vehicle on a multilane highway popu-
lated with other vehicles. The agent’s objective is to maintain a target speed while avoiding collisions
with neighboring vehicles. We use the highway-v0 task, which is configured with four lanes and
populated with 50 vehicles; all other settings adhere to their default values. Both the frames per
second (FPS) and the policy’s inference frequency are set to 10 in this scenario. Each episode lasts
for 40 seconds, equivalent to 400 steps. The episode is terminated prematurely if a collision occurs.

Single-player and two-player scenarios in GRF: These scenarios were designed to assess the
capability of the proposed method to execute low-level instructions. Each episode is capped at a
maximum of 400 steps and concludes once a goal is scored. To ensure diversity in training and
policy generation, ball positions are randomly assigned across the field. One player’s position is
generated in close proximity to the ball, while the positions of other players are also randomly
assigned on the field, except for goalkeepers, who remain within their box areas. In these scenarios,
we control one team, while the opposing side is uncontrolled.

5v5 scenario in GRF: The 5v5 scenario is utilized to test the method’s ability to execute complex
high-level instructions. This scenario simulates a full 5v5 football game environment with two
sides(Song et al., 2024), including various rules such as offside, out-of-bounds, corner kicks, red

4https://highway-env.farama.org/installation/
5https://github.com/google-research/football

14

https://highway-env.farama.org/installation/
https://github.com/google-research/football

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

cards, etc. Both sides are controlled by the trained policies. Each side manages four players in
a five-player team, excluding the goalkeeper, who is controlled by the built-in AI. Each episode
consists of 3,000 steps, with teams maintaining their respective sides throughout the game. At the
beginning of each episode, the teams are positioned in a fixed formation, and the left/right sides
are assigned randomly. The team scoring the most goals is declared the winner, and the game is
considered a draw if two sides has same goals.

Figure 7: Training scenarios.

A.2 FEATURES AND ACTION SPACES

Highway: In the Highway environment, we utilize the default Kinematic observation as the
network input. The Kinematic observation is represented as a V × F array, where V denotes the
number of nearby vehicles that can be observed, and F represents the number of features per vehicle.
In this study, V is set to eight, representing the eight nearest vehicles. Each vehicle is described by
F features, including attributes such as position, velocity, heading in radians, trigonometric heading,
among others. These features are normalized and flattened into a one-dimensional vector to serve
as the network input. We utilize the Discrete Meta-Action action set as the output, which
comprises five discrete meta-actions: LANE LEFT, IDLE, LANE RIGHT, FASTER, and SLOWER,
to control the vehicle.

GRF: Table 4 outlines the features designed for model training in the single-player, two-player,
and 5v5 scenarios within the GRF environment, along with their respective lengths. The feature
set for the controlling player includes attributes such as position, direction, speed, role, fatigue
factor, areas, among others. The ball state includes the ball’s position, direction, speed, distance
to the controlling player, ownership, and other relevant attributes. The features for teammates and
opponents are similar to those of the controlling player, with the addition of a one-hot player role
indicator. The nearest teammate and nearest opponent features refer to the teammate and opponent
closest to the controlling player. The available actions feature is a multi-hot indicator, where 1/0
signifies whether the corresponding action is available or unavailable to the controlling player in the
current state. The match state logs information such as remaining time, scores, game mode, and
so on. The offside judgment feature indicates if players are in an offside position. The yellow/red
cards feature denotes whether players have received a yellow or red card. The sticky action feature
indicates whether players are in a specific state, such as dribbling or sprinting. The player active area
feature is a one-hot encoding that indicates the presence of players in each of the three horizontal and
vertical zones of the field. The team relative distance feature calculates the average relative distance
between the teams. The lengths of these features vary across modes due to the differing number of
players. For the action space, we use the default action set of the GRF environment, comprising 19
actions.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Table 4: The content and length of the vector features for different scenarios in the GRF environ-
ment.

Feature content Single-player Two-player 5v5 mode
Controlling player 19 19 19
Ball state 18 18 18
Teammates 9 18 36
Nearest teammate 9 9 9
Opponents 18 27 45
Nearest opponent 9 9 9
Available actions 19 19 19
Match state 10 10 10
Offside judgment 4 6 10
Yellow / Red cards 8 12 20
Sticky action 10 10 10
Player distance to ball 3 5 9
Player active area 6 6 6
Team relative distance 0 1 1
Total 142 169 221

A.3 DESIGN OF META-BEHAVIOURS AND REWARD SHAPING

Table 5 provides a comprehensive overview of the meta-behaviors and their reward shaping for all
training scenarios, which include the Highway environment and the single-player, two-player, and
5v5 scenarios within the GRF. The reward types are categorized into three kinds: Basic, Bool, and
Float. The Basic reward is a constant that remains unaffected by changes in style parameters. The
Bool and Float rewards correspond to the Bool and Float style parameters, respectively. The Bool
type reward is binary, with 0 or 1 representing the deactivation or activation of the corresponding
style preference. The Float type reward, on the other hand, can take on continuous values within a
specified range, allowing for fine-grained control over the behavior.

Highway: The primary meta-behaviors in the Highway environment are Speed, Time to Collision
(TTC), Lane Change, and Lane Preference, which control the vehicle’s behavioral style. We design
four rewards corresponding to these meta-behaviors, which can be adjusted via style parameters. For
example, the style parameter for the Speed reward ranges between [0, 1], encouraging the vehicle
to maintain speeds between the minimum and maximum velocities accordingly. The Lane (1, 2,
3) style parameters represent preferences for the left lane, the two middle lanes, and the right lane,
respectively. The Collision penalty is a Basic reward given to agents that collide with other vehicles.

GRF: In the GRF environment, the meta-behaviors include Goal, Lose Goal, Get Possession, and
others. These rewards are distributed to all team members, regardless of which individual player
completed the task. For instance, the Shot reward is allocated to all teammates, not just the player
who actually took the shot, to foster teamwork among players. In the context of the football field:

• Area X (1, 2, 3) corresponds to the Front, Midfield, and Back areas, respectively.
• Area Y (1, 2, 3) denotes the Left Wing, Central, and Right Wing areas, respectively.
• Shot Type (1, 2) represents the Goal Area Shot and Penalty Area Shot actions.
• Move Type (1, 2) corresponds to Run and Dribble behaviors.
• Formation Type (1, 2, 3) indicates the Retreat, Balanced, and Press formations.
• Spacing Type (1, 2, 3) represents Compact, Normal, and Loose formations.

In the single-player and two-player modes, we categorize Goal, Lose Goal, and Get Possession as
Basic rewards, primarily to evaluate the controllability of other meta-behaviors. In the 5v5 scenario,
all meta-behaviors, including the Win preference, can be controlled and tested using style parame-
ters.

A.4 TRAINING ALGORITHM OF MULTI-STYLE RL POLICY

To efficiently train models with multi-style policies, we utilize a dual-clipping version (Ye et al.,
2020) of Proximal Policy Optimization (PPO) (Schulman et al., 2017). PPO is a popular policy gra-

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Table 5: Overview of meta-behaviors and their reward shaping for all training scenarios.
Meta-Behaviors Type Range Reward Shaping Content

Highway
Collision Basic -1 Penalize the vehicle for collisions
Speed Float [0, 1] Encourage the vehicle to maintain a certain speed
Time to Collision Float [0, 1] Encourage maintaining a distance from the vehicle ahead
Change Lane Float [0, 1] Preference of lane changing during driving
Lane (1, 2, 3) Bool 0/1 Encourage the vehicle to keep in the target lane

Single-Player Scenario in GRF Environment
Goal Basic 0.1 Encourage agents to score
Lose Goal Basic -1 Penalize agents for conceding goals
Get Possession Basic 1 Encourage agents to gain possession
Area X (1, 2, 3) Bool 0/1 Encourage agents to arrive at the target Area X
Area Y (1, 2, 3) Bool 0/1 Encourage agents to arrive at the target Area Y
Shot Type (1, 2) Bool 0/1 Encourage agents to shot with the target type
Move Type (1, 2) Bool 0/1 Encourage agents to move with the target type

Two-Player Scenario in GRF Environment
Goal Basic 0.1 Encourage agents to score
Lose Goal Basic -1 Penalize agents for conceding goals
Get Possession Basic 1 Encourage agents to gain possession
Hold Ball Preference Bool 0/1 Preference of holding ball
Pass Preference Bool 0/1 Preference of making effective passes
Formation Type (1, 2, 3) Bool 0/1 Encourage the team to adopt the target formation
Shot Type (1, 2) Bool 0/1 Encourage agents to shot with the target type
Move Type (1, 2) Bool 0/1 Encourage agents to move with the target type

5v5 Scenario in GRF Environment
Win Float [0, 1] Preference of winning
Goal Float [0, 1] Preference of scoring goals
Lose Goal Float [0, 1] Preference of preventing conceding goals
Hold Ball Float [0, 1] Preference of holding ball
Get Possession Float [0, 1] Preference of having possession
Formation Float [0, 1] Encourage the team to adopt the target formation
Spacing Float [0, 1] Encourage a target spacing between agents
Pass Float [0, 1] Preference of making effective passes
Shot Type (1, 2) Bool 0/1 Encourage agents to shot with the target type
Move Type (1, 2, 3) Bool 0/1 Encourage agents to move with the target type

dient algorithm that has demonstrated excellent performance in various tasks (Berner et al., 2019;
Ouyang et al., 2022). It is designed to improve the stability and reliability of policy gradient meth-
ods, which directly optimize the policy to train agents. PPO limits changes in the policy by clipping
the probability ratio between the current and old policies. The importance sampling ratio in PPO is
defined as rt =

π(at|st)
πold(at|st) , where st and at represent the state and action at time step t, respectively.

Here, π(at|st) and πold(at|st) are the probabilities of taking action at in state st under the current
and old policies, respectively. We define the clipped ratio as rct = clip(rt, 1 − ε, 1 + ε), where ε
is a hyperparameter. This clipping prevents large policy updates that could destabilize the training
process. The policy objective is then defined as:

Lp =

{
−Êt[max(min(rtÂt, r

c
t Ât)), ηÂt] Ât < 0

−Êt[min(rtÂt, r
c
t Ât)] Ât ≥ 0

(4)

where Ê[...] denotes the empirical expectation over a finite batch of samples, and At is the estimated
advantage at time step t, computed via Generalized Advantage Estimation (GAE) (Schulman et al.,
2016). The hyperparameters ε and η are the clipping parameters of the original PPO and the dual-
clipped PPO, respectively. The value function objective in PPO is defined as:

Lv = Êt[(V (st)−Gt)
2] (5)

where Gt = Vold(st) + Ât is the target return, and Vold(st) is the value estimate from the old value
function.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

A.5 NETWORK STRUCTURES

Figure 8 illustrates the network structures employed for model training in both the Highway and
GRF environments. In the Highway environment, the state features and style parameters are initially
processed through separate series of fully connected (FC) layers. The outputs of these layers are
then concatenated to form a combined feature vector, which is shared by both the policy and value
networks, as depicted in Figure 8(a). This concatenated tensor is subsequently fed into the policy
network and the value network to generate their respective outputs. The network architecture for the
GRF environment follows a similar design, as shown in Figure 8(b).

Figure 8: Network architectures for training models in the Highway and GRF environments. The
dimensions labeled “a” and “b” in the blocks represent the sizes of the state features and style
parameters, respectively. Leaky-ReLU is used as the activation function for the FC layers, except
for the final layers. A Softmax layer is applied to the outputs of the policy head to convert them into
action probabilities, with the final action selected by sampling based on these probabilities.

A.6 TRAINING PROCESS

Throughout the training process across all scenarios, we maintained consistent hyperparameters.
Table 6 lists the training hyperparameters utilized in our study. It is important to note that, given the
vast number of possible hyperparameter combinations, we cannot guarantee that the selected hyper-
parameter values are optimal. However, we can confirm that agents trained with these hyperparame-
ters demonstrate superior multi-style performance in both the Highway and GRF environments. The
pseudocode of the training process is shown in Algorithm 1.

Table 6: The training hyperparameters.
Hyperparameters GRF Highway

Batch size 60,000 15,000
Trajectory length 128 64

Sample reuse About 1.0 About 1.0
PPO clipping 0.2 0.2

PPO dual-clipping 3 3
Gradient clipping 25 30
Discount factor γ 0.999 0.995
GAE discount λ 0.95 0.95

Value loss weight 0.5 0.5
Entropy coefficient 0.02 0.05

Optimizer Adam Adam
Learning rate 5e-5 1e-4
Adam β1, β2 0.99, 0.999 0.99, 0.999

Figure 9 presents the return curves for the Highway, single-player, and two-player scenarios, show-
ing a steady increase as training progresses. Additionally, Figure 10 depicts the reward curves for
each meta-behavior within the single-player and two-player scenarios in GRF. In the 5v5 scenario,
rewards do not fully capture the model’s effectiveness due to the involvement of self-play competi-
tion during training. Therefore, the effectiveness of the training in the 5v5 scenario can be assessed
using the metrics provided in Appendix D.4. The training process utilized two NVIDIA A10 GPUs
and 1,000 CPU pods. Each pod was allocated one CPU core and 2 GB of memory and consisted of
the game client, one agent, and the models used by the agent. The training was implemented using

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Algorithm 1: Training process of multi-style policy in LCMSP
for each training epoch do

for each episode do
Randomly generate a set of style parameter ω;
for each environment step do

Get the states st, and execute actions at by πθ(at | st, ω);
Get the rewards and next states rωt and st+1;
Save (st, ω, at, r

ω
t , st+1) to the replay buffer;

for each gradient step do
Perform gradient step on θ by maximizing the expectation Jπθ

;
Perform gradient step on ϕ by minimizing the expectation JV π

ϕ
(if needed);

Python 3.8 with PyTorch 2.0. Unless otherwise specified, all results reported in this study are the
averages over three replicated tests, each with different random seeds.

Figure 9: Training curves for Highway, single-player and two-player scenarios.

Figure 10: Training curves of meta-behaviors’ rewards for single-player and two-player scenarios.

B EXAMPLE OF DEGREE-TO-PARAMETER PROMPT

Table 7 presents an example prompt of the Degree-to-Parameter (DTP) method within the GRF 5v5
scenario. An instruction from the Park the Bus tactical set was selected to demonstrate how GPT-4o
maps this instruction to style parameters.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Table 7: The prompt example for DTP method in GRF 5v5 scenario

LLM Prompt

In a football match, each team consists of five players: one goalkeeper and four outfield players. The match is played on a standard-
sized field according to standard rules for 90 minutes. The goalkeeper and outfield players are controlled by different policies.
Various styles govern the outfield players, operating simultaneously and interacting with each other. Each style can be adjusted on
a scale from 0 to 10. Below are the explanations for each style:

Style-1: Focus on winning; higher values indicate a stronger desire to win. A value of 0 means no concern for winning.

Style-2: Focus on scoring goals; higher values indicate a stronger desire to score. A value of 0 means no concern for scoring.

Style-3: Focus on not conceding goals; higher values indicate a stronger desire to avoid conceding. A value of 0 means no concern
for conceding goals.

Style-4: Focus on individual ball control; a value of 0 means decisions are situational, while a value of 10 means a preference for
individual ball control.

Style-5: Focus on regaining possession; a value of 0 means no concern for possession, while a value of 10 means a strong emphasis
on regaining possession.

Style-6: Focus on passing; a value of 0 means decisions are situational, while a value of 10 means a preference for passing.

Style-7: Relative distance between players; a value of 0 means compact spacing, while a value of 10 means more spread out.

Style-8: Overall team positioning; a value of 0 means closer to their own goal, while a value of 10 means closer to the opponent’s
goal.

The following styles are selected from specific options:

Style-9: Shooting distance; -1 means no preference, 0 means close range, and 1 means long range.

Style-10: Dribbling style; -1 means no preference, 0 means moderate speed, 1 means close control, and 2 means sprinting.

Based on an understanding of football and the styles above, carefully translate the instructions into corresponding style parameters,
providing the reasoning process. Finally, provide a standard JSON format result where the keys are each style and the values are
the corresponding style parameters.

Examples: Insert some examples here for few-shot learning.

Instruction: Keep the defensive lines tight, sitting deep to prioritize shutting out the opposition’s attack completely.

LLM Reponse

To translate the instruction into corresponding style levels, let’s break down the instructions and reason step by step:

1. Keep the defensive lines tight:

This suggests maintaining a very compact and organized team shape.

Style-7 (Relative distance between players): High importance for compactness, so a lower value around 2.

2. Sitting deep:

This indicates positioning the team closer to their own goal.

Style-8 (Overall positioning): High importance, so a very low value around 1.

3. Prioritize shutting out the opposition’s attack completely:

This suggests a very high emphasis on not conceding goals.

Style-3 (Not conceding goals): Very high importance, so a maximum value of 10.

4. Other styles:

Style-1 (Importance of winning): The focus is on defense rather than winning, so a lower value around 3.

Style-2 (Scoring goals): No focus on scoring, so a low value around 2.

Style-4 (Individual ball control): The instructions do not emphasize individual ball control, so a lower value around 3.

Style-5 (Regaining possession): The instructions suggest a passive approach, so a moderate value around 4.

Style-6 (Passing): Passing is not emphasized, so a moderate value around 4.

Style-9 (Shooting distance): The instructions do not specify a preference for shooting distance, so a value of -1.

Style-10 (Dribbling style): The instructions do not specify a dribbling style, so a value of -1.

Based on the reasoning above, the corresponding style levels are: ‘Style-1’: 3, ‘Style-2’: 2, ‘Style-3’: 10, ‘Style-4’: 3, ‘Style-5’: 4,
‘Style-6’: 4, ‘Style-7’: 2, ‘Style-8’: 1, ‘Style-9’: -1, ‘Style-10’: -1

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

C THE PROCESS OF INSTRUCTION GENERATION

To validate the capability of our proposed method and the comparison methods in following natural
language instructions, and to train models for some of the comparison methods, we require a large
set of instructions. Since we primarily test the ability to follow simple instructions in the Highway
environment and two scenarios in the GRF environment, we leverage GPT-4o to generate reliable
instruction sets.

The simple instructions are divided into five types: Normal, Short, Long, Unseen, and Inference.
The generation methods for Normal, Short, and Long instructions are similar, with slight differ-
ences in the prompts used during generation. Taking the generation of Normal instructions in the
single-player scenario as an example, the style parameters mainly control the agent’s meta-behaviors
towards Area X, Area Y, Shot Type, and Move Type. We firstly designed two sets of meta-behavior
combinations: the navigation combination set and the shot combination set. The navigation com-
bination set is composed of the meta-behaviors Area X, Area Y, and Move Type. By traversing all
possible combinations of these three meta-behaviors, each combination can yield an instruction tar-
get. For each instruction target, the LLM generates 10 instructions that match its meaning. There-
fore, in the Normal instruction type of the single-player scenario, the navigation combination set
contains a total of 470 instructions for testing. The information of generated instructions is shown
in Table 8. Similarly, the meta-behaviors in the shot combination set consist of Shot Type and Move
Type. For each instruction target in all combinations, the LLM generates 10 instructions, totaling 80
instructions.

Table 8: The information of generated instructions.
Scenario Type Set Related meta-behaviours Count

Highway

Normal, Short,
Long

Set-1 Speed, Change Lane 50× 3
Set-2 Speed, Lane preference 100× 3
Set-3 TTC, Lane preference 70× 3

Unseen / All 90
Inference / All 60

Single-player

Normal, Short,
Long

Navigate Area X, Area Y, Move type 470× 3
Shot Shot type, Move type 80× 3

Unseen / All 60
Inference / All 50

Two-player

Normal, Short,
Long

Ball control Formation type, Pass preference,
Hold ball preference 100× 3

Shot Shot Type, Move type 70× 3
Unseen / All 60
Inference / All 50

5v5 Abstract / All 180

The prompts used for generating the Normal type instructions are shown in Table 9. The prompts for
generating the Short and Long type instructions are similar, with minor modifications to adjust the
instruction length. The Unseen type instructions are used to test the method’s generalization ability
to target instructions that have never been seen before. These Unseen instructions are generated
by extracting certain instructions from the Normal, Short, and Long types to form a test set. For
example, in the single-player scenario, the instructions of Normal, Short, and Long types generated
by the style “Area X: 1, Area Y: 1, Move Type: 0” are extracted as part of the Unseen instruction
set. Several style combinations are selected for extraction. When testing with Unseen instructions,
similar examples used as few-shots in the prompt are removed, and the instructions corresponding to
the target style are not used during model training in other comparison methods. The Inference type
instructions are designed to test the method’s inference ability, all Inference type instructions require
logical deductions to determine the correct targets. The prompts used for generating Inference type
instructions include extra content and examples to enable the LLMs to perform logical deduction.

Table 9: An example of prompt for generating shot combination set instructions in Normal instruc-
tion type.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

You are an assistant for a football game, and you need to describe executable commands in the game using natural language. Below
are explanations and examples of the commands:

Positions: Penalty Area, Goal Area

Movement actions include: Run, Dribble

Shooting actions include: Shoot

Commands: Commands are combinations of movement, position, and shooting.

Example 1

Command: “Run, Penalty Area, Shoot”

Natural language: 1. High-speed powerful long shot. 2. Sprint over and fire in the 18-yard Box.

Example 2

Command: “Dribble, Goal Area, Shoot”

Natural language: 1. Control the ball well, get as close to the goal as possible before shooting. 2. Dribble past the opponent first,
then shoot within the 6-yard Box.

Example 3

Command: “Run, ‘ ’, Shoot”

Natural language: 1. Move to a suitable position and shoot. 2. Run to the shooting position, shoot quickly.

Example 4

Command: “‘ ’, Goal Area, Shoot”

Natural language: 1. The opponent’s goalkeeper is very focused, long shots are not suitable, only point-blank shot has a chance. 2.
There is no opponent in the 6-yard Box, tap-in the ball.

For each command, generate ten diverse natural language descriptions, separated by line breaks, starting with a numerical ID.The
generated sentences must have different lengths, different punctuation, and different word orders. Use the aliases for Large Penalty
Area, Small Penalty Area, and shooting.

Command: {command}

Natural language:

In the single-player and two-player scenarios, only Bool style parameters are used. Therefore, we
can generate the corresponding instructions by combining the two states (Deactivated or Activated)
of the related meta-behaviors in the combination set. The Highway environment includes both Float
and Bool style parameters, and the Float style parameters can be described using 11 degrees in this
study. To simplify the testing process for simple instructions, we test only the extreme states of
the related meta-behaviors, corresponding to style parameters of zero or one. To test complex and
abstract high-level instructions, we designed six tactics analogous to real-world football strategies
in the 5v5 scenario of GRF. For each tactic, we provided three examples in the prompt and then used
GPT-4o to generate 30 natural language instructions. The generated instructions require a certain
level of expertise to understand and necessitate the coordination of multiple meta-behaviors to ex-
ecute. Therefore, we consider these instructions to be complex and abstract high-level commands.
Finally, we generated a total of 180 instructions that satisfy these criteria in the 5v5 scenario.

D ADDITIONAL EXPERIMENT RESULT

D.1 SUCCESS CRITERIA FOR INSTRUCTION EXECUTION

In all scenarios other than the 5v5 scenario, the instructed behavior styles are combinations of
multiple distinct meta-behaviors, as illustrated in Table 8. To automate the evaluation of whether
each instruction is correctly executed, we designed corresponding evaluation criteria for each meta-
behavior. An instruction is considered correctly executed if all the specified meta-behaviors meet
their respective evaluation standards. For instance, for the instruction “Dribble past the opponent
first, then shoot within the 6-yard box”, the corresponding styles are “Move Type: Dribble and Shot
Area: Goal Area”. To determine correctness, we established the following criteria: the agent must
perform Dribble actions for more than 80% of its ball-carrying movements; the final shooting action
must occur within the Goal Area; and a goal must be scored.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Table 10 lists the success criteria for determining each meta-behavior in the Highway environment,
as well as in the single-player and two-player scenarios in GRF. In the Highway environment, all
criteria include the precondition that the vehicles do not collide during the episode. In the complex
5v5 scenario, we employ abstract high-level instructions that are difficult to evaluate for successful
execution using rule-based methods. Therefore, we rely on statistical analysis to assess the perfor-
mance of instruction-following ability in the 5v5 scenario, rather than using specific success criteria
for instruction execution.

Table 10: Criteria of success execution for each meta-behavior.
Meta-behaviour Success criteria

Highway
Speed The average speed of the vehicle falls within a target speed range.
Time to Collision The average TTC of the vehicle falls within a target range.
Lane Changing The ratio of left and right lane-change actions falls within a target range.
Lane Preference (1, 2, 3) The proportion of time spent in the target lane exceeds a certain threshold.

Single-Player Scenario in GRF
Area X (1, 2, 3) The player’s average x-coordinate falls within the corresponding range.
Area Y (1, 2, 3) The player’s average y-coordinate falls within the corresponding range.
Shot Type (1, 2) A goal is scored with the final shot taken within a designated area.
Movement Type (1, 2) 80% of ball possession movements correspond to designated actions.

Two-Player Scenario in GRF
Ball Possession Preference 80% of the steps involve our player holding the ball.
Pass Preference The number of successful passes is greater than 10.
Formation Type (1, 2, 3) The team’s average x-coordinate falls within the corresponding range.
Shot Type (1, 2) A goal is scored with the final shot taken within a designated area.
Movement Type (1, 2) 80% of ball possession movements correspond to designated actions.

D.2 HIGHWAY ENVIRONMENT

Multi-style policy evaluations. To assess the performance of the trained multi-style policies, we
conducted a series of experiments to determine the success rate of executing the correct behavioral
styles based on the provided multi-style parameters. To ensure consistency with the behavioral
styles specified by the instructions, we evaluated policy performance using the combinations of
meta-behaviors and style parameters from the generated instructions, as summarized in Table 8. For
unspecified style parameters, Float-type parameters were set to 0.5, and Bool-type parameters were
set to 0. For instance, in the Set-1 combination set of the Highway environment, the style “Speed:
Fast, Lane Change: Frequent” has the style parameters for Speed and Change Lane set to 1, while
the unspecified parameters for TTC (Time to Collision) and Lane Preference are set to 0.5 and 0,
respectively.

Table 11 presents the success rates of executing the correct behavioral styles based on the provided
style parameters. As shown, the multi-style policy demonstrates satisfactory performance in execut-
ing different combinations of meta-behaviors in the Highway environment. The Set-3 combination
set exhibits a relatively lower success rate because the TTC is difficult to control perfectly due to the
precondition of avoiding collisions with other vehicles.

Table 11: Success rates of executing the correct behavioral style with different combinations of
multi-style parameters.

Scenario Combination Set Related meta-behaviors Success rate

Highway
Set-1 Speed, Change Lane 93.77%
Set-2 Speed, Lane preference 93.28%
Set-3 TTC, Lane preference 87.94%

Single-player Navigate Area X, Area Y, Move type 90.43%
Shot Shot type, Move type 96.50%

Two-player Ball control Formation type, Pass preference,
Hold ball preference 98.03%

Shot Shot Type, Move type 90.04%

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

D.3 SINGLE-PLAYER AND TWO-PLAYER SCENARIOS IN GRF

Multi-style policy evaluations. Table 11 presents the success rates for executing the correct behav-
ioral styles in the single-player and two-player scenarios in GRF. The results indicate that the trained
multi-style policy achieves a high success rate for each behavioral style in both scenarios. The style
parameters tested here are generated similarly to those used in the multi-style policy evaluations of
the Highway environment.

The implementation of TALAR method. In our experiments, the TALAR method translates nat-
ural language instructions into style parameters to serve as inputs for RL policies. The translator
is implemented by fine-tuning a BERT model. We utilized 80% of the Normal, Long, Short, and
Inference type instructions as the training set. The Unseen instructions and the remaining portions
of the other types were used as the testing set. In the single-player and two-player scenarios, the
style parameters are all discrete Bool types. The translation process can be modeled as a multi-class
classification task, where each instruction’s label corresponds to the style parameters associated with
each meta-behavior used during its generation.

During the training process of the translator, the BERT model’s parameters are frozen, and instruc-
tions are input to obtain the pooler output. This output provides a fixed-size representation of the
input sequence and is part of BERT’s architecture learned during pre-training. We pass the pooler
output through an additional FC layer with multiple output heads to achieve multi-class classification
results, training only the parameters of this added layer.

Alignment accuracy. Figure 11 shows the alignment accuracy for each type of instruction in the
single-player and two-player scenarios. It can be observed that the alignment effectiveness varies
across different LLMs, but the differences are not substantial. The TALAR method generally under-
performs compared to the LCMSP method, especially on Unseen type instructions whose behavioral
styles were not encountered during training. The TALAR method also exhibits poor comprehension
of long instructions. This is because the BERT model summarizes long sequences into a single
[CLS] token for classification.

Comparing with Figure 4, we observe that alignment success rates can sometimes be lower than
the execution success rates. This occurs because alignment success rates indicate that the generated
style parameters precisely match the ground truth specified by the instructions. However, in practice,
the policy may still execute the correct behavioral style even with incorrect style parameters. For
instance, if the instruction is to dribble into the penalty area and shoot, but the alignment only
includes shooting, the policy might randomly choose between dribbling or sprinting. This can result
in alignment omissions or errors, yet there remains a chance of executing the instruction correctly.

Figure 11: Alignment success rate on single-player and two-player scenarios. SP and TP represent
single-player and two-player scenarios, respectively

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

D.4 5V5 SCENARIO IN GRF

D.4.1 STYLE PARAMETER OF DIFFERENT TACTICS

In the 5v5 scenario, LCMSP derives the style parameters for the RL policy from high-level abstract
instructions. To validate this process, we used GPT-4o to map each instruction to the corresponding
style parameters ten times and plotted the results in Figure 12. It shows that the Positive Attack
tactic has Win, Goal, and Formation parameters slightly above the neutral value (0.5). The All-Out
Attack tactic exhibits higher values for Win and Goal, with less emphasis on Lose Goal prevention,
and places greater emphasis on Get Possession and Hold Ball. The Balanced Play tactic has all
parameters close to the neutral value of 0.5. The Counter Attack tactic maintains some inclination
towards Win and Goal but places greater emphasis on Lose Goal prevention, featuring the deepest
Formation to allow space for counterattacks. In contrast, the Park the Bus tactic exhibits very low
tendencies for Win and Goal, as well as lower values for Get Possession, Pass, and Hold Ball,
while placing an extremely high emphasis on Lose Goal prevention. The Tiki-Taka tactic shows the
highest values for Get Possession and Pass. These results demonstrate that LCMSP can accurately
align abstract natural language instructions with the corresponding style parameters and capture the
magnitude of each style.

Figure 12: Style parameters under different tactical instructions.

D.4.2 FINE-GRAINED ADJUSTMENT OF STYLE PARAMETERS

To demonstrate that the styles trained by our method can be finely adjusted based on style parame-
ters, we selected six Float type style parameters in the 5v5 scenario. For each style parameter, we
fixed the other style parameters at their baseline values and sampled 20 values from 0 to 1 in incre-
ments of 0.05. For each sampled value, we ran 1,000 episodes against the same model with random
styles. Figure 13 illustrates the corresponding in-game metrics as functions of the style parameters.
It can be observed that, for each style parameter, adjusting its value results in a nearly linear and
smooth change in the corresponding metric.

D.4.3 IN-GAME METRICS UNDER DIFFERENT POLICY STYLES

To demonstrate the effects of individual style parameters, we established a baseline where all Float
type style parameters are set to 0.5, and all Bool type style parameters are set to 1 in this testing. For
each style parameter under test, we set its value to the extreme of either 0 or 1 while keeping all other
style parameters at their baseline values. We then ran 1,000 episodes for each testing style against
the same model with random styles and calculated the mean of the corresponding in-game metrics,
as presented in Table 12. It can be observed that for each testing style parameter, the associated
metrics corresponding to parameter values of 0 and 1 reach their maximum and minimum values,
respectively, except for the Lose Goal style parameter. Since the Lose Goal parameter represents the
magnitude of the penalty for conceding a goal, it exhibits an inverse relationship with the number
of goals conceded. When the Lose Goal parameter is set to 1, the number of goals conceded is
minimized. Conversely, setting it to 0 leads to a significant increase in goals conceded, indicating

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Figure 13: Fine-grained adjustment of style parameters and their corresponding changes in in-game
metrics. Note that the Lose Goal parameter is inversely related to the number of goals conceded
because its magnitude represents the penalty for conceding a goal. When the Lose Goal parameter
becomes very low, the number of goals conceded increases significantly, indicating that conceding
goals is scarcely penalized, leading the agent to disregard defense.

that conceding goals is scarcely penalized, and the agent disregards defensive play. Taking the Goal
style parameter as an example, when set to 1, the number of goals scored is the highest among all
styles. Conversely, when set to 0, the number of goals scored significantly decreases. For Bool type
style parameters such as Shot Type, activating the Shot (Goal Area) style results in an average of
0.77 shots in the goal area, the highest among all styles. In contrast, when the Shot (Penalty Area)
style is activated, the number of shots in the goal area decreases to 0.26.

There are also interactions between style parameters. For instance, when the Spacing style parameter
is set to 0, the team’s formation becomes very compact, resulting in the number of passes increasing
to 163, even higher than when the Pass style parameter is activated, because passing becomes easier
when players are closer together. Conversely, when the Spacing parameter is set to 1, the number of
passes correspondingly decreases because players are too far apart, making passing more difficult.
Similarly, setting the Formation style parameter to 1 causes the team to press too far forward, leading
to a significant increase in the number of goals conceded and a corresponding increase in shots
against in the goal area. Conversely, when the Formation parameter is set to 0, the team tends to stay
in the defensive half, resulting in fewer goals conceded and a corresponding decrease in the number
of ball possession turnovers.

E EXAMPLES OF EMPLOYED INSTRUCTIONS

In each scenario, we selected three instruction examples for each instruction type. The instruction
examples for the Highway environment are presented in Table13. The instruction examples for the
single-player and two-player scenarios are provided in Tables14 and 15, respectively. Similarly, for
the 5v5 scenario in GRF, we selected three instructions for each tactic, as presented in Table 16.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

Table 12: In-game metrics with different styles in 5v5 scenario.
Win rate Score Lost Score Shot Pass Hold Ball Goal Area

Shot
Penalty Area

Shot
Win-0 0.53 2.82 1.35 28.15 133.4 0.29 0.32 27.82
Win-1 0.57 2.4 1.53 26.3 137.91 0.3 0.3 26.01
Goal-0 0.34 1.39 2.52 21.25 136.84 0.28 0.15 21.09
Goal-1 0.59 3.55 1.28 30.72 122.78 0.3 0.49 30.22
Lose Goal-0 0.22 1.87 10.91 23.23 132.26 0.23 0.26 22.97
Lose Goal-1 0.54 2.72 1.02 24.91 124.93 0.32 0.32 24.59
Hold Ball-0 0.48 2.79 1.99 29.98 146.7 0.25 0.36 29.62
Hold Ball-1 0.47 2.02 1.06 22.71 124.37 0.34 0.31 22.41
Get Possession-0 0.46 2.54 1.82 31.27 128.32 0.25 0.36 30.9
Get Possession-1 0.49 2.66 1.18 24.43 137.52 0.32 0.29 24.14
Pass-0 0.5 2.56 1.49 27.95 130.9 0.29 0.34 27.61
Pass-1 0.47 2.39 1.41 26.3 149.75 0.28 0.32 25.97
Spacing-0 0.5 2.48 1.49 29.24 163.29 0.29 0.35 28.89
Spacing-1 0.33 2.62 3.89 26.3 118.43 0.24 0.45 25.85
Shot (Goal Area) 0.49 2.73 1.52 29.9 136.89 0.29 0.77 29.13
Shot (Penalty Area) 0.49 2.54 1.58 27.38 139.7 0.28 0.26 27.12
Move (Run) 0.52 2.76 1.7 29.08 144.12 0.27 0.37 28.71
Move (Dribble) 0.49 2.5 1.81 27.71 146.9 0.28 0.29 27.42
Move (Sprint) 0.48 2.69 1.87 28.19 146.69 0.26 0.32 27.86
Formation-0 0.28 1.26 1.14 15.62 114.62 0.3 0.18 15.44
Formation-1 0.31 2.9 8.51 26.64 116.08 0.23 0.65 25.99

Get
Possession

Lost
Possession Spacing Formation Run Dribble Sprint

Win-0 20.19 19.82 0.37 0.47 0.23 0.72 0.05
Win-1 20.61 20.39 0.36 0.47 0.21 0.74 0.05
Goal-0 17.6 18.73 0.39 0.46 0.21 0.75 0.03
Goal-1 21.24 20.33 0.36 0.49 0.28 0.66 0.06
Lose Goal-0 14.04 17.81 0.35 0.51 0.21 0.75 0.03
Lose Goal-1 20.12 19.51 0.36 0.46 0.24 0.71 0.05
Hold Ball-0 20.87 20.91 0.36 0.47 0.21 0.74 0.04
Hold Ball-1 18.87 18.69 0.37 0.46 0.25 0.7 0.05
Get Possession-0 20.55 20.61 0.38 0.47 0.26 0.69 0.04
Get Possession-1 19.99 19.51 0.36 0.47 0.23 0.71 0.06
Pass-0 20.42 20.23 0.37 0.47 0.22 0.74 0.04
Pass-1 20.73 20.57 0.36 0.47 0.25 0.69 0.06
Spacing-0 22.01 21.91 0.29 0.49 0.22 0.73 0.05
Spacing-1 17.79 19.12 0.43 0.49 0.25 0.7 0.05
Shot (Goal Area) 20.86 20.55 0.36 0.48 0.27 0.66 0.07
Shot (Penalty Area) 20.4 20.24 0.37 0.47 0.23 0.72 0.05
Move (Run) 21.07 20.83 0.37 0.47 0.45 0.52 0.03
Move (Dribble) 20.35 20.35 0.37 0.47 0.12 0.87 0.01
Move (Sprint) 20.79 20.7 0.36 0.47 0.22 0.57 0.21
Formation-0 13.84 14.28 0.41 0.32 0.26 0.67 0.07
Formation-1 15.58 18.16 0.33 0.56 0.25 0.71 0.04

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

Table 13: Examples instructions for Highway environment
Instruction Type Instruction Examples

Normal
Keep a larger distance on the left lane while driving.
Increase your speed and change lanes as often as possible on the road.
Push the pedal to the metal and steer your way into the fast lane.

Long
Increase the vehicle’s following space by moving into the left lane, ensuring a
safer gap to the car ahead, thus providing ample room for unexpected maneuvers
while driving.
Speed up and make frequent lane changes to optimize your travel time and
maneuver through traffic more efficiently, ensuring you’re adeptly navigating
the road to reach destinations quickly.
There’s an open path in the fast lane. Quickly hit the accelerator and make the
switch to ensure a smooth journey at a faster speed.

Short
Shift left, keep a larger space.
Quickly drive and switch lanes often.
Increase speed in the fast lane.

Unseen
Take slow lane, widen the space.
Maintain a wider space while driving in the slow lane.
Switch to the slow lane while maintaining a more substantial distance from
the car ahead, prioritizing safety by allowing more reaction time and space for
sudden maneuvers.

Inference
There are a lot of vehicles now, but there are still gaps. I need to go there
quickly.
I’m feeling uneasy about the speed of traffic in the left lane, so I’ll just stick to
the calmer side here.
The open road stretches ahead invitingly, unhindered by other vehicles.

Table 14: Examples instructions for for single-player scenario
Instruction Type Instruction Examples

Normal
Shift the play to the left front with controlled dribbling.
Fill the midfield gap to create scoring opportunities.
Rush to the right-back area to bolster our defense

Long
Ensure you dribble the ball towards the left front, as it will help you position
yourself for an aggressive push towards the opponent’s goal while evading their
central defenders.
A well-positioned midfielder is key to controlling the game; ensure your move-
ments are calculated to intercept passes and assist in both defensive and offen-
sive maneuvers.
Quickly fall back to the right side of the back pitch to bolster our defen-
sive stance against their attacking players and protect our goal from imminent
threats.

Short
Dribble to the front left.
Control the center
Hurry to the right rear.

Unseen
Dribble to the Goal Box, hit it.
Get past opponents, get into the Goal Box, and shoot for the goal.
Control the ball skillfully, maneuver past defenders, and position yourself opti-
mally for a shot within the 6-yard Box.

Inference
Our midfield has been breached, and the opponent’s attack this time poses a
significant threat.
The opposing team’s defenders are clustered in the center, leaving a clear lane
down the left flank for a potential breakthrough.
A gap has opened up in the penalty box, and it appears the goalkeeper is vul-
nerable, offering a perfect chance to score.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

Table 15: Examples instructions for two-player scenario
Instruction Type Instruction Examples

Normal
The team pulls back as one player keeps the ball at their feet.
While evenly distributed, execute precise passes across the field.
Organize a high press, pushing all players to advance cohesively.

Long
To mitigate the risk of losing possession amid such aggressive opposition, our
immediate action should be to retake our positions in the backcourt while hon-
ing our dribbling capabilities to respond effectively to their pressure.
Maintain equilibrium in both offensive and defensive lines; utilize frequent
passing to pull the opponent’s formation apart while searching for gaps and
opportunities to exploit their weaknesses.
Encourage a high-press system where everyone embodies the spirit of team-
work; as the ball is moved forward, even the non-ball holders must be vigilant,
closing down on the rival’s players to eliminate their options.

Short
Step back while holding onto the ball.
Maintain balance and pass the ball effectively.
Move forward together.

Unseen
Sprint and hit
Sprint into position and fire at the goal
Leverage your agility to break through the defense line, finding an opportune
moment to take a shot immediately.

Inference
The match is reaching a critical phase, and we must focus on defending to secure
our lead.
The opponent’s defense is currently well-organized, and we need to find a way
to create scoring opportunities through teamwork.
As we accelerate towards the heart of their defensive setup, the opportunity for
a crucial finish is within reach.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

Table 16: Examples instructions for 5v5 scenario
Tactics Instruction Examples

Positive attack
Utilize precise forward momentum, balancing aggression with thoughtful pos-
session.
Keep control and intent in attacking plays, using strategic movements to create
impactful opportunities.
Apply steady pressure with calculated advances, optimizing space and timing
to open defenses.

All-out attack
Push the entire squad forward, embrace an aggressive mindset, and prioritize
scoring over defense.
Move all players upfield, commit to aggressive attacking, and maintain high
pressure on their backline.
Focus entirely on creating goal threats, push the whole team offensively, and
allow defensive gaps as needed.

Balanced play
Maintain equilibrium on the field by harmonizing defensive duties with attack-
ing opportunities.
Balance offensive creativity with defensive discipline to secure control over the
game.
Keep the lines compact and organized, supporting both defenders and attackers
equally.

Counter attack
Keep a low block, prioritize defensive duties, and break forward with purpose
when opportunities arise.
Allow the opposition to commit forward, then initiate swift counter movements
with few, precise passes.
Hold a compact shape, absorb pressure, and strike swiftly with direct counter-
attacks when the ball is won back.

Park the bus
Adopt an ultra-defensive posture, minimizing offensive efforts to prioritize pre-
serving our clean sheet.
Take a no-risk approach, filling the pitch with defensive bodies to crowd out any
offensive threats.
Close down all spaces at the back, maintaining a sturdy defensive shape to pre-
vent any breakthrough from the opposition.

Tiki-Taka
Execute comprehensive pressing strategies to recover possession quickly, then
maintain control using Tiki-Taka principles.
Position for high intensity pressing meant to stymie attacks, paired with fast-
paced, controlled ball movement.
Maximize on high pressing to regain control swiftly, leveraging it through con-
tinuous short-passing plays.

30

	Introduction
	Related Works
	Preliminaries
	Method
	Reward Shaping with Meta-Behavior
	Multi-style Policy Generation
	Aligning Language Instructions with Target Policies

	Experiments
	Highway Environment
	Single-Player and Two-Player Scenarios in the GRF environment
	5v5 Scenario in GRF environment

	Conclusion and Discussion
	Training Architecture of Multi-style Policies
	Training Scenarios
	Features and Action Spaces
	Design of Meta-Behaviours and Reward Shaping
	Training Algorithm of Multi-style RL Policy
	Network Structures
	Training Process

	Example of Degree-to-Parameter Prompt
	The Process of Instruction Generation
	Additional Experiment result
	Success Criteria for Instruction Execution
	Highway Environment
	Single-player and two-player scenarios in GRF
	5v5 scenario in GRF
	Style parameter of different tactics
	Fine-grained adjustment of style parameters
	In-game metrics under different policy styles

	Examples of Employed Instructions

