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Abstract

The Good-Turing (GT) estimator for the missing mass (i.e., total probability of missing
symbols) in n samples is the number of symbols that appeared exactly once divided by n. For
i.i.d samples, the bias and squared-error risk of the GT estimator can be shown to fall as 1/n
by bounding the expected error uniformly over all symbols. In this work, we study convergence
of the GT estimator for missing stationary mass (i.e., total stationary probability of missing
symbols) of Markov samples on an alphabet X with stationary distribution [πx : x ∈ X ] and
transition probability matrix (t.p.m) P . This is an important and interesting problem because
GT is widely used in applications with temporal dependencies such as language models
assigning probabilities to word sequences, which are modelled as Markov. We show that
convergence of GT depends on convergence of (P∼x)n, where P∼x is P with the x-th column
zeroed out. This, in turn, depends on the Perron eigenvalue λ∼x of P∼x and its relationship
with πx uniformly over x. For randomly generated t.p.ms and t.p.ms derived from New York
Times and Charles Dickens corpora, we numerically exhibit such uniform-over-x relationships
between λ∼x and πx. This supports the observed success of GT in language models and
practical text data scenarios. For Markov chains with rank-2, diagonalizable t.p.ms having
spectral gap β, we show minimax rate upper and lower bounds of 1/(nβ5) and 1/(nβ),
respectively, for the estimation of stationary missing mass. This theoretical result extends
the 1/n minimax rate for i.i.d or rank-1 t.p.ms to rank-2 Markov, and is a first such minimax
rate result for missing mass of Markov samples. We also show, through experiments, that
the MSE of GT decays at a slower rate as the rank of the t.p.m increases.

1 Introduction

When observing a sequence of symbols from an unknown alphabet and distribution, we are often interested in
the probability that the next sampled symbol is going to be new, i.e. a symbol that has not been seen so far.
This probability is the sum of the probabilities of all the symbols missing in the sequence of samples observed
so far, and is called the missing mass. Good and Turing (Good, 1953) had originally studied this problem in
the context of solving the enigma code. The popular Good-Turing (GT) estimator estimates missing mass as
the ratio of the number of symbols seen exactly once in the samples to the sample size. Today, estimation of
missing mass finds applications in language modelling (W.Church & A.Gale, 1991; Gale & Sampson, 1995;
Chen & Goodman, 1996), ecology (Chao & Lee, 1992; Shen et al., 2003) and in entropy estimation (Vu et al.,
2007), and it has been studied in the i.i.d samples setting by multiple authors (McAllester & Schapire, 2000;
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Berend & Kontorovich, 2013; Chandra et al., 2019; Ohannessian & Dahleh, 2012; Mossel & Ohannessian, 2019;
Orlitsky & Suresh, 2015; Rajaraman et al., 2017; Acharya et al., 2018; Cohen et al., 2020; Painsky, 2022).
The mean-squared error for estimating missing mass using the GT estimator in the i.i.d setting (Rajaraman
et al., 2017) falls as (sample-size)−1 with no further assumptions on the alphabet size or restrictions to the
distribution. So, whenever the missing mass is expected to be non-vanishing, it can be reliably estimated in
the i.i.d case.

While missing mass and the GT estimator are well-studied in the i.i.d samples regime, their definitions and
properties in cases where the samples have memory have not been extensively considered in the literature.
Many applications like natural language text processing involve data with temporal dependencies, which are
often modelled as Markov chains (Chen & Goodman, 1996). In this work, we study missing mass and its
estimation through GT estimator in cases when the samples form a Markov chain. Estimation from Markov
samples has been considered in (Wolfer & Kontorovich, 2019; Hao et al., 2018; Han et al., 2018; Hsu et al.,
2019; Han et al., 2021) and forays towards missing mass estimation from Markov chains were made in (Skorski,
2020; Chandra et al., 2020; Chandra et al., 2022). Though GT missing mass estimates are used as part of
distribution estimation in cases where the samples have memory, theoretical properties of the estimation of
missing mass in such scenarios is, to the best of our knowledge, considered for the first time here.

2 Missing stationary mass of a Markov chain

A sequence Xn = (X1, X2, . . . , Xn), Xi ∈ X , is said to be a Markov chain if

Pr(Xi=xi|Xi−1=xi−1, . . . , X1=x1) = Pr(X2=xi|X1=xi−1)

for i = 2, . . . , n and all xi ∈ X . The Xi’s are called states and X is called the state space. K , |X | is the size
of the alphabet X . The transition probability matrix (t.p.m) of the Markov chain, denoted P , is the K ×K
matrix with (i, j)-th element Pij , Pr(X2 = j|X1 = i). A distribution π = [π1, . . . , πK ] on X is said to be a
stationary or invariant distribution of the Markov chain if πP = π (Gallager, 1996). A Markov chain Xn is
said to be stationary if X1 ∼ π, which implies that Xi ∼ π for all i. We denote by Xn ∼ Markov(P,π), a
stationary Markov chain with t.p.m. P and state distribution π.

Let I(·) and E[·] denote the indicator random variable and expectation, respectively, and let [K] denote the
set {1, 2, . . . ,K}. For x ∈ X , Nx(Xn) ,

∑n
i=1 I(Xi = x) is the number of occurrences of x in Xn, also called

the frequency of x. For l = 0, 1, 2, . . ., φl(Xn) ,
∑
x∈X I(Nx(Xn) = l) is the number of letters that have

occurred l times in Xn.

The missing stationary mass of a Markov chain Xn ∼ Markov(P,π), which is the missing mass of π in Xn,
is defined as

M0(π, Xn) ,
∑
x∈X

πx I(Nx(Xn) = 0). (1)

Estimation of the missing mass M0(π, Xn) when Xn ∼ Markov(P,π) and the quantities X , K, π and P are
unknown is important for many applications and in theory (see the role of missing mass in excess risk of
competitive distribution estimation in (Orlitsky & Suresh, 2015)). Note that M0(π, Xn) is a random variable
that is a function of both the samples Xn and the distribution π. This makes estimation of missing mass
and its analysis non-trivial even in the classical i.i.d regime where Xn ∼ i.i.d π or a Markov chain with
P = 1π. For Xn ∼ Markov(P,π) with a general P , the samples are not drawn exactly as per π, which is the
weight for measuring missing mass. This makes the study of missing stationary mass of a Markov chain more
challenging, when compared to an i.i.d sequence.

The Good-Turing (GT) estimator (Good, 1953) for the missing mass M0(π, Xn) is defined as

M̂GT
0 (Xn) , φ1(Xn)

n
, (2)

which is the fraction of symbols that have appeared exactly once in the n samples.
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The minimax squared-error risk1 of estimating missing mass over a class of distributions P, denoted R∗
n(P),

is defined as

R∗
n(P) = min

Estimator M̂0

max
(P,π)∈P

EXn∼Markov(P,π)[(M̂0(Xn) −M0(π, Xn))2]. (3)

The GT estimator has a worst-case squared error risk of O(1/n) in the i.i.d regime and is known to be
minimax rate-optimal (Rajaraman et al., 2017; Acharya et al., 2018). A common approach to use an estimator
that works well on i.i.d sequences in the (non-i.i.d) Markov setting is to sub-sample the Markov chain at
intervals of mixing time and apply the estimator on the resultant, nearly i.i.d, sub-sampled sequence. But
such an estimate using the GT estimator will have a non-vanishing bias for the missing stationary mass of a
Markov chain, since the missing mass of the subsampled sequence would be different and possibly greater
than the missing mass of the whole Markov chain. Moreover, through examples, we demonstrate how the GT
estimator fails to converge to the missing mass for Markov chains with mixing time 2 or 3.

Another metric that is extensively used in the study of Markov chains is spectral gap (Gallager, 1996; Levin
et al., 2008). A chain with nonzero, constant spectral gap shares several properties of i.i.d sequences. However,
through a counter example, we show how the GT estimator fails to converge to missing mass for Markov
chains with a non-vanishing spectral gap. Hence, the success of the GT estimator for missing mass in the
Markov case appears to require a new measure of closeness to i.i.d, and we study such a closeness property in
this work.

We make two main contributions. Firstly, we study the Good-Turing (GT) estimator and characterise the
classes of Markov chains or t.p.ms for which it converges to missing stationary mass. A large class of t.p.ms
occurring in practical scenarios are likely to satisfy these characterisations.

Secondly, on the theoretical side, we characterise the minimax squared-error risk of estimating missing
stationary mass over a class of rank-2 Markov t.p.ms with a spectral gap. To the best of our knowledge, this
work presents the first minimax rate result for a Markov case.

3 Main Results

3.1 Convergence of GT estimator

We first provide a simplified expression for the bias of the GT estimator for missing stationary mass, using
which convergence analysis becomes possible. We require the following notation.

For x ∈ X , let P∼x be a modified transition matrix equal to P in all positions except the x-th column, which
is set as the all-0 vector. So, under P∼x, the symbol x is never observed. Let P 0

↓x , P − P∼x be all-zero
except for the x-th column, which is set as the x-th column of P . Let π∼x be equal to the vector π in all
positions except the x-th entry, which is set as 0. Let 1 be the |X | × 1 vector with all entries as 1 and ex be
the 1 × |X | vector with the x-th entry as 1 and all other entries as zeros.
Lemma 1. For a stationary Markov chain Xn ∼ Markov(P,π), the bias of the Good-Turing estimator can
be expressed as follows:

E[M̂GT
0 (Xn) −M0(π, Xn)] = 1

n

∑
x∈X

[
πx (ex − π∼x) (P∼x)(n−1) 1

+
n∑

m=2
π∼x (P∼x)(m−2) (P 0

↓x − πxP
∼x) (P∼x)(n−m) 1

]
. (4)

Proof. Section 5.
1In cases where missing mass is expected to vanish with n, relative error is more meaningful as shown in (Mossel &

Ohannessian, 2019). However, in many interesting large alphabet scenarios, missing mass is non-vanishing for large n, and
estimation is critical in the non-vanishing case. So, we consider additive error in this work.
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For Xn ∼ i.i.d π, the t.p.m P = 1 π, P∼x = 1 π∼x and the bias of the GT estimator equals
∑
x∈X π2

x (1 −
πx)n−1 = O(1/n). Therefore, the Good-Turing estimator has a vanishing bias for the missing stationary
mass in the i.i.d case and one might expect M̂GT

0 to perform similarly over Markov chains that are close to
the i.i.d regime, say, in mixing time or spectral gap. In Section 3.3, we show through simulations that there
exists a non-i.i.d Markov chain with mixing time as small as 2 (or 3), which is the closest non-i.i.d Markov
chains can get to the i.i.d regime in terms of mixing time, for which the Good-Turing estimator does not
converge to the missing stationary mass. A similar counterexample is shown for spectral gap as well. So we
need a different notion of proximity to the i.i.d regime to extend the i.i.d result on the convergence of the GT
estimator to the Markov regime.

In the following theorem, we present sufficient conditions on the t.p.m P for the convergence of the GT
estimator to M0(π, Xn). These conditions require powers of P∼x to be close to 1π∼x, which is P∼x

iid of the
corresponding i.i.d chain with t.p.m Piid = 1π and stationary distribution π. In Section 3.3, we verify that
these conditions are satisfied by randomly generated t.p.ms, empirical t.p.ms built using language corpora
and the GT estimator has vanishing MSE for M0(π, Xn) of the stationary Markov chains from these t.p.ms.
Theorem 2. The absolute bias of the Good-Turing estimator M̂GT

0 (Xn), for the missing stationary mass of
a stationary Markov chain Xn ∼ Markov(P,π) is bounded as

∣∣E[M̂GT
0 (Xn) −M0(π, Xn)]

∣∣ ≤ 2(2n0 + 1)
n

+ [3εn0,n + ε2n0,n] + 2 e−1

n− 4 + a0
e−1

c1(n− 2) , (5)

where n0, εk,n, a0 and c1 (defined below) satisfy the following conditions:

1. there exist n0 = o(n), λx ∈ [0, 1] for x ∈ X and εk,n > 0 such that for any x ∈ X and k ≥ n0,

(a) (λk−1
x − εk,n) π∼x ≤ ez (P∼x)k ≤ (λk−1

x + εk,n) π∼x, z ∈ X ,
(b) λx ≤ 1 − c1πx, c1 ∈ [0, 1],

2. there exists a0 > 0 such that Pxx ≤ a0 πx for all x ∈ X .

The MSE of the GT estimator M̂GT
0 (Xn) for M0(π, Xn) of Xn ∼ Markov(P,π) is bounded as

E[(M̂GT
0 (Xn) −M0(π, Xn))2] ≤ 2

n
(5n′

0 + 2)
[
2 + 3e−1

c2(n− 2)

]
+ εn0,n + 6ε′n′

0,n
+ 4(ε′n′

0,n
)2 + (ε′n′

0,n
)3

+ 1
n− 6

[
2 + e−1

(
8e−1 + c−1

1 + c−1
2 (3 + 8a0e

−1)
)]

(6)

if, in addition to the above mentioned conditions, there exist n′
0 = o(n), {λx,y ∈ [0, 1] : x, y ∈ X , x 6= y} and

ε′k,n > 0 such that for any x, y ∈ X , x 6= y and k ≥ n′
0,

(A) (λk−1
x,y − ε′k,n) π∼x,y ≤ ez (P∼x,y)k ≤ (λk−1

x,y + ε′k,n) π∼x,y, z ∈ X ,

(B) λx,y ≤ 1 − c2(πx + πy), c2 ∈ [0, 1],

where the matrix P∼x,y equals the t.p.m P in all entries except in the x-th and y-th columns which are set to
0 and π∼x,y is the vector obtained by setting the x-th and y-th entries to 0 in π.

Proof. Section 6.

It is easy to retrieve the classical O(1/n) bounds on the bias and MSE of the GT estimator for missing mass
in n i.i.d samples from Theorem 2 by checking that the conditions required for (5) and (6) are satisfied in the
i.i.d case with λx = 1 − πx, λx,y = 1 − (πx + πy), εk,n = ε′k,n = 0, c1 = c2 = a0 = 1 and n0 = n′

0 = 1.

The conditions on the t.p.m P in the above theorem constrain the rows of (P∼x)k to be similar to those
of (1 π∼x)k = (1 − πx)k−1 1 π∼x. This is reasonable and may be satisfied by many t.p.ms since the k-th
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power of a non-negative matrix converges to the k-th power of its Perron eigenvalue, i.e. the eigenvalue
with the largest magnitude, times the outer-product of the corresponding right and left eigenvectors and we
expect such left and right eigenvectors of P∼x to be close to those of 1π∼x i.e. π∼x and 1, and the Perron
eigenvalue of P∼x to be close to 1 − πx, the only non-zero eigenvalue of 1 π∼x. The conditions on P∼x,y

have similar interpretations.

The error term in the convergence of (P∼x)k, which we have denoted εk,n, may, in general, be a function of k
and n (note that entries of P may be scaling with n as well). The convergence of bias to zero depends on the
convergence of εn0,n to zero. This may be numerically verified for many interesting t.p.ms, as shown later.
Similarly, the convergence of MSE to zero depends on the convergence of ε′n′

0,n
to zero.

The condition on Pxx (self-loop probability) is necessary for successful convergence of the GT estimator as
shown later by a counter example. This condition is also expected to be satisfied by a wide range of t.p.ms
such as those arising from natural language text because a word seldom follows itself in writing.

The conditions of Theorem 2 need to be satisfied only for those letters x that are most likely to contribute to
the missing mass. For example, if πx � 1/n, the letter x will appear in n samples with high probability and
P∼x need not satisfy the conditions. We have not explicitly stated such modifications for simplicity.

The conditions of Theorem 2 constrain a Markov t.p.m to be close to the i.i.d regime in an analytical way.
Next, we shift to an algebraic view, and study missing mass estimation from Markov chains with t.p.ms that
are close to the i.i.d regime in rank. Note that the i.i.d t.p.m has rank 1. As a natural next step, we consider
t.p.ms with rank equal to 2.

3.2 Rank-2 Markov chains

Consider a Markov chain with a rank-2 t.p.m P , which we will call, loosely, as a rank-2 Markov chain. Since
P has all entries in [0, 1] with each row adding to 1 and since it has rank 2, the eigenvalues of P will be 1, λ2,
0, . . ., 0, and −1 ≤ λ2 ≤ 1 (by Perron-Frobenius theorem) (Pillai et al., 2005). The value of λ2 determines
several important properties of the chain. If λ2 = 1, the chain is reducible. If λ2 = −1, the chain is periodic
with period 2. If λ2 = 0, the chain is i.i.d For −1 < λ2 < 1, the chain is irreducible and aperiodic. We define
the spectral gap of a t.p.m P as

β(P ) , 1 − λ2 ∈ [0, 2]. (7)

In this section, we let P2,β denote the family of rank-2 diagonalizable t.p.ms with spectral gap β.

3.2.1 Bias of GT estimator

The absolute bias of the GT estimator converges as 1/(nβ2) + 1/(nβ3) for rank-2 Markov chains with spectral
gap β. This is shown in the next theorem.

Theorem 3. For P ∈ P2,β with stationary distribution π and β ≥
[
30(lnn)/(n−3)

]1/2
, there exists universal

constants c1, c2 > 0, such that∣∣∣E[M̂GT
0 (Xn) −M0(π, Xn)]

∣∣∣ ≤ c1

nβ2 + c2

nβ3 + O(1/n). (8)

In comparison to Theorem 2, we see that the bias is explicitly bounded in terms of the spectral gap, which
is an important parameter of the chain. For β < 1, we see that the bias of the GT estimator converges if
(1/(nβ3)) → 0, or β is higher than c/ 3

√
n for large n. So, even in cases where the spectral gap is asymptotically

vanishing, the GT estimator converges if the rate of fall is not too rapid.

3.2.2 Minimax rate

For rank-2 chains, a much stronger result than convergence of bias can be shown. We next characterise the
minimax rate R∗

n(P2,β) of the squared error risk of estimating M0(π, Xn) of Xn ∼ Markov(P,π) for the
class P2,β .
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Theorem 4. The minimax squared error risk R∗
n(P2,β) is bounded as follows:

1. For β ≥ ((160 lnn)/(n− 5))1/3,

R∗
n(P2,β) ≤ O(1/nβ5). (9)

2. For n sufficiently large, there is a constant c such that

R∗
n(Pβ) ≥ R∗

n(P2,β) ≥ c

nβ
. (10)

We get the upper bound in (9) by analyzing the worst-case MSE (over P2,β) of the GT estimator M̂GT
0 (Xn) =

φ1(Xn)/n in estimating M0(π, Xn) from Xn ∼ Markov(P,π) with P ∈ P2,β . The simplifications in the
upper bound are fairly involved and an outline of the proof is presented in Section 7. The complete proof is
provided in the Appendix.

To get the lower bound in (10), we modify the Le Cam two point method. The usual Le Cam method for
lower bounds on minimax risk (Yu, 1997) directly applies when the estimand does not depend on the samples,
and is a parameter of the distribution alone. Using concentration properties, we extend the Le Cam two-point
method to the case of estimating missing stationary mass M0(π, Xn) that clearly depends on the samples Xn.
By constructing two Markov chains (with t.p.ms in P2,β) close in distribution and separated in M0(π, Xn),
we get the lower bound in (10) on R∗

n(P2,β). Since P2,β is contained in Pβ , the class of all Markov chains
with spectral gap β, the same lower bound extends to R∗

n(Pβ) as well. Specific details are provided in the
Appendix.

Overall, we see that the minimax rate behaves as 1/n for rank-2 chains. This extends the previously known
1/n rate for i.i.d samples. The behaviour with respect to β differs in the upper and lower bounds (1/(nβ5) vs
1/(nβ)), and this gap could be closed in future work.

3.3 Synthetic and corpora-based illustrations

In this section, we present the results of our simulations studying the performance of the GT estimator in
estimating the missing stationary mass of Markov sequences drawn using rank 2 t.p.ms, higher rank t.p.ms,
randomly generated t.p.ms, and empirical t.p.ms built over natural language text.

3.3.1 Rank-2 synthetic t.p.m

We consider a K ×K rank-2 t.p.m with spectral gap β formed by 4 K/2 ×K/2 blocks as follows:

cK,β · · · cK,β cK,β β/2 0 · · · 0
... . . . ...

...
...

... . . . ...
cK,β · · · cK,β cK,β β/2 0 · · · 0

0 · · · 0 β/2 cK,β cK,β · · · cK,β
... . . . ...

...
...

... . . . ...
0 · · · 0 β/2 cK,β cK,β · · · cK,β


,

where cK,β = (1 − β/2)(2/K). We generated stationary Markov sequences of lengths n =
30, 60, 120, 240, 500, 1000 from the rank−2 t.p.m specified above with K = 1.2n and with β = 1/n0.2,
β = 1/n and computed the missing mass M0 and the GT estimate over 5000 trials. The mean values with
standard deviation bars are shown in Fig. 1. For comparison, similar results are shown for i.i.d sequences
from the same stationary distribution. As predicted by the theoretical results, the GT estimate converges in
the rank-2 case for β = 1/n0.2, while it is away by a constant value for β = 1/n. In the i.i.d case, there is
convergence in all cases. We see that the variances in the rank-2 case are noticeably higher when compared
to the i.i.d case.
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Figure 1: Missing mass and GT estimates for rank-2 chain and i.i.d sequence.
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Figure 2: MSE of GT for a rank-2 chain with spectral gap β and rank L sticky t.p.m.

A plot of MSE of GT versus n is shown in Fig. 2 for a larger range of values for n for the rank-2 chain
considered above. The parameters were chosen as K = 1.2n, β = 1/n0.2, 1/n0.5, 1/n0.8, 1/n, and the MSE
was averaged over 16000 trials for each n. We observe that the MSE falls with n for β higher than 1/n, while
it stays flat for β = 1/n. So, in this particular case, it appears that the actual MSE is as per the lower bound
of Theorem 4 in terms of β.

3.3.2 Markov chains with rank of t.p.m above 2

The mean square error of the GT estimator for the missing stationary mass of a Markov chain with t.p.m
rank greater than 2 is considered next for simulations. Through these simulations, we show the following:

• The rate of decay (with number of samples) of MSE of the GT estimator for the missing stationary
mass of a Markov chain appears to vary with the rank of the t.p.m, possibly as one of the parameters.

• Rapid mixing of a Markov chain is not sufficient for convergence of GT estimator of missing mass.

• Large spectral gap of a Markov chain is not sufficient for convergence of GT estimator of missing
mass.

We consider a K ×K t.p.m P with the i-th row as (recall that ei is a vector with 1 at the i-th position and
zero elsewhere)

Pi = α ei + (1 − α) p, for i = 1, 2, . . . , L, and Pi = p, for i = L+ 1, . . . ,K,
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where α ∈ [0, 1] and p = {px : x ∈ X } is a probability distribution on X = {1, . . . ,K}. The stationary
distribution π of this t.p.m is such that

πi = 1
τ
pi, for i = 1, 2, . . . , L, and πi = 1 − τ

τ
pi, for i = L+ 1, . . . ,K,

where τ = 1 − α
(∑K

i=L+1 pi

)
.

For α > 0 and L = K, π = p and we refer to the above t.p.m as a (geometrically) sticky t.p.m or a sticky
Markov chain. For α > 0 and L < K, we refer to the above t.p.m as a partially sticky t.p.m. For α = 0, we
retrieve the i.i.d chain. Note that the rank of this t.p.m is L+ 1 for L < K and K, i.e. full rank, for L = K.

We generated stationary Markov sequences of lengths n = 100, 200, 400, 800, 1600, 3200, 6400 from the t.p.m
specified above with K = 1.2n, L = n0.25, n0.5, n0.7, 1.2n, α = 0.5 and p as the uniform distribution.

The scaling of the alphabet size K (and, as a result, the parameters of the t.p.m) with the sample size n
models the large alphabet nature of applications like language text where the alphabet size is greater or of
the same order as the data size. The missing mass estimation problem is non-trivial in cases such as these
since, for example, the (expected value of) missing mass in n samples drawn from a uniform distribution
on cn letters, c being a constant, converges to e−1/c as n → ∞, whereas in cases with the alphabet size
or parameters of t.p.m independent of n, the (expected value of) missing mass in n samples of a sequence
generated from such t.p.ms converges to 0 as n increases. Note that the MSE of the GT estimator for the
missing mass in n i.i.d samples (i.e. rank-1 t.p.m) of a uniform distribution on cn letters decays as 1/n
(Rajaraman et al., 2017).

A plot of the MSE (averaged over 16000 trials) of GT against n, for these choices of L, is shown in Fig 2.
From the plot, we observe that the MSE of the GT estimator, for missing stationary mass of a Markov chain
with the above specified t.p.m, increases with the rank of the t.p.m and the rate of decay of the MSE depends
on the rank.

Further, the MSE is non-vanishing (with n) when the t.p.m is of full rank which is a geometrically sticky
t.p.m in this case. Note that the geometrically sticky Markov chain considered here with α = 0.5 has mixing
times of 2 and 3 for total-variation distances of 1/4 and 1/8 to the stationary distribution π. Further, the
spectral gap is 1 −α = 0.5. Therefore, even in the regime of mixing times close to i.i.d (the mixing time of an
i.i.d chain is 1) and constant spectral gap, there exist Markov chains for which the GT estimator does not
converge to M0(π, Xn).

The geometrically sticky chain violates Condition 2 of Theorem 2, i.e. Pxx = α+ (1 − α)πx ≤ a0 πx is not
satisfied for α � πx. The authors of (Chandra et al., 2022) suggest a scaling of the GT estimator, which
converges to missing mass in this case.

3.3.3 T.p.ms generated at random and from corpora

Analytical characterisation of non-i.i.d t.p.ms that satisfy the conditions in Theorem 2 is a challenging
problem. While there are counterexamples such as the sticky channels, the GT estimator appears to work in
practice for several text-based corpora, which behave like Markov chains. To study this phenomenon under
the setting of Theorem 2, we construct some random t.p.ms and some t.p.ms from text corpora and verify
conditions in Theorem 2 numerically.

We consider a class of randomly generated t.p.ms, and two classes of t.p.ms from text corpora.

• Punif-gen: Each entry is first drawn i.i.d from the uniform distribution over [0, 1] and each row is then
scaled to make the row sum equal to 1.

• NYT: The New York Times (NYT) corpus 2 consists of randomly collected articles from the front
pages of New York Times from the years 2017 and 2018. To build an empirical t.p.m, we consider an

2available under CC0:Public domain license at https://www.kaggle.com/datasets/mathurinache/10700-articles-from-new-
york-times
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article in the NYT corpus and set the empirical transition probability (from word w1 to w2) Pw1,w2

as Nw1,w2/Nw1 , where Nw1,w2 is the number of times the word w2 follows w1 in the article and Nw
is the number of occurences of the word w in the article 3. The empirical probability πw is set to
Nw/(total wordcount) of the article.

• GE: The novel Great Expectations (GE) by Charles Dickens is available under the project Gutenberg
(https://www.gutenberg.org/). To construct a t.p.m, we consider a chapter from the novel and repeat
the same process as NYT above.

We specifically use two Punif-gen t.p.ms with support sizes K = 1250, 1.2n and three empirical t.p.ms, each
built using a chapter of the novel Great Expectations and five empirical t.p.ms, each built using an article
with more than 1600 words from the NYT corpus. To verify Condition 1 in Theorem 2, we use the Perron
eigenvalue λ1,x, the eigenvalue of P∼x with the largest magnitude. We consider the difference between the
ratio (P∼x)kyz/πz and (λ1,x)k−1 and denote by εk,n,x, the maximum of the absolute value of this difference
over all the entries of (P∼x)k, except the entries of the x-th column which are 0. εk,n is the maximum of
εk,n,x over all x. Fig 3 shows two scatter plots, for k = 16 and 64, of εk,n,x against 1 − πx for a Punif-gen t.p.m
with K = 1.2n and n = 100, 200 and 400. From these plots, we see that εk,n,x falls with both k and n. Fig 3
also shows a scatter plot of λ1,x against 1 − πx for the same t.p.m with n = 100, 200 and 400, which indicates
a linear relation between λ1,x and 1 − πx. From the plots in Fig 3, we see that Condition 1 in Theorem 2 is
satisfied by this t.p.m with λx as λ1,x as εk,n decreases with n.

0.991 0.995 0.998
0.5

1

1.5

2 ·10−2

ε k
,n
,x

k = 16

n = 100

n = 200

n = 400
0.991 0.995 0.998

0.4

0.6

0.8

1

1.2
·10−2 k = 64

0.991 0.995 0.998
0.991

0.996

0.998
λ

1,
x

n = 100

n = 200

n = 400

1 − πx

Figure 3: εk,n,x vs 1 − πx and λ1,x vs 1 − πx for Punif-gen t.p.ms with K = 1.2n

Figure 4 shows scatter plots of 1 − λ1,x against the stationary probability πx for the remaining three t.p.ms.
All the plots show a linear upper bound relation between 1 − λ1,x and πx closely matching the Condition
1(b) in Theorem 2. In addition, these t.p.ms satisfy Condition 1(a) in Theorem 2 as εn0,n is negligible for a
sufficiently high n0.

For the randomly generated t.p.ms Punif-gen with K = 1250 and K = 1.2n, Pxx was found to be less than
10πx, for any x. For the empirical t.p.ms built from language text, Pxx = 0 for any x. Therefore, the t.p.ms
under consideration also satisfy Condition 2 in Theorem 2. Since εn0,n falls with n for the Punif-gen t.p.m
with K = 1.2n and is negligible for a suitable choice of n0 for the other t.p.ms, Theorem 2 implies that the
GT estimator should converge to the missing stationary mass of Markov chains from these t.p.ms.

Figure 5 plots the MSE of the GT estimator for M0(π, Xn) of a stationary Markov chain Xn generated using
the t.p.ms Punif-gen with K = 1250, 1.2n, the three empirical t.p.ms from GE and the five empirical t.p.ms
from NYT corpora, for n = 100, 200, 400, 800, 1600, 3200, 6400 and averaged over 16000 trials. The curves for
GE and NYT correspond to MSE averaged over the three t.p.ms from Great Expectations and the five t.p.ms
from the NYT corpus. We observe that MSE falls for all of these t.p.ms.

3We change all the words in the article to lower case, lemmatize the words and ignore punctuations.
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Figure 4: 1 − λ1,x vs πx for randomly generated t.p.m and t.p.ms from corpora.
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Figure 5: MSE of GT for randomly generated t.p.ms and t.p.ms from corpora.

4 Conclusion and Future Directions

In conclusion, our study of the Good-Turing (GT) estimator for missing stationary mass of a Markov
chain with t.p.m P and stationary probability π (with support size assumed to be unknown) indicates that
convergence of GT depends on relationships between the spectrum of P∼x (P with x-th column zeroed
out) and πx to be satisfied uniformly for all x that contribute to missing mass. We derive specific sufficient
conditions for convergence of absolute bias in terms of the nature of convergence of powers of P∼x with
respect to powers of P . These conditions are verified numerically for t.p.ms derived from text corpora, which
supports the success of GT in practice. Analytical understanding of relationships between the spectrum of
P∼x and πx for arbitrary t.p.ms is a topic for future study. In the case when P has rank 2 with a spectral
gap of β, we derive lower (c/(nβ)) and upper (c′/(nβ5)) bounds on the minimax squared-error risk. The
bounds extend the 1/n minimax rate result from the i.i.d case to rank-2 Markov. Characterizing the exact
dependence on β is a topic for future work. Through our simulations on high-rank t.p.ms, we see that the
rate of decay (with n) of the MSE of the GT estimator for the missing stationary mass might vary with rank
of the t.p.m.

5 Proof of Lemma 1

To prove (4), we begin with the expressions for the expected values of M0(π, Xn) and M̂GT
0 using π∼x, P∼x

and P 0
↓x.
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Since M0(π, Xn) =
∑
x∈X πx I(Nx(Xn) = 0), we have

E[M0(π, Xn)] =
∑
x∈X

πx Pr(Nx(Xn) = 0) =
∑
x∈X

πx π∼x (P∼x)n−1 1. (11)

Since M̂GT
0 (Xn) = φ1(Xn)/n = 1

n

∑
x∈X I(Nx(Xn) = 1), we have

E[M̂GT
0 (Xn)] = 1

n

∑
x∈X

Pr(Nx(Xn) = 1) = 1
n

∑
x∈X

n∑
m=1

Pr(Xm = x;Xl 6= x, l 6= m, 1 ≤ l ≤ n)

= 1
n

∑
x∈X

[
πx ex (P∼x)(n−1) 1 +

n∑
m=2

π∼x (P∼x)m−2 P 0
↓x (P∼x)n−m 1

]
. (12)

Taking the difference (12) and (11), we get (4). This completes the proof of Lemma 1.

6 Proof of Theorem 2

In this section, we provide a proof for (5) in Theorem 2. The proof for (6) is similar. To prove the bound on
the bias of M̂GT

0 in (5), we first bound the expectation of M̂GT
0 . Let Xn

∼m , (X1, . . . , Xm−1, Xm+1, . . . , Xn),
the samples X1 . . . Xn except Xm, for m = 1, . . . , n.

E[M̂GT
0 (Xn)] = 1

n

∑
x∈X

Pr(Nx(Xn) = 1) = 1
n

∑
x∈X

n∑
m=1

Pr(Xm = x,Nx(Xn
∼m) = 0)

= 1
n

∑
x∈X

[ ∑
m=1,...,n0+1
n−n0+1,...,n

Pr(Xm = x,Nx(Xn
∼m) = 0) +

n−n0∑
m=n0+2

Pr(Xm = x,Nx(Xn
∼m) = 0)

]

(a)
≤ 1

n

∑
x∈X

[ ∑
m=1,...,n0+1
n−n0+1,...,n

Pr(Xm = x) +
n−n0∑

m=n0+2
Pr(Xm = x,Nx(Xn

∼m) = 0)
]

= 1
n

∑
x∈X

[
(2n0 + 1) πx +

n−n0∑
m=n0+2

π∼x (P∼x)m−2 P 0
↓x (P∼x)n−m 1

]
(b)
≤ 1

n

∑
x∈X

[
(2n0 + 1) πx +

n−n0∑
m=n0+2

π∼x (λm−3
x + εm−2,n) 1 π∼x P 0

↓x (λn−m−1
x + εn−m,n) 1 π∼x 1

]
(c)= 1

n

∑
x∈X

[
(2n0 + 1) πx +

n−n0∑
m=n0+2

πx (1 − Pxx) (1 − πx)2 (λn−4
x + εn−m,n λ

m−3
x + εm−2,n λ

n−m−1
x

+ εm−2,n εn−m,n)
]

(d)
≤ 2n0 + 1

n
+
(

1 − 2n0 + 1
n

) ∑
x∈X

[
πx (1 − Pxx) (1 − πx)2 (λn−4

x + 2εn0,n + ε2n0,n)
]

(e)
≤ 2(2n0 + 1)

n
+
(

1 − 2n0 + 1
n

)
[2εn0,n + ε2n0,n] +

∑
x∈X

πx (1 − Pxx) (1 − πx)2 λn−4
x , (13)

where we get (a) by using Pr(Xm = x;Xl 6= x, l 6= m, 1 ≤ l ≤ n) ≤ Pr(Xm = x) = πx, (b) by using
Condition 1(a) of Theorem 2, (c) by using π∼x 1 = 1 − πx and π∼x P 0

↓x 1 = πx (1 − Pxx), (d) by using∑
x∈X πx = 1 ,|λx| ≤ 1 and εn−m,n > εn0,n, εm−2,n > εn0,n for m = n0 + 2, . . . , n − n0 and (e) by using∑
x∈X πx (1 − Pxx) (1 − πx)2 λn−4

x ≤
∑
x∈X πx (1 − Pxx) (1 − πx)2 ≤

∑
x∈X πx = 1.
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Using a similar method, we lower bound the expectation of M0(π, Xn) as

E[M0(π, Xn)] =
∑
x∈X

πx π∼x (P∼x)n−1 1
(a)
≥

∑
x∈X

πx π∼x (λn−2
x − εn−1,n) 1 π∼x 1

=
∑
x∈X

πx (1 − πx)2 (λn−2
x − εn−1,n), (14)

where we get (a) by using Condition 1(a) of Theorem 2. Using (13) and (14), we get

E[M̂GT
0 (Xn)] − E[M0(π, Xn)]

(a)
≤ 2(2n0 + 1)

n
+ [3εn0,n + ε2n0,n] +

∑
x∈X

πx (1 − πx)2 λn−4
x

[
1 − Pxx − λ2

x

]
(b)
≤ 2(2n0 + 1)

n
+ [3εn0,n + ε2n0,n] +

∑
x∈X

πx(1 − πx)2λn−4
x

[
2(1 − λx) + a0πx

]
(c)
≤ 2(2n0 + 1)

n
+ [3εn0,n + ε2n0,n] + 2 e−1

n− 4 + a0
e−1

c1(n− 2) (15)

where we get (a) by using
∑
x∈X πx (1 − πx)2 εn−1,n ≤ εn−1,n

∑
x∈X πx ≤ εn−1,n ≤ εn0,n, (b) by using

1 + λx ≤ 2, Pxx ≤ a0 πx and (c) by using λx ≤ 1 − c1πx from Condition 1 in Theorem 2 along with
maxt∈[0,1] t (1 − t)n ≤ e−1/n.

Using a similar method, we can show that

E[M0(π, Xn)] − E[M̂GT
0 (Xn)] ≤ 2(2n0 + 1)

n
+ [3εn0,n + ε2n0,n] + 2 e−1

n− 4 + a0
e−1

c1(n− 2) .

This completes the proof of (5) in Theorem 2.

7 Proof of Theorems 3 and 4

A proof of Theorem 3 is given in Section A of the Appendix. In the proof,

• we split the alphabet X into three sets: letters with πx = Pxx, which we refer to as iid-like letters,
infrequent letters with πx 6= Pxx, frequent letters with πx 6= Pxx and bound the letter-wise bias of
the GT estimator Γx , 1

n Pr(Nx(Xn) = 1) − πx Pr(Nx(Xn) = 0), i.e. E[M̂GT
0 (Xn) −M0(π, Xn)] =∑

x∈X Γx, over these sets. The infrequent letters contribute the most to missing mass, in expectation.

• For the letters with πx = Pxx, Pr(Nx(Xn) = 0) = (1 −πx)n and Pr(Nx(Xn) = 1) = n πx (1 −πx)n−1

and the sum of
∣∣Γx∣∣ over all the iid-like letters is bounded as O(1/n).

• We bound the sum of
∣∣Γx∣∣ over all infrequent letters (with πx 6= Pxx) by using the eigenvalue

decomposition of P∼x in (4) along with bounds of the form λ1,x ≤ 1 − c0πx, c0 being a function of
the spectral gap β, on the Perron eigenvalue λ1,x of P∼x.

• To bound the sum of
∣∣Γx∣∣ (over all frequent letters) with πx 6= Pxx, we bound Pr(Nx(Xn) = 0)

and Pr(Nx(Xn) = 1) using the eigenvalue decomposition of P∼x along with bounds of the form
λ1,x ≤ 1 − c0πx and use these to upper bound the absolute value of Γx.

The upper bound on the bias of the GT estimator in (8) is obtained by combining the bounds on the sum of
|Γx| over these three sets and choosing a suitable threshold on stationary probability to split the alphabet X
into frequent and infrequent letters.

The proof of the upper bound in Theorem 4 also uses ideas similar to the above. See Section B in the
Appendix.

The lower bound in Theorem 4 is proved by an extension of the standard Le Cam method to estimation of
the missing mass random variable. See Section C in the Appendix.
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A Proof of Theorem 3

Consider a rank-2, K ×K diagonalizable t.p.m P with stationary distribution π = [π1 · · · πK ] and spectral
gap β. By the standard eigenvector decomposition for the rank-2 matrix P , there exist vectors u = [u1 · · · uK ]
and v = [v1 · · · vK ]T satisfying the decomposition

P = RDS with SR =
[
1 0
0 1

]
,

where R =
[
1 v

]
, D =

[
1 0
0 1 − β

]
and S =

[
π
u

]
. Since P is a t.p.m, we have, for 1 ≤ i, j ≤ K,

0 ≤ Pij = πj + βviuj ≤ 1, (16)

where the notation a , 1 − a.

Since P = RDS, we have P∼x = RDS∼x where S∼x is obtained by setting the x-th column in S to zeros.
Now, the matrix P∼x, when diagonalizable, can be written as

P∼x =
2∑
i=1

λi,x v
∼x
i u∼x

i , (17)

14



Published in Transactions on Machine Learning Research (MM/YYYY)

with

eigenvalues λi,x , 0.5
(
πx + β(1 − vxux) + (−1)i+1∆x

)
, (18)

right eigenvectors v∼x
i = 1 + (1/2πxvx) [sx + (−1)i∆x] v, (19)

left eigenvectors u∼x
i = (1/λi,x∆x)

(
(1/2) [∆x + (−1)i−1sx] π∼x + (−1)i βπxvx u∼x

)
, (20)

for i = 1, 2, where ∆2
x , s2

x + 4βπxvxux and sx , β − πx + βvxux. We use u∼x to denote the vector u with
x-th entry set to 0. Note πv∼x

i = 1 for i = 1, 2, since πv = 0. P∼x, in the rank-2 case, is not diagonalizable
when both its non-zero eigenvalues equal 1 − πx with only one non-trivial eigenvector and this case is handled
separately later (refer lemma 8).

The right and left eigenvectors of P∼x are expressed in terms of 1 and π (or π∼x), the right and left
eigenvectors of P . However, the difference terms involve the eigenvalues and eigenvector coordinates, which
need to be carefully bounded.

The following lemma contains important relationships between λi,x, πx and β.
Lemma 5. 1.

∆x ∈ [−(β(1 − πx) + Pxx), (β(1 − πx) + Pxx)], if β ∈ [0, 1] (21)

2.
∆x ∈ [−(β + (1 − β)vxux), (β + (1 − β)vxux)], if β ∈ [1, 2] (22)

3.
|λi,x| ≤ 1 − (cβ/2)πx, i = 1, 2, (23)

where cβ = β for β ∈ (0, 1], cβ = 1 for β ∈ [1, 2].

4.

|λi,x| ≤ 1 − β2

2(β + 2)πx, i = 1, 2. (24)

Proof. See Section A.4.

In the eigenvalue decomposition of P , let ψwz , βvwuz, for w, z ∈ X . The following lemma bounds summation
terms that typically occur in the analysis.
Lemma 6. For x, y ∈ X ,∑

x∈X
(πx)a |ψbxx| |ψcyx| ≤ 3, for a, b, c ∈ {0, 1, 2, 3, . . .} and a+ b+ c ≥ 1. (25)

Proof. See Section A.4.

Let Γx , 1
n Pr(Nx(Xn) = 1) − πx Pr(Nx(Xn) = 0) be the letter-wise bias of the GT estimator i.e.

E[M̂GT
0 (Xn) −M0(π, Xn)] =

∑
x∈X Γx. To bound Γx, we divide the alphabet X into three sets,

A0 , {x ∈ X : πx = Pxx}, (iid-like)
A(δ) , {x ∈ X \A0 : πx < δ}, (infrequent)
A(δ) , {x ∈ X \A0 : πx ≥ δ}, (frequent)

with 0 ≤ δ < β/5. For δ = O((lnn)/n), the letters in the set A(δ) are less likely to occur in Xn, than the
letters in A(δ), and contribute more to the missing mass M0(π, Xn).

15
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A.1 Case 1: Infrequent letters

Using (17) and the ensuing expressions in (4), we obtain

Γx =
[ 2∑
i=1

(λi,x)n−1 (u∼x
i 1) (u∼x

i P 0
↓xv

∼x
i − πxλi,x)

+ (1/n) ∆−1
x [(λ1,x)n − (λ2,x)n]

∑
i,j∈[2]: i 6=j

(u∼x
j 1) (u∼x

i P 0
↓xv

∼x
j )
]
. (26)

For x ∈ A(δ), we will show by careful analysis that
∑
x∈A(δ) |Γx| is bounded. The following lemma bounds

the absolute value of the factors multiplying λi,x powers in the above expression for Γx when x /∈ A0.
Lemma 7. For x ∈ X \A0,

1. For i = 1, 2,∣∣∣(u∼x
i 1) (u∼x

i P 0
↓x v

∼x
i − πxλi,x)

∣∣∣ ≤ ∆−2
x

[
4 (|ψxx| + πx) πx + 2 πx λ1,x (1 − λ1,x)

]
. (27)

2. For i, j in {1, 2} with i 6= j, ∣∣∣(u∼x
i 1) (u∼x

j P 0
↓x v

∼x
i )
∣∣∣ ≤ 6 ∆−2

x πx. (28)

Proof. To prove Lemma 7, we use the expressions for v∼x
i and u∼x

i in (19) and (20) to get

1.
u∼x
i 1 = 1

2

[
1 + (−1)i−1 sx

∆x

]
, i = 1, 2. (29)

2.

u∼x
i P 0

↓x v
∼x
i − πxλi,x = 1

∆x

[
1
2(∆x + (−1)isx)(β − λi,x)

+ (−1)i−1πx [λi,x(1 − λi,x) − β(πx + vxux)]
]
, i = 1, 2. (30)

3.

u∼x
1 P 0

↓x v
∼x
2 = 1

∆x

[
λ1,x − β

] [
πx + 1

2(∆x + sx)
]

(31)

u∼x
2 P 0

↓x v
∼x
1 = 1

∆x

[
β − λ2,x

] [
πx + 1

2(∆x − sx)
]

(32)

Proof of Lemma 7, part 1:
Using (29) and (30), we have∣∣∣(u∼x

i 1) u∼x
i P 0

↓x v
∼x
i − πxλi,x

∣∣∣
= ∆−2

x

∣∣∣(1/4) (∆2
x − s2

x) (β − λi,x)

+ (−1)i−1 (1/2) (∆x + (−1)i−1sx) πx [λi,x(1 − λi,x) − β(πx + vxux)]
∣∣∣

= ∆−2
x

∣∣∣β πx [vxux (β − λi,x) + (1/2) (−1)i (∆x + (−1)i−1sx) (πx + vxux)]

+ (−1)i−1 (1/2) (∆x + (−1)i−1sx) πx λi,x(1 − λi,x)
∣∣∣

16
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Using (1/2) (∆x − sx) = πx − (1 − λ1,x), (1/2) (∆x + sx) = 1 − πx − λ2,x along with ψxx = βvxux, |β| ≤ 1,
1 − πx ≤ 1 and |λi,x| ≤ 1, we get∣∣∣(u∼x

1 1) u∼x
1 P 0

↓x v
∼x
1 − πxλ1,x

∣∣∣ ≤ ∆−2
x

[
2(2|ψxx| + πx) πx + 2 πx λ1,x (1 − λ1,x)

]
∣∣∣(u∼x

2 1) u∼x
2 P 0

↓x v
∼x
2 − πxλ2,x

∣∣∣ ≤ ∆−2
x

[
4(|ψxx| + πx) πx + 2 πx λ1,x (1 − λ1,x)

]
Proof of Lemma 7, part 2:
Using (29) along with (31) and (32), we have∣∣∣(u∼x

2 1) (u∼x
1 P 0

↓x v
∼x
2 )
∣∣∣ =

∣∣∣∆−2
x πx

[
λ1,x − β

] [
πx − (1 − λ1,x) + ψxx

]∣∣∣
(d1)
≤ 6 ∆−2

x πx,

u∼x
1 1 u∼x

2 P 0
↓x v

∼x
1 =

∣∣∣∆−2
x πx

[
β − λ2,x

] [
(1 − πx − λ2,x) + ψxx

]∣∣∣
(d2)
≤ 6 ∆−2

x πx,

where we get (d1) and (d2) using |β| ≤ 1, |λi,x| ≤ 1, 1 − πx ≤ 1 and |ψxx| ≤ 1.

Using (27) and (28) in (26) to bound the absolute value of Γx for x ∈ A(δ), we have

|Γx| ≤ 2 (λ1,x)n−1 ∆−2
x

[
4 (|ψxx| + πx) πx + 2 πx λ1,x (1 − λ1,x)

]
+ (12/n) ∆−3

x [(λ1,x)n − (λ2,x)n] πx
(b1)
≤ 2 ∆−2

x

[
4 (|ψxx| + πx) πx (λ1,x)n−1 + 2 πx (λ1,x)n (1 − λ1,x)

]
+ (24/n) ∆−3

x πx
(b2)
≤ 4 (1/n) ∆−2

x

[
(4/cβ) (|ψxx| + πx) + e−1 πx + 6 ∆−1

x πx

]
, (33)

where we get (b1) by using |λi,x| ≤ 1, i = 1, 2, and (b2) by using (23) along with maxp∈(0,1) p (1 − cp)n ≤
min{e−1/(cn), 1/c(n+ 1)}.

We next claim that ∆x is bounded away from 0 for x ∈ A(δ).
Claim 1: ∆x ≥ β/3, for x ∈ A(δ).

Proof. Using βvxux ≥ −πx from (16), we get
β − πx + βvxux ≥ β − 2πx,

4πxβvxux ≥ −4π2
x.

Using the above in the expression for ∆2
x,

∆2
x = (β − πx + βvxux)2 + 4πxβvxux ≥ (β − 2πx)2 − 4π2

x = β2 − 4βπx > β2/5 > β2/9, (34)
where we use πx < β/5 to get (a).

Using the above lower bound on ∆x for x ∈ A(δ) in (33), we get

|Γx| ≤ 36 (1/nβ2)
[
(4/cβ) (|ψxx| + πx) + (e−1 + 18/β) πx

]
. (35)

Taking the sum of (35) over x in A(δ), we get∑
x∈A(δ)

|Γx|
(a1)
≤ 36 (1/nβ2) (e−1 + 16/cβ + 34/β), (36)

where we get (a1) by using
∑
x∈A(δ) πx ≤ 1 and Lemma 6 as

∑
x∈A(δ) |ψxx| ≤

∑
x∈X |ψxx| ≤ 1.

17
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A.2 Other two cases

When x /∈ A(δ), we require computation of the probabilities Pr(Nx(Xn) = 0) and Pr(Nx(Xn) = 1) occurring
in the definition of Γx. Pr(Nx(Xn) = 0) can be written as

Pr(Nx(Xn) = 0) (a)= π∼x (P∼x)n−1 1 = (π∼x) R D (S∼xRD)n−2 S∼x 1
(b)=

[
1 − πx −(1 − β)πxvx

]
(S∼xRD)n−2

[
1 − πx
−ux

]
, (37)

where we get (a) by noting that the entry of the (K × 1) vector (P∼x)n−1 1 corresponding to any state z ∈ X
is the probability of not passing through the state x in the next n− 1 steps, given the present state is z, (b)
by using π1 = 1,π v = 0, and u1 = 0.

Pr(Nx(Xn) = 1) can be written as

Pr(Nx(Xn) = 1) =
n∑

m=1
Pr
(
Xm = x,Nx(Xm−1

1 ) = Nx(Xn
m+1) = 0

)
(a)=

n∑
m=1

Pr(Xm = x,Nx(Xm−1
1 ) = 0) Pr(Nx(Xn

m+1) = 0|Xm = x)

(b)= π−1
x

n∑
m=1

Pr(X1 = x,Nx(Xm
2 ) = 0) Pr(X1 = x,Nx(Xn−m+1

2 ) = 0), (38)

where we get (a) by using the Markov property, (b) using

Pr(Xm=x,Nx(Xm−1
1 ) = 0) = Pr(X1=x,Nx(Xm

2 ) = 0) (39)

and noting that Pr(Nx(Xn
m+1) = 0|Xm = x) = π−1

x Pr(X1 = x,Nx(Xn−m+1
2 ) = 0). Now,

Pr(X1 = x,Nx(Xm
2 ) = 0) = πx ex (P∼x)m−1 1 = πx ex R D (S∼xRD)m−2 S∼x 1

= πx
[
1 βvx

]
(S∼xRD)m−2

[
1 − πx
−ux

]
, (40)

where ex is a 1 ×K vector with x-th entry as 1 and all other entries as 0.

The expressions for Pr(Nx(Xn) = 0) and Pr(Nx(Xn) = 1) involve powers of the 2 × 2 matrix S∼xRD.
Using the eigen decomposition, we find expressions for terms in powers of S∼xRD and derive bounds for
Pr(Nx(Xn) = 0), Pr(Nx(Xn) = 1) and |Γx|. This is done differently for the two remaining cases.

A.2.1 Case 2: iid-like letters

Since Pxx = πx + (1 − β)vxux, πx = Pxx implies that ux = 0 or vx = 0. For this scenario, the powers of
S∼xRD simplify as shown in the following lemma.

Lemma 8. 1. For x ∈ X , with vx = ux = 0,(S∼xRD)l =
[
πx

l 0
0 β

l

]
.

2. For x ∈ X , with πx = Pxx = β,

(a) vx = 0, ux 6= 0:

(S∼xRD)l =
[

πx
l 0

−luxπxl−1 πx
l

]
(b) vx 6= 0, ux = 0:

(S∼xRD)l =
[
πx

l −lπxvxπxl
0 πx

l

]

18
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3. For x ∈ X , with πx = Pxx 6= β,

(a) vx = 0, ux 6= 0:

(S∼xRD)l =
[

1 0
ux

πx−β 1

][
πx

l 0
0 β

l

] [
1 0

− ux

πx−β 1

]
(41)

(b) vx 6= 0, ux = 0:

(S∼xRD)l =
[

1 −βπxvx

πx−β
0 1

][
πx

l 0
0 β

l

][
1 βπxvx

πx−β
0 1

]
(42)

Proof. Since SR = I, we have S∼xR =
[
πx −πxvx

−ux 1 − vxux

]
and

S∼xRD =
[
πx −βπxvx

−ux β(1 − vxux)

]
(43)

1. We substitute vx = ux = 0 in (43) and raise the power on both sides to l.

2. (a) Substituting vx = 0, β = πx in (43), we get S∼xRD =
[
πx 0

−ux πx

]
. Note that this matrix is

not diagonalizable since both its eigenvalues are equal to πx with [0 1]T as the only non-trivial

eigenvector. Using induction on the exponent l, we get (S∼xRD)l =
[

πx
l 0

−luxπxl−1 πx
l

]
.

(b) Substituting ux = 0, β = πx in (43), we get S∼xRD =
[
πx −πxπxvx
0 πx

]
. Similar to the above case,

this matrix is also not diagonalizable with both its eigenvalues as πx and [1 0]T as the only non-

trivial eigenvector. Using induction on the exponent l, we get (S∼xRD)l =
[
πx

l −lπxvxπxl
0 πx

l

]
.

3. (a) Substituting vx = 0 in (43), we get S∼xRD =
[
πx 0

−ux β

]
. We observe that πx, β are the

eigenvalues of S∼xRD with
[

1
ux

πx−β

]
and

[
0
1

]
as their respective right eigenvectors resulting in

the diagonalised form in (41).

(b) Substituting ux = 0 in (43), we get S∼xRD =
[
πx −βπxvx
0 β

]
. We observe that πx, β are the

eigenvalues of S∼xRD with
[
1
0

]
and

[
−βπxvx

πx−β
1

]
as their respective right eigenvectors resulting in

the diagonalised form in (42).

Substituting the corresponding form of (S∼xRD)n−2 in (37) and (40) gives

Pr(Nx(Xn) = 0) = (1 − πx)n, (44)
Pr(X1 = x,Nx(Xm

2 ) = 0) = πx (1 − πx)m−1.

Using the above in (38), we get

Pr(Nx(Xn) = 1) = nπx(1 − πx)n−1.
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So, we have (in a manner reminiscent of the iid case)

|Γx| = πx(1 − πx)n−1 − πx(1 − πx)n = π2
x(1 − πx)n−1] ≤ πx max

p
p(1 − p)n−1 = πx O(1/n).

This results in the following bound: ∑
x∈A0

|Γx| = O(1/n). (45)

A.2.2 Case 3: Frequent letters

In this case, πx > δ and the letters x are likely to occur multiple times. So, Pr(Nx(Xn) = 0) and
Pr(Nx(Xn) = 1) will both be small, and we bound them both. Further, since Pxx 6= πx, we have that ux 6= 0
and vx 6= 0. For this scenario, the powers of S∼xRD simplify as shown in the following lemma.
Lemma 9. For x ∈ X , with vx 6= 0, ux 6= 0,

(S∼xRD)l = V ∼x
[
(λ1,x)l 0

0 (λ2,x)l
]

(V ∼x)−1 (46)

where V ∼x =

 1 1
−∆x − sx

2βπxvx
∆x + sx

2βπxvx

 ,
sx = 1 − πx − β(1 − vxux).

Proof. Solving det(S∼xRD − λI) = 0, we get λi,x = 0.5
(
πx + β(1 − vxux) + (−1)i+1∆x

)
, i = 1, 2, as

the eigenvalues of S∼xRD with
[

1
−(∆x − sx)/(2βπxvx)

]
,

[
1

(∆x + sx)/(2βπxvx)

]
as their respective right

eigenvectors, where ∆2
x = s2

x + 4βπxvxux, sx = 1 − πx − β(1 − vxux), resulting in the diagonalised form in
(46).

Substituting the diagonalized form of (S∼xRD)n−2 from (46) into (37), (40) and simplifying, we get

Pr(Nx(Xn) = 0) = 1
2

[
(λ1,x)n + (λ2,x)n

]
+ sx

2

[ n−1∑
l=0

(λ1,x)n−1−l(λ2,x)l
]
, (47)

Pr(X1 = x,Nx(Xm
2 ) = 0) = 1

2πx
[

(λ1,x)m−1 + (λ2,x)m−1
]

+ πx

[sx
2 − βvxux

][m−2∑
l=0

(λ1,x)m−2−l(λ2,x)l
]
.

(48)

Claim 2: |sx| ≤ 3

Proof. Using |β| ≤ 1, πx ≤ 1, and βvxux ≤ 1 − πx from (16) in sx = πx − β + βvxux, we get |sx| ≤ 3.

Using triangle inequality on the R.H.S of (47), we get

Pr(Nx(Xn) = 0) ≤ 1
2

[
(|λ1,x|)n + (|λ2,x|)n

]
+ |sx|

2

[ n−1∑
l=0

(|λ1,x|)n−1−l (|λ2,x|)l
]

(a)
≤
(
e−0.5cβπx + n|sx|

2

)
e−0.5(n−1)cβπx

(b)
≤
(

1 + 3n
2

)
e−0.5(n−1)cβπx

(c)
≤
(

1 + 3n
2

)
e−0.5(n−1)cβδ, (49)

where we use (23) along with 1 − z ≤ e−z to get (a), e−z ≤ 1 and the above Claim 2 to get (b), and πx ≥ δ
for x ∈ A(δ) to get (c).
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Claim 3: For x in A(δ), m = 1, . . . , n,

Pr(X1 = x,Nx(Xm
2 ) = 0) ≤ πx (1 + (5/2) (m− 1)) exp{−(m− 2) cβ δ/2}.

Proof. To get the above bound, we bound (48) using |sx| ≤ 3 (Claim 2 above), |βvxux| ≤ 1, and |λi,x| ≤
1 − cβδ/2 (from (23) along with 1 − t ≤ e−t.

Using Claim 3 in (38), we get

Pr(Nx(Xn) = 1) ≤
n∑

m=1
πx (1 + (5/2) (m− 1)) exp{−(m− 2) cβ δ/2}

(1 + (5/2) (n−m)) exp{−(n−m− 1) cβ δ/2}
= n πx g(n) exp{−(n− 3) cβ δ/2},

where g(n) = [1 + (5/2) (n− 1) (1 + (5/12) (n− 2))]. So,

|Γx| =
∣∣∣ 1
n

Pr(Nx(Xn) = 1) − πxPr(Nx(Xn) = 0)
∣∣∣ ≤ 1

n
Pr(Nx(Xn) = 1) + πxPr(Nx(Xn) = 0)

≤ πx

[
g(n) exp{−(n− 3) cβ δ/2} + (1 + (3/2) n) exp{−(n− 1) cβ δ/2}

]
.

Summing over x in A(δ) and using
∑
x∈A(δ) πx ≤ 1, we get∑

x∈A(δ)

|Γx| ≤
[
g(n) exp{−(n− 3) cβ δ/2} + (1 + (3/2) n) exp{−(n− 1) cβ δ/2}

]
. (50)

A.3 Combining all cases

Taking the sum of (36), (45) and (50), and choosing δ = (6/cβ) (lnn)/(n− 3), we get∣∣∣E[M̂GT
0 (Xn) −M0(π, Xn)]

∣∣∣ ≤ 36 (1/nβ2) (1 + 16/cβ + 18/β) +O(1/n),

for β ≥
[
30(lnn)/(n− 3)

]1/2
(since δ ≤ β/5). This concludes the proof of Theorem 3.

A.4 Proofs of some lemmas

A.4.1 Proof of Lemma 6

1. We first consider the case with a ≥ 1.∑
x∈X

(πx)a |ψbxx| |ψcyx|
(f)
≤

∑
x∈X

(πx)a
(g)
≤

∑
x∈X

πx = 1,

where we get (f) by using |ψxx|, |ψyx| ≤ 1 (from (16)) and (g) by using πax ≤ πx.

2. We now consider the case with a = 0. Since a+ b+ c ≥ 1, atleast one of b, c must be ≥ 1.
(a) Say c ≥ 1.∑

x∈X
|ψbxx| |ψcyx|

(a)
≤

∑
x∈X

|ψyx| =
∑

x∈X :ψyx<0
|ψyx| +

∑
x∈X :ψyx≥0

ψyx

(b)= 2
∑

x∈X :ψyx<0
|ψyx|

(c)
≤ 2

∑
x∈X :ψyx<0

πx ≤ 2,

where we get (a) by using |ψxx|, |ψyx| ≤ 1 (from (16)), (b) by using
∑
x∈X ψyx = 0, and (c) by

using −ψyx ≤ πx (from (16)).
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(b) Say b ≥ 1. ∑
x∈X

|ψbxx| |ψcyx|
(a)
≤

∑
x∈X

|ψxx| =
∑

x∈X :ψxx<0
|ψxx| +

∑
x∈X :ψxx≥0

ψxx

(b)= (1 − β) + 2
∑

x∈X :ψxx<0
|ψxx|

(c)
≤ 1 + 2

∑
x∈X :ψxx<0

πx ≤ 3,

where we get (a) by using |ψxx|, |ψyx| ≤ 1 (from (16)), (b) by using
∑
x∈X ψxx = (1 − β), and

(c) by using −ψxx ≤ πx (from (16)).

This completes the proof.

A.4.2 Proof of Lemma 5

To prove (21), we first start with the expression for ∆2
x and bound it in the following way:

∆2
x = [(1 − πx) − (1 − β)(1 − vxux)]2 + 4(1 − β)πxvxux

= [(1 − πx) + (1 − β)(1 − vxux)]2 − 4(1 − β)(1 − πx − vxux)
(a)= [β + (1 − β)πx + (1 − β)vxux]2 + π2

x(β2 + 2β(1 − β)) + 2βπx[(β − 2) + (1 − β)vxux]
(b)
≤ [β(1 − πx) + Pxx]2 + π2

x(β2 + 2β(1 − β)) + 2βπx(β − 2) + 2βπx(1 − πx)
= [β(1 − πx) + Pxx]2 − β2π2

x + 2βπx(β − 1)
(c)
≤ [β(1 − πx) + Pxx]2

where (a) follows by using [(1 − πx) + (1 − β)(1 − vxux)]2 = [β + (1 − β)πx + (1 − β)vxux + βπx − 2]2 and
simplyfying, (b) follows by using Pxx = πx + (1 −β)vxux, (1 −β)vxux ≤ 1 −πx from (16) and (c) follows from
β ≤ 1. Since β(1 − πx) + Pxx ≥ 0, we get ∆x ∈ [−(β(1 − πx) + Pxx), (β(1 − πx) + Pxx)]. This completes the
proof of (21).

To prove (22), we again start with the expression for ∆2
x but bound it in a different way as shown below:

∆2
x = [(1 − πx) − (1 − β)(1 − vxux)]2 + 4(1 − β)πxvxux

= [β + (1 − β)vxux − πx]2 + 4(1 − β)πxvxux
= [β + (1 − β)vxux]2 − 2βπx + π2

x + 2(1 − β)πxvxux
(a)
≤ [β + (1 − β)vxux]2 − 2βπx + π2

x + 2πx(1 − πx)
= [β + (1 − β)vxux]2 + 2πx(1 − β) − π2

x

(b)
≤ [β + (1 − β)vxux]2

where (a) follows by using (1 − β)vxux ≤ 1 − πx from (16) and (b) follows from β ≥ 1. Since β + (1 − β)vxux
is positive for β ≥ 1, we get ∆x ∈ [−(β + (1 − β)vxux), (β + (1 − β)vxux)]. This completes the proof of (22).

Using (21) and (22) in the expression λi,x = 1
2
(
(1 − πx) + (1 − β)(1 − vxux) + (−1)i+1∆x

)
, i = 1, 2, we get

λi,x ≤ 1 − 0.5βπx, β ∈ [0, 1] and λi,x ≤ 1 − 0.5πx, β ∈ [1, 2] for i = 1, 2. Using β2

β+2 ≤ β for β ∈ [0, 1] and
β2 ≤ β + 2 for β ∈ [1, 2] completes the proof of Lemma 5.

B Proof of Theorem 4, Upper bound

In this appendix, we provide proof for the upper bound in theorem 4.
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The minimax risk R∗
n(P2,β) is upper bounded by the worst-case risk (over P2,β) of the Good-Turing estimator.

Our next lemma gives an expression for the MSE of the GT estimator.
Lemma 10. Consider a stationary Markov chain Xn with state distribution π. Let Qnx(a) , Pr(Nx(Xn) = a),
and Qnx,y(a, b) , Pr(Nx(Xn) = a,Ny(Xn) = b) for x, y ∈ X and a, b ∈ {0, 1, . . .}.

E[(M0(π, Xn) − M̂GT
0 (Xn))2]

=
∑
x∈X

(
π2
x Q

n
x(0) + (1/n)2 Qnx(1)

)
+
∑
x∈X

∑
y∈X ,y 6=x

Tnxy − 1
n2(n− 1) Q

n
x,y(1, 1) (51)

where Tnxy , πxπy Q
n
x,y(0, 0) − 1

n (πy Qnx,y(1, 0) + πx Q
n
x,y(0, 1)) + 1

n(n−1) Q
n
x,y(1, 1).

Proof. Substituting M0(π, Xn) =
∑
x∈X πxI(Nx = 0) and M̂GT

0 (Xn) = (1/n)
∑
x∈X I(Nx = 1) into

E[(M0(Xn,π) − M̂GT
0 (Xn))2] and taking expectation of each term in the square of the summation,

E[(M0 − M̂GT
0 )2] = E

(∑
x∈X

πxI(Nx = 0) − (1/n)I(Nx = 1)
)2


=
∑
x∈X

(
π2
x Pr(Nx = 0) + (1/n)2 Pr(Nx = 1)

)
+
∑
x∈X

∑
y∈X ,y 6=x

πxπyPr(Nx = Ny = 0) − 1
n
πyPr(Nx = 1, Ny = 0)

− 1
n
πxPr(Nx = 0, Ny = 1) + 1

n2 Pr(Nx = Ny = 1)

(a)=
∑
x∈X

(
π2
x Q

n
x(0) + (1/n)2 Qnx(1)

)
−
∑
x∈X

∑
y∈X ,y 6=x

1
n2(n− 1) Q

n
x,y(1, 1)

+
∑
x∈X

∑
y∈X ,y 6=x

πxπy Q
n
x,y(0, 0) − 1

n

(
πy Q

n
x,y(1, 0) + πx Q

n
x,y(0, 1)

)
+ 1
n(n− 1) Q

n
x,y(1, 1), (52)

where we get (a) by expanding 1/n2 as 1/n2 = 1
n(n−1) − 1

n2(n−1) and using the definitions of Qnx(a), Qnx,y(a, b).
Using the definition of Tnx,y in (52) completes the proof of (51).

To bound E[(M0 − M̂GT
0 )2], we begin with the following expression for Qnx(1).

Qnx(1) = Pr(Nx(Xn) = 1) =
n∑
l=1

Pr(Xl = x;Xm 6= x,m 6= l) ≤
n∑
l=1

Pr(Xl = x) = nπx. (53)

This implies
(1/n2)

∑
x∈X

Qnx(1) ≤ 1/n (54)

Similarly,

Qnx,y(1, 1) = Pr(Nx = Ny = 1) =
n−1∑
l1=1

n∑
l2=l1+1

Pr(Xl1 = x,Xl2 = y,Xm 6= x, y ;m 6= l1, l2)

+
n−1∑
l1=1

n∑
l2=l1+1

Pr(Xl1 = y,Xl2 = x,Xm 6= x, y ;m 6= l1, l2) (55)

23



Published in Transactions on Machine Learning Research (MM/YYYY)

For l2 > l1 ≥ 1,

Pr(Xl1 = x,Xl2 = y,Xm 6= x, y ;m 6= l1, l2) ≤ Pr(Xl1 = x,Xl2 = y)
= πx Pr(Xl2 = y|Xl1 = x) (56)

Similarly, Pr(Xl1 = y,Xl2 = x,Xm 6= x, y ;m 6= l1, l2) ≤ πy Pr(Xl2 = x|Xl1 = y) (57)

Plugging (56) and (57) into (55),

Qnx,y(1, 1) ≤
n−1∑
l1=1

n∑
l2=l1+1

πx Pr(Xl2 = y|Xl1 = x)

+
n−1∑
l1=1

n∑
l2=l1+1

πy Pr(Xl2 = x|Xl1 = y)

Since
∑
x∈X

∑
y∈X ,y 6=x πx Pr(Xl2 = y|Xl1 = x) ≤

∑
x∈X πx ≤ 1, we get∑

x∈X
∑
y∈X ,y 6=x Qnx,y(1, 1) ≤ n(n− 1). Therefore,

1
n2(n− 1)

∑
x∈X

∑
y∈X ,y 6=x

Qnx,y(1, 1) ≤ 1/n (58)

To bound
∑
x∈X π2

x Q
n
x(0), we consider the sets A0, A(δ) and A(δ) (with 0 ≤ δ < β/5) defined in section A,

that make up X .

For x ∈ A(δ), we have

Qnx(0) = Pr(Nx(Xn) = 0) = (1/2)
[

(λ1,x)n + (λ2,x)n
]

+ (sx/2)
[ n−1∑
l=0

(λ1,x)n−1−l(λ2,x)l
]

from (47).

Since the claim 1 (in section A.1) implies λ1,x − λ2,x = ∆x > 0 for x ∈ A(δ), β ∈ (0, 2], we get

n−1∑
l=0

(λ1,x)n−1−l (λ2,x)l = 1
∆x

[
(λ1,x)n − (λ2,x)n

]
, x ∈ A(δ) (59)

Substituting (59) in (47) and applying triangle inequality on the absolute value of the R.H.S, we get

Qnx(0) ≤ 1
2

(
1 + |sx|

∆x

)[
(|λ1,x|)n + (|λ2,x|)n

]
(a)
≤
(

1 + |sx|
∆x

) (
1 − cβ

2 πx
)n (b)

≤
(

1 + 9
β

) (
1 − cβ

2 πx
)n

(60)

where we use (23) to get (a) and the claims 1 and 2 from section A to get (b). Therefore, for x ∈ A(δ),

∑
x∈A(δ)

π2
x Q

n
x(0)

(a1)
≤

(
1 + 9

β

) ∑
x∈A(δ)

π2
x

(
1 − cβ

2 πx
)n

(b1)
≤ 2

(
1 + 9

β

)
(1/ncβ)

∑
x∈A(δ)

πx
(c1)
≤ 2

(
1 + 9

β

)
(1/ncβ) (61)

where we get (a1) by using (60), (b1) by using maxp∈(0,1) p (1 − cp)n = 1
c(n+1)

(
1 − 1

n+1

)n
≤ 1

cn , and (c1)
by using

∑
x∈A(δ) πx ≤ 1.
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For x ∈ A(δ),

∑
x∈A(δ)

π2
x Q

n
x(0)

(a2)
≤

(
1 + 3n

2

)
e−0.5(n−1)cβδ

∑
x∈A(δ)

π2
x

(c2)
≤

(
1 + 3n

2

)
e−0.5(n−1)cβδ (62)

where we get (a2) by using (49), and (c2) by using
∑
x∈A(δ) π

2
x ≤ 1.

For x ∈ A0(δ),

∑
x∈A0

π2
x Q

n
x(0) (a0)=

∑
x∈A0

π2
x (1 − πx)n

(b0)
≤ 1/n

∑
x∈A0

πx
(c0)
≤ 1/n (63)

where we get (a0) by using (44), (b0) by using maxp∈(0,1) p (1 − p)n = 1
(n+1)

(
1 − 1

n+1

)n
≤ 1

n , and (c0) by
using

∑
x∈A0

πx ≤ 1.

Since X = A(δ) ∪A(δ) ∪A0,∑
x∈X

π2
x Q

n
x(0) =

∑
x∈A0

π2
x Q

n
x(0) +

∑
x∈A(δ)

π2
x Q

n
x(0) +

∑
x∈A(δ)

π2
x Q

n
x(0)

(a)
≤ 1/n+ 2

(
1 + 9

β

)
(1/ncβ) +

(
1 + 3n

2

)
e−0.5(n−1)cβδ

where we get (a) by combining (61), (62) and (63).

Choosing δ = (8/cβ) (lnn)/(n− 1) and using n− 5 < n− 1, we get∑
x∈X

π2
x Q

n
x(0) ≤ 2

(
1 + 9

β

)
(1/ncβ) + O(1/n), (64)

where cβ = β for β ∈ (0, 1] and cβ = 1 for β ∈ [1, 2].

To bound
∑
x∈X

∑
y∈X ,y 6=x T

n
xy, we divide {(x, y) : x ∈ X , y ∈ X , x 6= y} into two sets:

B(δ) , {(x, y) : x, y ∈ X , x 6= y, πx + πy < δ}
B(δ) , {(x, y) : x, y ∈ X , x 6= y, πx + πy ≥ δ}

with 0 ≤ δ < β/5. Similar to the sets A(δ) and A(δ), defined in section A, the ordered pairs in B(δ) have
atleast one frequent letter that is likely to be seen in Xn, while the set B(δ) contains ordered pairs of rare
letters that are less likely to be seen in Xn and hence contribute more to the missing mass M0(π, Xn).

In the following lemma, we provide bounds on Tnxy for (x, y) in B(δ), B(δ).
Lemma 11. For a rank-2 diagonalizable t.p.m P with spectral gap β, and δ ∈ [0, β/5),

1. For (x, y) in B(δ),

Tnxy ≤ q′
xy (1/β3) (πx + πy)

(
1 − β2

2(β + 2)(πx + πy)
)n−2

+ qxy (1/nβ4)
[
1 + 6

β(n− 1)

]
(65)

2. For (x, y) in B(δ),

Tnxy ≤ q′′
xy O(n3) exp

{
− (n− 5) β2

2(β + 2) δ
}

(66)
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where the positive constants qxy, q′
xy, and q′′

xy are such that
∑

(x,y)∈X 2 qxy,
∑

(x,y)∈X 2 q′
xy and

∑
(x,y)∈X 2 q′′

xy

are constant w.r.t. n.

Proof. We get (65) by using a method similar to the upper bound on the letter wise bias Γx, for infrequent
letters, in section A.1. (66) is obtained by following a method similar to the upper bound on Γx, for frequent
letters, in section A.2.2.

We first the bound the sum of Tnxy over (x, y) in B(δ) using (65).

∑
(x,y)∈B(δ)

Tnxy
(a)
≤

∑
(x,y)∈B(δ)

2 q′
xy

(β + 2)
β5(n− 1) +

∑
(x,y)∈B(δ)

qxy (1/nβ4)
[
1 + 6

β(n− 1)

]
(b)
≤
( ∑

(x,y)∈X 2

q′
xy

) [
2 (β + 2)
β5(n− 1)

]
+
( ∑

(x,y)∈X 2

qxy

) [ 1
nβ4 + 6

β5n(n− 1)

]
(c)
≤ O(1/nβ5), (67)

where we get (a) by using maxp∈[0,1] p(1 − cp)n−2 < 1
c(n−1) , (b) by using

∑
(x,y)∈B(δ) qxy ≤

∑
(x,y)∈X 2 qxy,∑

(x,y)∈B(δ) q
′
xy ≤

∑
(x,y)∈X 2 q′

xy, and (c) because
∑

(x,y)∈X 2 qxy,
∑

(x,y)∈X 2 q′
xy are constant w.r.t. n.

Similarly, we get ∑
(x,y)∈B(δ)

Tnxy ≤ O(n3) exp
{

− (n− 5) β2

2(β + 2) δ
}

using (66). Choosing δ = 8 (β+2)
β2(n−5) lnn, we have∑

(x,y)∈B(δ)

Tnxy ≤ O(1/n). (68)

Combining (67) with (68), we get ∑
x∈X

∑
y∈X ,y 6=x

Tnxy ≤ O(1/nβ5) (69)

Combining (54), (58), (64), and (69) to upper bound (51) completes the proof of the upper bound on R∗
n(P2,β)

in Theorem 4.

C Proof of Theorem 4, Lower bound

To prove the lower bound on R∗
n(P2,β) in (10), we use the Le Cam method. The standard Le Cam method

Yu (1997) is for estimating constant parameters of a distribution whereas M0(π, Xn) is a function of both the
distribution and the samples. To get (10), we use the following extension of Le Cam method for estimands
that depend on both the distribution and its samples.

Le Cam lower bound for estimating random variables: Let Q be a family of distributions over an alphabet Y and
Y be a random variable distributed according to Q ∈ Q. Let θ(Y,Q), taking values in a pseudometric space D
with a pseudometric d, be a function of both Y and the distribution Q. We assume that the set D is bounded
i.e. the distance d(u, v) between any two points u, v ∈ D is at most ∆. Let d(D1,D2) , minu∈D1,v∈D2 d(u, v)
be the distance between the subsets D1,D2 of D. Let θ̂(Y ) be an estimator for θ(Y,Q) and co(Q) denote the
convex hull of Q.

The following lemma provides a lower bound on the worst-case risk (over Q) of any estimator θ̂(Y ) for
θ(Y,Q).
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Lemma 12. (Chandra et al., 2022, Lemma 5) Let D1,D2 be two subsets of D, and Q1,Q2 be two subsets of
Q such that for any Qi ∈ Qi, θ(Y,Qi) ∈ Di with probability at least 1 − εi, i = 1, 2. Let δ , d(D1,D2)/2, and
||Q1 ∧Q2|| , 1 − ||Q1 −Q2||TV denote the affinity of the two distributions Q1 and Q2. Then

sup
Q∈Q

E[d(θ̂(Y ), θ(Y,Q))] ≥ δ

(
sup

Qi∈co(Qi)
||Q1 ∧Q2||

)
− (ε1 + ε2)∆. (70)

To prove the lower bound (10) in theorem 4, we apply Lemma 12 on P2,β , the family of rank-2 diagonalizable
t.p.ms with spectral gap β, using two specifically constructed t.p.ms ∈ P2,β that are hard to distinguish.

We first prove (10) for β ∈ (0, 1.6).

Let P [δ1, δ2] ,
[

1 − δ1 (δ1/R) 11×K−1
δ2 1K−1×1 (1 − δ2)/R 1K−1×K−1

]
be a K×K t.p.m parameterized by δ1, δ2, with 11×K−1

and 1K−1×1 denoting the row and column vectors with all entries as 1, and 1K−1×K−1 denoting the
K − 1 ×K − 1 matrix with all entries as 1.

Let P1 = {P1} and P2 = {P2} be two subsets of P2,β , where P1 = P [0.5β, 0.5β], P2 = P [0.5β −
α, 0.5β + α] are two t.p.ms on the alphabet {1, 2, . . . , L + 1} with π1 = 0.5

[
1 (1/L)11×L

]
and π2 =[

0.5 + (α/β) (0.5 − (α/β))/L 11×L
]

as their respective stationary distributions. For each element of P2 to
lie in [0, 1] and each row of P2 to sum up to 1, we require that α ≤ min{0.5β, 1 − 0.5β}. Both P1 and P2
have the same spectral gap β (and hence ∈ P2,β) and α,L are choosen appropriately to get the best lower
bound on R∗

n(P2,β).

For i = 1, 2, if Xn is a stationary Markov chain with t.p.m Pi, then M0(Xn,πi) satisfies

1 −M0(Xn,πi)
(a)
≥
(

0.5 + (i− 1)α
β

)
I(N1 6= 0) (71)

1 −M0(Xn,πi)
(b)
≤
(

0.5 + (i− 1)α
β

)
I(N1 6= 0) + n

L

(
0.5 − (i− 1)α

β

)
(72)

i.e. M0(Xn,πi) ∈
[(

0.5 − (i− 1)α
β

) (
1 − n

L

)
,

(
0.5 − (i− 1)α

β

)]
,

with probability 1 −
(

0.5 − (i− 1)α
β

)(
1 − β

2 − (i− 1)α
)n−1

, (73)

where we get the bounds in (a) and (b) by considering the cases of : (i) the letter 1 occuring in all the samples
Xn and (ii) all the n samples, Xn, being distinct with the letter 1 occurring only once, respectively. We get
the confidence interval in (73) by using the bounds in (71) and (72) in the event of the letter 1 occurring
atleast once.

Let α > 0.5βn/L, so that the above confidence intervals in (73) for M0(Xn,πi), i = 1, 2, are non-overlapping.
Using lemma 12 with Q = P2,β , Y = Xn, θ(Y,Q) = M0(π, Xn),D = [0, 1], d(u, v) = (u− v)2,∆ = 1,Qi = Pi,
and Di as the confidence interval in (73) for i = 1, 2, we get

sup
P∈P

E[(M̂0(Xn) −M0(π, Xn))2] ≥ 0.5
(
α

β
− n

2L

)2
||P1(Xn) ∧ P2(Xn)|| −

(
1 − β

2

)n−1
(74)

Our next lemma gives an upper bound on the total variation distance between P1(Xn) and P2(Xn).
Lemma 13. For the t.p.ms P1, P2 ∈ P2,β , constructed above and Xn being a stationary Markov chain,

||P1(Xn) − P2(Xn)||TV ≤ (
√

2α/β)
(

1 + 0.5(n− 2)β
1 − 0.5β

)0.5
(75)

Proof. Section C.1.
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Since ||P1(Xn) ∧ P2(Xn)|| = 1 − ||P1(Xn) − P2(Xn)||TV , using the above Lemma to lower bound the R.H.S
in (74), we get

sup
P∈P

E[(M̂0(Xn) −M0(π, Xn))2] ≥ 0.5
(
α

β
− n

2L

)2
(

1 − (
√

2α/β)
(

1 + 0.5(n− 2)β
1 − 0.5β

)0.5
)

−
(

1 − β

2

)n−1
(76)

Substituting α = β

2
√

2

(
1−0.5β

1+0.5(n−2)β

)0.5
, and L = en in (76) completes the proof of (10) for β ∈ (0, 1.6).

We now prove (10) for β ∈ [1.6, 2]. Let P ′
1 = {P ′

1} and P ′
2 = {P ′

2} be two subsets of P2,β , with β ∈ [1.6, 2],
where
P ′

1 =
[

2 − β 0.5(β − 1) (0.5(β − 1)/L) 11×L
11×L+1 0L+1×L+1

]
,

P ′
2 =

[
2 − β 0.5(β − 1) + α′ ((0.5(β − 1) − α′)/L) 11×L

11×L+1 0L+1×L+1

]
are two t.p.ms on the alphabet

{1, 2, . . . , L+ 2} with π′
1 =

[
1/β 0.5(β − 1)/β 0.5(β − 1)/βL 11×L

]
and

π′
2 =

[
1/β (0.5(β − 1) + α′)/β (0.5(β − 1) − α′)/βL 11×L

]
as their respective stationary distributions

and 0L+1×L+1 being the L+ 1 × L+ 1 all zero matrix. For each element of P ′
2 to lie in [0, 1] and each row

of P ′
2 to sum up to 1, we require that α′ ≤ min{0.5(β − 1), 1 − 0.5(β − 1)}. Both P ′

1 and P ′
2 have the same

spectral gap β (and hence ∈ P) and α′, L are choosen appropriately to get the best lower bound on R∗
n(P2,β).

Following a method similar to the proof of (10) for β ∈ (0, 1.6), we get

sup
P ′∈P′

E[(M̂0(Xn) −M0(π, Xn))2] ≥ 1
2

(
α′

β
− n

2Lβ (β − 1)
)2

||P ′
1(Xn) ∧ P ′

2(Xn)|| − 9 (0.5)b n−3
2 c (77)

Our next lemma gives an upper bound on the total variation distance between P ′
1(Xn) and P ′

2(Xn).
Lemma 14. For the t.p.ms P ′

1, P
′
2 ∈ P2,β , constructed above and Xn being a stationary Markov chain,

||P ′
1(Xn) − P ′

2(Xn)||TV ≤
√

2nα′/
√
β(β − 1) (78)

Proof. Section C.1.

Using the above lemma to lower bound the R.H.S in (77) and choosing α′ = 0.5
√
β(β − 1)/

√
2n, L = en

completes the proof of (10) for β ∈ [1.6, 2].
This completes the proof of the lower bound on R∗

n(P2,β).

C.1 Proof of Lemmas 13, 14

To show the bound in (75), we first bound the total variation distance between P1(Xn) and P2(Xn) by the
KL divergence DKL(P1(Xn)||P2(Xn)) using Pinsker’s inequality.
Lemma 15. Pinkser’s inequality (Boucheron et al., 2013, Theorem 4.19)

||P1(Xn) − P2(Xn)||TV ≤ 1√
2
√
DKL(P1(Xn)||P2(Xn)) (79)

where DKL(P1(Xn)||P2(Xn)) is the KL divergence between P1(Xn) and P2(Xn).

Our next lemma expresses DKL(P1(Xn)||P2(Xn)) in terms of the KL divergence between the stationary
distributions π1,π2 and the KL divergence between the corresponding rows of P1 and P2.
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Lemma 16. For any two t.p.ms P1, P2, on an X , with π1,π2 as their respective stationary distributions,

DKL(P1(Xn)||P2(Xn)) = DKL(π1||π2) + (n− 1)
∑
x∈X

π1,x DKL(P1(·|x) || P2(·|x)) (80)

where Pi(·|x) denotes the row of the t.p.m Pi, i = 1, 2, with transition probabilities from the state x.

Proof. Let xn , (x1, x2, . . . , xn) ∈ Xn.

DKL(P1(Xn)||P2(Xn))

=
∑

xn∈X n

P1(xn) ln(P1(xn)/P2(xn))

(a)=
∑

xn∈X n

P1(xn)
[

ln (π1,x1/π2,x1) +
n∑
l=2

ln P1(Xl = xl|Xl−1 = xl−1)
P2(Xl = xl|Xl−1 = xl−1)

]
(b)= DKL(π1||π2) +

n∑
l=2

∑
xl∈X l

P1(xl) ln P1(Xl = xl|Xl−1 = xl−1)
P2(Xl = xl|Xl−1 = xl−1)

(c)= DKL(π1||π2)

+
n∑
l=2

∑
xl−1,xl∈X

π1,xl−1P1(Xl = xl|Xl−1 = xl−1) ln P1(Xl = xl|Xl−1 = xl−1)
P2(Xl = xl|Xl−1 = xl−1)

= DKL(π1||π2) + (n− 1)
∑
x∈X

π1,x DKL(P1(·|x) || P2(·|x))

where we get (a) by using the Markov property Pi(xn) = πi,x1

∏n
l−2 Pi(Xl = xl|Xl−1 = xl−1), i = 1, 2, (b)

and (c) by appropriately marginalizing P1(xn).

C.1.1 Proof of Lemma 13

Using the values specified for πi,x, Pi(X2 = y|X1 = x) for x, y ∈ {1, . . . , L+ 1}, i = 1, 2, in the section C, we
get

DKL(π1||π2) = −0.5 ln
(
1 − 4α2/β2)

DKL(P1(·|1) || P2(·|1)) = −(1 − 0.5β) ln (1 + α/(1 − 0.5β)) − 0.5 β ln (1 − 2α/β)
DKL(P1(·|x) || P2(·|x)) = −(1 − 0.5β) ln (1 − α/(1 − 0.5β)) − 0.5 β ln (1 + 2α/β) ,

for x ∈ {2, . . . , L+ 1}.

Using the above three equations in (80), we get

DKL(P1(Xn)||P2(Xn))
= −0.5 (n− 1)

[
(1 − 0.5β) ln

(
1 − α2/(1 − 0.5β)2)+ 0.5 β ln

(
1 − 4α2/β2)]

− 0.5 ln
(
1 − 4α2/β2)

(a)
≤ (n− 1)

[
α2

1 − 0.5β + 2α
2

β

]
+ 4α

2

β2 = 4 α2

β2(1 − 0.5β) [1 + 0.5(n− 2)β]

where we get (a) by using − ln(1 − x) ≤ 2x, for x ∈ (0, 0.5). Plugging the above bound into (79) completes
the proof of Lemma 13.
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C.1.2 Proof of Lemma 14

Using the values specified for π′
i,x, P

′
i (X2 = y|X1 = x) for x, y ∈ {1, . . . , L+ 2}, i = 1, 2, in the section C, we

get

DKL(π1||π2) = − (β − 1)
2β ln

[
1 −

(
2α′

β − 1

)2
]

DKL(P ′
1(·|1) || P ′

2(·|1)) = −0.5(β − 1) ln
[

1 −
(

2α′

β − 1

)2
]

DKL(P ′
1(·|x) || P ′

2(·|x)) = 0, for x ∈ {2, . . . , L+ 2}.

Using the above three equations in (80) and following a method similar to C.1.1, we get ||P ′
1(Xn) −

P ′
2(Xn)||TV ≤

√
2nα′/

√
β(β − 1). This completes the proof of Lemma 14.
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