
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

LEARNING TO RANK CHAIN-OF-THOUGHT: USING A
SMALL MODEL

Anonymous authors
Paper under double-blind review

ABSTRACT

Large Language Models (LLMs) struggle with reliable mathematical reasoning, and
current verification methods are often computationally expensive. This paper intro-
duces the Energy Outcome Reward Model (EORM), a highly efficient, lightweight
post-hoc verifier designed to address this challenge. EORM uses an energy-based
framework to rank Chain-of-Thought (CoT) solutions, learning to distinguish cor-
rect from incorrect reasoning using only simple outcome labels, thus eliminating
the need for expensive annotations. With only 55M parameters, over 127 times
smaller than typical reward models, EORM boosts the accuracy of Llama 3 8B
to 90.7% on GSM8k and 63.7% on MATH. This performance is achieved by effi-
ciently selecting the optimal reasoning path from a pool of candidates, allowing it
to match or exceed the accuracy of far more resource-intensive Best-of-N sampling
techniques. Crucially, our experiments show that EORM generalizes effectively
to out-of-distribution problems and unseen models, indicating it learns fundamen-
tal principles of valid reasoning. This robustness, combined with its efficiency,
establishes EORM as a practical tool for deploying more dependable LLMs in com-
plex, real-world applications. Our code is available at https://anonymous.
4open.science/r/Learning-to-rank-COT-anynomized-7718/

1 INTRODUCTION

Mathematical reasoning remains a critical and challenging domain for Large Language Models
(LLMs), demanding a high degree of logical consistency and multi-step inferential accuracy that often
eludes current architectures (Guo et al., 2025; Tong et al., 2024). While Chain-of-Thought (CoT)
(Wei et al., 2022; Kojima et al., 2022) has significantly advanced the ability of LLMs to articulate
intermediate reasoning steps, thereby improving performance on complex tasks (Wang et al., 2023;
Huang et al., 2022; Yao et al., 2022), it offers no intrinsic guarantee of correctness. This leads to
a fundamental challenge: among the multiple Chain-of-Thought produced by the LLMs, how can
we reliably identify the single most accurate one? This selection problem, widely referred to as
the Best-of-N challenge, has become a key bottleneck in advancing the reliability of mathematical
reasoning with LLMs (Tong et al., 2024; Xiong et al., 2024; Press et al., 2022).

To solve the Best-of-N problem, researchers have tried many approaches, and currently, existing
approaches fall into two categories: (1) majority voting and (2) post-training with reinforcement
learning (RL) to train a reward model for answer selection. Majority voting (Toh et al., 2025;
Wang et al., 2023) is the simplest method, it chooses the answer most frequently generated by the
model. While this method is easy to implement, it tends to reflect the model’s biases rather than
identifying the truly correct answer. The RL-based approaches are more sophisticated, with three
prominent variants: (1) Preference Optimization (PO), (2) Outcome Reward Models (ORM), and
(3) Process Reward Models (PRM). Preference Optimization (Pang et al., 2024; Zhang et al., 2024)
uses pairwise comparisons between correct and incorrect answers to train a reward model. Although
it can improve answer quality, it requires training a new model for each task and struggles with
scenarios involving multiple complex outputs. Outcome Reward Models (Lyu et al., 2025; Hosseini
et al., 2024; Cobbe et al., 2021b) are similar but allow supervision from multiple positive and negative
examples, making them more flexible than pairwise-only methods. Process Reward Models (She
et al., 2025; Wang et al., 2025) go one step further by assigning rewards to each step in the reasoning
process. However, this requires extensive annotation of every Chain-of-Thought (CoT) trace, making

1

https://anonymous.4open.science/r/Learning-to-rank-COT-anynomized-7718/
https://anonymous.4open.science/r/Learning-to-rank-COT-anynomized-7718/

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Feature ORM PRM PO EORM (ours)
Does not require Step-by-Step Labels? ✓ ✗ ✓ ✓

Does not require Preference Pair Labels? ✓ ✓ ✗ ✓
Uses Internal Indicators as Reward? ✗ ✗ ✗ ✓

Low Annotation Cost? ✓ ✗ ✓ ✓
Lightweight Model ✗ ✗ ✗ ✓

Table 1: EORM’s feature benefit compared to other reasoning baselines. We compare EORM
with ORM (Outcome Reward Model), PRM (Process Reward Model), and PL (Preference Learning)
to demonstrate the feature benefit of our method over these baselines.

data preparation labor-intensive. We provide a more in-depth comparison of the limitations of the
different types of reward model in Table 1.

This motivates the need for a more efficient and generalizable alternative. Our approach begins
with the observation that model outputs are sequences of tokens, which allows us to tokenize these
responses and analyze their statistical patterns. Each output can be interpreted as a sample from an
underlying probability distribution. Leveraging the Universal Approximation Theorem (Liu et al.,
2025; Kratsios, 2021), we recognize that a sufficiently expressive neural network can, in principle,
learn to distinguish between these distributions. Building on this insight, we propose training a
lightweight neural network model to classify responses as good or bad, effectively select the best
answer using Best-of-N, acting like a “LLM-as-a-Judge”. Crucially, because this model learns from
token-level patterns rather than task-specific features, it is capable of generalizing across outputs from
different base LLMs. To further enhance our neural network ability to capture complex distributions
and support robust generalization, we adopt an Energy-Based Model (EBM) architecture (Deng
et al., 2020b; Du & Mordatch, 2020). EBMs have demonstrated strong performance in related tasks,
utilizing their uniqueness of using Energy Probabilistic Landscape, and in our experiments, our
EBM-based judge consistently outperforms both majority voting and traditional Outcome Reward
Models in identifying the best answer.

In this paper, we introduce the Energy Outcome Reward Model (EORM), an efficient post-hoc verifier
for CoT outputs. EORM leverages principles from Energy-Based Models (EBMs) (Du & Mordatch,
2019; Liu et al., 2020) to effectively rerank and select the best candidate solutions. Our methodology
trains a lightweight model to assign a scalar energy score to each candidate, learning to distinguish
correct from incorrect reasoning using only simple binary outcome labels. Critically, this approach
allows us to drastically reduce the model size from the typical 7B to 8B parameters of reward models
to just 55M, achieving a greater than 127x reduction in parameter count while maintaining high
performance.

Our main contributions are threefold:

• A Novel Small and Efficient Energy Reward Model for CoT Verification. We propose
EORM, a lightweight and efficient verifier that assigns a scalar energy score to each CoT
solution. By training on simple binary outcome labels (correct/incorrect), EORM eliminates
the need for costly step-by-step annotations or preference pairs required by Process and
Preference-based Reward Models.

• State-of-the-Art Performance on Math Reasoning. We demonstrate that EORM signifi-
cantly boosts the performance of various open-source LLMs on challenging mathematical
reasoning benchmarks, including GSM8k and MATH. Our approach consistently achieves
superior accuracy by effectively reranking candidate solutions, often matching or exceeding
the performance of more computationally intensive methods.

• Demonstrated Robust Generalization. We empirically validate that EORM generalizes
effectively to both out-of-distribution datasets and unseen LLM architectures. This highlights
its ability to learn underlying principles of logical reasoning rather than overfitting to the
stylistic patterns of the models in its training set.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Figure 1: An overview of flow chart of EORM. In the EORM process, the model tokenizes the
question-answer pair, then computes an energy score using an Energy-Based Model (EBM). The
Bradley-Terry loss serves as the objective for reward-based fine-tuning. During deployment, the
trained energy reward model computes energy scores for classification tasks.

The remainder of this paper is organized as follows. We first review related work in Section 2.
Next, we detail the EORM architecture and training methodology in Section 3. We then present our
comprehensive experimental results and analysis in Section 4 and abaltions in Section 5. Finally, we
conclude the paper in Section 6.

2 RELATED WORK

Our work intersects with advancements in Chain-of-Thought (CoT) reasoning, the verification and
reranking of Large Language Model (LLM) outputs, and Energy-Based Models (EBMs). CoT
reasoning (Wei et al., 2022; Kojima et al., 2022) has significantly improved multi-step reasoning
in LLMs (Bai et al., 2023; Touvron et al., 2023; OpenAI, 2023; Guo et al., 2025), with further
refinements like Least-to-Most prompting (Zhou et al., 2022) and Tree-of-Thoughts (Yao et al.,
2023; Zhang et al., 2023). However, the fallibility of CoT outputs (Tong et al., 2024), where a
single error can invalidate a solution, necessitates robust verification. Common approaches like
self-consistency (Wang et al., 2023) improve reliability but incur substantial computational costs by
sampling numerous solutions (Wu et al., 2024). To address this, various reranking and verification
techniques have emerged, including training separate verifier models (Cobbe et al., 2023; Khalifa
et al., 2023; Li et al., 2023) or adopting learning-to-rank perspectives (Liu, 2009; Deng et al., 2020a).
These methods, while effective, often introduce their own complexities or computational demands.
Our approach, EORM, draws inspiration from EBMs (Du & Mordatch, 2019), which assign scalar
energy scores to configurations and are well-suited for ranking (Grathwohl et al., 2019; Liu, 2009).
Specifically, we leverage the insight that classifier logits can be interpreted as negative energies
(Grathwohl et al., 2019; Liu et al., 2020). By training a lightweight EBM with a pairwise Bradley-
Terry loss (Liu, 2009) on outcome labels, EORM efficiently reranks CoT candidates, offering a
distinct, streamlined post-hoc verification mechanism that complements retrieval-augmented methods
(Rakin et al., 2024; Schick et al., 2023; Yao et al., 2022; Press et al., 2022; Khattab et al., 2022) and
other specialized verifiers like Chain-of-Actions (Pan et al., 2025) or Search-in-the-Chain (Xu et al.,
2023). For a more detailed discussion of related literature, please refer to Appendix B.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

3 METHODOLOGY

In this section, we introduce the architectural design and technical foundations of our proposed
Energy Outcome Reward Model (EORM), a lightweight verifier for Chain-of-Thought (CoT)
reasoning. We begin by outlining the principles of Energy-Based Models (EBMs), which form
the foundation of our approach. We then detail the specific architecture and training objective of
EORM, showing how it learns to rank CoT candidates effectively using only simple outcome-based
supervision.

3.1 PRELIMINARIES: ENERGY-BASED MODELS FOR RANKING

Evaluating CoT reasoning requires a flexible mechanism that can distinguish high-quality reasoning
from incorrect or incoherent paths. Instead of treating this as a classification task, we model it as a
preference-ranking problem using Energy-Based Models (EBMs).

Energy-Based Models (EBMs) provide a flexible approach to modeling distributions by assigning a
scalar energy Eθ(y) to each configuration y from a space Y . This energy function is parameterized by
θ. Lower energy typically corresponds to more desirable or probable configurations. In this work, Y
is the space of possible Chain-of-Thought text sequences y, and θ represents the learnable parameters
of our EORM model.

Given an energy function Eθ(y), the corresponding Boltzmann (or Gibbs) distribution pθ(y) assigns
a probability to each configuration y ∈ Y as:

pθ(y) =
exp

(
−Eθ(y)

)
Zθ

, (1)

where Zθ is the partition function, a normalization constant that ensures pθ(y) sums to unity:

Zθ =
∑
y′∈Y

exp
(
−Eθ(y

′)
)

(for discrete Y). (2)

A key challenge in working with EBMs is that computing the partition function Zθ is often computa-
tionally intractable. However, for tasks involving ranking or selecting the best candidate from a finite
set Ycand ⊂ Y , the explicit computation of Zθ is unnecessary. Since Zθ is constant for all y ∈ Ycand,
comparing probabilities pθ(y) is equivalent to comparing the unnormalized scores exp(−Eθ(y)),
which in turn relates directly to comparing the energies Eθ(y). This equivalence implies that energy
minimization provides a direct mechanism for identifying the most probable (preferred) solution
within a candidate set, without needing to compute Zθ:

y∗ = arg min
y∈Ycand

Eθ(y) = arg max
y∈Ycand

pθ(y). (3)

This makes EBMs well-suited for our task of reranking CoT solutions based on learned preferences
encoded in the energy function Eθ(y).

3.2 EORM: ARCHITECTURE AND TRAINING OBJECTIVE

Building on the EBM framework, EORM is designed as a lightweight yet powerful verifier for CoT
reasoning. The core idea is to train a small neural network to learn an energy function Eθ(y) that
maps any given CoT solution y to a scalar energy score. By design, this function assigns low energy
to correct reasoning paths and high energy to incorrect ones, enabling effective reranking of candidate
solutions.

Architecture. To implement the energy function Eθ(y), EORM uses a lightweight Transformer
encoder. A given CoT solution y is first tokenized, and a special classification token (e.g., [CLS])
is prepended. The sequence is then passed through the Transformer encoder. The final hidden state
corresponding to the [CLS] token, denoted hCLS, serves as a holistic representation of the entire
reasoning path. This representation is fed into a simple energy head—a Multi-Layer Perceptron
(MLP) with Layer Normalization—which projects it to the final scalar energy value:

Eθ(y) = MLP
(

LayerNorm
(
hCLS

))
∈ R. (4)

This scalar output Eθ(y) represents the energy assigned to the sequence y. Lower values indicate
higher assessed quality or correctness.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Training Objective. EORM is trained to distinguish between correct and incorrect solutions using
a simple yet effective pairwise ranking loss. This approach only requires binary outcome labels
for each CoT, avoiding the need for expensive, fine-grained annotations required by process-based
reward models. For a given problem, we collect a set of generated CoT solutions Yn and partition it
into a subset of correct solutions, Y+, and a subset of incorrect solutions, Y−.

Y+ =
{
y ∈ Yn | l(y) = 1

}
, Y− =

{
y ∈ Yn | l(y) = 0

}
. (5)

The model’s parameters θ are then optimized to ensure that for any pair of solutions (y+, y−) where
y+ ∈ Y+ and y− ∈ Y−, the energy of the correct solution is lower than that of the incorrect one. We
formalize this using the Bradley-Terry loss, which is summed over all possible pairs within the group:

L(θ;Yn) =
1

|Y+||Y−|
∑

y+∈Y+

∑
y−∈Y−

log
(
1 + exp

(
Eθ(y+)− Eθ(y−)

))
. (6)

Minimizing this loss encourages a clear separation in the energy landscape, pushing the model to
assign consistently lower energy scores to correct solutions. This pairwise formulation provides a
strong learning signal, particularly beneficial for CoT ranking where subtle differences can exist
between multiple flawed or correct reasoning paths. During training, the model parameters θ are
updated by iterating through the dataset and minimizing this loss via gradient-based optimization.
For a more detailed theoretical analysis, please refer to Appendix C.

4 EXPERIMENTS

Figure 2: A comparison of the parameter sizes be-
tween a standard reward model and our EORM
Model. A typical reward model has approximately 7
billion parameters, while EORM has only 55 million,
demonstrating a size reduction of over 127 times and
highlighting EORM’s efficiency.

In this section, we empirically evaluate our pro-
posed Energy Outcome Reward Model (EORM).
A key advantage of EORM, as highlighted in
our introduction, is its exceptional efficiency;
with only 55M parameters, it is over 127 times
smaller than typical 7B reward models, as shown
in Figure 2. Our evaluation is structured into
three main parts. (1) First, in Section 4.1,
we assess its performance on in-distribution
mathematical reasoning tasks. (2) Second, in
Section 4.2, we test its robustness on out-of-
distribution benchmarks. (3) Finally, in Sec-
tion 4.3, we analyze its ability to generalize to
outputs from unseen LLM architectures. For
our experiments, we use the GSM8k (Cobbe
et al., 2021a) and MATH (Hendrycks et al.,
2021) datasets for in-distribution tasks, and
AIME 2024, AMC, and AGIEval’s SAT Math
and Gaokao Math subsets (Zhong et al., 2023)
for out-of-distribution evaluation. We applied
EORM to several open-source Large Language
Models (LLMs): Mistral-7B-v0.1 (Jiang et al.,
2023), DeepSeekMath-7B (Shao et al., 2024),
Llama 3 8B (Grattafiori et al., 2024), Qwen 2.5
7B (Yang et al., 2024), and Llama 2 7B (Touvron
et al., 2023).

EORM was trained using a pairwise Bradley-Terry loss function (Liu, 2009). The training dataset
was constructed from Chain-of-Thought (CoT) solutions for problems in the in-domain GSM8k
and MATH training splits. These solutions were generated using all five aforementioned LLMs.
For each training problem, we generated n = 256 CoT candidates with a temperature of 0.7 and a
sampling probability of 0.9, ensuring all attempts were included, regardless of their correctness. Each
training instance comprised the original question, a generated solution, and a label indicating whether
the solution was correct (y+) or incorrect (y−). EORM learned from these pairs to assign lower
energy scores to preferred solutions by interpreting classifier logits as negative energies (Grathwohl
et al., 2019; Liu et al., 2020). The GPT-2 tokenizer (Radford et al., 2019) was employed for the
energy-based tokenizer.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Model Base Model Params GSM8k MATH Avg.
Mistral-v0.1 (Jiang et al., 2023) Mistral-v0.1 7B 42.9▲+0.0 12.9▲+0.0 27.9
MathScale (Tang et al., 2024) Mistral-v0.1 7B 74.8▲+31.9 35.2▲+22.3 55.0
MMIQC (Liu et al., 2023) Mistral-v0.1 7B 74.8▲+31.9 36.0▲+23.1 55.4
MetaMath (Yu et al., 2024) Mistral-v0.1 7B 77.9▲+35.0 28.6▲+15.7 53.3
KPMath-Plus (Huang et al., 2024) Mistral-v0.1 7B 82.1▲+39.2 46.8▲+33.9 64.5
DART-Math (Tong et al., 2024) Mistral-v0.1 7B 82.6▲+39.7 43.5▲+30.6 63.1
Math-Shepherd (Wang et al., 2024) Mistral-v0.1 7B 84.1▲+41.2 33.0▲+20.1 58.6
MAmmoTH2-Plus (Yue et al., 2024) Mistral-v0.1 7B 84.7▲+41.8 45.0▲+32.1 64.9
Xwin-Math (Li et al., 2024a) Mistral-v0.1 7B 89.2▲+46.3 43.7▲+30.8 66.5
WizardMath-Mistral (Luo et al., 2025) Mistral-v0.1 7B 90.7▲+47.8 55.4▲+42.5 73.1
EORM (Ours) Mistral-v0.1 7B 91.0▲+48.1 48.8▲+35.9 69.9
Llama2 (Touvron et al., 2023) Llama 2 7B 14.6▲+0.0 2.5▲+0.0 8.6
MAmmoTH-CoT (Yue et al., 2024) Llama 2 7B 50.5▲+35.9 10.4▲+7.9 30.5
MetaMath (Yu et al., 2024) Llama 2 7B 66.5▲+51.9 19.8▲+17.3 43.2
Math-Shepherd (Wang et al., 2024) Llama 2 7B 73.2▲+58.6 21.6▲+19.1 47.4
EORM (Ours) Llama 2 7B 75.6▲+61.0 21.8▲+19.3 48.7
DeepSeekMath-Base (Shao et al., 2024) DeepSeekMath 7B 64.2▲+0.0 36.2▲+0.0 50.2
NuminaMath-CoT (Li et al., 2024b) DeepseekMath 7B 75.4▲+11.2 55.2▲+19.0 65.3
MMIQC (Liu et al., 2023) DeepSeekMath 7B 79.0▲+14.8 45.3▲+9.1 62.2
KPMath-Plus (Huang et al., 2024) DeepSeekMath 7B 83.9▲+19.7 48.8▲+12.6 66.4
DeepSeekMath-RL (Shao et al., 2024) DeepSeekMath 7B 88.2▲+24.0 51.7▲+15.5 70.0
EORM (Ours) DeepSeekMath 7B 84.2▲+20.0 58.7▲+22.5 71.5
Llama 3 (Team, 2024) Llama 3 8B 76.6▲+0.0 28.9▲+0.0 52.8
MetaMath (Yu et al., 2024) Llama 3 8B 77.3▲+0.7 30.8▲+1.9 54.1
MMIQC (Liu et al., 2023) Llama 3 8B 77.6▲+1.0 29.5▲+0.6 53.6
DART-Math (Tong et al., 2024) Llama 3 8B 82.5▲+5.9 45.3▲+16.4 63.9
MAmmoTH2-Plus (Yue et al., 2024) Llama 3 8B 84.1▲+7.5 42.8▲+13.9 63.5
Llama 3.1-Instruct (Team, 2024) Llama 3 8B 84.5▲+7.9 51.9▲+23.0 68.2
JiuZhang3.0 (Zhou et al., 2024) Llama 3 8B 88.6▲+12.0 51.0▲+22.1 69.8
WizardMath-Llama (Luo et al., 2025) Llama 3 8B 90.3▲+13.7 58.8▲+29.9 74.6
EORM (Ours) Llama 3 8B 90.7▲+14.1 63.7▲+34.8 77.2
Qwen2.5 7B (Yang et al., 2024) Qwen 2.5 7B 89.5▲+0.0 63.4▲+0.0 76.5
EORM (Ours) Qwen 2.5 7B 92.8▲+3.3 65.8▲+2.4 79.3

Table 2: Performance comparison on math reasoning benchmarks. We evaluate EORM on
GSM8K and MATH using five LLM structures (Mistral, DeepSeekMath, LLaMA3, Qwen2.5,
LLaMA2), measuring accuracy. EORM achieves the highest performance across models, with best
accuracy values highlighted in bold.

For evaluation, we generated Chain-of-Thought (CoT) candidates across all models using a tempera-
ture of 0.7 and a sampling probability of 0.9. Specifically, n = 256 candidates were generated for
each in-distribution problem, while n = 64 candidates were generated for each out-of-distribution
problem. Subsequently, EORM was used post-hoc to select the candidate with the lowest energy. The
final answer accuracy is reported in the two subsections that follow.

4.1 IN DISTRIBUTION LEARNING

Our primary evaluation focused on EORM’s performance within the domains it was trained on,
namely the GSM8k and MATH test sets. The quantitative outcomes, detailed in Table 2, consistently
show that employing EORM as a post-hoc reranker leads to substantial improvements in final
answer accuracy compared to the baseline performance of the underlying LLMs generating the
candidate solutions. By effectively identifying and selecting the most plausible reasoning path from
the generated set, EORM significantly enhances problem-solving capabilities. For instance, when
integrated with Llama 3 8B and reranking n = 256 candidate solutions, EORM achieved high
accuracy levels of 90.7% on GSM8k and 63.7% on MATH, demonstrating its ability to leverage

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Figure 3: EORM performance with varying samples per question. We conduct experiments to
show how the number of samples influences the problem-solving rate, using accuracy as the metric.
The results indicate that model performance improves as the number of samples increases.

multiple reasoning attempts effectively. The relationship between the number of candidate samples
(n) and the resulting accuracy improvement is visualized in Figure 3, illustrating how performance
generally scales with more samples but strong gains are often achievable with moderate sampling
budgets. Beyond quantitative accuracy, qualitative analyses provide deeper insights into EORM’s
function.

4.2 OUT OF DISTRIBUTION LEARNING

A critical aspect of evaluating any reasoning model is its ability to generalize to new, unseen problems
and potentially different reasoning styles. To rigorously test this, we assessed the performance of
EORM (trained exclusively on GSM8k and MATH data) on a suite of OOD benchmarks known for
their difficulty: AIME 2024, AMC, and AGIEval’s SAT Math and Gaokao Math subsets (Zhong et al.,
2023). These tasks often require more complex mathematical insights or different problem-solving
strategies than those predominant in the training datasets. For this phase, evaluations primarily
utilized Llama-3 8B and Qwen-2.5 7B as the base models, generating n = 64 candidate solutions
for each OOD problem instance. The results, documented in Table 5, demonstrate EORM’s strong
generalization capabilities. When applied to the Llama-3 base model, EORM generally yielded
superior performance compared to alternative baseline reranking methods like TTRL (Zuo et al.,
2025) and MathWizard (Luo et al., 2025) across the majority of the evaluated OOD datasets under
the same experimental setup. Impressively, EORM achieved significant scores on highly challenging
benchmarks such as AIME 2024 (reaching 10.0%) and the AGIE Gaokao Math problems (achieving
70.3%). Additionally the Qwen-2.5 base model also find similar finding, and provides further
evidence that EORM is not merely overfitting to patterns specific to GSM8k and MATH. Instead,
it appears to learn more fundamental, transferable principles related to the structure and validity of
mathematical reasoning, allowing it to effectively discern higher-quality solutions even when faced
with novel problem types and domains.

Model AIME 2024 AMC SAT Math Gaokao Math Avg
Llama-3 8B 3.3 ▲+0.0 19.3 ▲+0.0 77.3▲+0.0 48.7▲+0.0 37.2
+ TTRL (Zuo et al., 2025) 3.3▲+0.0 32.5▲+13.2 89.1▲+11.8 61.0▲+12.3 46.5
+ DART-MATH (Prop2Diff) (Tong et al., 2024) 6.7▲+3.4 26.5▲+7.2 90.5▲+13.2 67.6▲+18.9 47.8
+ EORM Ours 10.0▲+6.7 28.9▲+9.6 90.5▲+13.2 70.3▲+21.6 49.9
Qwen-2.5 7B 16.7▲+0.0 53.0▲+0.0 91.4▲+0.0 83.3▲+0.0 61.1
+ TTRL (Zuo et al., 2025) 43.3▲+26.6 67.5▲+14.5 95.0▲+3.6 88.2▲+4.9 73.5
+ EORM Ours 43.3▲+26.6 68.7▲+15.7 96.4▲+5.0 88.9▲+5.6 74.3

Table 3: Comparison of EORM with other reasoning methods. We evaluate EORM against two
reasoning baselines, TTRL and MathWizard, using accuracy as the metric across four mathematical
datasets. Each method uses 64 samples per question for a fair comparison. EORM consistently
achieves the highest performance, with the best Accuracy values highlighted in bold.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

4.3 GENERALIZATION CAPABILITIES

To further assess EORM’s robustness, we analyze its generalization capabilities when encountering
outputs from LLMs not seen during training. This is crucial for real-world applicability where
new models are constantly emerging. We test two scenarios: generalization to unseen models on
in-distribution tasks, and a more challenging test of generalization to unseen models on out-of-
distribution tasks.

Generalization to Unseen Models on In-Distribution Tasks. We employ a leave-one-out training
strategy where a variant of EORM, termed “EORM Generalize,” is trained on CoT data from four of
the five LLMs and tested on the held-out model. The results, detailed in Table 4, show that this variant
consistently improves accuracy over the base performance. For instance, when Llama 3 8B is the
held-out model, its base accuracy on GSM8k is 42.9%. “EORM Generalize” elevates this to 76.6%,
while the standard EORM (trained on all models) reaches 90.7%. The significant uplift from “EORM
Generalize” demonstrates that our model learns generalizable features of correct reasoning, rather
than merely overfitting to the stylistic patterns of the models in its training set. The performance gap
between the standard EORM and “EORM Generalize” is expected, as the latter lacks exposure to the
target LLM’s specific error patterns and stylistic nuances. However, the crucial finding is that “EORM
Generalize” still provides a substantial boost, indicating that it captures fundamental principles
of logical consistency and procedural correctness. This ability to transcend the idiosyncrasies of
individual LLMs confirms that EORM is learning the underlying structure of valid mathematical
arguments.

Model Base Model Params GSM8k MATH
Mistral-v0.1 (Jiang et al., 2023) - 7B 42.9▲+0.0 12.9▲+0.0

EORM Generalize Mistral-v0.1 7B 76.0▲+33.1 23.0▲+10.1

EORM Mistral-v0.1 7B 91.0▲+48.1 48.8▲+35.9

Llama2 (Touvron et al., 2023) - 7B 14.6▲+0.0 2.5▲+0.0

EORM Generalize Llama 2 7B 38.5▲+23.9 7.8▲+5.3

EORM Llama 2 7B 75.6▲+61.0 21.8▲+19.3

DeepSeekMath-Base (Shao et al., 2024) - 7B 64.2▲+0.0 36.2▲+0.0

EORM Generalize DeepSeekMath 7B 81.6▲+17.4 41.7▲+5.5

EORM DeepSeekMath 7B 84.2▲+20.0 58.7▲+22.5

Llama3 (Team, 2024) - 8B 76.6▲+0.0 28.9▲+0.0

EORM Generalize Llama 3 8B 76.6▲+0.0 51.6▲+31.5

EORM Llama 3 8B 90.7▲+47.8 63.7▲+43.6

Qwen2.5 (Yang et al., 2024) - 7B 89.5▲+0.0 63.4▲+0.0

EORM Generalize Qwen 2.5 7B 90.2▲+0.7 63.8▲+0.4

EORM Qwen 2.5 7B 92.8▲+3.3 65.8▲+2.4

Table 4: Performance on in-distribution benchmarks (GSM8k, MATH) when EORM is trained
without exposure to the target model’s outputs. EORM Generalize is trained on CoT data from
four LLMs and tested on the fifth (target) LLM. EORM (from Table 2) is trained on data from all five
LLMs. Base performance of the target LLM is also provided. Accuracy is reported.

Generalization to Unseen Models and Tasks (Out-of-Distribution). We test a more demanding
scenario where the “EORM Generalize” variant is evaluated on challenging OOD benchmarks using
CoT solutions from the held-out LLM. This setup assesses EORM’s ability to transfer learned
principles to both novel tasks and unfamiliar model outputs simultaneously. The results in Table 5
show that even under this compounded challenge, our model provides tangible improvements. For
example, with Llama 3 8B as the held-out model, “EORM Generalize” raises the average OOD
accuracy from a base of 37.2% to 40.5%. This suggests EORM internalizes fundamental and
transferable heuristics about the structure and coherence of valid reasoning that apply broadly. As
anticipated, the standard EORM—which benefited from seeing the target model’s in-distribution
outputs during training—achieves superior OOD performance. Nevertheless, the fact that “EORM

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Generalize” still delivers tangible improvements in this dual-unseen scenario is a strong testament
to its robustness. This finding highlights that the energy functions learned by EORM are not merely
memorizing solution patterns but are instead capturing more abstract, transferable markers of high-
quality reasoning applicable across diverse problem domains.

Model AIME 2024 AMC SAT Math Gaokao Math Avg
Llama-3 8B (Team, 2024) 3.3▲+0.0 19.3▲+0.0 77.3▲+0.0 48.7▲+0.0 37.2
EORM Generalized 6.7▲+3.4 20.5▲+1.2 82.3▲+5.0 52.6▲+3.9 40.5
EORM 10.0▲+6.7 28.9▲+9.6 90.5▲+13.2 70.3▲+21.6 49.9

Qwen-2.5 7B (Yang et al., 2024) 16.7▲+0.0 53.0▲+0.0 91.4▲+0.0 83.3▲+0.0 61.1
EORM Generalized 26.7▲+10.0 54.2▲+1.2 92.3▲+0.9 84.5▲+1.2 64.4
EORM 43.3▲+26.6 68.7▲+15.7 96.4▲+5.0 88.9▲+5.6 74.3

Table 5: Comparison of EORM with against baseline for out-of distribution problem and answer.
We gray shaded the generalized result.

5 ABLATION STUDIES

Figure 4: Ablation studies on key components of EORM. (Left) Perfor-
mance comparison between the Transformer-based EORM and a simpler
MLP verifier on the GSM8k and MATH benchmarks. (Right) Impact of
using a universal (GPT-2) versus a native (Llama 3) tokenizer. The results
highlight the critical role of the Transformer architecture and demonstrate
the model’s robustness to the choice of tokenizer.

To validate the contributions
of key components within the
EORM framework, we con-
ducted a series of ablation stud-
ies, with results summarized
in Figure 4. We investigated
two primary aspects: the choice
of model architecture and the
impact of the tokenizer. We
first assessed the importance of
the Transformer architecture by
comparing our standard EORM
against a simpler baseline where
the Transformer encoder was re-
placed with a standard Multi-
Layer Perceptron (MLP) verifier.
As shown in Figure 4 (left), the
Transformer-based EORM significantly outperforms the MLP variant, achieving accuracies of 90.7%
on GSM8k and 63.7% on MATH, compared to the MLP’s 82.6% and 52.1%, respectively. This
highlights that the Transformer’s ability to model sequential dependencies and long-range relation-
ships is crucial for effectively capturing the logical structure inherent in Chain-of-Thought reasoning
paths. Next, we examined EORM’s sensitivity to the tokenizer by training it with two different
tokenizers: a universal GPT-2 tokenizer and the native tokenizer from the Llama 3 model family.
The results, presented in Figure 4 (right), reveal that the choice of tokenizer has a negligible impact
on performance. The model achieves nearly identical scores on both GSM8k (86.6% vs. 86.8%)
and MATH (61.8% for both). This robustness suggests that EORM learns fundamental, transferable
features of valid reasoning that are not dependent on specific tokenization schemes, underscoring its
generalizability.

6 CONCLUSION

We introduced EORM, a lightweight energy-based model for post-hoc verification of Chain-of-
Thought reasoning. Trained solely on outcome labels, EORM efficiently reranks candidate solutions to
significantly boost mathematical reasoning performance across various benchmarks. Its effectiveness,
combined with a parameter count over 127x smaller than typical reward models, presents a practical
path toward more dependable and accessible LLMs for complex reasoning.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

ETHICS STATEMENT

Our work is aimed at enhancing the reliability and efficiency of mathematical reasoning in Large
Language Models (LLMs), which can reduce computational costs and foster progress in beneficial
scientific and educational domains. We acknowledge, however, that the training data generation
requires significant computing resources and that any technology for verifying and refining LLM
outputs is potentially dual-use. For instance, it could be misused to select more plausible outputs
for malicious applications. The performance of EORM is also dependent on the distribution of
the training data (GSM8k, MATH), which could introduce biases if not carefully considered for
broader applications. We therefore advocate for the responsible development and deployment of
LLM verification models and encourage further research into their safety, fairness, and transparency
to mitigate these risks.

REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our research, this paper provides a detailed account of our methodol-
ogy and experimental setup. The core components of our Energy Outcome Reward Model (EORM),
including the Transformer-based architecture and pairwise Bradley-Terry training objective, are
described in Section 3, with the training process detailed in Algorithm 1. Our complete experimental
protocol, including the LLM backbones, benchmarks, and evaluation configurations, is presented in
Section 4. All hyperparameters and architectural choices are specified in the main text and Appendix
D.3. We will make the source code, training scripts, and our trained EORM models publicly available
upon acceptance to facilitate full verification of our results.

REFERENCES

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge,
Yu Han, Fei Huang, et al. Qwen technical report. arXiv preprint arXiv:2309.16609, 2023.

Karl Cobbe, Jacob Hilton, and John Schulman. Training verifiers to solve math word problems. arXiv
preprint arXiv:2110.14168, 2021a.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems, 2021b.

Karl Cobbe, Gregory Druck, Anand Kirubarajan, , et al. Improving mathematical reasoning with
process supervision. 2023.

Yunfu Deng, Qian Liu, Xiaodong He, Zihan Chen, and Hongchao Dai. Residual energy-based models
for text generation. In International Conference on Learning Representations (ICLR), 2020a.

Yuntian Deng, Anton Bakhtin, Myle Ott, Arthur Szlam, and Marc’Aurelio Ranzato. Residual
energy-based models for text generation, 2020b.

Yilun Du and Igor Mordatch. Implicit generation and modeling with energy-based models. Advances
in Neural Information Processing Systems, 32, 2019.

Yilun Du and Igor Mordatch. Implicit generation and generalization in energy-based models, 2020.

Will Grathwohl, Kuan-Chieh Wang, Jörn-Henrik Jacobsen, David Duvenaud, Mohammad Norouzi,
and Kevin Swersky. Your classifier is secretly an energy based model and you should treat it like
one. arXiv preprint arXiv:1912.03263, 2019.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd of
models. arXiv preprint arXiv:2407.21783, 2024.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Dan Hendrycks, Colin Burns, Spencer Chen, , et al. Measuring mathematical problem solving with
the MATH dataset. In Advances in Neural Information Processing Systems (NeurIPS), volume 34,
pp. 3512–3524, 2021.

Arian Hosseini, Xingdi Yuan, Nikolay Malkin, Aaron Courville, Alessandro Sordoni, and Rishabh
Agarwal. V-star: Training verifiers for self-taught reasoners, 2024.

Wenlong Huang, Pieter Abbeel, Deepak Pathak, and Igor Mordatch. Language models as zero-shot
planners: Extracting actionable knowledge for embodied agents. In International Conference on
Machine Learning, pp. 9118–9147. PMLR, 2022.

Yiming Huang, Xiao Liu, Yeyun Gong, Zhibin Gou, Yelong Shen, Nan Duan, and Weizhu Chen.
Key-point-driven data synthesis with its enhancement on mathematical reasoning, 2024.

Alon Jacovi, Swaroop Mishra, Giovanni Napolitano, , et al. Reveal: A benchmark for step-level
reasoning verification. In Proceedings of the 62nd Annual Meeting of the Association for Compu-
tational Linguistics (ACL), pp. 10042–10063, Bangkok, Thailand, 2024.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot,
Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier,
Lélio Renard Lavaud, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas
Wang, Timothée Lacroix, and William El Sayed. Mistral 7b, 2023.

Eric Hanchen Jiang, Zhi Zhang, Dinghuai Zhang, Andrew Lizarraga, Chenheng Xu, Yasi Zhang,
Siyan Zhao, Zhengjie Xu, Peiyu Yu, Yuer Tang, Deqian Kong, and Ying Nian Wu. Dodt: Enhanced
online decision transformer learning through dreamer’s actor-critic trajectory forecasting, 2024.
URL https://arxiv.org/abs/2410.11359.

Ryo Karakida, Masato Okada, and Shun-ichi Amari. Dynamical analysis of contrastive divergence
learning: Restricted boltzmann machines with gaussian visible units. Neural Networks, 79:78–87,
2016.

Nadir Khalifa, Abdullah Alnasrallah, Joke Demuynck, , et al. GRACE: Discriminator-guided chain-
of-thought reasoning. In Proceedings of the 2023 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pp. 11710–11725, Singapore, 2023.

Omar Khattab, Keshav Santhanam, Xiang Lisa Li, David Hall, Percy Liang, Christopher Potts,
and Matei Zaharia. Demonstrate-search-predict: Composing retrieval and language models for
knowledge-intensive NLP. arXiv preprint arXiv:2212.14024, 2022.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large
language models are zero-shot reasoners. Advances in neural information processing systems, 35:
22199–22213, 2022.

Anastasis Kratsios. The universal approximation property: Characterization, construction, representa-
tion, and existence. Annals of Mathematics and Artificial Intelligence, 89(5–6):435–469, January
2021. ISSN 1573-7470. URL http://dx.doi.org/10.1007/s10472-020-09723-1.

Yann LeCun, Sumit Chopra, and Raia Hadsell. A tutorial on energy-based learning. In Predicting
Structured Data, pp. 1–59. MIT Press, 2006.

Chen Li, Weiqi Wang, Jingcheng Hu, Yixuan Wei, Nanning Zheng, Han Hu, Zheng Zhang, and
Houwen Peng. Common 7b language models already possess strong math capabilities, 2024a.

Jia Li, Edward Beeching, Lewis Tunstall, Ben Lipkin, Roman Soletskyi, Shengyi Huang, Kashif
Rasul, Longhui Yu, Albert Q Jiang, Ziju Shen, et al. Numinamath: The largest public dataset in
ai4maths with 860k pairs of competition math problems and solutions. Hugging Face repository,
13(9):9, 2024b.

Shuohang Li, Liangming Pan, Jinpeng Zhang, , et al. Diverse: Step-aware verifier for chain-of-thought
reasoning. arXiv preprint arXiv:2306.04637, 2023.

11

https://arxiv.org/abs/2410.11359
http://dx.doi.org/10.1007/s10472-020-09723-1

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Zongyu Lin, Yao Tang, Xingcheng Yao, Da Yin, Ziniu Hu, Yizhou Sun, and Kai-Wei Chang. Qlass:
Boosting language agent inference via q-guided stepwise search. arXiv preprint arXiv:2502.02584,
2025.

Hude Liu, Jerry Yao-Chieh Hu, Zhao Song, and Han Liu. Attention mechanism, max-affine partition,
and universal approximation, 2025. URL https://arxiv.org/abs/2504.19901.

Tie-Yan Liu. Learning to rank for information retrieval. In Foundations and Trends® in Information
Retrieval, volume 3, pp. 225–331. Now Publishers Inc., 2009.

Weitang Liu, Xiaoyun Wang, John D Owens, and Yixuan Li. Energy-based out-of-distribution
detection. Advances in Neural Information Processing Systems, 33:21464–21475, 2020.

Xiang Liu, Baolin Peng, Yichong Zhang, , et al. MMIQC: Multi-modal in-context learning for math
reasoning. arXiv preprint arXiv:2407.13690, 2023.

Haipeng Luo, Qingfeng Sun, Can Xu, Pu Zhao, Jian-Guang Lou, Chongyang Tao, Xiubo Geng,
Qingwei Lin, Shifeng Chen, Yansong Tang, and Dongmei Zhang. Wizardmath: Empowering
mathematical reasoning for large language models via reinforced evol-instruct. In The Thirteenth
International Conference on Learning Representations, 2025.

Chengqi Lyu, Songyang Gao, Yuzhe Gu, Wenwei Zhang, Jianfei Gao, Kuikun Liu, Ziyi Wang,
Shuaibin Li, Qian Zhao, Haian Huang, et al. Exploring the limit of outcome reward for learning
mathematical reasoning. arXiv preprint arXiv:2502.06781, 2025.

OpenAI. Gpt-4 technical report, 2023.

Zhenyu Pan, Haozheng Luo, Manling Li, and Han Liu. Chain-of-action: Faithful and multimodal
question answering through large language models. In The Thirteenth International Conference on
Learning Representations, 2025.

Richard Yuanzhe Pang, Weizhe Yuan, Kyunghyun Cho, He He, Sainbayar Sukhbaatar, and Jason
Weston. Iterative reasoning preference optimization. In A. Globerson, L. Mackey, D. Belgrave,
A. Fan, U. Paquet, J. Tomczak, and C. Zhang (eds.), Advances in Neural Information Processing
Systems, volume 37, pp. 116617–116637. Curran Associates, Inc., 2024.

Ofir Press, Muru Zhang, Sewon Min, Ludwig Schmidt, Noah A Smith, and Mike Lewis. Measuring
and narrowing the compositionality gap in language models. arXiv preprint arXiv:2210.03350,
2022.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Salman Rakin, Md AR Shibly, Zahin M Hossain, Zeeshan Khan, and Md Mostofa Akbar. Leveraging
the domain adaptation of retrieval augmented generation models for question answering and
reducing hallucination. arXiv preprint arXiv:2410.17783, 2024.

Timo Schick, Jane Dwivedi-Yu, Roberto Dessì, Roberta Raileanu, Maria Lomeli, Luke Zettlemoyer,
Nicola Cancedda, and Thomas Scialom. Toolformer: Language models can teach themselves to
use tools. arXiv preprint arXiv:2302.04761, 2023.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, YK Li, Y Wu, et al. Deepseekmath: Pushing the limits of mathematical
reasoning in open language models. arXiv preprint arXiv:2402.03300, 2024.

Shuaijie She, Junxiao Liu, Yifeng Liu, Jiajun Chen, Xin Huang, and Shujian Huang. R-prm:
Reasoning-driven process reward modeling, 2025.

Lin Song, Kuan Zhao, Yilun Du, and Jun Qi. Trainable energy-based models for solvable lattice
models. arXiv preprint arXiv:2101.03288, 2021.

Zhengyang Tang, Xingxing Zhang, Benyou Wang, and Furu Wei. Mathscale: Scaling instruction
tuning for mathematical reasoning, 2024.

12

https://arxiv.org/abs/2504.19901

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Llama Team. The llama 3 herd of models, 2024. URL https://arxiv.org/abs/2407.
21783.

Vernon Toh, Deepanway Ghosal, and Soujanya Poria. Not all votes count! translated program for
verification improves self-consistency of language models for math reasoning. In 2nd AI for Math
Workshop @ ICML 2025, 2025.

Yuxuan Tong, Xiwen Zhang, Rui Wang, Ruidong Wu, and Junxian He. DART-math: Difficulty-aware
rejection tuning for mathematical problem-solving. In The Thirty-eighth Annual Conference on
Neural Information Processing Systems, 2024. URL https://openreview.net/forum?
id=zLU21oQjD5.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation
and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in neural information
processing systems, pp. 5998–6008, 2017.

Peiyi Wang, Lei Li, Zhihong Shao, Runxin Xu, Damai Dai, Yifei Li, Deli Chen, Yu Wu, and Zhifang
Sui. Math-shepherd: Verify and reinforce LLMs step-by-step without human annotations. In
Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), Proceedings of the 62nd Annual Meeting
of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 9426–9439,
Bangkok, Thailand, August 2024. Association for Computational Linguistics. doi: 10.18653/v1/
2024.acl-long.510.

Weiyun Wang, Zhangwei Gao, Lianjie Chen, Zhe Chen, Jinguo Zhu, Xiangyu Zhao, Yangzhou Liu,
Yue Cao, Shenglong Ye, Xizhou Zhu, et al. Visualprm: An effective process reward model for
multimodal reasoning. arXiv preprint arXiv:2503.10291, 2025.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V Le, Ed H. Chi, Sharan Narang, Aakanksha
Chowdhery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language
models. In The Eleventh International Conference on Learning Representations, 2023.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, brian ichter, Fei Xia, Ed H. Chi,
Quoc V Le, and Denny Zhou. Chain of thought prompting elicits reasoning in large language
models. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho (eds.), Advances
in Neural Information Processing Systems, 2022.

Haoran Wu, Avishkar Balika Singh, McKay Andrus, Bohyung Yang, Abdelrahman Mourad, ,
et al. Mitigating misleading chain-of-thought reasoning with selective filtering. arXiv preprint
arXiv:2403.19167, 2024.

Siheng Xiong, Ali Payani, Ramana Kompella, and Faramarz Fekri. Large language models can learn
temporal reasoning. arXiv preprint arXiv:2401.06853, 2024.

Shicheng Xu, Liang Pang, Huawei Shen, Xueqi Cheng, and Tat-seng Chua. Search-in-the-chain:
Towards the accurate, credible and traceable content generation for complex knowledge-intensive
tasks. arXiv preprint arXiv:2304.14732, 2023.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
Dayiheng Liu, Fei Huang, Haoran Wei, et al. Qwen2. 5 technical report. arXiv preprint
arXiv:2412.15115, 2024.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629,
2022.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Thomas L Griffiths, Yuan Cao, and Karthik
Narasimhan. Tree of thoughts: Deliberate problem solving with large language models. arXiv
preprint arXiv:2305.10601, 2023.

13

https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783
https://openreview.net/forum?id=zLU21oQjD5
https://openreview.net/forum?id=zLU21oQjD5

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Longhui Yu, Weisen Jiang, Han Shi, Jincheng YU, Zhengying Liu, Yu Zhang, James Kwok, Zhenguo
Li, Adrian Weller, and Weiyang Liu. Metamath: Bootstrap your own mathematical questions for
large language models. In The Twelfth International Conference on Learning Representations,
2024.

Xiang Yue, Tianyu Zheng, Ge Zhang, and Wenhu Chen. MAmmoTH2: Scaling instructions from the
web. In The Thirty-eighth Annual Conference on Neural Information Processing Systems, 2024.

Xuan Zhang, Chao Du, Tianyu Pang, Qian Liu, Wei Gao, and Min Lin. Chain of preference
optimization: Improving chain-of-thought reasoning in llms. Advances in Neural Information
Processing Systems, 37:333–356, 2024.

Zhuosheng Zhang, Aston Zhang, Mu Li, and Alex Smola. Automatic chain of thought prompting in
large language models. In The Eleventh International Conference on Learning Representations
(ICLR 2023), 2023.

Wanjun Zhong, Ruixiang Cui, Yiduo Guo, Yaobo Liang, Shuai Lu, Yanlin Wang, Amin Saied, Weizhu
Chen, and Nan Duan. Agieval: A human-centric benchmark for evaluating foundation models.
arXiv preprint arXiv:2304.06364, 2023.

Denny Zhou, Nathanael Schärli, Le Hou, Jason Wei, Nathan Scales, Xuezhi Wang, Dale Schuurmans,
Claire Cui, Olivier Bousquet, Quoc Le, et al. Least-to-most prompting enables complex reasoning
in large language models. arXiv preprint arXiv:2205.10625, 2022.

Kun Zhou, Beichen Zhang, jiapeng wang, Zhipeng Chen, Xin Zhao, Jing Sha, Zhichao Sheng, Shijin
Wang, and Ji-Rong Wen. Jiuzhang3.0: Efficiently improving mathematical reasoning by training
small data synthesis models. In The Thirty-eighth Annual Conference on Neural Information
Processing Systems, 2024.

Yuxin Zuo, Kaiyan Zhang, Shang Qu, Li Sheng, Xuekai Zhu, Biqing Qi, Youbang Sun, Ganqu
Cui, Ning Ding, and Bowen Zhou. Ttrl: Test-time reinforcement learning, 2025. URL https:
//arxiv.org/abs/2504.16084.

14

https://arxiv.org/abs/2504.16084
https://arxiv.org/abs/2504.16084

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

A ALGORITHM

Algorithm 2 Training procedure for the Energy Outcome Reward Model (EORM): The model
parameters θ are optimized by minimizing a pairwise Bradley-Terry loss, encouraging lower energy
assignments for correct solutions (y+) compared to incorrect ones (y−) within each data group Yn.

Require: Labeled groups {Yn}Nn=1; learning rate η; number of epochs E
Initialize EBM parameters θ
for epoch = 1 to E do

for each group Yn in the training set do
Y+ ← {positives in Yn}, Y− ← {negatives in Yn}
if Y+ and Y− are both non-empty then

Compute energies Eθ(y) for all y ∈ Y+ ∪ Y−
Ln ←

1

|Y+||Y−|
∑

y+∈Y+

∑
y−∈Y−

log
(
1 + exp

(
Eθ(y+)− Eθ(y−)

))
θ ← θ − η∇θLn

end if
end for

end for

B EXTENDED RELATED WORK

This section provides a more detailed discussion of research areas related to our work on the Energy
Outcome Reward Model (EORM), covering Chain-of-Thought reasoning, techniques for verifying
and reranking LLM outputs, and Energy-Based Models.

B.1 CHAIN-OF-THOUGHT AND MULTI-STEP REASONING

Large Language Models (LLMs) (Bai et al., 2023; Touvron et al., 2023; OpenAI, 2023; Guo et al.,
2025) have demonstrated remarkable capabilities, particularly when prompted to generate step-by-
step solutions. Chain-of-Thought (CoT) prompting (Wei et al., 2022; Kojima et al., 2022) has become
a cornerstone technique for eliciting complex multi-step reasoning from LLMs. This approach
encourages models to "think aloud," breaking down problems into manageable intermediate steps.
Various refinements to CoT have been proposed, such as Least-to-Most prompting (Zhou et al., 2022),
which guides the model through progressively more complex steps, and Tree-of-Thoughts (ToT) (Yao
et al., 2023; Zhang et al., 2023), which explores multiple reasoning paths in a structured manner.
Retrieval-augmented CoT methods (Pan et al., 2025; Rakin et al., 2024; Schick et al., 2023; Yao et al.,
2022; Press et al., 2022; Khattab et al., 2022) further enhance reasoning by allowing models to consult
external knowledge sources or tools. Despite these advancements, CoT outputs are not infallible;
a single incorrect step can derail the entire reasoning process (Tong et al., 2024). This has led to
the development of post-hoc processing techniques. Among the most prominent is self-consistency
(Wang et al., 2023), which samples multiple CoT outputs and selects the final answer via majority
vote. While effective, self-consistency and similar ensemble methods often require generating a large
number of candidate solutions, leading to substantial computational overhead (Wu et al., 2024). Our
work seeks to mitigate this cost by providing a more efficient mechanism for identifying high-quality
CoT solutions.

B.2 RERANKING AND VERIFICATION OF LLM OUTPUTS

Given the variability in the quality of CoT paths, a subsequent verification or reranking stage is often
crucial for improving the final answer accuracy (Wu et al., 2024; Jacovi et al., 2024; Li et al., 2023;
Lin et al., 2025). Researchers have explored various strategies for this purpose. Some approaches
focus on training separate verifier models to score the correctness of generated solutions or even
individual reasoning steps (Cobbe et al., 2023; Khalifa et al., 2023; Jiang et al., 2024). For example,
DI-VeRSe (Li et al., 2023) trains a model to perform step-aware verification. Other methods adopt a
learning-to-rank perspective (Liu, 2009; Deng et al., 2020a), training models to compare and order

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

candidate solutions based on their perceived quality using pairwise or listwise objectives. While
these verification and reranking techniques can be effective, many existing methods either rely
on large, specialized verifier models that add significant computational load or employ complex,
computationally expensive decoding strategies. The goal of EORM is to provide a lightweight yet
powerful verifier that can efficiently identify correct CoT solutions without imposing such heavy
overhead. Techniques like Chain-of-Actions (Pan et al., 2025) and Search-in-the-Chain (Xu et al.,
2023) also introduce verification but often focus on different aspects or involve more intricate
integration with the generation process. EORM distinguishes itself by its post-hoc applicability and
its foundation in energy-based principles for efficient scoring.

B.3 ENERGY-BASED MODELS (EBMS)

Energy-Based Models (EBMs) provide a flexible and powerful framework for modeling complex data
distributions by assigning a scalar "energy" value to each input configuration (LeCun et al., 2006;
Du & Mordatch, 2019). Lower energy values typically correspond to more plausible or desirable
configurations. EBMs have found successful applications in diverse domains, including computer
vision (Grathwohl et al., 2019), generative modeling (Song et al., 2021; Du & Mordatch, 2019),
out-of-distribution detection (Liu et al., 2020), and ranking tasks (Grathwohl et al., 2019; Liu, 2009).
A key characteristic of EBMs is that they do not necessarily require explicit normalization of the
probability distribution (i.e., computation of the partition function), which is often intractable for
high-dimensional or complex output spaces (Karakida et al., 2016; ?). This property makes EBMs
particularly well-suited for ranking scenarios, where the primary goal is to compare the relative
"goodness" of different candidates rather than to compute their absolute probabilities. This is directly
applicable to CoT reranking, as we aim to identify the best solution among several alternatives. A
pivotal insight, leveraged by our work, is that the logits produced by standard discriminative classifiers
can be interpreted as negative unnormalized log-probabilities, or effectively, as negative energies
(Grathwohl et al., 2019). By adopting this perspective, an EBM can be trained using objectives similar
to those used for classifiers, without the need for complex sampling procedures often associated
with training generative EBMs. EORM builds on this by using a pairwise Bradley-Terry loss (Liu,
2009), a common technique in learning-to-rank, to train the energy function to distinguish between
correct and incorrect CoT solutions. Our work thus extends the application of EBM principles to the
domain of multi-step reasoning in LLMs, offering an efficient and theoretically grounded alternative
to existing verification methods.

C THEORETICAL DETAILS

This appendix furnishes comprehensive definitions, rigorous proofs, and supplementary remarks that
underpin the theoretical concepts and analyses presented throughout the main text of the paper.

C.1 PRELIMINARIES: FOUNDATIONS OF ENERGY-BASED MODELS

We begin by establishing the fundamental concepts of Energy-Based Models (EBMs) that form the
basis of our proposed EORM.

Definition C.1 (Energy Function). An energy function Eθ : Y → R is a function, parameterized
by θ, that assigns a scalar value Eθ(y) (its energy) to each possible configuration or input y from a
space Y . By convention, lower energy values typically correspond to more desirable or probable
configurations. In the EORM framework, Y denotes the space of possible Chain-of-Thought (CoT)
text sequences, which are characterized by their variable length and complex linguistic and logical
structures.

Definition C.2 (Boltzmann Distribution). Given an energy function Eθ(y), the corresponding
Boltzmann (or Gibbs) distribution pθ(y) assigns a probability (or probability density for continuous
Y) to each configuration y ∈ Y as:

pθ(y) =
exp

(
−Eθ(y)

)
Zθ

, (7)

where Zθ is the partition function.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Definition C.3 (Partition Function). The partition function Zθ serves as a normalization constant,
ensuring that the Boltzmann distribution pθ(y) integrates (or sums, for discrete Y) to unity over the
entire space Y:

Zθ =

∫
y′∈Y

exp
(
−Eθ(y

′)
)
dy′ (or

∑
y′∈Y

exp
(
−Eθ(y

′)
)

for discrete Y). (8)

The computational intractability of Zθ for complex, high-dimensional spaces, such as those involv-
ing text sequences, is a principal motivation for developing methods like EORM that can operate
effectively without its explicit calculation.

A key property of EBMs relevant to ranking tasks is the equivalence between energy minimization
and probability maximization.
Theorem C.1 (Energy–Probability Equivalence for Ranking). For any finite candidate set Ycand ⊂ Y ,
the configuration y∗ that minimizes the energy function Eθ(y) over this set is also the configuration
that maximizes the Boltzmann probability pθ(y):

y∗ = arg min
y∈Ycand

Eθ(y) = arg max
y∈Ycand

pθ(y). (9)

Proof of Theorem C.1 (Energy–Probability Equivalence for Ranking). Consider a finite candidate

set Ycand and the Boltzmann probability pθ(y) =
exp

(
−Eθ(y)

)
Zθ

for y ∈ Ycand. The partition function
Zθ, whether defined globally over Y or locally over Ycand (if considering probabilities conditional
on this set), is a positive constant with respect to the specific choice of y from Ycand. Consequently,
maximizing pθ(y) over y ∈ Ycand is equivalent to maximizing its numerator, exp

(
−Eθ(y)

)
:

arg max
y∈Ycand

pθ(y) = arg max
y∈Ycand

exp
(
−Eθ(y)

)
Zθ

= arg max
y∈Ycand

exp
(
−Eθ(y)

)
.

The function f(x) = exp(−x) is strictly monotonically decreasing, as its derivative, f ′(x) =
− exp(−x), is always negative for x ∈ R. A property of strictly monotonically decreasing functions
is that maximizing f(x) is equivalent to minimizing x. Applying this, maximizing exp

(
−Eθ(y)

)
is

equivalent to minimizing its argument, Eθ(y):

arg max
y∈Ycand

exp
(
−Eθ(y)

)
= arg min

y∈Ycand

Eθ(y).

Combining these steps, we conclude that argmaxy∈Ycand
pθ(y) = argminy∈Ycand

Eθ(y). This
equivalence is fundamental to using energy functions for ranking and selection tasks.

C.2 DETAILS FOR EORM ARCHITECTURE AND TRAINING OBJECTIVE

The EORM model architecture employs a Transformer encoder (Vaswani et al., 2017) to process input
CoT sequences. Each input sequence y, typically a concatenation of a question and a candidate CoT
solution, is first tokenized. A special classification token (e.g., [CLS]) is prepended to the tokenized
sequence; its final hidden state representation is conventionally used in Transformer models to capture
a summary of the entire sequence. Let hCLS be the final hidden state vector from the Transformer
encoder corresponding to this [CLS] token. This vector is then passed through a small Multi-Layer
Perceptron (MLP) head, which includes Layer Normalization (?) for improved training stability. The
MLP projects hCLS to a single scalar value, which EORM interprets as the energy Eθ(y) of the input
sequence:

Eθ(y) = MLP
(

LayerNorm
(
hCLS

))
∈ R. (10)

The model is trained such that lower energy values Eθ(y) correspond to higher-quality (i.e., correct)
CoT solutions.

For training EORM, the data is organized into groups. Each group Yn pertains to a single problem
instance n and comprises multiple candidate CoT solutions {y1, . . . , yk} generated for that problem.
Each candidate yi is accompanied by a binary label l(yi) ∈ {0, 1}, where l(yi) = 1 indicates a
correct solution and l(yi) = 0 indicates an incorrect one. Within each group Yn, we delineate two
subsets: Y+ = {y ∈ Yn | l(y) = 1} (correct solutions) and Y− = {y ∈ Yn | l(y) = 0} (incorrect

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

solutions). The optimization of EORM’s parameters θ is driven by the pairwise Bradley-Terry loss
(?). For a single group Yn (assuming it is non-degenerate, i.e., |Y+| > 0 and |Y−| > 0), the loss is
defined as:

L(θ;Yn) =
1

|Y+||Y−|
∑

y+∈Y+

∑
y−∈Y−

log
(
1 + exp

(
Eθ(y+)− Eθ(y−)

))
. (11)

This loss function penalizes instances where a correct solution y+ is assigned a higher (or not
sufficiently lower) energy than an incorrect solution y−. The training procedure, outlined in Algorithm
1, aims to minimize this loss across all training groups.

C.3 INTERPRETING CLASSIFIER LOGITS AS ENERGIES: CONNECTION TO EORM

A pivotal insight that connects discriminative machine learning models to EBMs is the interpretation
of classifier outputs (logits) as quantities related to energy (Grathwohl et al., 2019; Liu et al., 2020).
This subsection elaborates on this connection and situates EORM’s methodology within this context.
Definition C.4 (Classifier Logits and Softmax Probability). For a K-class discriminative classifier,
let fθ(y) = [f1(y), . . . , fK(y)] ∈ RK denote the vector of output scores (logits) for an input y,
where θ represents the classifier’s parameters. The conditional probability P (k|y; θ) of y belonging
to class k is commonly computed using the softmax function:

P (k|y; θ) = exp(fk(y))∑K
j=1 exp(fj(y))

. (12)

Proposition C.1 (Implicit Energy Functions from Classifier Logits). A K-class classifier, as described
by its logits fθ(y) and softmax probabilities P (k|y; θ) (Definition C.4), can be understood as
implicitly defining K class-conditional energy functions Ek(y; θ) = −fk(y) for each class k.

1. Using these energy functions, the conditional probability P (k|y; θ) can be expressed in an
explicitly energy-based form:

P (k|y; θ) = exp(−Ek(y; θ))∑K
j=1 exp(−Ej(y; θ))

. (13)

2. Furthermore, a joint probability distribution P (y, k; θ) over inputs and classes can be
consistently defined within an EBM framework. If we posit a joint energy E(y, k; θ) =
Ek(y; θ) +E0(y; θ), where E0(y; θ) is an energy function associated with the input y itself
(representing the marginal energy of y), then:

P (y, k; θ) =
exp

(
−(Ek(y; θ) + E0(y; θ))

)
Z ′
θ

, (14)

where Z ′
θ =

∑
y′∈Y

∑K
l=1 exp

(
−(El(y

′; θ) + E0(y
′; θ))

)
is the global partition function.

This joint distribution correctly recovers the classifier’s original conditional probabilities
P (k|y; θ).

Proof of Proposition C.1. :
Part 1: Derivation of the energy-based form for P (k|y; θ).
We begin with the standard softmax definition for P (k|y; θ):

P (k|y; θ) = exp(fk(y))∑K
j=1 exp(fj(y))

.

By defining the class-conditional energy Ek(y; θ) = −fk(y), it follows that the logit fk(y) =
−Ek(y; θ). Substituting fk(y) = −Ek(y; θ) into the numerator yields exp(−Ek(y; θ)). Similarly,
substituting into each term of the sum in the denominator yields

∑K
j=1 exp(−Ej(y; θ)). Thus, the

conditional probability P (k|y; θ) becomes:

P (k|y; θ) = exp(−Ek(y; θ))∑K
j=1 exp(−Ej(y; θ))

,

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

which is Eq. (13). The denominator,
∑K

j=1 exp(−Ej(y; θ)), serves as a local (input-dependent)
partition function, often denoted Z(y; θ), for the conditional distribution P (·|y; θ).
Part 2: Consistent definition of the joint probability P (y, k; θ).

Let us define a joint energy function for the pair (y, k) as E(y, k; θ) = Ek(y; θ) + E0(y; θ). Here,
Ek(y; θ) = −fk(y) are the class-conditional energies derived from classifier logits, and E0(y; θ)
represents an energy associated with the input y, effectively capturing the energy of y under its
marginal distribution. The joint probability P (y, k; θ) is then given by the Boltzmann distribution
corresponding to this joint energy:

P (y, k; θ) =
exp(−E(y, k; θ))

Z ′
θ

=
exp

(
−(Ek(y; θ) + E0(y; θ))

)
Z ′
θ

,

where Z ′
θ =

∑
y′∈Y

∑K
l=1 exp

(
−(El(y

′; θ) + E0(y
′; θ))

)
is the global partition function, summing

over all possible inputs y′ and all classes l.

To confirm consistency, we derive the conditional probability P (k|y; θ) from this joint distribution
using the fundamental relation P (k|y; θ) = P (y,k;θ)

P (y;θ) . First, the marginal probability of y, P (y; θ), is
obtained by summing (or marginalizing) the joint probability P (y, l; θ) over all classes l:

P (y; θ) =

K∑
l=1

P (y, l; θ)

=

K∑
l=1

exp
(
−(El(y; θ) + E0(y; θ))

)
Z ′
θ

=
exp(−E0(y; θ))

Z ′
θ

K∑
l=1

exp(−El(y; θ)).

Now, we compute the conditional probability P (k|y; θ):

P (k|y; θ) = P (y, k; θ)

P (y; θ)

=

exp
(
−(Ek(y;θ)+E0(y;θ))

)
Z′

θ

exp(−E0(y;θ))
Z′

θ

∑K
l=1 exp(−El(y; θ))

=
exp

(
−(Ek(y; θ) + E0(y; θ))

)
exp(−E0(y; θ))

∑K
l=1 exp(−El(y; θ))

=
exp(−Ek(y; θ)) exp(−E0(y; θ))

exp(−E0(y; θ))
∑K

l=1 exp(−El(y; θ))

=
exp(−Ek(y; θ))∑K
l=1 exp(−El(y; θ))

.

This resulting expression for P (k|y; θ) is identical to the energy-based form derived in Part 1 (Eq. (13))
and, consequently, consistent with the original softmax formulation of the classifier (Definition C.4),
given the definition Ej(y; θ) = −fj(y). This demonstrates that a joint energy definition of the
form E(y, k; θ) = Ek(y; θ) + E0(y; θ) allows a standard classifier to be seamlessly integrated into
a joint EBM framework. The specific choice of E0(y; θ) influences the modeled marginal P (y; θ),
but the conditional P (k|y; θ) remains determined by the classifier’s logits. For example, if one
aims to have P (y, k) = P (k|y)P (y), then E(y, k) can be set to − logP (k|y) − logP (y), which
implies a specific form for E0(y; θ) related to − logP (y) and the local partition function Z(y; θ).
However, the proposition’s assertion of consistency holds for a general E0(y; θ) representing the
energy contribution of y.

C.4 CONCEPTUAL ANALYSIS OF THE LEARNED ENERGY LANDSCAPE

The energy function Eθ(y) learned by EORM effectively defines an "energy landscape" across the
high-dimensional, discrete space Y of CoT solutions. The characteristics of this landscape are

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

paramount to EORM’s ability to discriminate effectively between high-quality, correct reasoning
paths and flawed or incorrect ones. While EORM does not employ Eθ(y) for generative sampling
(e.g., to create novel CoTs by navigating this landscape), an understanding of the intended structure
of this landscape, as sculpted by the training objective, offers valuable insights into its operational
mechanism.
Definition C.5 (Optimal Energy Separation (Idealized Goal)). Consider a specific problem or
question q. Let YC,q ⊆ Y denote the set of all correct CoT solutions for q, and YI,q ⊆ Y denote the
set of all incorrect CoT solutions for q. An ideally structured energy landscape, from the perspective
of discriminating solutions for question q, would satisfy the condition:

sup
yc∈YC,q

Eθ(yc) < inf
yi∈YI,q

Eθ(yi). (15)

This inequality implies the existence of an energy threshold τq such that all correct solutions for
question q possess an energy Eθ(yc) < τq , while all incorrect solutions have an energy Eθ(yi) > τq .
Achieving such perfect global separation for all possible CoTs is a highly stringent condition and
unlikely to be fully realized in practice. However, the training process of EORM is designed to
approximate this separation, particularly for the types of candidate solutions encountered in the
training data.

Role of the Pairwise Bradley-Terry Loss in Shaping the Landscape. The pairwise Bradley-Terry
loss, as defined in Eq. (11), is instrumental in sculpting the desired energy landscape. For each pair of
solutions (y+, y−) from the same problem context, where y+ is correct and y− is incorrect, the loss
term is Lpair(y+, y−) = log(1+ exp(Eθ(y+)−Eθ(y−))). To understand its effect, let us define the
"energy margin" for a correctly ordered pair as δ(y+, y−) = Eθ(y−)− Eθ(y+). The loss term can
then be expressed as log(1 + exp(−δ(y+, y−))). Minimizing this loss is equivalent to maximizing
the margin δ(y+, y−), thereby actively pushing Eθ(y+) to be lower than Eθ(y−). The gradient of
this loss with respect to the energies (see components in Eq. (18)) illustrates this dynamic: The term
σ(Eθ(y+)− Eθ(y−)) acts as a dynamic weighting factor.

• If Eθ(y+) ≥ Eθ(y−) (i.e., the pair is misordered or has no margin, δ(y+, y−) ≤ 0), the
sigmoid term σ(Eθ(y+) − Eθ(y−)) is ≥ 0.5. This results in a relatively strong gradient
signal that pushes to decrease Eθ(y+) and increase Eθ(y−), effectively trying to correct the
order and increase the margin.

• If Eθ(y+) ≪ Eθ(y−) (i.e., the pair is well-ordered with a large positive margin
δ(y+, y−) ≫ 0), the sigmoid term approaches 0. The gradient signal becomes weak,
as the desired ordering is already satisfied.

This adaptive mechanism concentrates the learning effort on problematic pairs, carving out low-
energy regions for correct solutions relative to incorrect ones. The loss enforces relative energy
orderings rather than absolute energy targets, which can make the training more robust, for example,
to imbalances in the number of correct versus incorrect examples per problem.

C.5 THEORETICAL ANALYSIS OF THE EORM TRAINING OBJECTIVE

This section details the mathematical properties of the EORM training objective, including definitions
of relevant functions and formal derivations.
Definition C.6 (Sigmoid Function). The sigmoid function σ : R→ (0, 1) is defined as:

σ(z) =
1

1 + exp(−z)
. (16)

Definition C.7 (Softplus Function). The softplus function softplus : R→ R>0 is defined as:
softplus(z) = log(1 + exp(z)). (17)

A useful property is that its derivative is the sigmoid function: d
dz softplus(z) = σ(z).

Theorem C.2 (Gradient of Pairwise Bradley-Terry Loss). Let L(θ;Yn) be the pairwise Bradley-Terry
loss for a group Yn, as given by Eq. (11). Assuming the energy function Eθ(y) is differentiable with
respect to its parameters θ, the gradient of this loss is:

∇θL(θ;Yn) =
1

|Y+||Y−|
∑

y+∈Y+

∑
y−∈Y−

σ
(
Eθ(y+)−Eθ(y−)

)(
∇θEθ(y+) − ∇θEθ(y−)

)
, (18)

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

where σ(·) is the sigmoid function (Definition C.6).

Proof of Theorem C.2. The pairwise Bradley-Terry loss for a non-degenerate group Yn (where Y+
and Y− are non-empty) is:

L(θ;Yn) =
1

|Y+||Y−|
∑

y+∈Y+

∑
y−∈Y−

log
(
1 + exp

(
Eθ(y+)− Eθ(y−)

))
.

Let Lpair(y+, y−; θ) = log
(
1 + exp

(
Eθ(y+) − Eθ(y−)

))
denote the loss contribution from a

single pair (y+, y−). Using the definition of the softplus function (Definition C.7), we can write
Lpair(y+, y−; θ) = softplus(Eθ(y+) − Eθ(y−)). Due to the linearity of the gradient operator, we
have:

∇θL(θ;Yn) =
1

|Y+||Y−|
∑

y+∈Y+

∑
y−∈Y−

∇θLpair(y+, y−; θ).

To compute ∇θLpair(y+, y−; θ), we apply the chain rule, noting that d
dz softplus(z) = σ(z):

∇θLpair(y+, y−; θ) = ∇θsoftplus
(
Eθ(y+)− Eθ(y−)

)
=

d

dz
softplus(z)

∣∣∣∣
z=Eθ(y+)−Eθ(y−)

· ∇θ

(
Eθ(y+)− Eθ(y−)

)
= σ

(
Eθ(y+)− Eθ(y−)

)
·
(
∇θEθ(y+) − ∇θEθ(y−)

)
.

Substituting this expression back into the sum for ∇θL(θ;Yn) yields the statement of the theorem,
Eq. (18).

Remark C.1 (Pairwise Bradley-Terry Loss as Negative Log-Likelihood). The pairwise Bradley-Terry
loss function used in EORM has a strong theoretical grounding as the negative log-likelihood (NLL)
of observed preferences under the Bradley-Terry probabilistic model for pairwise comparisons (?).
This model assumes that each item y possesses an underlying positive "strength" or "score," denoted
πy . The probability that item yi is preferred over item yj is then given by P (yi preferred over yj) =

πi

πi+πj
. In an energy-based formulation, we can define the strength of a solution y as inversely related

to its energy: πy = exp(−Eθ(y)). A lower energy Eθ(y) thus corresponds to a higher strength πy.
Under this definition, the probability that a correct solution y+ is preferred over an incorrect solution
y− (which implies Eθ(y+) should be less than Eθ(y−)) can be modeled as:

P (y+ preferred over y−|θ) =
πy+

πy+ + πy−

=
exp(−Eθ(y+))

exp(−Eθ(y+)) + exp(−Eθ(y−))
.

Dividing both the numerator and the denominator by exp(−Eθ(y+)) yields:

P (y+ preferred over y−|θ) =
1

1 + exp(−Eθ(y−) + Eθ(y+))

=
1

1 + exp
(
−(Eθ(y−)− Eθ(y+))

)
= σ

(
Eθ(y−)− Eθ(y+)

)
, (using the definition of σ(z) from Definition C.6).

The negative log-likelihood (NLL) of observing this single preference y+ > y− is:

NLL(y+ > y−|θ) = − logP (y+ preferred over y−|θ)
= − log σ

(
Eθ(y−)− Eθ(y+)

)
.

Using the identity − log σ(x) = log(1 + e−x) = softplus(−x), we have:

NLL(y+ > y−|θ) = log
(
1 + exp

(
− (Eθ(y−)− Eθ(y+))

))
= log

(
1 + exp

(
Eθ(y+)− Eθ(y−)

))
.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

This expression is precisely the loss contribution from a single pair (y+, y−) as defined in Eq. (11).
This term is also recognizable as the logistic loss or binary cross-entropy for the event of y+
being preferred over y−, given the "logit" of this preference is Eθ(y−) − Eθ(y+). Therefore,
minimizing the average pairwise Bradley-Terry loss is equivalent to performing Maximum Likelihood
Estimation (MLE) for the parameters θ under this probabilistic preference model, where preferences
are determined by energy differences. This equivalence provides a robust theoretical justification for
the chosen loss function.
Proposition C.2 (Unbiased Gradient Estimation from Non-Degenerate Groups). Let G represent
the true underlying distribution of all training groups n. The loss for group n, L(θ;Yn), is defined
such that L(θ;Yn) = 0 if group n is degenerate (i.e., it lacks either positive examples, |Y+| = 0, or
negative examples, |Y−| = 0). Let G† be the conditional distribution of groups n from G, given that
they are non-degenerate. In stochastic gradient descent (SGD), if we sample a group n ∼ G† (i.e.,
we exclusively process non-degenerate groups) and compute its gradient∇θL(θ;Yn) using Eq. (11),
this gradient serves as an unbiased estimate of the expected gradient over non-degenerate groups,
En∼G† [∇θL(θ;Yn)]. Furthermore, this expectation is proportional to the true expected gradient
over all groups, En∼G [∇θL(θ;Yn)].

Proof of Proposition C.2. Let EG [·] denote the expectation with respect to the distribution G over
all groups, and EG† [·] denote the expectation with respect to the conditional distribution G† over
non-degenerate groups. Let Sall be the set of indices for all possible training groups, Snd be the set
of indices for non-degenerate groups, and Sd be the set of indices for degenerate groups, such that
Sall = Snd ∪ Sd and Snd ∩ Sd = ∅.
The true expected gradient over all groups is EG [∇θL(θ;Yn)]. This can be expanded as:

EG [∇θL(θ;Yn)] =
∑
i∈Sall

PG(i)∇θL(θ;Yi)

=
∑
i∈Snd

PG(i)∇θL(θ;Yi) +
∑
i∈Sd

PG(i)∇θL(θ;Yi).

By our definition, for any degenerate group i ∈ Sd, the loss L(θ;Yi) = 0. Consequently, its gradient
∇θL(θ;Yi) = 0 for i ∈ Sd. Thus, the sum simplifies to:

EG [∇θL(θ;Yn)] =
∑
i∈Snd

PG(i)∇θL(θ;Yi).

Let P (Snd) =
∑

i∈Snd
PG(i) be the total probability of sampling a non-degenerate group. We assume

P (Snd) > 0 (otherwise, no training would occur). The probability of sampling a specific non-
degenerate group i ∈ Snd under the conditional distribution G† (i.e., given that the sampled group
is non-degenerate) is PG†(i) = PG(i|i ∈ Snd) = PG(i)

P (Snd)
. The expected gradient when sampling

exclusively from non-degenerate groups is:

EG† [∇θL(θ;Yn)] =
∑
i∈Snd

PG†(i)∇θL(θ;Yi)

=
∑
i∈Snd

PG(i)

P (Snd)
∇θL(θ;Yi)

=
1

P (Snd)

∑
i∈Snd

PG(i)∇θL(θ;Yi).

Comparing the two expectations, we find:
EG [∇θL(θ;Yn)] = P (Snd) · EG† [∇θL(θ;Yn)].

Since P (Snd) is a positive constant (typically close to 1 if degenerate groups are infrequent), the
gradient ∇θL(θ;Yn) for n ∼ G† (as computed in ??) is an unbiased estimate of EG† [∇θL(θ;Yn)].
Furthermore, this expected gradient over non-degenerate groups is directly proportional to the true
expected gradient over all groups. In the context of SGD, this means that updating parameters using
gradients from only non-degenerate groups will, on average, follow a direction proportional to the
true full-batch gradient direction. This justifies the common practice of skipping degenerate groups
during training, as it maintains an optimization path towards minimizing the true expected loss, with
the effective learning rate scaled by P (Snd).

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

D IMPLEMENTATION DETAILS

This section provides key code snippets illustrating the implementation of the EORM model architec-
ture and the training objective used in this work.

D.1 EORM MODEL ARCHITECTURE (TRANSEBM)

The EORM model is implemented using PyTorch, leveraging a standard Transformer encoder
architecture. The core components are defined in the TransEBM class, shown in Listing 1. The
model takes token IDs and an attention mask as input and outputs a single scalar energy value for
the sequence, derived from the final hidden state of the prepended [CLS] token. The variable
representing the model’s hidden dimension is referred to as dim_model.

Listing 1: PyTorch implementation of the TransEBM model.
import torch
import torch.nn as nn

class TransEBM(nn.Module):
"""Lightweight Transformer-based Energy-Based Model."""
def __init__(self,

vocab_size: int,
dim_model: int,
n_heads: int,
n_layers: int,
dropout: float):

super().__init__()
self.dim_model = dim_model
self.emb = nn.Embedding(vocab_size, dim_model)
Standard Transformer Encoder Layer
encoder_layer = nn.TransformerEncoderLayer(

d_model=dim_model,
nhead=n_heads,
dim_feedforward=4 * dim_model,
activation="gelu",
dropout=dropout,
batch_first=True,
norm_first=True

)
Stack of encoder layers
self.enc = nn.TransformerEncoder(encoder_layer, num_layers=

n_layers)
MLP head to project CLS representation to scalar energy
self.head = nn.Sequential(

nn.LayerNorm(dim_model),
nn.Linear(dim_model, dim_model),
nn.GELU(),
nn.Linear(dim_model, 1)

)

def forward(self, ids: torch.Tensor, mask: torch.Tensor) -> torch.
Tensor:
"""
Args:

ids: (B, L) token ids (long tensor)
mask: (B, L) attention mask (1=real, 0=pad) (long tensor)

Returns:
energies: (B,) scalar energy for each sequence (float tensor)

"""
Get embeddings, apply scaling using renamed dim
x = self.emb(ids) * (self.dim_model**0.5)
Create padding mask for self-attention
True where attention should be masked (i.e., where mask == 0)
padding_mask = (mask == 0)

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Pass through Transformer encoder
x = self.enc(x, src_key_padding_mask=padding_mask)
Use the representation of the first token ([CLS])
cls_representation = x[:, 0]
Compute scalar energy using the MLP head
.squeeze(-1) removes the trailing dimension of size 1
energy = self.head(cls_representation).squeeze(-1)
return energy

D.2 PAIRWISE BRADLEY-TERRY LOSS FUNCTION

The model is trained using a pairwise Bradley-Terry objective, implemented as shown in Listing 2.
This function takes the energy scores assigned by the model to a group of candidate solutions and
their corresponding binary labels (1 for correct, 0 for incorrect). It computes the average loss over
all pairs of correct and incorrect candidates within the group, encouraging lower energy for correct
solutions.

Listing 2: PyTorch implementation of the Pairwise Bradley-Terry loss.
import torch
import torch.nn.functional as F

def bradley_terry_loss(energies: torch.Tensor, labels: torch.Tensor):
"""
Calculates pairwise Bradley-Terry based loss for a group.
Args:

energies: (N,) tensor of energy scores for N candidates.
labels: (N,) tensor of binary labels (1.0=correct, 0.0=incorrect)

.
Returns:

Scalar loss tensor, or None if no valid pairs exist.
"""
Find indices of positive (correct) and negative (incorrect)

examples
pos_indices = torch.where(labels == 1.0)[0]
neg_indices = torch.where(labels == 0.0)[0]

Handle degenerate groups (no positives or no negatives)
if len(pos_indices) == 0 or len(neg_indices) == 0:

return None # No pairs to compare

Get energies for positive and negative examples
pos_energies = energies[pos_indices]
neg_energies = energies[neg_indices]

Calculate all pairwise energy differences: E(positive) - E(negative
)

Broadcasting creates a matrix of shape (num_pos, num_neg)
energy_diffs = pos_energies.unsqueeze(1) - neg_energies.unsqueeze(0)

Calculate loss for each pair using softplus: log(1 + exp(diff))
This is equivalent to the NLL of P(positive > negative)
loss_matrix = F.softplus(energy_diffs)

Return the mean loss over all pairs
return loss_matrix.mean()

D.3 HYPERPARAMETER SETTINGS

The training and evaluation of the EORM model were conducted using a specific set of hyperparame-
ters, primarily configured via command-line arguments with defaults specified in the training script.
Key architectural parameters for the EORM model (a Transformer-based EBM) and crucial settings for

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Table 6: Key hyperparameters for EORM model architecture and training.

Category Hyperparameter Value

EORM Model Architecture

Embedding Dimension 4096
Transformer Encoder Layers 2
Attention Heads 4
Dropout Rate 0.2
Feed-forward Dimension 4× d_model
Activation Function GELU
Normalization Style Pre-LN (NormFirst)

Tokenizer Configuration

Base Tokenizer GPT-2
Max Sequence Length 4096
CLS ID BOS token of tokenizer
PAD ID EOS token

Training Configuration

Optimizer AdamW
Learning Rate 1× 10−4

Weight Decay 0.01
LR Scheduler Cosine with Warmup
Warmup Ratio 0.2 (of total steps)
Number of Epochs 50
Batch Size (groups) 1
Gradient Clipping Norm 1.0
FP16 (AMP) CUDA
Training/Validation Split 80% / 20%
DataLoader 2

the optimization process are detailed in Table 6. The AdamW optimizer was used in conjunction with
a cosine learning rate schedule including a warmup phase. Training was performed with Automatic
Mixed Precision (AMP) if the ‘–fp16‘ flag was enabled and a CUDA-compatible GPU was available.
The tokenizer specified by default was ‘gpt2‘, with its vocabulary size determining the model’s
embedding layer dimensions. A fixed random seed (42) was used for shuffling and creating the 80/20
train-validation split from the combined training data.

E DATASET DETAILS

This section outlines the dataset utilized for training and evaluating our EORM model. We describe
the data format, present a comparison with other notable mathematical reasoning datasets, and specify
the overall size of our training corpus. The core of our dataset comprises (question, Chain-of-Thought
solution, correctness label) triplets. These CoT solutions were generated by employing a suite
of Large Language Models to solve problems sourced from established mathematical reasoning
benchmarks, principally the training splits of GSM8k (Cobbe et al., 2021a) and MATH (Hendrycks
et al., 2021), as elaborated in the main experimental setup (Section 4).

E.1 DATA FORMAT

Each instance in our dataset is represented as a JSON object, with multiple instances typically stored
in a JSON Lines (‘.jsonl‘) file. Each JSON object contains the original mathematical problem, a
generated CoT solution, and a binary label indicating whether the provided solution correctly answers
the problem. An illustrative example of a single data instance is presented in Appendix E.1.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Training Dataset Format Example

label: 1

question:
How many vertical asymptotes does the graph of

y =
2

x2 + x− 6

have?

gen_text:
To determine the number of vertical asymptotes for the function y =

2

x2 + x− 6
, we need

to identify the values of x that make the denominator zero, as these are the points where the
function is undefined and potentially has vertical asymptotes.

1. Factor the denominator
x2 + x− 6 = (x+ 3)(x− 2)

2. Solve for zeros
(x+ 3)(x− 2) = 0 =⇒ x = −3 or x = 2

3. Check for holes
The numerator is the constant 2, which is non-zero at x = −3 and x = 2, so no factors
cancel. Hence each zero of the denominator corresponds to a vertical asymptote.

Therefore, the graph has
2

vertical asymptotes: one at x = −3 and one at x = 2.

E.2 COMPARISON BETWEEN OTHER DATASET

Table 7: Comparison of the EORM training data scale and problem synthesis approach with
other mathematical reasoning datasets. Dataset sizes are approximate, in thousands (k) of samples.
"Synthesis Agent" refers to the primary method or model used for generating the core problems in
the dataset.

Dataset Synthesis Agent Dataset Size (k)
WizardMath (Luo et al., 2023) GPT-4 96
MetaMathQA (Yu et al., 2024) GPT-3.5 395
MMIQC (Liu et al., 2024a) GPT-4+GPT-3.5+Human 2294
Orca-Math (Mitra et al., 2024) GPT-4 200
Xwin-Math-V1.1 (Li et al., 2024) GPT-4 1440
KPMath-Plus (Huang et al., 2024) GPT-4 1576
MathScaleQA (Tang et al., 2024) GPT-3.5+Human 2021
DART-Math DeepSeekMath-7B-RL 591

EORM None 14958

To position our data generation efforts for training EORM, Table 7 provides a comparative overview
against several other prominent datasets used in mathematical reasoning research. The table highlights
the scale (approximate number of samples) and the primary "Synthesis Agent" responsible for creating
the core problems or question-answer pairs in those datasets. Many existing datasets, as indicated,
leverage powerful large language models (LLMs) like GPT-4 or GPT-3.5, sometimes augmented with
human effort, to synthesize novel mathematical problems. In contrast, our approach for the EORM
training data (labeled as "EORM" in the table) does not involve the synthesis of new problems. Instead,
we focus on generating a very large corpus of Chain-of-Thought (CoT) solutions by prompting various

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

existing LLMs with problems from established, open benchmarks (such as GSM8k and MATH).
Each generated CoT solution is then labeled for correctness based on its final answer. This strategy,
reflected by "None" under "Synthesis Agent" for our EORM data, results in a distinct type of dataset
geared towards learning to verify reasoning processes rather than generating new problem instances.
The substantial size of our collected data, approximately 14.96 million (14958k) (question, CoT
solution, label) triplets, is intended to provide a diverse and comprehensive basis for training a robust
EORM verifier capable of understanding a wide range of reasoning styles and error patterns.

F HARDWARE RESOURCES

The computational experiments presented in this paper, encompassing both the generation of Chain-
of-Thought (CoT) solutions and the training of our Energy Outcome Reward Model (EORM), utilized
high-performance Graphics Processing Units (GPUs). For the initial phase of generating the CoT
candidate solutions from various Large Language Models (LLMs), a range of NVIDIA GPUs
was employed. This included access to NVIDIA A800 (40GB), NVIDIA A100 (with both 40GB
and 80GB variants), NVIDIA RTX A6000 Ada (48GB), and NVIDIA H100 GPUs (80GB). The
availability of this diverse hardware allowed for extensive data generation across multiple LLM
architectures. The training of the EORM model itself was conducted on a more focused set of high-end
accelerators. Specifically, we utilized configurations consisting of 2 to 4 NVIDIA H100 (80GB)
GPUs. With a setup of 4 NVIDIA H100 (80GB) GPUs, the complete training process for the EORM
model took approximately 36 hours.

G ETHICS AND SOCIETAL IMPACT

This research focuses on improving the correctness and efficiency of mathematical reasoning in
LLMs, which can yield positive societal impacts such as accelerating scientific discovery, enhancing
educational tools, and reducing the energy consumption of large-scale AI computations by minimizing
flawed outputs. However, we recognize that a powerful and efficient reasoning verifier is a dual-use
technology. In malicious hands, it could be used to automate the selection of the most effective or
deceptive generated content, such as refining disinformation or generating plausible-but-malicious
code. Furthermore, the performance of EORM is intrinsically tied to the dataset used for its training;
any biases present in the problem sets (e.g., cultural context in word problems) could lead to the
model favoring certain reasoning styles or performing inequitably across different problem domains.
Our work is intended purely for beneficial applications, and we advocate for establishing strong
ethical guidelines for the development and use of verifier and reward models in advanced LLM
systems.

H THE USE OF LARGE LANGUAGE MODELS (LLMS)

Large Language Models (LLMs) are central to this research in two primary ways. First, they are the
object of study; our EORM framework is designed to evaluate and improve the reasoning outputs of
base models such as Llama 3, Mistral, and DeepSeekMath. Second, these same LLMs were used
as a critical tool to generate the large-scale dataset of Chain-of-Thought solutions (both correct and
incorrect) that EORM was trained on. For the preparation of this manuscript, our use of LLMs was
strictly limited to polishing language and generating figures. All underlying research and intellectual
content, including the EORM framework, its theoretical foundations, the experimental design, and
the analysis of results, was completed entirely by the authors.

27

	Introduction
	Related Work
	Methodology
	Preliminaries: Energy-Based Models for Ranking
	Eorm: Architecture and Training Objective

	Experiments
	In Distribution Learning
	Out of Distribution Learning
	Generalization Capabilities

	Ablation Studies
	Conclusion
	Algorithm
	Extended Related Work
	Chain-of-Thought and Multi-Step Reasoning
	Reranking and Verification of LLM Outputs
	Energy-Based Models (EBMs)

	Theoretical Details
	Preliminaries: Foundations of Energy-Based Models
	Details for Eorm Architecture and Training Objective
	Interpreting Classifier Logits as Energies: Connection to Eorm
	Conceptual Analysis of the Learned Energy Landscape
	Theoretical Analysis of the Eorm Training Objective

	Implementation Details
	EORM Model Architecture (TransEBM)
	Pairwise Bradley-Terry Loss Function
	Hyperparameter Settings

	Dataset Details
	Data Format
	Comparison Between Other Dataset

	Hardware Resources
	Ethics and Societal Impact
	The Use of Large Language Models (LLMs)

