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Abstract

In some classification tasks, the true label is not known until months or even
years after the classifier prediction time. Once the model has been deployed,
harmful dataset shift regimes can surface. Without cautious model monitoring,
the damage could prove to be irreversible when true labels unfold. In this paper,
we propose a method for practitioners to monitor distribution shifts on unlabeled
data. We leverage two representations for quantifying and visualizing model
uncertainty. The Adversarial Neighborhood Analysis assesses model uncertainty
by aggregating predictions in the neighborhood of a data point and comparing them
to the prediction at the single point. The Non-Conformity Analysis exploits the
results of conformal prediction and leverages a decision tree to display uncertain
zones. We empirically test our approach over scenarios of synthetically generated
shifts to prove its efficacy.

1 Introduction

In classification problems, the true label is sometimes not known until months or even years after
a Machine Learning (ML) classifier prediction. For instance, with a 12-month default horizon,
it is not possible to assess the true performance of a credit granting model before one year. In
selecting a cancer treatment for a patient, a model can predict therapy response or resistance [1].
Once again, the treatment outcome will be confirmed with a certain lag. After model deployment,
dataset shifts may arise when training (the Source set S) and real-world data (the Target set T ) joint
distributions are different. Formally, for a set of covariates x and label y, dataset shift arises when
pS(x, y) ̸= pT (x, y). In the context of unlabeled Target data, an absence of monitoring could wreak
havoc if the classifier made predictions for several months under harmful covariate shifts.

Scope and contribution In this paper, we propose a method for practitioners to monitor distribution
shifts. We assume that the ML classifier produces class probability estimates. This method aims
to meet the following goals: (i) quantify the change in model uncertainty between the Source and
Target data, (ii) visualize the source of uncertainty. To this end, our method creates and exploits two
representations from unlabeled data. The Adversarial Neighborhood Analysis (ANA) assesses model
uncertainty by aggregating predictions in the neighborhood of a data point and comparing them to
the prediction at the single data point. Disagreement zones are labeled in a specific way. The change
in uncertainty between S and T can be measured and a decision tree is used in order to visualize
uncertain areas. The Non-Conformity Analysis (NCA) exploits the results of conformal prediction
and leverages a tree to display uncertain zones.

Covariate shifts are defined as pS(y|x) = pT (y|x) and pS(x) ̸= pT (x) [10]. Prior probability shift is
defined as pS(x|y) = pT (x|y) and pS(y) ̸= pT (y). These changes can exacerbate model uncertainty
and deteriorate its performance [12, 14]. Uncertainty quantification is central for detecting dataset
shifts. Epistemic uncertainty is connected to the model uncertainty due to insufficient training data; it
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can be harnessed to detect out-of-distribution samples [15]. Uncertainty quantification is not intrinsic
to discriminative classifiers p̂(y|x), even though they produce class probability estimates. Lastly,
conformal prediction is an uncertainty quantification method which calibrates conformal scores on a
labeled dataset to produce prediction sets on unlabeled data with a given coverage [2, 5, 13].

2 Method for quantifying and visualizing uncertainty

Notations We consider a Source dataset S = {(xi, yi)}ni=1 with features or covariates xi ∈ Rd

and discrete label yi ∈ Υ = {1, 2, . . . , C} for C-class classification tasks. The samples are drawn
i.i.d. from true unknown distribution pS(x, y). The ML classifier p̂y(x) = p̂(y|x) estimates the true
unknown class probabilities py(x) = P(Y = y|X = x),∀x ∈ Rd, for any y ∈ Υ. A predicted label
ŷ is based on the argmax of the vector of predicted class probabilities. At the time of monitoring,
we assume that the Target set T = {xi}pi=n+1 is unlabeled. Lastly, the Source data is randomly
partitioned into two shares, for training and calibration: (STrain, SCalib).

Technique 1: Adversarial Neighborhood Analysis (ANA) The Adversarial Neighborhood Anal-
ysis aims to identify the increase in model uncertainty and characterize it. It observes the stabil-
ity of model predictions when inferring in a small region around a Target data point. We sam-
ple data points in a small hypercube centered at a given Target example and examine whether
the hypercube majority vote differs from the prediction at the single data point (i.e., hypercube
center). In fact, we want to identify the data points where the ML classifier predictions are
most unstable. Assuming the ML classifier has been trained on STrain, we apply this tech-
nique on SCalib and on the Target data T . We define the hypercube of center c and length R
as H(c,R) = {x|feature x(j) ∈ [0, 1] and |x(j) − c(j)| ≤ R,∀j = 1, ..., d}. For each example of
SCalib and then of the Target data, we compute the proportion of instances where the hypercube
majority vote dissents from the predicted label ŷ at the example alone. We call this metric the
disagreement rate (DR). It indicates the percentage of uncertain outputs:

DR(T ) =
|{x|x ∈ T and mode({argmaxyp̂y(z), z ∈ H(x, R)}) ̸= ŷ}|

|T |

If the disagreement rate on the Target data is significantly greater than on SCalib, we can suspect
that the ML classifier predictions are less robust in the Target domain. For instance, if DR doubles
between the domains, the model is twice as much uncertain. Most importantly, we can easily identify
the Target samples where disagreement occurs, and thus where model uncertainty lies. In fact, using
the disagreement as a binary variable, 1 being the label for dissent, we can construct a decision tree
classifier, called characterization tree, to pinpoint the most uncertain regions.

Technique 2: Non-Conformity Analysis (NCA) We propose the Non-Conformity Analysis, an
uncertainty representation tool, which exploits the output of conformal prediction. We aim to visualize
in what regions of the Target domain the ML classifier is most uncertain. NCA reveals the paths
leading to uncertainty in the Target domain. To this end, a decision tree is trained directly on the Target
dataset using values produced by conformal prediction as labels. For each Target sample, conformal
prediction generates a prediction set Ĉα estimated with a given error tolerance α ∈ [0, 1]. Ĉα is then
at least 1− α likely to include the true label. 1− α is called the coverage. To generate the prediction
sets, we proceed as follows: (i) ML classifier training: we partition the Source data into STrain

and SCalib. The ML classifier is trained on STrain. SCalib contains m instances. (ii) Conformal
calibration: we compute the conformal score si as one minus the predicted probability of the true
label on each instance xi of SCalib, that is si = 1 − p̂yi(xi) where yi is the true label. Equipped
with our conformal scores, we then compute q̂, defined as the (1− α)× m+1

m corrected quantile of
s1, . . . , sm. (iii) Conformal prediction: for each new Target sample x, we produce a prediction set
Ĉα(x) = {y|1− p̂y(x) ≤ q̂}. The latter can include one label, several labels (ambiguity), or can be
empty (no label assigned). For a given α, ambiguity occurs when the model hesitates and shares the
predicted probabilities between several classes, i.e., several p̂y(x) may reach the required level to be
included into Ĉα. The set is empty when the model hesitates but with no predicted class probabilities
fulfilling the condition. These sets are used as labels to train a tree on the Target domain. Sets with
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Table 1: ANA DR(T )/DR(SCalib) results by use case and shift scenario, averaged over 10 dataset
split seeds. Numbers between parentheses are standard deviations.

Use case / Scenario Adverse Benign Standard

1.Default of credit card clients 5.53 (1.78) 0.73 (0.26) 1.04 (0.21)
2.Lending Club, default 7.03 (5.71) 1.71 (0.55) 1.12 (0.57)

only one predicted label are labeled as 0 (e.g., {1}, {2}), while the empty set or sets with several
predicted labels are uncertain and annotated as 1 (e.g., {}, {1, 2, 3}).

3 Experiments and discussion

3.1 Settings

The Target dataset including the true labels is generated according to 3 different scenarios: (i)
Standard scenario: pT (x, y) = pS(x, y), i.e., no distribution shift. (ii) Benign scenario: covariate
shift occurs; the label proportions remain pretty similar between the Source and Target datasets, and
the ML classifier accuracy remains stable as well. (iii) Adverse scenario: covariate shift occurs; the
label proportions differ between the Source and Target data, and the ML classifier accuracy on the
Target data is adversely affected. Each experiment is run over these 3 scenarios and 10 seeds.

Data and ML classifiers 3 use cases are proposed. The first 2 use cases are binary classification
tasks, with the prediction of credit default. The third use case is a multiclass classification task with
text data (20 topics). First, the default of credit card clients case is a tabular dataset with 30k instances
and 22 variables [17, 16]. Second, the data extract from Lending Club corresponds to 2018 accepted
loans [4], with 56k observations and 23 variables. Lastly, we randomly extract 10k posts from the 20
Newsgroups dataset [8]. For use case 1, the ML classifier is based on CatBoost [11]. For use case
2, the ML classifier is a neural network with 2 fully connected hidden layers with drop-out and is
trained using the Adam optimizer [7]. Use case 3 employs a bidirectional Long Short-Term Memory
(LSTM) model [6]. It is built with input sequences of length 150, an embedding layer with 20000
words and dimension of 64, a bidirectional LSTM, a fully connected layer with drop-out and a final
layer using softmax activation (20 classes). It is trained using the Adam optimizer.

Shift generation technique Because creating synthetic data through input perturbations can pro-
duce label inconsistencies, we choose to not modify the original datasets. Dataset shifts are generated
with k-means clustering approach [9] using S ∪ T (covariate) data. Instances within each cluster will
have their proper covariate distribution and some of the clusters will have distinct label proportions.
The baseline scenario results from sampling (without replacement) with a constant proportion over all
the clusters. The benign scenario is constructed by sampling (without replacement) heterogeneously
from the clusters for the Source and Target data. However, the label proportions are controlled so that
they remain pretty close between the Source and Target domains. In the adverse scenario, the label
proportions greatly differ between the two datasets by sampling differently from distant clusters.

3.2 Results

For ANA, the experiments are run with 500 instances randomly drawn from SCalib and with a Target
volume of 500. We normalize continuous features using min-max scaling. For each data point, we
uniformly sample 1000 elements at random from H(c,R = 0.1). Producing small perturbations
around the hypercube center is straightforward for numerical variables. For the set of categorical
features, we use one-hot encoding (OHE). To generate meaningful “in-distribution” perturbations for
OHE variables, we first group SCalib instances into 1/R clusters using k-means and follow a similar
approach for T . OHE values are then drawn from the same cluster as the hypercube center. Table 1
demonstrates that the disagreement rate ratios DR(T )/DR(SCalib) greatly increase in the adverse
case: the ML classifier decisions are more uncertain. This technique is relevant to detect potentially
harmful shifts. Using the disagreement as a binary variable, 1 being the label for disagreement, we
can construct a decision tree. This tool is appropriate to pinpoint the most uncertain regions as the
leaf in the left sub-tree of Figure 1, which displays 92.9% disagreement. Human-in-the-loop [3] with
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Figure 1: Characterization tree for use case 1, based on Adversarial Neighborhood Analysis.

Figure 2: Non-Conformity Analysis with word embeddings, based on use case 3.

arbitration in the decision process helps to mitigate the risk of incorrect automated predictions for new
samples that follow the identified patterns, i.e., new examples which would fall in the risky leaves.
Another option would be to reduce the ML classifier application perimeter to feature regions where
the model is less uncertain. It is worth noting that the results were not conclusive in the multiclass
case and are not displayed here. This remains to be seen.

For NCA, we train a decision tree on the outputs of the conformal prediction in the Target domain,
split into certain and uncertain sets. We test various Target volumes between 500 and 5000. Figure 2
displays the tree classifying 20 Newsgroups posts by uncertainty leveraging the word embeddings
learned by the LSTM model (Target volume of 1000). The model is pretty uncertain globally, but one
leaf includes 63.9% uncertain model outcomes according to conformal prediction with 60% coverage.
We select the most frequent tokens that are present in the posts that fall into that leaf (token list U ).
We follow a similar approach for the rest of the posts (token list C). Among this selection, we then
display the tokens that are exclusively in list C and those exclusively in list U . Among the most
frequent tokens of list U , we recognize words related to political or religious topics, such as bill or
believe. This is in line with the applied adverse scenario where those topics turn out to be mostly
present in the Target domain. If the ML classifier outputs are used by a downstream model, we would
recommend expert users to confirm the predicted labels for the posts that fall in that risky leaf.
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4 Conclusion

We presented two practical monitoring techniques to assess and characterize model uncertainty in
the context of distribution shifts. We have shown the relevance of these techniques on various types
of ML classifiers and use cases. These tools can be employed for tasks with human interaction, in
order to verify or confirm the predicted labels in risky zones. Displaying model’s uncertainty and
weak spots also serves the transparency goal. This will reinforce the trust and responsibility of model
designers and users.

5 Limitations and future work

Future work will focus on testing these tools on more complex datasets, e.g. image datasets, and with
more complex predictors. In fact, the usability of this method in high dimensions should be examined.
We could also harness other methods to generate distribution shifts and investigate situations where
some of the presented techniques would fail or would disagree in their outcomes. Lastly, we could
compare the proposed method with different baselines.
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