
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

EFFICIENT ONLINE REINFORCEMENT LEARNING
FINE-TUNING NEED NOT RETAIN OFFLINE DATA

Anonymous authors
Paper under double-blind review

ABSTRACT

The modern paradigm in machine learning involves pre-training models on diverse
data, followed by task-specific fine-tuning. In reinforcement learning (RL), this
translates to learning via offline RL on a static dataset, followed by rapid online
RL fine-tuning using autonomous interaction data. Most RL fine-tuning methods
require continued training on offline data for stability and performance. This is
undesirable because retaining offline data is both slow and expensive for large
datasets, but has been inevitable so far. In this paper, we show that retaining offline
data is unnecessary as long as we use a correctly-designed online RL approach for
fine-tuning offline RL initializations. We start by analyzing the role of retaining
offline data in online fine-tuning. We find that continued training on offline data
is mostly useful for preventing a sudden divergence from the offline RL value
function at the onset of fine-tuning, caused by a distribution mismatch between the
offline data and online rollouts. As a result, this leads to unlearning and forgetting
the benefits of offline pre-training. Our approach, WSRL, mitigates a catastrophic
forgetting of pre-trained priors by using a warmup phase that seeds the online RL
run with a very small number of rollouts from the pre-trained policy to do fast
online RL. The data collected during warmup helps “recalibrate” the offline Q-
function to the online distribution, allowing us to completely discard offline data
without risking destabilizing the online RL training. We show that WSRL is able
to fine-tune without retaining any offline data, and is able to learn faster and attains
higher performance than existing algorithms irrespective of whether they do or do
not retain offline data.

1 INTRODUCTION

The predominant paradigm for machine learning at scale today involves pre-training models on di-
verse prior datasets, and then fine-tuning them on a more limited amount of domain-specific data to
specialize them to particular downstream tasks (Devlin et al., 2018; Brown et al., 2020; Driess et al.,
2023; Radford et al., 2021; Zhai et al., 2023; Touvron et al., 2023; Zhou et al., 2024). In the context
of learning decision-making policies, this paradigm translates to pre-training on a large amount of
previously-collected static experience via offline reinforcement learning (RL) (Levine et al., 2020)
methods, followed by fine-tuning these initializations via online RL efficiently. Generally, this fine-
tuning is done by continued training with the very same offline RL algorithm (e.g., pessimistic (Ku-
mar et al., 2020; Cheng et al., 2022) algorithms or algorithms that apply behavioral constraints (Fu-
jimoto & Gu, 2021; Kostrikov et al., 2021)) on a mixture of offline data and autonomously-collected
online data, with minor modifications to the offline RL algorithm itself (Nakamoto et al., 2024).

While this paradigm has led to promising results (Kostrikov et al., 2021; Nakamoto et al., 2024), un-
like the standard practice in machine learning, RL fine-tuning requires continued training on offline
data for stability and performance reasons (Zhang et al. (2023; 2024); Section 4). Retaining offline
data during fine-tuning is problematic for multiple reasons. First, as offline datasets grow in size and
diversity, training on offline data becomes inefficient, and impractical to the point that practitioners
might prefer to simply not use online RL for fine-tuning. Second, the need for retaining offline data
perhaps defeats the point of offline RL pre-training altogether: recent results (Song et al., 2023), also
corroborated by our experiments in Section 4, show that current fine-tuning approaches are not able
to make good use of several strong offline RL value and/or policy initializations as better fine-tuning
performance can be obtained by directly running online RL from scratch with offline data put in the

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

replay buffer (Ball et al., 2023). All of this questions the efficacy of current online RL fine-tuning
approaches.

No Data Retention

Stabilization

Offline
(Grad Step)

Our Goal
Hybrid RL
Current O2O
w/ retention
Current O2O
w/o retention

Return

With Data Retention

Unlearning

Online
(Env Step)

No Data Retention
Learning Paradigm

Offline
Pre-training

Initialize

Figure 1: No Data Retention fine-tuning is an offline pre-
training, online RL fine-tuning paradigm we focus on that mirrors
the common paradigm in machine learning at scale today. An of-
fline dataset is first used to offline pre-train a policy πpre and a
Q-function Qpre which are then used to initialize online RL fine-
tuning of the Q-function and the policy (Qθ, πθ). The most critical
and challenging constraint in this paradigm is that the online RL
fine-tuning may not retain offline data and only be able to use the
pre-trained policy and Q-function. Naïvely applying state-of-the-
art offline-to-online RL methods to paradigm fail due to learning
instability at the beginning of the online fine-tuning that destroys
the offline initializations. Our goal is to develop an online fine-
tuning method that is able to leverage pre-trained initializations
while stabilizing the online learning.

Our goal is to address the aforemen-
tioned shortcomings of current online
fine-tuning methods and build an on-
line RL approach that does not re-
tain offline data, making it practi-
cal for users to easily fine-tune of-
fline RL policies. To develop our
approach, we first empirically ana-
lyze the importance of retaining of-
fline data in current offline-to-online
fine-tuning algorithms. We find that
for both pessimistic (e.g., CQL (Ku-
mar et al., 2020)) and behavioral con-
straint (e.g., IQL (Kostrikov et al.,
2021)) algorithms, the offline Q-
function undergoes a “recalibration”
phase at the onset of online fine-
tuning where its values change sub-
stantially. This recalibration phase
can lead to unlearning of the offline
initialization, and even divergence,
when no offline data is present for
training. Even methods specifically
designed for fine-tuning (Nakamoto et al., 2024) still suffer from this problem with limited or no of-
fline data. We show that the main culprit behind the unlearning is the distribution mismatch between
the offline data and online training distribution, and retaining offline data attenuates the effect of this
mismatch, playing an essential role in the working of current offline-to-online fine-tuning methods.
Is it possible to transition into online fine-tuning from offline RL value and policy initializations
without catastrophically forgetting offline pre-training, and without retaining offline data?

Our key insight is that seeding the online fine-tuning with even a small amount of appropriately
collected online data that “simulates” offline data retention can greatly facilitate recalibration, pre-
venting catastrophic forgetting that never recovers with continued training. Once this recalibration
is over, we can run the most effective online RL approach (without pessimism or constraints) for
the most efficient learning. Our approach, WSRL (Warm Start Reinforcement Learning), instan-
tiates this idea by incorporating a warmup phase to initialize the online replay buffer with a small
number of online rollouts from the pre-trained policy, and then running the best online RL method
with various offline RL initializations to fine-tune. WSRL is able to learn faster and attains higher
asymptotic performance than existing algorithms irrespective of whether they do or do not retain
offline data. We emphasize that this is not a particularly novel or clever algorithm, and perhaps a
very simple approach to fixing the problem (though to our knowledge such a warmup phase has
not been previously applied for offline-to-online RL), but it is quite effective for fine-tuning offline
initializations, without any complex design choices.

Our main contribution in this paper is the study of RL online fine-tuning with no offline data re-
tention, a paradigm we call no-retention fine-tuning. We provide a detailed analysis of existing
offline-to-online RL methods and find that offline data is often needed during fine-tuning to mitigate
the Q-value divergence due to distribution shift, but can also slow down fine-tuning. We demon-
strate that if online fine-tuning is done correctly, we can use a simple method (WSRL) that does not
require data retention and perform fine-tuning faster with better asymptotic performance.

2 RELATED WORK

Offline-to-online RL. Offline-to-online RL focuses on leveraging an offline dataset to run online
RL as sample-efficient as possible (Lee et al., 2022; Nair et al., 2020). Many methods developed for
this setting utilize offline pre-training followed by a dedicated fine-tuning phase (Nair et al., 2020;
Kostrikov et al., 2021; Agarwal et al., 2022; Hu et al., 2023; Rafailov et al., 2023; Nakamoto et al.,

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

2024) on a mix of offline and online data. Offline RL methods can also be directly used to fine-
tune online by continued training while adding new online data to the offline data buffer (Kumar
et al., 2020; Kostrikov et al., 2021; Tarasov et al., 2024). Most similar to the goal in our paper
is Agarwal et al. (2022), which attempts to use previous RL computations as a better initialization
for downstream tasks. However, this work, along with all the methods above, still require retaining
all of the pre-training data in the data buffer. As we also show, these methods completely fail without
the offline data in the buffer. Our work does not retain offline data. Uchendu et al. (2023) utilize
pre-trained policy to guide online fine-tuning without the need of offline data retention, but do not
show how to initialize the offline pre-trained Q-function. As we show in our experiments (Section
6), initializing the Q-function is crucial in achieving strong online fine-tuning performance across
environments. Ji et al. (2023) and Luo et al. (2024) run offline RL and online RL concurrently on a
shared replay buffer, following the idea of tandem learning (Ostrovski et al., 2021) such that online
RL can benefit from the offline RL algorithms. Although the high-level motivating principle behind
this line of work is also to use offline RL to boost online RL efficiency, there’s no offline pre-training.

Bottlenecks in online RL fine-tuning of offline RL policies. In this work we show that offline
data retention greatly stabilizes the recalibration of the Q-function at the onset of fine-tuning, which
otherwise can lead to unlearning due to state-action distribution shift. Luo et al. (2023) observe that
putting the offline data into the offline RL replay buffer stabilizes fine-tuning but can slow down
learning. But this prior work did not attempt to study why offline data hurts fine-tuning, which our
analysis aims to answer. Lee et al. (2022) identify the existence of state-action distribution shift
between offline data and online rollout data, but do not explicitly analyze the negative effects of this
shift in online fine-tuning. Nakamoto et al. (2024) show the poor calibration of offline pre-trained
Q-function to be a key cause for instability of pessimistic algorithms during online fine-tuning with
offline data retention, though this analysis is restricted to the use of pessimism and does not apply to
constraint methods, and as we show in our analysis, their final CalQL approach still requires offline
data to function well. Not only does our analysis not retain offline data Nakamoto et al. (2024), but
we also answer why this can be problematic due to no distribution shift.

Online RL with prior data without offline pre-training. Another line of work bypasses offline
RL pre-training altogether, directly using a purely online RL agent to learn on data samples from
both offline data and online interaction data from scratch (Song et al., 2022; Zhou et al., 2023;
Ball et al., 2023). Despite not using pre-training, this recipe can work well across the board, often
outperforming offline-to-online fine-tuning methods that utilize a separate offline pre-training phase.
If the most effective way to utilize prior data is to include it in the replay buffer without any pre-
training at all–no matter which pre-training algorithm is used–then it perhaps indicates that we are
missing some important ingredients for a truly scalable RL formula for pre-training and fine-tuning.
In this paper, we show that at least a big part of the problem lies in online fine-tuning of offline RL
initializations, and build an extremely simple approach to fix the problem.

Fine-tuning RL policies with no data retention. Many continual and lifelong RL methods also
fine-tune policies without retaining prior experiences due to the non-stationarity assumption in the
environment dynamics and task specification (Ring, 1994; Kirkpatrick et al., 2017; Huang et al.,
2021; Wołczyk et al., 2021; Powers et al., 2022). Meta-RL methods (Duan et al., 2016; Rothfuss
et al., 2018; Stadie et al., 2018; Rakelly et al., 2019; Arndt et al., 2020; Dorfman et al., 2021; Grigsby
et al., 2023) assume access to a task/environment distribution to optimize for fast fine-tuning online.
In contrast, we only consider the single-environment, single task setting where the pre-training and
fine-tune are in the same environment for the same task. In the same single-environment, single task
setting, many prior works study on-policy RL methods (e.g., PPO (Schulman et al., 2017)) to fine-
tune pre-trained policies (Schaal, 1996; Kober & Peters, 2008; Rajeswaran et al., 2017; Gupta et al.,
2019; Wołczyk et al., 2024; Ren et al., 2024). Among these, Wołczyk et al. (2024) also observe
unlearning in the beginning of the fine-tuning and find that explicitly mitigating the unlearning with
techniques from continual learning improves the efficiency of fine-tuning. In contrast to these prior
works, our study focuses on off-policy actor-critic RL methods, that provide an elevated sample
efficiency, and require different solution strategies to address this unlearning problem.

3 PROBLEM FORMULATION: FINE-TUNING WITHOUT OFFLINE DATA

We operate in an infinite-horizon Markov Decision Process (MDP),M = {S,A,P, r, γ, ρ}, con-
sisting of a state space S, an action space A, a transition dynamics function P(s′|s, a) : S × A 7→
P(A), a reward function r : S × A 7→ R, a discount factor γ ∈ [0, 1), and an initial state distri-

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

bution ρ : P(S). We have access to an offline RL pre-trained policy πpre
ψ (a|s) : S 7→ P(A) and

pre-trained Q-function Qpre
θ (s, a) : S × A 7→ R obtained by running some offline RL algorithm

(e.g., CQL (Kumar et al., 2020), IQL (Kostrikov et al., 2021), CalQL (Nakamoto et al., 2024)) on
some prior data. We denote this offline dataset as Doff . Our goal is to build an online fine-tuning
algorithm that uses the pre-trained policy πpre

ψ (a|s) as a policy initialization for online RL training
in the MDPM. The goal of this online RL fine-tuning is to train πψ(a|s) so that it maximizes the
discounted return: η(π) = Est+1∼P(·|st,at),at∼π(·|st),s0∼ρ

∑∞
t=0 [γ

tr(st, at)].

Problem setup. Crucially note that the online RL fine-tuning problem we study does not allow
retaining Doff . We will refer to this problem setting no retention online fine-tuning. Conceptually,
our problem setting is close to the standard offline-to-online fine-tuning problem setting (Nair et al.,
2020; Kostrikov et al., 2021; Nakamoto et al., 2024), but no data retention is possible.

4 UNDERSTANDING THE ROLE OF OFFLINE DATA IN ONLINE FINE-TUNING

Figure 2: In no-retention fine-tuning, IQL (left), CQL (middle), and CalQL (right) all fail to fine-tune on
kitchen-partial. In contrast, when co-training on offline data during fine-tuning, these algorithms work
as intended. All agents are pre-trained for 500k steps and fine-tuned for 500k steps.

To make progress towards our goal of developing an RL algorithm that works well without any data
retention, we first attempt to understand the role that retaining offline data plays in online fine-tuning
of current offline RL methods. In particular, we hope to gain insights into developing new methods
that serve a similar role, but do not require retaining offline data. We center our study along two
axis: (1) we analyze the role of retaining offline data at the onset of fine-tuning, and (2) we analyze
the effect of retaining offline data on asymptotic fine-tuning performance.

4.1 THE ROLE OF OFFLINE DATA AT THE ONSET OF FINE-TUNING

Extending observations from previous work (Nakamoto et al., 2024), we find that the online fine-
tuning of offline RL algorithms fails severely if no offline data is retained. Specifically, observe
in Figure 2 that offline RL algorithms IQL (Kostrikov et al., 2021) and CQL (Kumar et al., 2020)
fails immediately at the onset of fine-tuning, with performance dropping down to nearly a 0% suc-
cess rate on the kitchen-partial task from D4RL (Fu et al., 2020b). Moreover, neither CQL
nor IQL is able to recover over the course of fine-tuning. CalQL (Nakamoto et al., 2024), an of-
fline RL approach specifically designed for subsequent online fine-tuning by leveraging calibrated
Q-functions, experiences performance drop initially but improves with further online training. How-
ever, it still struggles to improve beyond its pre-trained performance. To be more concrete, while
all of the algorithms suffer from some sort of “unlearning” at the beginning of online fine-tuning
(i.e., referring to the performance drop at the start of fine-tuning), some algorithms suffer from a
more severe “catastrophic forgetting” phenomenon such that recovery becomes nearly impossible
with online training. While it is reasonable to expect that there some “drop” in performance (i.e.,
unlearning as per the above terminology) might be inevitable since the stochastic policy must now
act on new states it visit when online fine-tuning begins, forgetting is much more problematic. Fig-
ure 2 indicates a bottleneck in fine-tuning with online RL without offline data, and different offline
RL initializations suffer from this challenge to different extents. Why?

Why is retaining offline data necessary for some algorithms? We compare Q-values at the onset of
fine-tuning when retaining different amounts of offline data. This enables us to build a mental picture
of what precisely goes wrong in online fine-tuning as offline data is gradually removed. We find in
Figure 3 (b) that the average Q-values under the offline distribution begin to diverge as the amount
of retained offline data decreases. This Q-value divergence in turn corresponds to a divergence in
the TD-error (Figure 3 (c)), perhaps highlighting some sort of catastrophic forgetting.

Diving deeper, we find that this divergence only happens under the distribution of the offline data
(on which we evaluate metrics but do not train): TD-error on online data attains similar values

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Figure 3: Fine-tuning CalQL on kitchen-partial with varying amounts of offline data. The curves
represent online update batches that include 0%/5%/10%/25% offline data. Fine-tuning starts at step 250k. (a)
Shows that incorporating more offline data improves performance and is necessary for surpassing pre-trained
performance. (b) Highlights how Q-values on offline transitions tend to blow up with less offline data. (c)
Similarly, the critic loss on offline transitions increases significantly with reduced offline data. (d) Demonstrates
that the online critic loss is optimized consistently regardless of offline data retention. Panels (c) and (d) are
shown on a log scale. These trends underscore the importance of co-training sufficient offline data to maintain
stability and improve performance when fine-tuning CalQL. We have similar findings with IQL and CQL.

regardless of the amount of offline data retained (Figure 3(d)); on the other hand, the TD error under
the offline data distribution grows substantially as the amount of offline data decreases during fine-
tuning (Figure3 (c)). Such divergence happens for all of CQL, IQL, and CalQL. We find that the
divergence for CalQL is the least servere, as shown in Figure 3, which correlates with the stability
and best performance of CalQL in this problem setting in Figure 2. This suggests that the problem
with no data retention in current offline-to-online fine-tuning algorithms likely stems from a form of
distribution shift between the online rollout data and offline data distribution: fine-tuning offline RL
initializations on more on-policy data destroys how well temporal difference relations are satisfied on
offline data. As we will see, this can lead to unlearning and forgetting of the pre-trained initialization.

Takeaway 1: Distribution shift between offline and online data destroys Q-function fit

Our analysis suggests that training on on-policy rollout data during fine-tuning destroys how
well the model is able to fit the offline data: despite attaining similar TD-errors on the online
data, TD-errors under the offline dataset distribution keep growing.

Why do Q-values diverge? Not only does the TD-error under the offline data distribution grow,
but we also observe a divergence in Q-values at the onset of fine-tuning (see for e.g., Figure 4).
This Q-value divergence is a manifestation of the “recalibration” process (Nakamoto et al., 2024)
at the boundary between offline RL and online fine-tuning. Unlike the setting of Nakamoto et al.
(2024), the recalibration process in no retention fine-tuning must operate entirely on limited on-
policy rollouts, since we do not retain any offline data in this phase. Thus we see that despite
explicit modifications to the scale of the offline Q-function initialization in CalQL (Nakamoto et al.,
2024), this approach is still insufficient at preventing forgetting when offline data is not retained.

Next, we wish to intuitively understand why recalibration leads to divergent Q-values, specifically
for the case of continuing to run pessimistic offline RL algorithms (e.g., CQL or CalQL) during
fine-tuning. Consider running the CQL loss on the very first batch of online rollouts collected from
the environment. The target values for the TD-error on these online state-action pairs will query the
pre-trained offline Q-function, Qpre

θ on state-action pairs that are out-of-distribution of the offline
dataset. Due to the inherent nature of the conservative regularizer in CQL (and CalQL), Q-values at
out-of-distribution state-action pairs are expected to take very small values. Using such small values
for computing TD targets in the Bellman backup will, in turn, propagate these underestimation errors
onto the previous state-action pair through the TD-error. Meanwhile, the conservative regularizer
from CQL still continues to push down out-of-distribution Q-values, which means that at the onset
of fine-tuning when the number of on-policy rollouts is small, Q-values for several actions at new
states will keep getting smaller.

This mechanistic understanding of the onset of fine-tuning hints at a form of a “downward spiral”
in the Q-function, until the Q-function begins to recover from its initialization by correctly backing
up environment reward. But usually by this point, the policy has degraded and is no longer able to
recover to its offline performance (Figure 2). We find that this unlearning followed by recovery takes
substantially longer to finish and is more and more detrimental as the amount of offline data reduces,

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Figure 4: A downward spiral effect in CQL (left), CalQL (middle), and IQL (right) Q-functions in no-retention
fine-tuning on Kitchen-mixed, Kitchen-complete, and Kitchen-partial: When fine-tuning
starts at 500k steps, Q function goes on a downward spiral. When it eventually recovers, the policy has al-
ready unlearned (Figure 2).

as shown in Figure 3, with the most adverse effects when no offline data is present. In fact, contrary
to the claims of Nakamoto et al. (2024), we find that even calibrated offline RL algorithms, such as
CalQL, can suffer from this challenge (Figure 4 middle), though we did find them to be more robust
than offline RL algorithms.

Takeaway 2: Re-calibration of Q-values leads to excessive underestimation

We find that Q-value recalibration at the onset of fine-tuning leads to excessive underestima-
tion due to backups with over-pessimistic TD-targets.

4.2 THE ADVERSE IMPACT OF OFFLINE DATA ON ASYMPTOTIC PERFORMANCE

As shown above, offline data seems to play an important role in fine-tuning of current offline-to-
online algorithms at the onset of fine-tuning by helping to recalibrate the Q-values and preventing
Q-value divergence. But how does it affect performance in the longer term, once recalibration is
over? In this section, we present results showing that continued training on offline data hurts final
performance and sample efficiency. Specifically, we find that offline RL followed by RL fine-tuning
tends to be substantially slower than online RL algorithms from scratch that simply initialize the
online replay buffer with the offline data (Ball et al., 2023; Song et al., 2023) (see Figure 5 for results
justifying this claim). This is quite concerning because it indicates that either offline RL pre-training
provides no benefits for fine-tuning (unlike other fields of machine learning where pre-training helps
substantially) or that existing RL fine-tuning approaches from various offline RL initializations are
not effective enough in making the best use of an offline initialization. In the next section, we show
that via a simple modification to online RL methods in the high updates-to-data (UTD) regime, we
are able to make good use of initializations from several offline RL algorithms, without offline data.

Figure 5: Retaining offline data is not efficient, and is outperformed by online RL methods like RLPD on three
different environments. RLPD starts from scratch, and CalQL starts from pre-trained at step 0.

Takeaway 3: Retaining offline data hurts asymptotic performance

While retaining offline data appears to be crucial for preventing unlearning during recalibra-
tion at the onset of fine-tuning in current methods, continuing to make updates on it with an
offline RL algorithm negatively impacts asymptotic performance and sample efficiency.

5 WSRL: FAST FINE-TUNING WITHOUT OFFLINE DATA RETENTION

In the previous section, we saw that retaining offline data in offline RL algorithms slows down online
fine-tuning to the point that running online RL from scratch with offline data works better. However,

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

we cannot simply remove the offline data to speed up fine-tuning because offline RL algorithms will
suffer from unlearning and catastrophic forgetting. How can we tackle both catastrophic forgetting
of the offline initialization and attain asymptotic sample efficiency online?

Key idea. Perhaps one straightforward approach to address asymptotic efficiency issues is to uti-
lize a standard online RL approach, with no pessimism or constraints for fine-tuning, unlike cur-
rent offline-to-online fine-tuning approaches that still retain this offline RL tooling during fine-
tuning. We can further accelerate online learning by operating in the high updates-to-data (UTD)
regime (Ball et al., 2023). The remaining question is: how do we tackle catastrophic forgetting at
the onset of fine-tuning that prevents further improvements online, without offline data? Our insight
is that we can “simulate” continued training on offline data by collecting a small number of warmup
transitions with a frozen offline RL policy at the onset of online fine-tuning. Training on these
transitions via an aggressive, high updates-to-data (UTD) online RL approach, without retaining of-
fline data can mitigate the challenges of catastrophic forgetting. Our approach, WSRL (Warm Start
Reinforcement Learning) instantiates these insights into an extremely simple and practical method
that enables us to obtain strong fine-tuning results without offline data.

5.1 WSRL ALGORITHM: INITIALIZATION, LEARNING, AND OPTIMIZATION

WSRL is an off-policy actor-critic algorithm (see pseudocode in Algorithm 1). At the onset of fine-
tuning, it initializes the value function and policy with the pre-trained Q-function Qoff and policy
πoff respectively. This offline initialization could come from any offline RL algorithm; Appendix G
presents results of running WSRL multiple offline RL methods. Then, WSRL uses the first K
steps of online fine-tuning to collect a few rollouts using the frozen offline RL policy to simulate
the retention of offline data. We refer to this phase as the “warmup” phase. After warmup data
collection, WSRL trains both the value and policy using standard temporal-difference (TD) updates
and policy gradient (in this case, a reparameterization based policy gradient estimator).

For fine-tuning, we wish to use the best practices and techniques for most efficient online learning,
following the empirical study in Ball et al. (2023). To this end, we run fine-tuning in a high updates-
to-data (UTD) regime (Fu et al., 2019; Chen et al., 2021), enabling WSRL to learn rapidly online.
To combat issues such as Q-value overestimation in RL (Hasselt, 2010), especially in the high UTD
regime, we use an ensemble of Q functions (Chen et al., 2021) and layer normalization (Hiraoka
et al., 2022) in both the actor and the critic.

5.2 IMPLEMENTATION DETAILS

We experimented with CQL, IQL, and CalQL offline RL pre-training as initializations and found that
all three initializations produce similar performance. Most of the results in this paper use CalQL to
initialize WSRL, even though in principle other initializations could also be used. Appendix G
contains ablation studies of different initializations. We choose soft actor-critic (Haarnoja et al.,
2018a), with an ensemble of 10 Q-networks and layer normalization after every layer in the both the
actor and the critic, as our online fine-tuning algorithm. This design is inspired by the work of Ball
et al. (2023). We use K = 5000 warmup steps at the onset of fine-tuning for all of our experiments.
Further implementation details are provided in Appendix H.

6 EXPERIMENTAL EVALUATION

The goal of our experiments is to study how well WSRL is able to fine-tune with online RL with-
out offline data retention. To this end, we compare WSRL to previous state-of-the-art fine-tuning
methods and rapid online RL algorithms on a variety of challenging benchmarks. We also ablate the
design decisions in WSRL to understand the efficacy of WSRL. We study the following questions:
(1) Can WSRL enable efficient finetuning in the no-retention setting?; (2) How does WSRL com-
pare with methods that do retain offline data?; (3) How critical is the warmup phase in WSRL?; (4)
How important is it to use online RL algorithm for online fine-tuning?, and (5) How important is it
to pretrain the policy, value function, or both?

6.1 BASELINES AND PRIOR COMPARISONS

While most prior methods in offline-to-online RL are not designed to handle the no-retention fine-
tuning setting, there are existing methods that can be directly applied or repurposed to our setting.
JSRL (Uchendu et al., 2023) uses a pre-trained policy as an exploration policy to roll in for some
number of steps during each episode, and the online policy is trained from scratch with both the

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

roll in experience and the policy’s own rollout experience. To improve JSRL’s competitiveness, we
further initialize the online policy with the pre-trained policy’s weight. Offline RL methods have also
been shown to be able to fine-tune online. We consider two offline methods, CQL (Kumar et al.,
2020) and IQL (Kostrikov et al., 2021). To evaluate them in the no-retention fine-tuning setting, we
discard the offline data and initialize the replay buffer to be empty in the beginning of fine-tuning, as
opposed to the typical recipe for fine-tuning these algorithms. We also consider CalQL (Nakamoto
et al., 2024), a variant of CQL that calibrates the Q-values during learning for efficient fine-tuning.
While the typical CalQL fine-tune recipe involves sampling each update batch from both the offline
dataset and the online replay buffer, we evaluate it in the no-retention setting by only sampling from
the online buffer. SO2 (Zhang et al., 2024) is an RL fine-tuning algorithm that is designed to balance
the RL objective the pessimistic pre-training through high UTD and perturbed value udpates. SO2
requires initializing the replay buffer with the entire offline dataset. Finally, RLPD (Ball et al.,
2023) is an efficient online RL algorithm that learns from scratch. One important design decision is
that it does 50/50 sampling of the offline dataset and online buffer during online RL. When applying
this approach in the no-retention setting, we only sample from the online buffer, making it similar to
a rapidly updating Soft Actor Critic (Haarnoja et al., 2018a) agent, which we refer to as SAC (fast).

6.2 EXPERIMENTAL SETUP

We evaluate WSRL on a variety of challenging benchmark tasks and pre-training datasets used by
prior works (Nakamoto et al., 2024; Kostrikov et al., 2021; Kumar et al., 2020): (1) The Antmaze
tasks from D4RL (Fu et al., 2020a) are a class of long-horizon navigation tasks that require con-
trolling an 8-DOF Ant robot to reach a goal with a sparse reward. The agent has t learn to “stitch”
experiences together from a suboptimal dataset. In addition to the original mazes from D4RL, we in-
clude Antmaze-Ultra (Jiang et al., 2022), a larger and more challenging maze. We only include
three of the hardest Antmaze environments in Section 6, and provide results on all eight Antmazes
in Appendix A. (2) The Kitchen environment is a long-horizon manipulation task to control a
9-DoF Franka robot arm to perfrom 4 sequential subtasks in a simulated kitchen. (3) The Adroit
environments are a suite of dexterous manipulation tasks to control a 28-DoF five-fingered hand to
manipulate a pen to desired position, open a door, and relocating a ball to desired position. The
agent observes a binary reward when it succeeds. Each data has an offline dataset that provides a
narrow offline dataset of 25 human demonstrations and additonal trajectories collected by a behavior
cloning policy. (4) The Mujoco Locomotion environments in D4RL are dense reward settings
where agents learn to control robotic joints to perform various locomotion tasks.1

6.3 CAN WSRL ENABLE EFFICIENT FINE-TUNING IN NO-RETENTION FINE-TUNING?

Figure 6: In no-retention fine-tuning, WSRL fine-tunes efficiently and
greatly outperforms previous algorithms, which often fail catastrophically.

Figure 6 compares WSRL
with previous methods ap-
plied to the no-retention fine-
tuning setting. In seven dif-
ferent environments, WSRL is
able to significantly outper-
form baseline methods, fine-
tuning faster to a higher
asymptotic performance. Note
that while WSRL experience
an initial dip in policy perfor-
mance early on (see Figure 16
for a zoomed-in version of the
first 50k steps of fine-tuning),
it recovers quickly and outper-
forms other baselines which
do not recover at all. We pro-
vide a detailed analysis of this
dip in Appendix D, illustrating why WSRL unlearns initially but does not catastrophically forget
its priors. CQL, IQL, and CalQL completely fail to fine-tune in this setting, as observed before
in Section 4 because of Q-value divergence. SAC (fast), which only updates with the online ex-
perience using an ensemble of Q functions with a high UTD, completely fails in exploration-heavy

1Results in Appendix B.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

environments, but can improve slowly in some environments. The most competitive baseline is JSRL
with policy initialized with pre-training: WSRL is significantly better than JSRL on Antmaze and
Kitchen, and roughly the same on Adroit. This is because JSRL actually implicitly employs a
warmup period: the roll-in periods of JSRL is similar to warmup, where it uses a frozen pre-trained
policy to collect online data throughout the course of fine-tuning. The improvement of WSRL over
JSRL likely stems from value-initialization: on datasets where the pre-trained Q-function is good
(e.g. Antmaze), value-initialization helps significantly. We provide a more detailed disuccsion and
ablation of the impact of value-initialization in Section 6.7.

6.4 HOW DOES WSRL COMPARE TO METHODS THAT RETAIN OFFLINE DATA?

Figure 7: Compared to methods that do retain offline data online, WSRL,
perhaps surprisingly, is still able to fine-tune faster or competitively.

In Figure 7 we compare
WSRL to previous meth-
ods that do utilize offline
data during fine-tuning.
For example, CalQL here
would sample both of-
fline data and online data
for each update batch.
To make comparison fair,
we also compare to a
version of CalQL that
uses high UTD online, so
all methods use UTD=4.
WSRL also outperforms
the baselines that re-
tain the offline dataset
and benefits from more
information during fine-
tuning. Specifically, WSRL usually achieves higher asymptotic performance than CalQL and fine-
tunes faster, indicating co-training on the offline data hurts performance and slows down learning, as
we have shown in Section 4. WSRL also out performs RLPD, indicating that WSRL can effectively
utilize the pre-trained value function and policy to do rapid online learning.

6.5 HOW CRITICAL IS THE WARMUP PHASE?

Figure 8: Warmup is critical to fast fine-tuning: When WSRL does not use
the initial 5000 steps of warmup, it performs significantly worse.

We find that the warmup
phase is crucial for fine-
tuning with online RL. We
freeze the pre-trained pol-
icy and value to collect en-
vironment interactions for
K = 5000 steps before any
online RL updates. As Fig-
ure 8 shows, WSRL with-
out warmup does significantly worse in three different kinds of environment. We find that such
warmup phase helps because it dynamically re-calibrates the scale of pre-trained Q-values (i.e. it
adjust the value-scale of Q-values from potentially conservative pre-training). As Figure 9 shows,
when we initialize with a warmup phase, the Q-value scale does not diverge to over pessimistic val-
ues during fine-tuning and the TD losses remain small. See more detailed discussion in Appendix F.

6.6 HOW IMPORTANT IS USING ONLINE RL ALGORITHM FOR FINE-TUNING?
Aside from using a warmup phase and initializing with the pre-trained weights, using an online
RL algorithm for fine-tuning is also a critical design choice in WSRL. We ablate this decision by
attempting to use an offline RL algorithm during fine-tuning. Here we choose to use CalQL, because
it is more unlikely to experience Q-divergence (Section 4) as compared to CQL and IQL. We also
initialize the CalQL agent with the pre-trained policy and value function, and use the same number
of warmup steps online. As shown in Figure 11b, using an offline algorithm is significantly worse
than using the online RL algorithm, SAC.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Figure 9: Warmup phase helps Q-value stabilization: (left) Q-values during fine-tuning, and warmup miti-
gates over-pessimistic values; (middle, right) Q-value and TD error evaluated on the offline distribution, where
warmup prevents divergence. Data from WSRL on Antmaze-large-play.

6.7 HOW IMPORTANT IS IT TO INITIALIZE THE POLICY, VALUE FUNCTION, OR BOTH?

Figure 10: Importance of policy initialization in WSRL: with pol-
icy initialization, WSRL performs much better in Kitchen.

Importance of policy initializaiton.
At the start of the online fine-tuning
phase, WSRL initializes the online
policy to the pre-trained policy. Since
the pre-trained policy is already ca-
pable of meaningful interactions with
the environment from pre-training, it
speeds up online learning. In Fig-
ure 10, we compare WSRL’s perfor-
mance with and without “policy ini-
tialization”, and find that initializing with the pre-trained policy is crucial for fast fine-tuning. In this
ablation, we leave out Kitchen-complete because the pre-trained policy has 0% performance.

Benefits of Q-value initialization. In Figure 11a, we find that, while initializing the value function
did not bring additional benefits in some domains, it made fine-tuning much faster in others. In
particular, initializing with the Q-function was especially helpful in the Antmaze domains. We
hypothesize that this is because the pre-training datasets in Antmazes have much broader coverage
compared to those in Adroit and Kitchen, resulting in a better offline Q-function. Consequently,
initializing with a more informative Q-function in Antmazes accelerates online fine-tuning.

(a) Q-function initialization is especially helpful when the pre-training
dataset has high coverage (e.g. Antmazes). Each plot shows results
averaged across different Antmaze/Kitchen/Adroit environments.

(b) Importance of using an online
RL algorithm during no-retention
fine-tuning. Here, SAC learns
significantly faster than CalQL.

Figure 11

7 CONCLUSION

In this paper, we explore the possibility of fine-tuning RL agents online without retaining and co-
training on any offline datasets. Such setting is important for truly scalable RL, where offline RL is
used to pre-train on a diverse dataset, followed by online RL fine-tuning where keeping the offline
data is expensive or impossible. We find that previous offline-to-online RL algorithms fail com-
pletely in this setting because of Q-value divergence due to distribution shift. However, if we simply
use online RL algorithm for fine-tuning and allow the Q-values to stabilize through a warmup phase,
we can prevent the Q-divergence. We hope that WSRL sheds light on the challenges in no-retention
fine-tuning, and inspire future research on the important paradigm of no-retention RL fine-tuning.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

8 REPRODUCIBILITY STATEMENT

We describe all the implementation details in Appendix H, which should enable researchers to re-
produce our algorithm. We also remark that our algorithmic modifications are fairly simple and a
large portion of experiments that we run for this paper include analyzing existing methods. We will
share the code for the new method (WSRL) during the review process and also release the code
publicly.

REFERENCES

Rishabh Agarwal, Max Schwarzer, Pablo Samuel Castro, Aaron C Courville, and Marc Bellemare.
Reincarnating reinforcement learning: Reusing prior computation to accelerate progress. Ad-
vances in neural information processing systems, 35:28955–28971, 2022.

Karol Arndt, Murtaza Hazara, Ali Ghadirzadeh, and Ville Kyrki. Meta reinforcement learning for
sim-to-real domain adaptation. In 2020 IEEE international conference on robotics and automa-
tion (ICRA), pp. 2725–2731. IEEE, 2020.

Philip J Ball, Laura Smith, Ilya Kostrikov, and Sergey Levine. Efficient online reinforcement learn-
ing with offline data. arXiv preprint arXiv:2302.02948, 2023.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Xinyue Chen, Che Wang, Zijian Zhou, and Keith W. Ross. Randomized ensembled double q-
learning: Learning fast without a model. In International Conference on Learning Representa-
tions, 2021. URL https://openreview.net/forum?id=AY8zfZm0tDd.

C. Cheng, T. Xie, N. Jiang, and A. Agarwal. Adversarially Trained Actor Critic for Offline RL.
ICML, 2022.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

Ron Dorfman, Idan Shenfeld, and Aviv Tamar. Offline meta reinforcement learning–identifiability
challenges and effective data collection strategies. Advances in Neural Information Processing
Systems, 34:4607–4618, 2021.

Danny Driess, Fei Xia, Mehdi SM Sajjadi, Corey Lynch, Aakanksha Chowdhery, Brian Ichter,
Ayzaan Wahid, Jonathan Tompson, Quan Vuong, Tianhe Yu, et al. Palm-e: An embodied multi-
modal language model. arXiv preprint arXiv:2303.03378, 2023.

Yan Duan, John Schulman, Xi Chen, Peter L Bartlett, Ilya Sutskever, and Pieter Abbeel. RlΘ2: Fast
reinforcement learning via slow reinforcement learning. arXiv preprint arXiv:1611.02779, 2016.

J. Fu, A. Kumar, O. Nachum, G. Tucker, and S. Levine. D4rl: Datasets for deep data-driven rein-
forcement learning. In arXiv, 2020a. URL https://arxiv.org/pdf/2004.07219.

Justin Fu, Aviral Kumar, Matthew Soh, and Sergey Levine. Diagnosing bottlenecks in deep q-
learning algorithms. In Proceedings of the 36th International Conference on Machine Learning.
PMLR, 2019.

Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4rl: Datasets for deep
data-driven reinforcement learning. arXiv preprint arXiv:2004.07219, 2020b.

Scott Fujimoto and Shixiang Shane Gu. A minimalist approach to offline reinforcement learning.
arXiv preprint arXiv:2106.06860, 2021.

Jake Grigsby, Linxi Fan, and Yuke Zhu. Amago: Scalable in-context reinforcement learning for
adaptive agents. arXiv preprint arXiv:2310.09971, 2023.

11

https://openreview.net/forum?id=AY8zfZm0tDd
https://arxiv.org/pdf/2004.07219

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Abhishek Gupta, Vikash Kumar, Corey Lynch, Sergey Levine, and Karol Hausman. Relay policy
learning: Solving long-horizon tasks via imitation and reinforcement learning. arXiv preprint
arXiv:1910.11956, 2019.

T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine. Soft actor-critic: Off-policy maximum entropy deep
reinforcement learning with a stochastic actor. In arXiv, 2018a. URL https://arxiv.org/
pdf/1801.01290.pdf.

Tuomas Haarnoja, Aurick Zhou, Kristian Hartikainen, George Tucker, Sehoon Ha, Jie Tan, Vikash
Kumar, Henry Zhu, Abhishek Gupta, Pieter Abbeel, et al. Soft actor-critic algorithms and appli-
cations. arXiv preprint arXiv:1812.05905, 2018b.

Hado van Hasselt. Double q-learning. In Proceedings of the 23rd International Conference on
Neural Information Processing Systems - Volume 2, 2010.

Takuya Hiraoka, Takahisa Imagawa, Taisei Hashimoto, Takashi Onishi, and Yoshimasa Tsu-
ruoka. Dropout q-functions for doubly efficient reinforcement learning. In International Confer-
ence on Learning Representations, 2022. URL https://openreview.net/forum?id=
xCVJMsPv3RT.

Hengyuan Hu, Suvir Mirchandani, and Dorsa Sadigh. Imitation bootstrapped reinforcement learn-
ing. arXiv preprint arXiv:2311.02198, 2023.

Yizhou Huang, Kevin Xie, Homanga Bharadhwaj, and Florian Shkurti. Continual model-based
reinforcement learning with hypernetworks. In 2021 IEEE International Conference on Robotics
and Automation (ICRA), pp. 799–805. IEEE, 2021.

Tianying Ji, Yu Luo, Fuchun Sun, Xianyuan Zhan, Jianwei Zhang, and Huazhe Xu. Seizing
serendipity: Exploiting the value of past success in off-policy actor-critic. arXiv preprint
arXiv:2306.02865, 2023.

Zhengyao Jiang, Tianjun Zhang, Michael Janner, Yueying Li, Tim Rocktäschel, Edward Grefen-
stette, and Yuandong Tian. Efficient planning in a compact latent action space. arXiv preprint
arXiv:2208.10291, 2022.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A
Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al. Overcom-
ing catastrophic forgetting in neural networks. Proceedings of the national academy of sciences,
114(13):3521–3526, 2017.

Jens Kober and Jan Peters. Policy search for motor primitives in robotics. Advances in neural
information processing systems, 21, 2008.

Ilya Kostrikov, Jonathan Tompson, Rob Fergus, and Ofir Nachum. Offline reinforcement learning
with fisher divergence critic regularization. arXiv preprint arXiv:2103.08050, 2021.

Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative q-learning for offline
reinforcement learning. Advances in Neural Information Processing Systems, 33:1179–1191,
2020.

Seunghyun Lee, Younggyo Seo, Kimin Lee, Pieter Abbeel, and Jinwoo Shin. Offline-to-online
reinforcement learning via balanced replay and pessimistic Q-ensemble. In Conference on Robot
Learning, pp. 1702–1712. PMLR, 2022.

Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline Reinforcement Learning:
Tutorial, Review, and Perspectives on Open Problems. arXiv preprint arXiv:2005.01643, 2020.

Yicheng Luo, Jackie Kay, Edward Grefenstette, and Marc Peter Deisenroth. Finetuning from
offline reinforcement learning: Challenges, trade-offs and practical solutions. arXiv preprint
arXiv:2303.17396, 2023.

Yu Luo, Tianying Ji, Fuchun Sun, Jianwei Zhang, Huazhe Xu, and Xianyuan Zhan. Offline-boosted
actor-critic: Adaptively blending optimal historical behaviors in deep off-policy rl. arXiv preprint
arXiv:2405.18520, 2024.

12

https://arxiv.org/pdf/1801.01290.pdf
https://arxiv.org/pdf/1801.01290.pdf
https://openreview.net/forum?id=xCVJMsPv3RT
https://openreview.net/forum?id=xCVJMsPv3RT

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Ashvin Nair, Abhishek Gupta, Murtaza Dalal, and Sergey Levine. Awac: Accelerating online rein-
forcement learning with offline datasets. arXiv preprint arXiv:2006.09359, 2020.

Mitsuhiko Nakamoto, Simon Zhai, Anikait Singh, Max Sobol Mark, Yi Ma, Chelsea Finn, Aviral
Kumar, and Sergey Levine. Cal-ql: Calibrated offline rl pre-training for efficient online fine-
tuning. Advances in Neural Information Processing Systems, 36, 2024.

Evgenii Nikishin, Max Schwarzer, Pierluca D’Oro, Pierre-Luc Bacon, and Aaron Courville. The
primacy bias in deep reinforcement learning. In International conference on machine learning,
pp. 16828–16847. PMLR, 2022.

Georg Ostrovski, Pablo Samuel Castro, and Will Dabney. The difficulty of passive learning in deep
reinforcement learning. Advances in Neural Information Processing Systems, 34:23283–23295,
2021.

Sam Powers, Eliot Xing, Eric Kolve, Roozbeh Mottaghi, and Abhinav Gupta. CORA: Benchmarks,
baselines, and metrics as a platform for continual reinforcement learning agents. In Conference
on Lifelong Learning Agents, pp. 705–743. PMLR, 2022.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning, pp.
8748–8763. PMLR, 2021.

Rafael Rafailov, Kyle Beltran Hatch, Victor Kolev, John D Martin, Mariano Phielipp, and Chelsea
Finn. Moto: Offline pre-training to online fine-tuning for model-based robot learning. In Confer-
ence on Robot Learning, pp. 3654–3671. PMLR, 2023.

Aravind Rajeswaran, Vikash Kumar, Abhishek Gupta, Giulia Vezzani, John Schulman, Emanuel
Todorov, and Sergey Levine. Learning complex dexterous manipulation with deep reinforcement
learning and demonstrations. arXiv preprint arXiv:1709.10087, 2017.

Kate Rakelly, Aurick Zhou, Chelsea Finn, Sergey Levine, and Deirdre Quillen. Efficient off-policy
meta-reinforcement learning via probabilistic context variables. In International conference on
machine learning, pp. 5331–5340. PMLR, 2019.

Allen Z Ren, Justin Lidard, Lars L Ankile, Anthony Simeonov, Pulkit Agrawal, Anirudha Majum-
dar, Benjamin Burchfiel, Hongkai Dai, and Max Simchowitz. Diffusion policy policy optimiza-
tion. arXiv preprint arXiv:2409.00588, 2024.

Mark Bishop Ring. Continual learning in reinforcement environments. The University of Texas at
Austin, 1994.

Jonas Rothfuss, Dennis Lee, Ignasi Clavera, Tamim Asfour, and Pieter Abbeel. Promp: Proximal
meta-policy search. arXiv preprint arXiv:1810.06784, 2018.

Stefan Schaal. Learning from demonstration. Advances in neural information processing systems,
9, 1996.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Yuda Song, Yifei Zhou, Ayush Sekhari, J Andrew Bagnell, Akshay Krishnamurthy, and Wen
Sun. Hybrid RL: Using both offline and online data can make RL efficient. arXiv preprint
arXiv:2210.06718, 2022.

Yuda Song, Yifei Zhou, Ayush Sekhari, Drew Bagnell, Akshay Krishnamurthy, and Wen Sun. Hy-
brid RL: Using both offline and online data can make RL efficient. In The Eleventh International
Conference on Learning Representations, 2023. URL https://openreview.net/forum?
id=yyBis80iUuU.

Bradly C Stadie, Ge Yang, Rein Houthooft, Xi Chen, Yan Duan, Yuhuai Wu, Pieter Abbeel, and Ilya
Sutskever. Some considerations on learning to explore via meta-reinforcement learning. arXiv
preprint arXiv:1803.01118, 2018.

13

https://openreview.net/forum?id=yyBis80iUuU
https://openreview.net/forum?id=yyBis80iUuU

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Denis Tarasov, Vladislav Kurenkov, Alexander Nikulin, and Sergey Kolesnikov. Revisiting the min-
imalist approach to offline reinforcement learning. Advances in Neural Information Processing
Systems, 36, 2024.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Ikechukwu Uchendu, Ted Xiao, Yao Lu, Banghua Zhu, Mengyuan Yan, Joséphine Simon, Matthew
Bennice, Chuyuan Fu, Cong Ma, Jiantao Jiao, et al. Jump-start reinforcement learning. In Inter-
national Conference on Machine Learning, pp. 34556–34583. PMLR, 2023.

Maciej Wołczyk, Michał Zając, Razvan Pascanu, Łukasz Kuciński, and Piotr Miłoś. Continual
world: A robotic benchmark for continual reinforcement learning. Advances in Neural Informa-
tion Processing Systems, 34:28496–28510, 2021.

Maciej Wołczyk, Bartłomiej Cupiał, Mateusz Ostaszewski, Michał Bortkiewicz, Michał Zając, Raz-
van Pascanu, Łukasz Kuciński, and Piotr Miłoś. Fine-tuning reinforcement learning models is
secretly a forgetting mitigation problem. arXiv preprint arXiv:2402.02868, 2024.

Xiaohua Zhai, Basil Mustafa, Alexander Kolesnikov, and Lucas Beyer. Sigmoid loss for language
image pre-training. In Proceedings of the IEEE/CVF International Conference on Computer
Vision, pp. 11975–11986, 2023.

Haichao Zhang, We Xu, and Haonan Yu. Policy expansion for bridging offline-to-online reinforce-
ment learning. arXiv preprint arXiv:2302.00935, 2023.

Yinmin Zhang, Jie Liu, Chuming Li, Yazhe Niu, Yaodong Yang, Yu Liu, and Wanli Ouyang. A
perspective of q-value estimation on offline-to-online reinforcement learning. In Proceedings of
the AAAI Conference on Artificial Intelligence, volume 38, pp. 16908–16916, 2024.

Yifei Zhou, Ayush Sekhari, Yuda Song, and Wen Sun. Offline data enhanced on-policy policy
gradient with provable guarantees. arXiv preprint arXiv:2311.08384, 2023.

Zhiyuan Zhou, Pranav Atreya, Abraham Lee, Homer Walke, Oier Mees, and Sergey Levine. Au-
tonomous improvement of instruction following skills via foundation models. arXiv preprint
arXiv:2407.20635, 2024.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Appendices
A ADDITIONAL RESULTS ON ANTMAZE ENVIRONMENTS

In the main paper, we presented results on three of the most challenging antmaze environments.
Here, in addition to the set of three antmaze environments shown in Figures 6 and 7, we provide the
results of WSRL on all eight D4RL antmaze environments, together with strong baseline methods.

Figure 12: WSRL on all eight D4RL antmaze environments, along with RLPD and CalQL baselines. Step 0
shows the start of fine-tuning for WSRL and CalQL, and start of RLPD. Solid lines do not retain offline data,
while dotted lines do.

B RESULTS ON MUJOCO LOCOMOTION ENVIRONMENTS

Figure 13: WSRL on nine Mujoco locomotion environments with dense rewards, along baselines. Step 0
shows the start of fine-tuning for WSRL and CalQL, and start of RLPD. Solid lines do not retain offline data,
while dotted lines do.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Additionally, we also apply WSRL on nine different Mujoco locomotion domains in the no-
retention fine-tuning setting. Specifically, we experiment with three different robot embodiments
(Halfcheetah, Hopper, and Walker), each with three different types of datasets. The random
datasets are collected with a random policy; the expert datasets are collected with a policy trained
to completion with SAC; and the medium-replay datasets are collected with the replay buffer of
a policy trained to the performance approximately 1/3 of the expert. As Figure 13 shows, WSRL
outperforms or is similar to the best baseline methods.

For WSRL, the hyperparameters were exactly as those in Section 6 and listed in Appendix H with
one exception: its pre-trained policy and value function are done with CQL offline training instead
of CalQL. This is because these offline datasets have dense rewards and do not end in a terminal
state, and therefore do not have ground-truth return-to-go to support the CalQL regularizer. For the
same reason we did not include a CalQL baseline in Figure 13. Both the IQL and CQL baseline
in Figure 13 do not retain offline data, and use an ensemble of 10 Q functions, along with layer
normalization in the Q functions. RLPD does retain offline data.

C ABLATION STUDIES ON WARMUP PHASE

Impact of different warmup types. One natural question arises: why does the simple approach of
warming up the replay buffer significantly boost performance during fine-tuning? One hypothesis
is that seeding the replay buffer with some data helps prevent early overfitting, as much work has
found in online RL (Nikishin et al., 2022). To test this hypothesis, we plot in Figure 14 in the
fine-tuning performance of initializing with random actions, and compare it to initializing with pre-
trained policy actions as well as not initializing the buffer atl all. It is clear that seeding the buffer
with random actions significantly underperform the warmup approach, and in fact does not even
provide much benefit as compared to not seeding the buffer at all. This suggests that the reason
warmup phase helps is not because of preventing overfitting.

Figure 14: Comparing seeding the buffer with random actions to actions from the pre-trained policy:
initializing with the pre-trained policy action works significantly better on kitchen-mixed (left)
and kitchen-partial (right).

Impact of different length warmups.

Figure 15: Impact of warmup phase of length 1k, 5k, 20k on Kitchen-mixed (left),
Antmaze-large-diverse (middle), and Door-binary (right).

Since warmup phase seems to be critical to efficient online fine-tuning, we study whether the length
of this warmup phase impacts fine-tuning performance. Figure 15 shows warmup phase of lengths

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

1k, 5k, and 20k on three different environments. It is clear that short warmup phase (1k) sometimes
lead to worse asymptotic performance or instability during fine-tuning. On the other hand, longer
warmup phases could also hurt (e.g. on Kitchen-mixed) because it adds too much offline-like data
into the replay buffer and slows down online improvement. In WSRL, we did not tune the lengths
of the warmup phase beyond what is shown in Figure 15, and we use 5000 warmup steps for all
environments.

D START OF FINE-TUNING: DID WSRL UNLEARN ITS PRIORS?

To further illustrate the behavior of offline-to-online RL agents at the start of online fine-tuning, we
show in Figure 16 the performance of WSRL, along with two other algorithms, evaluated at much
smaller intervals than Figure 7. We fine-tune all agents for 50, 000 steps online across six different
environments, and evaluate every 1, 000 environment steps.

Figure 16: First 50, 000 steps of fine-tuning with denser evaluation intervals. Step 0 in the plot show the start
of online fine-tuning. All agents are evaluated in the no-retention fine-tuning setting.

Figure 16 shows that WSRL experiences an initial dip in policy performance after 5, 000 steps of
warmup, but recovers much faster than CQL and CalQL. We hypothesize that such a dip might be
inevitable at the start of online fine-tuning in the no offline data retention setting because the policy
is experiencing different states than what it was trained on and potentially states it has never seen
(We analyze this with much more detail below). Moreover in some environments (e.g., binary re-
ward environments), one might expect small fluctuations in the policy to manifest as large changes
in the actual policy performance. However, such brief performance dip does not mean the policy/Q
function has been catastrophically destroyed, which is evidenced by the fact that WSRL recovers
faster than its peer algorithms and learns faster than online RL algorithms such as RLPD (See Fig-
ure 7). If this initial dip would have destroyed all pre-training knowledge from the policy, then we
would not expect quick recovery.

In fact, in general, it is impossible to build a no data retention fine-tuning algorithm whose perfor-
mance does not initially degrade as we move from offline data to online training on all environments
and offline data compositions. Intuitively, this is because it violates a sort of “no free lunch” result:
for example, consider a sparse reward problem where the reward function is an arbitrary non-smooth
function over actions, here even a minor change in policy action results in a catastrophic change in
return. Therefore just deducing whether an algorithm has lost is prior or not based on performance
may not be the most informative. Instead, a more meaningful metric to measure catastrophic for-
getting is to evaluate how much a fine-tuning algorithm with no data retention deviates from its
pre-training, and how fast it can adjust to the online state-action distribution.

Therefore, to investigate how much the policy has deviated from its offline pre-training during the
initial “performance dip”, we plot the KL divergence between the offline pre-trained policy and
the online fine-tuned policy (DKL(πoffline||πonline)) in Figure 17. In Figure 17 (Top), we can see

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Figure 17: KL divergence DKL(πoffline||πonline) between the pre-trained offline policy and the fine-tuned
online policy at the first 50k steps of fine-tuning. The top plot shows the KL divergence evaluated on the
offline dataset distribution; the bottom plot shows the KL divergence on the online state-and-action distribution,
sampled from the replay buffer. WSRL is not plotted during the first 5, 000 steps of warmup. CQL and CalQL
do not retain offline data.

that DKL on the offline distribution generally increases during fine-tuning for all three agents.
This increase indicates that the fine-tuned policy has deviated from the pre-trained policy on at
least some parts of the dataset distribution. This is actually expected in the no-retention fine-tuning
setting because of the distribution shift from offline to online. To be more specific, for example, in
Antmaze environments, the offline dataset exhibits a very diverse state-action distribution, covering
almost all the locations in the entire maze, while fine-tuning is a single-goal navigation task. In no-
retention fine-tuning, the agent is incentivized to forget about parts of the offline dataset that is
irrelevant to the fine-tuning task and specialize to the online task. Compared to CQL and CalQL,
WSRL generally has the same asymptotic value for DKL but reaches convergence much faster. This
suggests that WSRL actively adapts to the online distribution much quicker compared to its no-
retention counterparts, perhaps thanks to its non-conservative objective optimized solely on online
data and its high update-to-data ratio during online RL.

On the other hand, Figure 17 (Bottom) shows DKL on the online distribution for WSRL increases
slightly, but is much smaller compared to CQL and CalQL (without data retention). This indicates
that WSRL’s policy remains almost the same on the online distribution. This is desirable because
the pre-trained policy already has decent performance, and a capable fine-tuning algorithm should
not forget that capability while adjusting slightly to unseen (but not out-of-distribution) states. This
suggests that WSRL remains stable during fine-tuning and does not destroy priors learned from
offline pre-training. In summary, due to the distribution shift from offline pre-training to no-

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

retention fine-tuning, WSRL is forgetting experience in the offline dataset that was learned during
offline pre-training but is in reality irrelevant for specializing to the online task. In contrast, it is
instead specializing to the online task.

E DOES FREEZING THE POLICY AT THE START OF FINE-TUNING HELP?

Since Appendix D shows a brief period at the start of fine-tuning where policy performance take a
dip, one natural question is whether such a dip is avoidable. The most straight forward way to avoid
such a drop in policy performance is to freeze the policy during initial fine-tuning. In other words,
for N steps at the on set of fine-tuning, we only pass the gradients through the Q function and train
the Q function, but freeze the policy. After N online steps, we start training both the policy and the
Q function.

Figure 18: Freezing the policy for N ∈ {10k, 30k} steps at the onstart of fine-tuning doesn’t prevent the
performance dip. In the plot, we show policy performance of WSRL vs. WSRL with initial policy freeze
across six environments. Step 0 is the start of online fine-tuning.

Figure 18 shows the performance of WSRL after freezing the policy for N = {10k, 30k} steps. It’s
obvious that even when we freeze the policy for some number of steps to let the Q-function adjust
online, the policy still suffers a dip after it is unfrozen. In fact, this is somewhat an expected result
because the policy needs to adjust to the OOD online state-action distribution, as well as the new
online Q-function, and such adjustment process is expected to make the policy performance worse.

F WHY WARM-UP PREVENTS Q-VALUES DIVERGENCE

In WSRL, the policy and value function is pre-trained offline with CalQL (Nakamoto et al., 2024),
and the online fine-tuning process is done with SAC (Haarnoja et al., 2018a). This change of RL
algorithm could lead to miscalibration issues, where the pre-trained values are more pessimistic than
ground truth values. As we have shown in Section 4, this hurts fine-tuning when it backs up a pes-
simistic target Q-value through the Bellman update. This particularly hurts when the Bellman target
is computed on an OOD state-action pair, because OOD state-action pair have more pessimistic val-
ues than state-action paris seen in the offline dataset, by the nature of pessimistic pre-training. If
there were no warm-up phase, the agent will collect OOD data into the buffer, leading to Bellman
backups with pessimistic target Q values, which in turn leads to Q-divergence. This is the “down-
ward spiral” phenomenon in Section 4. However, warmup solves this problem by putting more
offline-like data into the replay buffer where Q-values are not as pessimistic, thereby preventing
the downward spiral in the online Bellman backups and uses high UTD in online RL to quickly
re-calibrate the Q-values.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

G ABLATION STUDIES ON DIFFERENT TYPES OF VALUE INITIALIZATION

WSRL is agnostic to the offline RL pre-training algorithm. Furthermore, we find that it is not
crucial which specific offline RL algorithm we use to obtain the pre-trained Q values. In Figure 19,
we show that the Q-values from IQL, CQL, and CalQL work just as well on three different envi-
ronments, even though CQL optimizes for conservative Q-values, CalQL is less conservative, and
IQL is not conservative at all. In particular, we observe that Calibrated Q-values as an initializa-
tion provides some small performance benefits on Kitchen-mixed. Therefore, we use calibrated
Q-values from CalQL offline pre-training for our main experiments.

Figure 19: The offline RL algorithm used to pre-train the Q-values does not affect performance: for
Kitchen-mixed (left), Kitchen-partial (middle), and Kitchen-complete, WSRL is able to
achieve similar performances by initializing with pre-trained values from CQL, IQL, and CalQL, though CalQL
initializations have small benefits on Kitchen-partial.

H IMPLEMENTATION DETAILS

Pseudocode. See Algorithm 1

Algorithm 1 WSRL: Warm Start Reinforcement Learning

Require: Offline RL algorithm Aoff , Pre-training dataset Doffline.
Qoff , πoff ← train_offline(Aoff , D) ▷ Offline RL pre-training

Require: Qoff , πoff , Online RL algorithm Aon, Replay bufferR ← ϕ, warmup step K.
Q← Qoff ▷ Value initialization
π ← πoff ▷ Policy initialization
Donline ← ∅
while step ≤ max steps do

if step ≤K then
(s, a, s′, r)← interact(πoff , environment) ▷ Warmup Phase

else
(s, a, s′, r)← interact(π, environment)

end if
Donline ← Donline ∪ {(s, a, s′, r)}
if step > K then

B ∼ Donline

Q, π ← train_high_utd(Aon, B) ▷ Online RL updates
end if

end while

WSRL Hyperparameters. We use 5K warmup steps (K = 5, 000). For the online RL algorithm in
WSRL, we use the online SAC (Haarnoja et al., 2018b) implementation in RLPD (Ball et al., 2023)
with a UTD of 4, batch size of 256, actor learning rate of 1e − 4, critic learning rate of 3e − 4,
and actor delay of 4 (update the actor once for every four critic steps). For the AntMaze tasks, we
disable the entropy backup and MinQ network in SAC. When we initialize the policy network and
the Q-function network from offline RL pre-training, we keep the optimizer state of these networks.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

I WSRL WITH OFFLINE DATA RETENTION

In the main paper, we have shown that WSRL can efficiently fine-tune without retaining the offline
pre-training dataset. One natural question arises: can WSRL do even better if we allow offline
data retention? To answer this question, we run WSRL with the online replay buffer initialized
with the whole offline dataset. Figure 20 shows that on average, retaining the offline data does not
give WSRL any advantages, probably because it already has the necessary knowledge in the offline
policy and Q-function; WSRL is actually a bit faster later on in fine-tuning, perhaps due to the fact
that it is updating the policy on more online data.

Figure 20: On average, initializing the replay buffer with the offline dataset does not give WSRL any advantage
during fine-tuning, and may make it a bit slower.

J WSRL WITH VARYING LEVELS OF OFFLINE POLICY

We investigate how WSRL performs with varying levels of expertise of the offline pre-trained pol-
icy. Specifically, we consider Kitchen-complete-v0 and Relocate-binary-v0, two es-
pecially hard tasks for offline RL where pre-training with CalQL leads to poor performance. In
Recolate-binary-v0, CalQL completely fails and has pre-trained performance near 0; CQL
and IQL also has pre-training performance 0, indicating that this task is inherently hard for of-
fline RL agents. In Kitchen-complete-v0, CalQL (15.47%) significantly underperforms IQL
(70.83%) despite our tunning efforts, which suggests there is some inherent limitation in CalQL
learning a good Q-funciton in this domain. Not surprisingly, Figure 21 shows that WSRL also per-
forms poorly: while WSRL can learn somewhat in Kitchen-complete-v0 with a non-zero
initialization, it completely fails to learn in Adroit-binary-v0. This is expected because when
pre-training fails, initializing with the pre-trained network may not bring any useful information
gain, and may actually hurt fine-tuning by reducing the network’s plasticity (Nikishin et al., 2022),
a known issue in online RL.

K WARMUP WITH TRANSITIONS FROM THE OFFLINE DATASET

We have shown in Section 6 that the warmup period is essential for efficient fine-tuning with WSRL.
One interesting question is whether such warmup data can be collected by sampling the offline
dataset, instead of online interactions with the frozen pre-trained policy as in WSRL. Therefore, we
run an ablation experiment in Figure 22 where we replace the 5, 000 steps of warmup period by
initializing the online replay buffer with 5, 000 random transitions sampled from the offline dataset,
which we will refer to as “Dataset Warmup”. As Figure 22 shows, while the two methods are similar
on Adroit environments, WSRL is slightly better in Kitchen and much better on Antmaze.
This is perhaps because the 5000 randomly sampled transitions might not be relevant to the online
fine-tuning task, especially in Antmaze where the dataset has diverse state-action coverage (See

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Figure 21: On environments where the pre-training completely fails, WSRL does not work well.

Appendix D for a more detailed discussion). When the replay buffer is initialized with less relevant
data, it is less effective at preventing Q-value divergence (Section 4) and recalibrating the online
Q-function and policy. This perhaps highlights the utility of our approach: despite not having access
to any offline data, WSRL is able to achieve similar or better performance than using transitions
from the offline dataset in the no-retention fine-tuning setting.

Figure 22: Overall, warming up with transitions from the offline dataset is less effective than warming up with
online interactions (WSRL).

22

	Introduction
	Related Work
	Problem Formulation: Fine-Tuning without Offline Data
	Understanding the Role of Offline Data in Online Fine-Tuning
	The Role of Offline Data at the Onset of Fine-Tuning
	The Adverse Impact of Offline Data on Asymptotic Performance

	WSRL: Fast Fine-Tuning Without Offline Data Retention
	WSRL Algorithm: Initialization, Learning, and Optimization
	Implementation Details

	Experimental Evaluation
	Baselines and Prior Comparisons
	Experimental Setup
	Can WSRL enable efficient fine-tuning in no-retention fine-tuning?
	How does WSRL compare to methods that retain offline data?
	How critical is the warmup phase?
	How important is using online RL algorithm for fine-tuning?
	How important is it to initialize the policy, value function, or both?

	Conclusion
	Reproducibility Statement
	 Additional Results on Antmaze Environments
	 Results on Mujoco Locomotion Environments
	Ablation Studies on Warmup Phase
	 Start of Fine-tuning: Did WSRL Unlearn Its Priors?
	 Does Freezing the Policy at the Start of Fine-Tuning Help?
	 Why Warm-up Prevents Q-Values Divergence
	Ablation Studies on Different Types of Value Initialization
	Implementation Details
	 WSRL with Offline Data Retention
	 WSRL with Varying Levels of Offline Policy
	 Warmup with Transitions from the Offline Dataset

