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ABSTRACT

Foundation models have revolutionized deep learning, moving beyond task-
specific architectures to versatile models pre-trained using self-supervised learn-
ing on extensive datasets. These models have set new benchmarks across domains,
including natural language processing, computer vision, and biology, due to their
adaptability and state-of-the-art performance on downstream tasks. Yet, for solv-
ing PDEs or modeling physical dynamics, the potential of foundation models re-
mains untapped due to the limited scale of existing datasets. This study presents
Zebra, a novel generative model that adapts language model techniques to the
continuous domain of PDE solutions. Pre-trained on specific PDE families, Zebra
excels in dynamic forecasting, surpassing existing neural operators and solvers,
and establishes a promising path for foundation models extensively pre-trained on
varied PDE scenarios to tackle PDE challenges with scarce data.

1 INTRODUCTION

Recent advancements in computational science have led to the development of Neural Operators (Lu
et al., 2021; Li et al., 2021) and Auto-Regressive Solvers (Brandstetter et al., 2022; Gupta & Brand-
stetter, 2022; Stachenfeld et al., 2022), which represent significant progress in creating surrogate
models for systems governed by partial differential equations (PDEs). These data-driven models,
capable of extrapolating system dynamics from novel initial conditions with limited training data,
offer an appealing alternative to traditional computational fluid dynamics (CFD) solvers by reducing
the dependency on extensive prior physical knowledge. Despite their promise, these models face a
significant challenge: they require retraining to adapt to new or slightly modified PDE parameters,
indicating a fundamental gap in their generalizability.

One approach to address this challenge involves conditioning models on PDE parameters (Brand-
stetter et al., 2022; Takamoto et al., 2023; Subramanian et al., 2023). However, this strategy assumes
the availability of accurate PDE parameters for all training and test data. An alternative strategy pro-
poses adapting network weights to each specific PDE ”environment” (Kirchmeyer et al., 2022), but
this approach is hampered by complex meta-training optimizations, limiting scalability and necessi-
tating labels for each environment.

In a tentative to exploit foundation models, McCabe et al. (2023) explored the feasibility of pretrain-
ing large models on diverse PDE parameters using a self-supervised approach. They introduced a
video-transformer architecture for multiphysics pretraining, demonstrating effective transferability
to closely related PDE parameters. Their focus is on training from multiple heterogeneous dynamics
instead of solving parametric PDE as we do here.

Our research builds on the foundation laid by self-supervised pretraining successes in both language
(Devlin et al., 2018; Radford et al., 2018; 2019; 2021) and vision domains (He et al., 2020; Caron
et al., 2021). Given the sequential nature of time-dependent PDE solutions, we investigate whether
a generative pretraining approach, similar to that used in language models, could enhance transfer-
ability across dynamical systems. Language models, pre-trained on vast and heterogeneous datasets,
utilize a probabilistic framework to manage diversity effectively. However, their application to PDEs
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Figure 1: Diagram of Zebra. An encoder compresses the normalized sequence of states, a language
model predicts the dynamic and a decoder restores the spatial resolution.

has been limited due to challenges in processing continuous data. Recent efforts to improve numer-
ical tokenization in large language models (Golkar et al., 2023; Gruver et al., 2023) address some
of these challenges, yet scalability for physical signals remains a concern. Our contributions are as
follows:

• We present Zebra, a novel generative model that adapts language model architectures to the con-
tinuous representations of physical states employing a gaussian mixture component, allowing the
generation of continuous trajectory distributions.

• We pretrain Zebra and a selection of neural operators/solvers on distinct families of PDEs, evaluat-
ing their proficiency in learning diverse dynamics.

• Zebra outperforms all baseline models in auto-regressive rollouts for new trajectories within the
distribution of PDE parameters.

2 PROBLEM SETTING

We explore the potential of neural solvers and neural operators in capturing the dynamics governed
by a spectrum of time-dependent parametric PDEs. Our objective would be to train models that
can generalize to multiple parameters including initial conditions, boundary conditions, coefficient
parameters, forcing terms. However as a first approach, we focus here on solving PDEs with varying
coefficient parameters – such as fluid viscosity or advection speed – broadly denoted by c and keep
other aspects of the PDEs similar across dynamics. We define Fc as the set of PDE solutions
corresponding to parameter c. A solution u(x, t) within Fc satisfies:

∂u

∂t
= F

(
c, t, x,u,

∂u

∂x
,
∂2u

∂x2
, . . .

)
, ∀x ∈ Ω,∀t ∈ (0, T ] (1)

B(u)(t, x) = 0 ∀x ∈ ∂Ω,∀t ∈ (0, T ] (2)

u(0, x) = u0 ∀x ∈ Ω (3)

Our goal is to assess the capability of neural architectures to approximate the evolution operator
Gc : ut → ut+∆t without knowledge of the parameter c. Leveraging a sequence of past states
ut−k∆t:t := (ut−k∆t, . . . ,ut) with k ≥ 1, we aim to train models in a self-supervised manner to
forecast ut+∆t, thereby pretraining across diverse dynamics. We do not give access to the param-
eters during training to force the models to learn from data the multiple dynamics as in (McCabe
et al., 2023). In this work, we will consider only 1D equations with one physical channel.

3 MODEL

Our model, called Zebra adopts an encode-generate-decode paradigm, but unlike other models, Ze-
bra makes predictions within a continuous probabilistic framework, as pictured in Figure 1. The
architecture is composed of an encoder, a language model and a decoder as described below.
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Encoder : u0:k → z0:k. The role of the encoder is to spatially compress the information by reducing
the spatial resolution L of the input function into a latent spatial representation with resolution
L

′
< L and channel dimension d. We adopt a variational formulation, therefore the outputs of

the encoder are multivariate gaussian parameters Ew(ut) = (µt,σt) where µt = (µt1, · · · , µtL′ ),

σt = (σt1, · · · , σtL′ ), and from which latent codes can be sampled zt ∼ N (µt, (σt)2). To simplify
notations, we will omit t and denote u0:k = ut:t+k∆t. To be able to efficiently represent a sequence
of physical states u0:k, which can be of varying amplitudes and include diverse spectrum evolution,
into a sequence of codes z0:k, we first normalize the input sequence prior to the encoder. We utilize
the first observed state in the sequence u0 to compute mean m0 and standard deviation s0 across the
spatial dimension and obtain the normalized states as follows: ũi = ui−m0

s0+ϵ , for 0 ≤ i ≤ k. We
use a fully convolutional architecture for the encoder.

Continuous Language Model: z0:k → ẑk+1. The role of the language model is to learn and
generate the dynamics auto-regressively. It exhibits two key distinctions with standard language
model architectures: (i) it takes continuous inputs and (ii) it outputs a continuous probability distri-
bution thus enabling the modeling of continuous trajectory distributions. Our architecture follows
the continuous formulation proposed in Tschannen et al. (2024). Given a sequence of latent state
representations z0:k = (z0, . . . ,zk) with zi ∈ RL

′
×d, the language model returns a continuous

probability distribution over the next token p(zk+1|z0:k). Our approach utilizes an auto-regressive
transformer applying causal attention to process the sequence of states. The sequence z0:k, derived
from normalized states ũ0:k is linearly projected to the transformer high-dimensional space. We
additionally incorporate a bidirectional attention prefix (Liu et al., 2018) containing the mean m0

and scale s0 tokens projected using two-layer MLPs, fm and fs to provide additional context. We
use RoPE Su et al. (2021) to encode the relative positions in the sequence.

Therefore, we parameterize the next-token probability distribution p(zk+1|z0:k,m0, s0) with d-
independent gaussian mixture models (GMM). By fixing the number of components in the mixture
to K, the output of the transformer for each token outside the prefix is a d × K matrix of mix-
ture probabilities αnext ∈ [0, 1]

d×K , mean parameters µnext ∈ ]−∞,+∞[
d×K , and scale param-

eters σnext ∈ [0,+∞[
d×K . Building on Esser et al. (2021), we transform grid-based prediction

into a sequence modeling problem. Therefore, we flatten each latent representations zi as a se-
quence of L

′
tokens of dimension d and sample ẑk+1 ∼ p(zk+1|z0:k), where p(zk+1|z0:k) =∏L

′

l=1 p(z
k+1
l |z0:k, zk+1

1 , . . . ,zk+1
l ).

Decoder: ẑk+1 → ûk+1. The decoder maps the latent tokens ẑk+1 to the physical space ûk+1 =
Dψ(ẑk+1). We denormalize with m0 and s0 to get the reconstruction.

Inference Given an encoded sequence z0:k, predicting the latent representation zk+1 requires
predicting L

′
tokens autoregressively. Each token zk+1

l with 1 < l < L
′

is sampled from the
K-GMM distribution zk+1

l ∼ GMM(αk+1
l ,µk+1

l ,σk+1
l ) and added to the sequence. To unroll the

dynamics, we use a rolling window of constant size, meaning that the prediction ûk+1 is made using
an initial sequence u0:k, the following prediction ûk+2 is made using (u1:k, ûk+1).

Training We do a two-stage training. We first train the encoder-decoder as a variational auto-
encoder (VAE) Kingma & Welling (2014) and then train the language model on the latent represen-
tations obtained with the encoder. We provide further details on training in the sections below.

3.1 FIRST STEP: VAE TRAINING

The encoder and decoder are jointly trained as a VAE. We use a mixed loss objective:

L = Lrecon + β · LKL (4)

with β > 0; where Lrecon =
∑i=k+1
i=0

∥ui−ûi∥2

∥ui∥2
is the relative L2 loss between the in-

put ui and its reconstruction ûi through the encoder-decoder. The KL term LKL =∑i=k+1
i=t DKL(N (µi, (σi)2) || N (0, I)) regularizes the network.
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3.2 SECOND STEP: LANGUAGE MODEL TRAINING

Zebra is trained using self-supervised learning on next token prediction task (Radford et al., 2018)
using teacher forcing. Given the sequence z0:k+1 and normalization scalars m0, s0, the model is
trained to minimize the negative log-likelihood (see Appendix A) expressed below:

Lnll = −
k+1∑
i=1

log p(zi|z0, . . . ,zi−1,m0, s0) (5)

4 EXPERIMENTS

Datasets We assess the model’s performance on 1D data, leaving more complex tests to fur-
ther investigations. We used the 1D Advection (Advection) and 1D Burgers (Burgers) equa-
tion datasets from PDEBench (Takamoto et al., 2022), training across all available PDE pa-
rameters. For Advection, the coefficient parameter that varies across equations is the advec-
tion speed β ∈ {0.1, 0.2, 0.4, 0.7, 1.0, 2.0, 4.0, 7.0} and for Burgers it is the fluid viscosity
ν ∈ {0.001, 0.002, 0.004, 0.01, 0.02, 0.04, 0.1, 0.2, 0.4, 1.0, 2.0, 4.0}. We evaluate all models on
in-distribution parameters. Namely, for each parameter, we have access to 10,000 trajectories, gen-
erated with different initial conditions, that we split in 95% for training, and 5% for testing. The
trajectories were generated with a spatial resolution of 1024 and with a temporal resolution of 200,
which we downsample to 256 and 100 respectively.

Baselines We compare our model to current state-of-the-art neural architectures: • Fourier neural
operator (FNO) (Li et al., 2021) • UNet (Gupta & Brandstetter, 2022) • ResNet (Gupta & Brand-
stetter, 2022).

Training and evaluation To make a fair comparison, we pretrain all baselines with teacher-
forcing, i.e. with 1-step prediction by learning to map (ut, . . . ,ut+k∆t) → ut+(k+1)∆t. We fix
k = 4 for all models and all datasets. We use the relative L2 loss for training. We evaluate the
pretraining in a zero-shot setting on in-distribution new trajectories. We rollout the models for 1, 10,
and 25 steps starting from solutions at different times (t = 0, t = 25, t = 50, t = 70) and compute
the relative L2 loss with the ground truth trajectories.

Results The results in Figure 2 show that all the models interpolate up to some extent to the PDE
parameters distribution. Our model outperforms the baselines on Advection and Burgers. When
evaluating the performance at 1, 10, and 25 rollouts, Zebra consistently demonstrates lower error
rates, indicating its enhanced ability to accurately predict and model multiple dynamics. Our model
has been designed to be easily adaptable to multiple settings such as variable spatial and temporal
resolutions, diverse context sizes, etc.

1 10 25
Steps

5,00E-03

1,00E-02

5,00E-02

1,00E-01

L2
 L

os
s (

Lo
g 

Sc
al

e)

Advection
Model

FNO
resnet
unet
zebra

(a) Advection

1 10 25
Steps

5.00E-2
1.00E-1

5.00E-1
1.00E0

5.00E0
1.00E1

L2
 L

os
s (

Lo
g 

Sc
al

e)

Burgers
Model

FNO
resnet
unet
zebra

(b) Burgers

Figure 2: Test relative L2 loss for rollouts of lengths (1, 10, 25), starting from t = 0.
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5 CONCLUSION

This study presents Zebra, a novel generative model that adapts language model techniques to the
continuous domain of PDE solutions, demonstrating enhanced learning and generalization across
diverse dynamics. By effectively pretraining on a family of PDE, Zebra’s performance in auto-
regressive rollouts surpasses all baseline models, underscoring its effectiveness in generating accu-
rate new trajectories within the PDE parameter distribution, thus offering a promising approach to
overcome scalability in PDE applications.
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Michael McCabe, Bruno Régaldo-Saint Blancard, Liam Holden Parker, Ruben Ohana, Miles
Cranmer, Alberto Bietti, Michael Eickenberg, Siavash Golkar, Geraud Krawezik, Francois
Lanusse, et al. Multiple physics pretraining for physical surrogate models. arXiv preprint
arXiv:2310.02994, 2023.

Aaron van den Oord, Oriol Vinyals, and Koray Kavukcuoglu. Neural discrete representation learn-
ing. arXiv preprint arXiv:1711.00937, 2017.

Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. Improving language under-
standing by generative pre-training. 2018.

Alec Radford, Jeff Wu, Rewon Child, D. Luan, Dario Amodei, and
Ilya Sutskever. Language models are unsupervised multitask learn-
ers, 2019. URL https://www.semanticscholar.org/paper/
Language-Models-are-Unsupervised-Multitask-Learners-Radford-Wu/
9405cc0d6169988371b2755e573cc28650d14dfe.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning, pp.
8748–8763. PMLR, 2021.

Kimberly Stachenfeld, Drummond B. Fielding, Dmitrii Kochkov, Miles Cranmer, Tobias Pfaff,
Jonathan Godwin, Can Cui, Shirley Ho, Peter Battaglia, and Alvaro Sanchez-Gonzalez. Learned
coarse models for efficient turbulence simulation. International Conference on Learning Repre-
sentation), 2022.

Jianlin Su, Yu Lu, Shengfeng Pan, Bo Wen, and Yunfeng Liu. Roformer: Enhanced transformer
with rotary position embedding, 2021.

Shashank Subramanian, Peter Harrington, Kurt Keutzer, Wahid Bhimji, Dmitriy Morozov, Michael
Mahoney, and Amir Gholami. Towards foundation models for scientific machine learning: Char-
acterizing scaling and transfer behavior. arXiv preprint arXiv:2306.00258, 2023.

Makoto Takamoto, Timothy Praditia, Raphael Leiteritz, Daniel MacKinlay, Francesco Alesiani,
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A ARCHITECTURE DETAILS

Likelihood of K-GMM In the following we write the likelihood of Gaussian mixture model with
K components.

p(X|θ) =
N∏
n=1

(
K∑
k=1

αk
1√
2ασ2

k

exp

(
− (xn − µk)

2

2σ2
k

))
(6)

L = log p(X|θ) =
N∑
n=1

log

(
K∑
k=1

αk
1√
2ασ2

k

exp

(
− (xn − µk)

2

2σ2
k

))
(7)

with X being modeled as a mixture of K Gaussian distributions. Each Gaussian distribution k has
a mean µk, variance σ2

k, and mixture coefficient αk

Variational auto-encoder We provide a schematic view of the VAE framework in Figure 3. We
use a spatial encoder and decoder with convolutions only, and normalize the input sequence be-
fore the encoder and denormalize to get the final reconstructions. We use normalization statistics
computed spatially with the first observation of the sequence.

sampling

multivariate normal
 parameters 

Spatial C
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N

Encoder

Spatial C
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input sequence

Normalize Denormalize

latent codes

reconstructions

Figure 3: Architecture of the VAE

Transformer We illustrate the components of our continuous transformer in Figure 4. We linearly
project the codes obtained with the encoder, and add a prefix with the tokens derived from the
normalization statistics. We discard the prefix from the outputs of the causal transformer and then
apply a mean head, a scale head, and a mixture head to obtain the GMM coefficients.

B RELATED WORK

Language model for images and videos Several works have considered language modeling for
image or video generation by combining a VQ-VAE (Oord et al., 2017) with a generative language
transformer (Brown et al., 2020). For images, VQGAN Esser et al. (2021) improved upon this
framework by using a perceptual and an adversarial loss to boost the reconstructions quality of
the decoder from the quantized latent representation. Instead of employing a causal transformer,
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Linear

Causal Transformer with Prefix

...... ...

mean head scale head mix head

gaussian mixture model parameters

Figure 4: Architecture of our continuous causal transformer.

MaskGIT proposed a bi-directional transformer (Devlin et al. (2018)) with a scheduling mechanism
to accelerate the sampling procedure. Departing from this direction, Tschannen et al. (2024) recently
introduced a continuous transformer for image generation and assessed its performance with the
causal and masked architectures. In video generation, similar techniques relying on quantization
have also been introduced, first with VideoGPT (Yan et al., 2021), and more recently with magvit
(Yu et al., 2023a) and magvit2 (Yu et al., 2023b). The latter, which introduced a new quantization
scheme, obtained results on-par with diffusion models. To the best of our knowledge, there is no
continuous transformer for video generation.

Multiple Physics Recent works have advanced neural solvers and surrogate models for PDEs
within Scientific Machine Learning (SciML). Brandstetter et al. (2022) introduced a message-
passing neural solver that includes additional parameter inputs to improve its time-stepping scheme.
Takamoto et al. (2023) developed a channel attention mechanism, using parameter embeddings of
PDE coefficients to boost the generalization of neural surrogate models across different PDE param-
eters. Subramanian et al. (2023) investigated the application of pre-trained ML models to SciML
via transfer learning, finding that fine-tuning these models can significantly reduce the necessity for
extensive downstream examples for adaptation.

Kirchmeyer et al. (2022) addressed the issue of unknown PDE parameters at the time of inference
by adjusting network weights to better suit observed dynamics, using meta-learning to adapt the
network across varied environments. Extending the concept of adaptability, McCabe et al. (2023)
delved into multiphysics modeling with foundation models. They proposed an architecture to inte-
grate diverse physical signals from different PDEs into a single high-dimensional space, applying a
transformer architecture, similar to those in video prediction, to forecast dynamics. Their method,
especially effective for 2D equations, highlights the potential of using foundation models in for
modeling PDEs and more broadly for SciML applications.
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C ADDITIONAL RESULTS

C.1 BURGERS FULL RESULTS

The Burgers’ equation under consideration lacks a forcing term, leading to a rapid decrease in fluid
velocity amplitude over time. This aspect makes the dynamics challenging to predict at the early
stages of the trajectory for all models, a phenomenon highlighted in Figure 5. For instance, FNO
is not able to unroll the dynamics from t = 0, while it does not diverge when starting from a later
timestamp. In contrast, our model is capable of handling this dynamics quite well, as it consistently
outperforms other baselines, for all the considered starting times (Figure 6).
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Figure 5: Burgers - Starting time influence on each model - Test relative L2 loss with different
models for rollouts of lengths (1, 10, 25), starting from (t = 0, t = 25, t = 50, t = 70).

C.2 ROBUSTNESS TO THE CONTEXT SIZE

In the experiments, we fixed k = 4, which means the baselines have been trained and tested with
an input sequence of size 5. They cannot be used outside of this scope, with less or more context.
In contrast, our architecture benefits from the flexibility of transformers and can work with different
context lengths. In theory, it should be enough to infer the correct PDE coefficient parameter from
the observation: (ut,ut+∆t) and thus to unroll the correct dynamics. However, in practice this de-
pends on the nature of the equation, and providing more context is useful to decrease the uncertainty
over the estimation. Experimentally, we observed that our model performed at the same level for
Advection with a context of size 2, better than all the baselines, and that its performance slightly
deteriorated for Burgers, though still outperforming other baselines. We show the results in Figure 7

C.3 QUALITATIVE RESULTS

We provide a comparison of the predicted trajectories with Zebra and the ground truth for several
test trajectories on Advection with β=2.0 (Figure 8, Figure 9, Figure 11, Figure 10, Figure 12) and
Burgers with ν = 0.01 (Figure 13, Figure 14, Figure 15, Figure 16, Figure 17). In both cases, we
start from the initial condition at t = 0 and unroll for 25 steps. For clarity, we represent only one
timestamp out of 5 for advection.
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Figure 6: Burgers - Model Comparison by starting time - Test relative L2 loss for rollouts of lengths
(1, 10, 25), starting from (t = 0, t = 25, t = 50, t = 70).
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Figure 7: Comparative performance between Zebra with an input sequence of size 5, as used during
the pretraining, and a sequence of size 2. We start from t = 0 and unroll for 1, 10, 25 steps.
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Figure 8: Test trajectory on Advection (β = 2.0). Left is the predicted trajectory and right is the
ground truth.
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Figure 9: Test trajectory on Advection (β = 2.0). Left is the predicted trajectory and right is the
ground truth.
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Figure 10: Test trajectory on Advection (β = 2.0). Left is the predicted trajectory and right is the
ground truth.
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Figure 11: Test trajectory on Advection (β = 2.0). Left is the predicted trajectory and right is the
ground truth.
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Figure 12: Test trajectory on Advection (β = 2.0). Left is the predicted trajectory and right is the
ground truth.
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Figure 13: Test trajectory on Burgers (ν = 0.01). Left is the predicted trajectory and right is the
ground truth.
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Figure 14: Test trajectory on Burgers (ν = 0.01). Left is the predicted trajectory and right is the
ground truth.
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Figure 15: Test trajectory on Burgers (ν = 0.01). Left is the predicted trajectory and right is the
ground truth.
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Figure 16: Test trajectory on Burgers (ν = 0.01). Left is the predicted trajectory and right is the
ground truth.
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Figure 17: Test trajectory on Burgers (ν = 0.01). Left is the predicted trajectory and right is the
ground truth.
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