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ABSTRACT

Supervised Fine-Tuning (SFT) serves as a crucial phase in aligning Large Lan-
guage Models (LLMs) to specific task prerequisites. The selection of fine-
tuning data profoundly influences the model’s performance, a choice traditionally
grounded in data quality and distribution. In this paper, we introduce a new di-
mension in SFT data selection: learnability. This new dimension is motivated by
the intuition that SFT unlocks capabilities acquired by a LLM during the pretrain-
ing phase. Given that different pretrained models have disparate capabilities, the
SFT data appropriate for one may not suit another. Thus, we introduce the term
“learnability” to define the suitability of data for effective learning by the model.
We present the Loss Based SFT Data Selection (LoBaSS) method, utilizing data
learnability as the principal criterion for the selection SFT data. This method pro-
vides a nuanced approach, allowing the alignment of data selection with inherent
model capabilities, ensuring optimal compatibility and learning efficiency. In ex-
perimental comparisons involving 7B and 13B models, our LoBaSS method is
able to surpass full-data fine-tuning at merely 6% of the total training data. When
employing 16.7% of the data, LoBaSS harmonizes the model’s capabilities across
conversational and mathematical domains, proving its efficacy and adaptability.

1 INTRODUCTION

Large Language Models (LLMs) (Brown et al.,|2020; [Chowdhery et al., [2022} Touvron et al., 2023
Ouyang et al.,|2022) have sparked a revolution in the field of Natural Language Processing (NLP),
with far reaching impacts in domains such as law (Cui et al., |2023), medical (Singhal et al. [2022)
and finance (Wu et al.| [2023). A critical step in aligning LLMs to human preference is Supervised
Fine-tuning (SFT), which enables pretrained models to exhibit strong instruction-following capabil-
ities (Chung et al.| 2022} |Ouyang et al., 2022} [Touvron et al., 2023} |Wang et al.| 2022} [Zheng et al.,
2023). While the selection of training data is important for all stages of LLM training, it is particu-
larly important for the SFT stage where a few thousand of carefully curated data enables finetuned
model to demonstrate remarkable performanceZhou et al.|(2023)).

In general, there have been two primary approaches to obtaining fine-tuning data: 1) distilling data
from powerful teacher models (Taori et al., 2023; | Xu et al.,|2023)) , and 2) using manually annotated
data (Zhou et al., [2023). In determining what constitutes good fine-tuning data, a common consen-
sus is that valuable data is of high quality and diversity (Ji et al.l 2023; [Zhou et al., 2023} |Chen
et al., 2023bga). In particular, it is commonly assumed that the quality of the data ensures that the
fine-tuned model learns accurate and reliable information, while its diversity helps the model gener-
alize better to a wide range of tasks and scenarios. In practice, for example, Alpagasus (Chen et al.,
2023b)contends that low-quality data within the dataset is detrimental and utilizes GPT-4 (OpenAl,
2023)) to assess data quality and select for higher-quality data. Humpback (Li et al.,2023a)) also em-
ploys a powerful language model for data selection, while concurrently conducting iterative rounds
of fine-tuning and filtering. On the other hand, works such as (Chen et al.,|2023a)) rely on sampling
from clusters of prompt embeddings to preserve data distribution.

However, despite the progress made in previous works on SFT data selection, we argue that these
methods do not take into account the model’s intrinsic capabilities and what data will best suited
for a given model. As argued in the “Superficial Alignment Hypothesis™ (Zhou et al.l [2023), the
fine-tuning process unlocks the capabilities of pretrained LLMs, which implies that the selection of
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data for fine-tuning should be tightly coupled to the model of choice. In this work, we introduce a
new dimension for constructing fine-tuning datasets by proposing the criterion of data learnability,
where we assert that data with high learnability should meet the following three constraints: i)
Data lacking informative content for the model should be avoided. ii) Data that is excessively
demanding for the model should be avoided. iii) Data that can be learned more effectively by
the model during the fine-tuning process is preferable.

To fulfill these constraints, we put forward our loss-based supervised fine-tuning data selection
method (LoBaSS). This method calculates the learnability scores of data points by measuring their
loss with respect to both the pretrained model and a fine-tuned reference model. Subsequently, we
select the data points with the highest scores. In order to evaluate the effectiveness of our proposed
approach, we conduct experiments using the 7B and 13B LLaMA models (Touvron et al., [2023) on
the Alpaca open source dataset (Taori et al., [2023)). We select the Self-Instruct (Wang et al.| |[2022),
Vicuna (Zheng et al.,|2023)), Koala (Geng et al.,2023)), OpenAssistant (Kopf et al.,[2023)), and Help-
ful Base (Bai et al.l [2022) as test datasets. We employ both manual comparisons and used GPT-4
as the referee for evaluation (Zheng et al.,|2023). The comparison includes models fine-tuned with
the full dataset and models fine-tuned with data filtered using the CharGPT. Figure [I]illustrates our
experimental results, showing that our fine-tuned models, using only 6.15% of the data, significantly
outperform models fine-tuned with the full dataset and those fine-tuned with data filtered using the
ChatGPT. At the same time, we conduct data mixing experiments to validate the effectiveness of
our approach in scenarios involving data blending. We achieve a balance between mathematical and
general conversation capabilities using 16.7% of the full dataset
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7B : LoBaSS vs. Baselines Tie 13B : LoBaSS vs. Baselines
Ours Loses

Ours vs. 52K (G) q Ours vs. 52K (G) q
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GPT-Select (H) GPT-Select (H)

Figure 1: Our method outperforms full data fine-tuning and ChatGPT filtering method.
The comparison presented the performance of the models fine-tuned with data selected using our
method(3,000 items), the full Alpaca dataset and data filtered using ChatGPT (9,229 items). In this
context, G’ represents using GPT-4 as the judge, and "H” represents human judgment.

To summarize, our contributions are as follows:

1. Differing from quality and distribution, we propose a novel perspective of evaluating fine-tuning
data based on learnability, introduce a quantifiable metric for the selection of SFT data.

2. We propose the LoBaSS method, which leverages data learnability as the starting point and em-
ploys a local model for secure, efficient, and high-quality data selection.

3. In experiments with the 7B and 13B models, we surpassed the performance of the full dataset
using 6% of the data. With 16.7% of the full dataset, we achieved a balance in the model’s
capabilities in both conversation and mathematical domains.

2 RELATED WORK

Supervised Fine-tuning.  In the current alignment process of Large Language Models (LLM),
Supervised Fine-tuning (SFT) plays a pivotal role. This step aims to fine-tune the LLM using a
small amount of data to enable it to follow human user commands. Self-Instruct (Wang et al.,
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2022) generates a significant volume of data for SFT using seed prompts and teacher models. This
approach has led to the development of numerous models trained using distillation methods with
powerful models (e.g. GPT-4), such as Alpaca (Taori et al.l2023) and WizardLM (Xu et al.} 2023).

Apart from distillation with strong models, human-generated data also serves as a high-quality
source for SFT data. InstructGPT (Ouyang et al., 2022), for instance, utilizes manually annotated
data as a source for SFT in the Reinforcement Learning from Human Feedback (RLHF) method.
Vicuna (Zheng et al.l [2023), on the other hand, leverages user interaction data to construct the
SharedGPT dataset.

Data for Supervised Fine-tuning. In the context of SFT, data’s excellence stands as the most
pivotal concern, as it directly determines the performance of the fine-tuned model. It is widely
acknowledged that the quality of an SFT dataset hinges on two key aspects: firstly, the distribution of
the data should ideally be uniform and aligned with the requirements of the intended usage scenarios.
Works such as (Xie et al.,[2023a; J1 et al., 2023} |Chen et al., 2023a)) focus on the data distribution to
enhance training efficiency. Secondly, data quality is generally deemed more critical than quantity
during the SFT process. LIMA (Zhou et al [2023), for example, suggests that the effectiveness of
SFT with a small set of high-quality data significantly surpasses that of large-scale datasets.

In this paper, we introduce a novel perspective on assessing data quality, emphasizing the learnability
of the data by the model. This implies that the data should align with the model’s current capabilities
and offer the potential for greater improvements in performance.

Data Selection. Past methods such as DoReMi (Xie et al.l [2023a), DRO (Oren et al., [2019),
RHO (Mindermann et al., 2022), and DSIR (Xie et al., 2023b) have primarily focused on data se-
lection during pre-training, and RHO also uses loss based method. However, in the context of SFT,
there are significant differences in data distribution compared to pre-training. Additionally, SFT’s
objective, which is to follow human instructions, is closely tied to model capabilities. Recent SFT
data selection approaches, like AlpaGasus (Chen et al., 2023b)), employ ChatGPT to assess data
quality, which carries the risk of data leakage and considers only the inherent quality of the data.
Humpback (Li et al, 2023a) utilizes complex backtranslation processes, whereas our method is
comparatively straightforward and efficient. Instruction Mining (Cao et al. [2023) employs multi-
ple indicators for data selection, while our approach leverages a reference model to highlight data
learnability.

3 METHOD

3.1 OVERVIEW

Besides data distribution and data quality, we argue that the data’s learnability is a key factor influ-
encing its excellence for a model. Therefore, we propose the LoBaSS method, which starts from
the perspective of data learnability, to explore what kind of data can be better learned in the SFT
process, to further guide the construction of data sets in the SFT stage, reduce the training cost of
SFT, and improve the training effect of SFT.

The main procedure can be divided into two steps: first, using the full data to fine-tune the pretrained
model (what we refer to as the initial model here), to obtain the reference model; then, using the
reference model and the initial model to calculate the reference loss and the initial loss of each data
point, and then obtain the score of each data point through these two losses. Subsequently, sort the
scores to obtain the top-ranked data points as the selected dataset. Figure |2[ shows the overview of
the method.

3.2 INITIALIZATION

Full Dataset.  The target of LoBaSS is to select an efficient subset from a large SFT dataset. We
need a SFT dataset, which we refer to as the full dataset Dy,;;. Each data point in the full dataset is
formatted as {x;, y; }, where z; represents the prompt and y; represents the response to this prompt.
The prompt is composed of a consistent prompt template and instructions.

Initial Model. LoBaSS does not use online model services. It uses only local models. We need
a local pretrained language model, which we refer to as the initial model M. In contrast, the
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Figure 2: The overview of LoBaSS method. We start from a pretrained model, e.g.LLaMA and
mixed SFT dataset, e.g. Alpaca. Reference Model Training: the initial model is fine-tuned with
the full dataset to get the reference model. Data Selection: both loss of reference model and initial
model is used to compute the score of each data point and the score is then ranked for selection.

language model obtained by supervised fine-tuning a pretrained model with mixed dataset D, is
referred to as the reference model M.

3.3 SELECTION FUNCTION

Previous work on SFT data screening mainly focused on the quality of data and the distribution of
data, without considering the specificity of data to models. We argue that the difficulty and value of
learning the same data by different models are different. Whether a specific model can learn certain
data well is defined by us as the learnability of the data in the previous section.

What kind of data has good learnability? We give three constraints: i) Data lacking informative
content for the model should be avoided, ii) Data that is excessively demanding for the model
should be avoided, and iii) Data that can be learned more effectively by the model during the
fine-tuning process is preferable;

We now mark a fine-tuned model M, that calculates the SFT loss for a data point (x;, y;) through
a given loss function as Ly¢(x;, y;) and the loss of the pre-trained model M;y; for this data point as
Lini(24,y;).The loss function we use in practice is the cross-entropy loss as shown in Equation
Next, we will discuss these three constraints in detail to come up with a formula that meets these
three constraints we proposed.

Y yicy —logp(y'|z)

)= = )

)

Constraint 1. Data lacking informative content for the model should be avoided.

When a task can already be effectively performed by a pre-trained model, there is no need to fine-
tune the model extensively on this task, and thus, such data holds limited value for model fine-
tuning. This type of data lacks informative content for the model, resulting in marginal performance
improvements during the fine-tuning process. Therefore, the introduction of such data should be
avoided during fine-tuning. We measure the informativeness of a data point (x;,y;) by its loss
value, determining whether it provides any additional information to the model. If a data point
exhibits both low Liyi(z;,y;) and Lyer(x;, y;), it suggests that (x;, y;) lacks informative content for
the pre-trained model. To adhere to Constraint 1, such data should be screened out.

Constraint 2. Data that is excessively demanding for the model should be avoided.

When a task is challenging both for a pre-trained model and for the model after fine-tuning, it is
excessively demanding for the model, meaning that the task’s difficulty surpasses the model’s capa-
bility. When a piece of data is incomprehensible or overly challenging for the model, introducing
such data during fine-tuning is detrimental. Therefore, we should also avoid introducing such data
during the fine-tuning process. We similarly measure the data point’s difficulty for the model by



Under review as a conference paper at ICLR 2024

examining its loss. If the Lini(x;,y;) and Lyer(x;,y;) of a data point (z;,y;) are both high, then it
indicates that (x;,y;) is is excessively demanding for the model. To adhere to Constraint 2, such
data should also be screened out.

Constraint 3. Data that can be learned more effectively by the model during the fine-tuning
process is preferable.

When a task is challenging for a pre-trained model but the model can complete this task after fine-
tuning, we consider that the data has been efficiently learned by the model. When a data point has
been efficiently learned by the model, it indicates that this data point holds meaningful learning
significance during the fine-tuning process. We can observe whether a data point is effectively
learned by the model by comparing the difference between the loss before and after fine-tuning.
Specifically, for a data point (z;,y;), if Lin(2;,y;) is high, it indicates that the pretrained model
cannot perform well on this task; if Lt(z;, y;) is low, it indicates that after fine-tuning, the model
has learned its information well and can complete this task. To adhere to Constraint 3, such data
points are considered to be selected and retained.

Considering the three constraints described above, we need to remove data points (x;, y;) with both
Lyet(zi,y;) and Lini(z;, y;) too small or too large, and retain data points with Ly (z;, y;) large and
Lief(x;,y;) small. These are the three principles we use to select data. Based on these principles,
we propose Equation [2]to score different data points.

S(xi,yi) = Lini(%i,¥i) — Leet(24, ¥4) 2

Then, we need to select the Top-K scoring data points, which can be expressed as Equation [3] When
S(x4,y;) is large, it means that the difference between Liy;(2;,y;) and Lyee(x;,y;) is large. Let’s
verify whether this equation can meet the three constraints proposed: if Liyi(x;,y;) is small and
Lyet(x4,y;) is small, then S(z;,y;) should be small, and (x;,y;) will be screened out, meeting
Constraint 1; if Lini(a;, y;) is large and Lyes(x;, y;) is large, then S(z;,y;) will also be small and
(24, y;) will be screened out, meeting Constraint 2; if Liy;(x;,y;) is large and Lyef(x;, y;) is small,
then S(x;,y;) will be relatively large and (z;, y;) will be selected, meeting Constraint 3. Therefore,
Equation [3|can well meet the three constraints we proposed.

Dselect - topk(mi’yi)epm (Lini (xh yz) - Lref (xiv yz)) (3)

3.4 NORMALIZATION

The equation proposed in the previous subsection may have a potential problem: if Ly (z;, ;)
corresponding to (z;,y;) is particularly large and L.¢(z;, y;) is also large, it is possible to meet the
requirement of a large S(z;, y;), but such data clearly does not meet our expectations. We observe
the presence of this issue in our experiments, which is elaborated upon in detail in Appendix

To solve this problem, we introduce a normalization term into the formula for score calculation.
This introduces a question of choosing L. or L, as the normalization term. In fact, this choice will
not change the order of ranking. We prove this in Appendix In this article, we choose Ly as
the normalization term, so we can obtain the Equation [] for calculating the score and the Equation
for data selection.

Lini (23, Yi) — Lrer(xi, vs)

Snorm(xivyi) = I (I y) 4)
mni 19 3
Lini (wi; yi) = Liet (%, Yi
Disclectym = topk(wixyz‘)eD”‘ ( o [:zm)(xz yrj;( : )) ©)

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

SFT Dataset.  To explore the effectiveness of this method on both high-quality and low-quality
data, we conduct experiments using high-quality and low-quality datasets respectively. The prompts
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of the high-quality and low-quality datasets are identical and both come from the Alpaca dataset.
The responses of the high-quality data are generated by the GPT-4, which we call Alpaca-4, while
the responses of the low-quality data are generated by the GPT-3.5-Turbo, which we call Alpaca-
3.5. Both datasets contain 52,002 English content and conform to our definition of Full Dataset in
the previous section.

Backbones and Baselines.  To explore the scalability of this method, we select 7B and 13B
LLaMA (Touvron et al.| [2023) models as our backbones. We choose Text-Davinci-003 (Ouyang
et al.,|2022) as our baseline model. This model, based on GPT-3, has been trained using the RLHF
technique. It has undergone several stages, including initial training with manually labeled data for
SFT and subsequent fine-tuning using the Proximal Policy Optimization (PPO) (Schulman et al.,
2017) algorithm. Text-Davinci-003 exhibits strong adherence to user instructions and demonstrates
proficient performance.

We select the methods of random sampling and ChatGPT-based data filtering (Chen et al., |2023b)
as our baseline approaches for comparison, thus demonstrating the effectiveness and superiority of
our method. Using ChatGPT for data filtering is a widely adopted method for supervised fine-tuning
(SFT) data selection. In this approach, ChatGPT assigns a quality score to each data point in the
dataset, ranging from 1 to 5 as an integer, and then filters out the data points with high-quality scores
to create the selected dataset.

Test Dataset.  We used a mixed dataset as our test set, including the HH-RLHF, Koala, Self-
Instruct, Open Assistant, and Vicuna datasets. The test set consists of 800 test data, each of which is
a prompt, covering multiple aspects of daily use, such as generating, math, and coding, and can test
the model’s ability to follow instructions.

Evaluation Method. = We use two evaluation methods in this paper. One is the Fastchat (Zheng
et al., [2023) method, used to compare the models trained with the full data and the models trained
with the filtered data to obtain the relative results. The second method is the AlpacaEval (Li et al.,
2023b)method, used to compare the models trained with the filtered data with the fixed baseline
model (e.g. Text-Davinci-003) to obtain the absolute results. We employ the GPT-4 as the judge and
we also employ human annotators for judging.

4.2 SCALING ANALYSIS

To verify the effectiveness of this method on high-quality and low-quality datasets, we selected
Alpaca-3.5 and Alpaca-4 for experimentation; at the same time, to verify the effectiveness of this
method on models of different sizes, we selected 7B and 13B models for experimentation. From the
experimental results, it can be observed that the LoBaSS method achieves superior results compared
to fine-tuning with the full dataset, even when using only around 6% of the data, whether it is a high-
quality or low-quality dataset. We also conduct a detailed analysis of the selected data in Appendix

Our Method vs. ChatGPT Selecting We compare the performance of models fine-tuned based
on data selected by our method with models fine-tuned on ChatGPT selected data to assess the
effectiveness of our approach in comparison to ChatGPT selecting. Figure[I]illustrates the results of
this experiment.

Since the quality scores generated by the ChatGPT selecting method are discrete integers, we are
only able to select a specific number of data points for training. In this experiment, we choose
9,229 data points as a subset and fine-tuned the backbones on this dataset to establish the baseline.
Similarly, we use our method to select 3,000 data points as a subset and fine-tune the backbones
on this dataset. Another baseline involves fine-tuning the backbones with the entire dataset. The
training parameters in the experiment are kept identical.

We use GPT-4 and human evaluators as referees. During GPT-4 assessments, we perform position
swapping to eliminate positional bias. In human evaluations, we do not disclose which model gener-
ated each response, and the placement order is randomized to eliminate potential biases. Due to the
high cost of human evaluation, our test dataset was randomly selected by taking 20 questions from
each of the five datasets mentioned earlier, resulting in a mixed test set of 100 questions in total.
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The experimental results indicate that, on the test dataset, models fine-tuned with data selected using
our method consistently outperform those fine-tuned with data filtered by ChatGPT and models fine-
tuned with the full dataset, whether evaluated through human ratings or GPT-4 based judging.

Alpaca-3.5-Selected vs. Alpaca-3.5-52k  We compared models trained with various sizes of
datasets filtered by our method and with the full dataset, using the same hyperparameters and using

the Vicuna dataset as the test set. To observe the phenomenon more clearly, we define Win Score :=
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Figure 3: Models fine-tuned with data selected by LoBaSS surpass the full dataset on Al-
paca3.5. This figure shows the win score comparison between models trained with different sizes of
datasets and the full dataset, as well as the improvement brought by using the normalization method.
We select the model fine-tuned on the full dataset as the baseline.

From the experimental results in Figure [3| we can see that our method can achieve good results
on both 7B and 13B models. With as few as 3,000 data points (5.77 %), it can achieve better
results than those achieved with the full dataset (52K). We can also observe that after using the
improved normalization method, the data filtered by our method is significantly better in quality
and the model performance is significantly improved. With our method, less than 6% of the data
is required to obtain a model performance exceeding that of a model trained with the full dataset,
indicating that in the SFT process, much of the data in the dataset does not contribute significantly
to the model fine-tuning or even harms the model performance. We started from the learnability of
the data and removed data that does not contribute significantly to the model fine-tuning or is even
harmful through data filtering, thereby improving the efficiency and performance of model training.

Alpaca-4-Selected vs. Text-Davinci-003 In the Alpaca-3.5 experiment, our method achieved
good results, but due to the quality issues of the Alpaca-3.5 dataset, the difficulty of dataset filtering
was relatively low. To further validate the versatility of our method, we conducted experiments on
the higher-quality Alpaca-4 dataset using 7B and 13B models.

We compare the models fine-tuned with various sizes of datasets filtered by our method with Text-
Davinci-003, using a mixed dataset of 800 data points as the test set and using GPT-4 as the judge,
with a temperature setting of 0. Since the advantage of the normalization method was already
verified in the Alpaca-3.5 experiment, we adopted the normalization method in all experiments on
Alpaca-4.

From the experimental results in Figure f] we can see that our data filtering method still achieve
significant results on the high-quality Alpaca-4 dataset. With as few as 800 data points, similar
results to those achieved with full-dataset fine-tuning can be achieved. At 3,200 (6.15%) data points,
higher results than those achieved with full-dataset fine-tuning can be achieved on both the 7B and
13B experimental conditions. Through comparison with randomly selected data, we can prove that
the improvement in model performance is not due to the decrease in the number of data points but
rather that our data filtering method effectively selects data that is more learnable and valuable for
fine-tuning.
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Figure 4: Models fine-tuned with data selected by LoBaSS surpass the full dataset on Al-
paca4.This figure shows the win rate comparison between models fine-tuned with different sizes of
selected datasets and Text-Davinci-003, as well as a comparison with randomly selected data using
the same hyperparameters to demonstrate the significant improvement over random data selection.
To facilitate comparison, we used a logarithmic horizontal axis. We choose the model fine-tuned on
the full dataset as the baseline.

By increasing the size of the selected dataset, we also explore the effect of fine-tuning models with a
similar performance to that of the full-dataset model at around 3,000 (6%) data points. After 10,000
(20%) data points, the performance of the fine-tuned models begins to decline, indicating that the
fine-tuning performance of the models has saturated within this range. Since the patterns of the 7B
and 13B models are generally consistent, we believe that the saturation phenomenon occurs due to
the limit on the number of highly learnable data in the dataset rather than the saturation of the model
capacity.

4.3 DATA MIXING

As introduced in the previous subsection, starting from the perspective of data learnability, our data
selection method is capable of effectively compressing LLM fine-tuning data to approximately 6%
of the original volume, while achieving results similar to or even better than fine-tuning on the full
dataset. In practical applications, one highly meaningful use case for this method is in the context
of data mixing.

One significant challenge when fine-tuning large language models is the issue of data mixing. Cur-
rently, there exists an imbalance in the quantity of data available from different domains. For in-
stance, there is a plethora of data for general question answering, while acquiring data for mathe-
matical domains can be considerably more challenging. This data imbalance results in an imbalance
in the fine-tuned model’s capabilities, making data balance a critical factor in fine-tuning large lan-
guage models.

Our method can be employed for data compression, enabling the reduction of large-scale datasets to
smaller ones, which can then be mixed with smaller datasets to balance the multifaceted capabilities
of the model. We conducted experiments using the Alpaca-4 dataset to represent easily accessible
general question answering data and the GSM8K dataset to represent challenging-to-obtain math and
reasoning datasets. We selected Alpaca-4 datasets of varying sizes using our method and combined
them with the full GSM8K dataset (7K) to create a blended dataset for fine-tuning the model.

Referring to Figure [5] we can see that when we combine the GSM8K training set with a carefully
selected subset from Alpaca-4 and fine-tune the model using this smaller dataset, it effectively bal-
ances the model’s ability in general tasks and mathematical reasoning. To be more precise, when we
add 3200 filtered data points from Alpaca-4 into the mix, we achieve performance on the GSM8K
dataset that’s similar to fine-tuning solely on GSM8K data, all the while maintaining nearly the same
level of general task performance. This represents a notable improvement compared to fine-tuning
with the entire Alpaca-4 dataset.
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Figure 5: Our method significantly enhances the effectiveness of data mixing. The horizontal
axis represents the quantity of selected Alpaca-4 data, plotted on a logarithmic scale, while the verti-
cal axis represents GSM8K accuracy and the Win Rate compared to Text-Davinci-003, respectively.
In this case, we are using the model of 7B.

We achieved a performance of 98.6% in general tasks and 124.0% in the GSM8K dataset using only
17.2% of the training data compared to the full dataset via our data selection method.

5 LIMITATION AND DISCUSSION

One limitation of our work is that while we introduce learnability as a new dimension for measuring
SFT data excellence, we primarily focused on methods for only data selection. We did not apply
this perspective to the generation and augmentation of SFT data, limiting its potential to enhance
model performance. We plan to incorporate the perspective of learnability into the generation and
augmentation of data for SFT in the future. This approach will involve creating data that aligns with
different model capabilities, further enhancing the effectiveness of fine-tuning.

Furthermore, we do not conduct a specific analysis of how different model capabilities influence the
model’s selection preferences. Specifically, whether a model’s stronger performance in a specific
domain directly corresponds to LoBaSS-method-selected data being more inclined toward that do-
main. We have some preliminary analysis in Appendix [A.3] and we plan to delve deeper into this
issue in future work.

Another limitation is that in our exploration of data blending and capacity balance, we have not
specifically investigated what proportion of data blending would yield better results in terms of
capacity balance. This will be an important research direction for our near-term work.

6 CONCLUSION

We first introduced learnability as a new perspective to measure the excellence of SFT data, beyond
data distribution and quality. We proposed three constraints to define data learnability, and based on
these constraints, we introduced a loss-based data selection method for SFT data selection. In our
approach, we use the loss of both the backbone and fine-tuned models to calculate the learnability
score, and subsequently select the data with the highest scores. Experimental results on the Alpaca
dataset demonstrated that fine-tuning with only around 6% of the data can outperform using the full
dataset and is also superior to the method of data filtering using GPT-4. Our study offers a novel
and effective perspective on how to construct and select datasets for SFT, thereby expanding the
understanding for LLMs fine-tuning.
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A APPENDIX

A.1 NORMALIZATION DETAILS

To verify whether this problem exists, we observe the relationship between the loss and score of
selected 6400 data points in Doy , as shown in Figure[6] We can observe that with high loss values
are ranked at the forefront. This may expose the potential problem with Equation [3] we mentioned
earlier.

. loss-score of ini model . loss-score of ref model
18 - 18 -

16 - 16 -
14 - 14 -
12- 12 -

10 - 10-

Loss

. . . . — . 0- . f . ' ¥ .
0 10000 20000 30000 40000 50000 0 10000 20000 30000 40000 50000
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Figure 6: The horizontal axis of this figure is the score ranking, the closer to the left, the smaller the
ranking, that is, the larger the score; the vertical axis is the value of the loss. The left figure shows
the loss of My, and the right figure shows the loss of M.

We further analyze the cause of this phenomenon and believe that it may be caused by the calculation
method of loss in the fine-tuning process. Because in the fine-tuning process, we mask the tokens
corresponding to the prompt for the calculation of loss and only calculate the loss of the tokens
corresponding to the response, specifically, we calculate the average cross-entropy loss of each token
of the response. Therefore, we believe that the size of the loss may be related to the length of the
response. We observe the relationship between score and response length, and the results are shown
in Figure[7] At the front of the ranking, there is a phenomenon of increasing length of selected data
points. We believe this phenomenon is due to the potential error mentioned earlier.
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Figure 7: This figure shows the relationship between the length and ranking of the top-6400 subset
and 52000 full set before and after using the normalization method. In the top-6400 subset, we can
see that the ranking data with higher priority has a shorter length when not normalized, and this
problem can be solved by normalization.

After using the normalization method, we observe the relationship between loss and response length
again, and the results are shown in Figure

12
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A.2 PROOF

As long as we can demonstrate that when

Lini(z1,91) — Leet(1,y1) _ Lini(®2, y2) — Lret(22,Y2)
>
Lini(z1,91) Lini(z2,y2)

it also satisfies
Lini(x1,y1) — Lret(z1, Y1) < Lini(x2,y2) — Lret(z2, y2)

Lrer(1,y1) Lier(2, y2)
then we can achieve our goal.

Let’s begin the proof.

When
Lini(x1,y1) — Lret(z1, Y1) < Lini(x2,y2) — Lret(z2, y2)
Lini(x1,91) Lini(x2, y2)

we can get

Lre 0 b) Lre )

1— #(z1,41) 1 t(22, y2)

Lini(z1,91) Lini(z2,y2)
So

Lref(‘rlyyl) < Lref(‘r27y2)

Lini(z1,31)  Lini(%2,y2)
and

Lini(z1,91) _ Lini(z2,92)

Leet(z1,91) ~ Lret(22,92)
Then we subtract one from both sides of the inequality.

Lini(z1,91) — Leet(21, 1) _ Lini(®2,y2) — Lret(22,Y2)
>
Lyet(x1,31) Lyet(x2,y2)

And the proof is complete.

Through the above process, we have successfully demonstrated that choosing either Ly(z,y) or
Lini(z,y) as the denominator for normalization does not affect the ranking of the learnability score.

A.3 DATA ANALYSIS

To explore what types of data are required by the model during the SFT process, we conducted a
further analysis of the data selected by the 7B and 13B models.

The 7B and 13B models will have different gaps in different abilities (e.g. math, coding, knowledge),
so in theory, the data selected by learnability should also be different. Table[I] shows the similarity
of the data selected by the 7B and 13B models, which can be seen not to be very high. We used two
methods to analyze the differences between the data selected by the 7B and 13B models.

Scale of Dataset 800 1600 3200 6400 9600 26000 39000
Num of Same 516 1111 2399 5123 8033 24358 38075
Same Rate 0.645 0.694 0.749 0.800 0.837 0.937 0.976

Table 1: The number and proportion of data points selected by 7B and 13B models are same. Scale
of Dataset refers to the number of top data points after sorting, Num of Same refers to the number
of same data points in the two sets, and Same Rate refers to the proportion of the same data points
to all the selected data.

Benepar Method We used the Benepar method to analyze the distribution of the dataset. The
Benepar method divides natural language statements according to the verb predicate and noun ob-
ject, and hierarchical statistics were carried out with the predicate as the root node and the object as
the leaf node.
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(a) top 800 data points selected by 7B model (b) top 800 data points selected by 13B model

Figure 8: A comparison of the distribution of data filtered by the 7B and 13B models. The inner ring
represents verbs, which are the root nodes for sentence classification, and the outer ring are nouns,
which are the leaf nodes for sentence classification. [the text in the figure is too small. -PFLIU]

Figure [§| compares the Benepar distribution of the top 800 data points selected by 7B and 13B
models. It can be seen that compared with the 7B model, the data points selected by the 13B model
has fewer creation tasks (e.g. write, generate, create) and more interpretative tasks (e.g. explain,
describe), and the task types also have better diversity especially in the long tail.

LLM for classification Due to the Benepar method’s classification relying on the verb of a sen-
tence as the root node, it may not necessarily effectively convey the meaning of the sentence and
thus may not perform well in sentence classification. Considering this limitation, we employ the
powerful LLM as a classifier for a more precise classification.

To determine how the data is categorized, we start with Alpaca’s seed instructions and used GPT-4
to classify them into seven categories. Subsequently, we use GPT-4 to classify the first 800 data
entries selected by models 7B and 13B, as shown in Table@

Category 7B 13B  Delta(Rate)
Programming and Coding 60 56 -4(-6.6%)
Planning and Organization 63 57 -6 (-9.5%)
Knowledge and Information Extraction 275 296  +21 (+7.6%)
Language and Text Processing 53 45 -8 (-15.1%)
Creative Writing and Entertainment 311 286 -25(-8.0%)
Problem Solving and Math 26 46 +20 (+76.9%)
Recommendations and Suggestions 9 8 -1 (-11.1%)
Others 3 6 -

Table 2: The number of items in each category selected by 7B and 13B model.We also show the
difference between the data selected by 7B and 13B model.

By observing, we can notice that the data in the "Problem Solving and Math” category showed the
most significant change between the 7B and 13B data, increasing by 76.9%. This phenomenon par-
tially aligns with our expectations, indicating a substantial difference in mathematical and reasoning
capabilities between the 7B and 13B models. Further analysis and investigation are left for future
work to complete.
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