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Abstract

Although training machine learning models for robustness is critical for real-world1

adoption, determining how to best ensure robustness remains an open problem.2

Some methods (e.g., DRO) are overly conservative, while others (e.g., Group DRO)3

require domain knowledge that may be hard to obtain. In this work, we address4

limitations in prior approaches by assuming a more nuanced form of group shift:5

conditioned on the label, we assume that the true group function is simple. For6

example, we may expect that group shifts occur along high-level features (e.g.,7

image background, lighting). Thus, we aim to learn a model that maintains high8

accuracy on simple group functions realized by these features, but need not spend9

valuable model capacity achieving high accuracy on contrived groups of examples.10

Based on this idea, we formulate a two-player game where conditioned on the11

label the adversary can only separate datapoints into potential groups using simple12

features, which corresponds to a bitrate constraint on the adversary’s capacity. Our13

resulting practical algorithm, Bitrate-Constrained DRO (BR-DRO), does not require14

group information on training samples yet matches the performance of Group DRO.15

Our theoretical analysis reveals that in some settings BR-DRO objective can provably16

yield statistically efficient and less pessimistic solutions than unconstrained DRO.17

1 Introduction18

A common form of distribution shift is group shift, where the source and target differ only in the19

marginal distribution over finite groups or sub-populations, with no change in group conditionals [43,20

18, 46]. Prior works consider various approaches to address group shift. One solution is to ensure21

robustness to worst case shifts using distributionally robust optimization (DRO) [4, 7, 17], which22

considers a two-player game where a learner minimizes risk on distributions chosen by an adversary23

from a predefined uncertainty set. As the adversary is unconstrained in proposing distributions,24

DRO often yields overly pessimistic solutions [25] and can suffer from statistical challenges [18].25

Methods like Group DRO [46] avoid overly pessimistic solutions by assuming knowledge of group26

membership for each training example. However, these group-based methods provide no guarantees27

on shifts that deviate from the predefined groups, and are not applicable to problems that lack group28

knowledge. In this work, we therefore ask: Can we train non-pessimistic robust models without29

access to group annotations on training examples?30

We address this question by considering a more nuanced assumption on the structure of the underlying31

groups. We assume that, conditioned on the label, group boundaries are realized by high-level features32

that depend on a small set of underlying factors. This leads to simpler group functions with large33

margins and simple decision boundaries (Figure 1 (left)). Invoking the principle of minimum34

description length [21], restricting our adversary to functions that satisfy this assumption corresponds35

to a bitrate constraint. In DRO, the adversary upweights points with higher losses under the current36
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Figure 1: Bitrate-Constrained DRO: A method that assumes group shifts along low-bitrate features, and
restricts the adversary appropriately so that the solution found is less pessimistic and more robust to group shifts.
Our method is also robust to training noise. (Left) In Waterbirds [54], the spurious feature background is a large
margin simple feature that separates the majority and minority points in each class. (Right) Prior works [31, 35]
that upweight arbitrary points with high losses force the model to memorize noisy mislabeled points while our
method is robust to noise and only upweights the true minority group without any knowledge of its identity.

learner, which in practice often correspond to examples that belong to a rare group, contain complex37

patterns, or are mislabeled [14, 53]. Restricting the adversary’s capacity prevents it from upweighting38

individual hard or mislabeled examples (as they cannot be identified with simple features), and biases39

it towards identifying erroneous data points misclassified by simple features. This also complements40

the failure mode of neural networks trained with stochastic gradient descent (SGD) that rely on41

simple spurious features that correctly classify points in the majority group but may fail on minority42

groups [10].43

The main contribution of this paper is Bitrate-Constrained DRO (BR-DRO), a supervised learning44

procedure that provides robustness to distribution shifts along groups realized by simple functions.45

Despite not using group information on training examples, we demonstrate that BR-DRO can match the46

performance of methods requiring them. We also find that BR-DRO correctly identifies true minority47

points, whereas DRO without group information does not. This indicates that not optimizing for48

performance on contrived worst-case shifts can reduce the pessimism inherent in DRO. It further49

validates: (i) our assumption on the simple nature of group shift; and (ii) that our method of capacity50

control meaningfully structures the uncertainty set to be robust to such shifts. As a consequence of51

the constraint, we also find that BR-DRO is robust to random noise in the training data [51], since52

it cannot form “groups” entirely based on randomly mislabeled points with low bitrate features.53

This is in contrast with existing methods that use the learner’s training error to up-weight arbitrary54

sets of difficult training points [e.g., 35, 31], which we show are highly susceptible to label noise55

(see Figure 1). Finally, we theoretically analyze our approach—characterizing how the degree of56

constraint on the adversary can effect worst risk estimation and excess risk (pessimism) bounds, as57

well as convergence rates for specific online solvers.58

2 Bitrate-Constrained DRO59

Notation. With covariates X ⊂ Rd and labels Y , the given source P and unknown true target Q0 are60

measures over the measurable space (X × Y,Σ) and have densities p and q0 respectively (w.r.t. base61

measure µ). The learner’s choice is a hypothesis h : X 7→ Y in classH ⊂ L2(P ), and the adversary’s62

action in standard DRO is a target distribution Q in set QP,κ := {Q : Q ≪ P, Df (Q ||P ) ≤ κ}.63

Here, Df is the f -divergence between Q and P for a convex function f 1 with f(1) = 0. An64

equivalent action space for the adversary is the set of re-weighting functions:65

WP,κ = {w : X × Y 7→ R : w is measurable under P, EP [w] = 1, EP f(w) ≤ κ} (1)

For a convex loss function l : Y ×Y 7→ R+, we denote l(h) as the function over (x, y) that evaluates66

l(h(x), y), and use l0−1 to denote the loss function 1(h(x) ̸= y). Given either distribution Q ∈ QP,κ,67

or a re-weighting function w ∈ WP,κ, the risk of a learner h is:68

R(h,Q) = EQ [l(h)] R(h,w) = E(x,y)∼P [l(h(x), y) · w(x, y)] = ⟨l(h), w⟩P (2)

Note the overload of notation for R(h, ·). If the adversary is stochastic it picks a mixed action69

δ ∈ ∆(WP,κ), which is the set of all distributions overWP,κ. Whenever it is clear, we drop P, κ.70

Unconstrained DRO [7]. This is a min-max optimization problem understood as a two-player game,71

where the learner chooses a hypothesis, to minimize risk on the worst distribution that the adversary72

can choose from its set. Formally, this is given by equation 3. The first equivalence is clear from the73

definitions and for the second since R(h,Q) is linear in Q, the supremum over ∆(WP,κ) is a Dirac74

1For e.g., KL(Q || P ) can be derived with f(x) = x log x and for Total Variation f(x) = |x− 1|/2.
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delta over the best weighting inWP,κ. In the next section, we will see how a bitrate-constrained75

adversary can only pick certain actions from ∆(WP,κ).76

inf
h∈H

sup
Q∈QP,κ

R(h,Q) ≡ inf
h∈H

sup
w∈WP,κ

R(h,w) ≡ inf
h∈H

sup
δ∈∆(WP,κ)

Ew∼δ [R(h,w)] (3)

Group Shift. While the DRO framework is broad and addresses any unstructured shift, we focus on77

the specific case of group shift. First, for a given pair of measures P,Q we define what we mean by78

the group structure GP,Q (Definition 2.1). Intuitively, it is a set of sub-populations along which the79

distribution shifts, defined in a way that makes them uniquely identifiable. For e.g., in the Waterbirds80

dataset (Figure 1), there are four groups given by combinations of (label, background). Corollary 2.281

follows immediately from the definition of GP,Q. Using this definition, the standard group shift82

assumption [46] can be formally re-stated as Assumption 2.3.83

Definition 2.1 (group structure GP,Q). For Q ≪ P the group structure GP,Q={Gk}Kk=1 is the84

smallest finite set of disjoint groups {Gk}Kk=1 s.t. Q(∪Kk=1Gk)=1 and ∀k (i) Gk ∈ Σ, Q(Gk) > 085

and (ii) p(x, y | Gk) = q(x, y | Gk) > 0 a.e. in µ. If such a structure exists then GP,Q is well86

defined.87

Corollary 2.2 (uniqueness of GP,Q). ∀P,Q, the structure G(P,Q) is unique if it is well defined.88

Assumption 2.3 (standard group shift). There exists a well-defined group structure GP,Q0
s.t. target89

Q0 differs from P only in terms of marginal probabilities over all G ∈ GP,Q0
.90

How expressive is unconstrained adversary? Note that the set WP,κ includes all measurable91

functions (under P ) such that the re-weighted distribution is bounded in f -divergence (by κ). While92

prior works [48, 17] shrink κ to construct confidence intervals, this only controls the total mass that93

can be moved between measurable sets G1, G2 ∈ Σ, but does not restrict the choice of G1 and G294

itself. As noted by Hu et al. [25], such an adversary is highly expressive, and optimizing for the95

worst case only leads to the solution of empirical risk minimization (ERM) under l0−1 loss. Thus,96

we can conclude that DRO recovers degenerate solutions because the worst target inWP,κ lies far97

from the subspace of naturally occurring targets. Since it is hard to precisely characterize natural98

targets we make a nuanced assumption: the target Q0 only upsamples those rare subpopulations that99

are misclassified by simple features. We state this formally in Assumption 2.5 after we define the100

bitrate-constrained function classW(γ) in Definition 2.4. See Appendix A for additional discussion101

on when/why constraining capacity helps with distribution shift robustness.102

Definition 2.4. A function classW(γ) is bitrate-constrained if there exists a data independent prior103

π, s.t. W(γ) = {E[δ] : δ ∈ ∆(W), KL(δ || π) ≤ γ}.104

Assumption 2.5 (simple group shift). Target Q0 satisfies Assumption 2.3 (group shift) w.r.t. source105

P . Additionally, for some prior π and a small γ∗, the re-weighting function q0/p lies in a bitrate-106

constrained class W(γ∗). In other words, for every group G ∈ G(P,Q0), ∃wG ∈ W(γ∗) s.t.107

1((x, y) ∈ G) = wG a.e.. We refer to such a G as a simple group that is realized inW(γ∗).108

BR-DRO objective. According to Assumption 2.5, there cannot exist a target Q0 such that minority109

Gmin ∈ G(P,Q0) is not realized in bitrate constrained class W(γ∗). Thus, by constraining our110

adversary to a classW(γ) (for some γ that is user defined), we can possibly evade issues emerging111

from optimizing for performance on mislabeled or hard examples, even if they were rare. This gives112

us the objective in Equation 4 where the equalities hold from the linearity of ⟨·, ·⟩ and Definition 2.4.113

See Appendix A.1 for details on the practical implementation of BR-DRO.114

inf
h∈H

sup
δ∈∆(W)

KL(δ || π)≤γ

Ew∼δR(h,w) = inf
h∈H

sup
δ∈∆(W)

KL(δ || π)≤γ

⟨l(h),Eδ[w]⟩P = inf
h∈H

sup
w∈W(γ)

R(h,w) (4)

Theoretical Analysis. The main objective of our analysis of BR-DRO is to show how adding a bitrate115

constraint on the adversary can: (i) give us tighter statistical estimates of the worst risk; and (ii)116

control the pessimism (excess risk) of the learned solution. First, we provide worst risk generalization117

guarantees using the PAC-Bayes framework [15], along with a result for kernel adversary. Then, we118

discuss convergence rates and pessimism guarantees for the solution found by our online solver for a119

specific instance ofW(γ). See Appendix B for details.120

3 Experiments121

We discuss two sets of experiments here on robustness to spurious correlations and random label122

noise. For more details on these and other experiments please refer to Appendix C.123
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Waterbirds CelebA CivilComments
Method Avg WG Avg WG Avg WG

ERM 97.1 (0.1) 71.0 (0.4) 95.4 (0.2) 46.9 (1.0) 92.3 (0.2) 57.2 (0.9)

LfF [41] 90.7 (0.2) 77.6 (0.5) 85.3 (0.2) 77.4 (0.7) 92.4 (0.1) 58.9 (1.1)

RWY [26] 93.7 (0.3) 85.8 (0.5) 84.9 (0.2) 80.4 (0.3) 91.7 (0.2) 67.7 (0.7)

JTT [35] 93.2 (0.2) 86.6 (0.4) 87.6 (0.2) 81.3 (0.5) 90.8 (0.3) 69.4 (0.8)

CVaR DRO [31] 96.3 (0.2) 75.5 (0.4) 82.2 (0.3) 64.7 (0.6) 92.3 (0.2) 60.2 (0.8)

BR-DRO (VIB) (ours) 94.1 (0.2) 86.3 (0.3) 86.7 (0.2) 80.9 (0.4) 90.5 (0.2) 68.7 (0.9)

BR-DRO (l2) (ours) 93.8 (0.2) 86.4 (0.3) 87.7 (0.3) 80.4 (0.6) 91.0 (0.3) 68.9 (0.7)

Group DRO [46] 93.2 (0.3) 91.1 (0.3) 92.3 (0.3) 88.4 (0.6) 88.5 (0.3) 70.0 (0.5)

Table 1: BR-DRO recovers worst group performance gap between CVaR DRO and Group DRO: On
Waterbirds, CelebA and CivilComments we report test average (Avg) and test worst group (WG) accuracies for
BR-DRO and baselines. In (·) we report the standard error of the mean accuracy across five runs.
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Figure 2: (Left) Visualization (2d) of noisy synthetic data and learned predictors: We compare the decision
boundaries (projected onto core and spurious features) learned by JTT with BR-DRO when the adversary is
restricted to a sparse predictor. While our method recovers the core feature the baselines memorize the minority
points. (Right) BR-DRO is robust to random label noise in training data: Across varying levels of the fraction
of noise in training data we compare performance of BR-DRO with ERM and methods (JTT, CVaR DRO) that
naively up weight high loss datapoints.

Is BR-DRO robust to group shifts without training data group annotations? Table 1 compares the124

average and worst group accuracy for BR-DRO with ERM and four group shift robustness baselines:125

JTT, LtF, SUBY, and CVaR DRO. First, we see that unconstrained CVaR DRO underperforms other126

heuristic algorithms. This matches the observation made by Liu et al. [35]. Next, we see that adding127

bitrate constraints on the adversary via a KL term or l2 penalty significantly improves the performance128

of BR-DRO (VIB) or BR-DRO (l2), which now matches the best performing baseline (JTT). Thus, we129

see the less conservative nature of BR-DRO allows it to recover a large portion of the performance130

gap between Group DRO and CVaR DRO. Indirectly, this partially validates our Assumption 2.5,131

which states that the minority group is identified by a low bitrate adversary class. In Section C.3 we132

discuss exactly what fraction of the minority group is identified, and the role played by the strength133

of bitrate-constraint.134

Bitrate DRO is more robust to random label noise. Several methods for group robustness (e.g.,135

CVaR DRO, JTT) are based on the idea of up weighting points with high training losses. The goal136

is to obtain a learner with matching performance on every (small) fraction of points in the dataset.137

However, when training data has mislabeled examples, such an approach will likely yield degenerate138

solutions. This is because the adversary directly upweights any example where the learner has high139

loss, including datapoints with incorrect labels. Hence, even if the learner’s prediction matches the140

(unknown) true label, this formulation would force the learner to memorize incorrect labelings at the141

expense of learning the true underlying function. On the other hand, if the adversary is sufficiently142

bitrate constrained, it cannot upweight the arbitrary set of randomly mislabeled points, as this would143

require it to memorize those points. Our Assumption 2.5 also dictates that the distribution shift would144

not upsample such high bitrate noisy examples. Thus, our constraint on the adversary ensures BR-DRO145

is robust to label noise in the training data and our assumption on the target distribution retains its146

robustness to test time distribution shifts. In Figure 2b we highlight this failure mode of unconstrained147

up-weighting methods in contrast to BR-DRO. We first induce random label noise [14] of varying148

degrees into the Waterbirds and CelebA training sets. Then we run each method and compare149

worst group performance. In the presence of noise, BR-DRO significantly outperforms JTT and other150

approaches on both Waterbirds and CelebA, as it only upsamples the minority examples misclassified151

by simple features, ignoring the noisy examples for the reasons above. See Appendix C.1 for more152

details on experiments with synthetic data.153
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Appendix295

A Additional discussion on Bitrate-Constrained DRO296

Note on Assumption 2.5. Under the principle of minimum description length [21] any deviation297

from the prior (i.e., KL(δ || π)) increases the description length of the encoding δ ∈ ∆(W), thus298

we refer to W(γ) as being bitrate-constrained in the sense that it contains functions (means of299

distributions) that can be described with a limited number of bits given the prior π. Next we present300

arguments for why identifiability of simple (satisfy Assumption 2.5) minority groups can be critical301

for robustness.302

Neural networks can perform poorly on simple minorities. For a fixed target Q0, let’s say there303

exists two groups: Gmin and Gmaj ∈ G(P,Q0) such that P (Gmin)≪ P (Gmaj). By Assumption 2.5,304

both Gmin and Gmaj are simple (realized inW(γ∗)), and are thus separated by some simple feature.305

The learner’s class H is usually a class of overparameterized neural networks. When trained with306

stochastic gradient descent (SGD), these are biased towards learning simple features that classify a307

majority of the data [49, 52]. Thus, if the simple feature separating Gmin and Gmaj itself correlates308

with the label y on Gmaj, then neural networks would fit on this feature. This is precisely the case309

in the Waterbirds example, where the groups are defined by whether the simple feature background310

correlates with the label (Figure 1). Thus our assumption on the nature of shift complements the311

nature of neural networks perform poorly on simple minorities.312

The bitrate constraint helps identify simple unfair minorities in G(P,Q0). Any method that aims313

to be robust on Q0 must up-weight data points from Gmin but without knowing its identity. Since314

the unconstrained adversary upsamples any group of data points with high loss and low probability,315

it cannot distinguish between a rare group that is realized by simple functions inW(γ∗) and a rare316

group of examples that share no feature in common or may even be mislabeled. On the other hand,317

the group of mislabeled examples cannot be separated from the rest by functions inW(γ∗). Thus,318

a bitrate constraint adversary can only identify simple groups and upsamples those that incur high319

losses – possibly due to the simplicity bias of neural networks.320

A.1 Bitrate-Constrained DRO in Practice321

BR-DRO in practice. We parameterize the learner θh ∈ Θh and adversary θw ∈ Θw as neural322

networks2. Therefore, the objective in Equation 5 is no longer convex-concave and can have multiple323

local equilibria or stationary points [38]. The adversary’s objective also does not have a strong324

dual that can be solved through conic programs—a standard practice in DRO literature [42]. Thus,325

we provide an algorithm where both learner and adversary optimize BR-DRO iteratively through326

stochastic gradient ascent/descent (Algorithm 1). The adversary’s action spaceW(γ) is constrained327

either with an information bottleneck penalty by setting βvib ̸= 0 or l2 norm penalty by setting328

βl2 ̸= 0 in equation 5 below. While we can choose to constrain the adversary with both forms of329

constraints simultaneously we find that in practice picking only one of them for a given problem330

instance helps with tuning the degree of constraint. For more details on the architecture and other331

details see Appendix E.332

min
θh∈Θh

⟨l(θh),θ∗
w⟩P s.t. θ∗

w = argmax
θw∈Θw

Ladv(θw;θh, βvib, βl2 , η) (5)

Ladv(θw;θh, βvib, βl2 , η) = ⟨l(θh)− η,θw⟩P − βvib EP KL(p(z | x;θw) || N (0, Id))− βl2∥θw∥22

Training. For each example, the adversary takes as input: (i) the last layer output of the current333

learner’s feature network; and (ii) the input label. The adversary then outputs a weight (in [0, 1]). The334

idea of applying the adversary directly on the learner’s features (instead of the original input) is based335

on recent literature [45, 28] that suggests re-training the prediction head is sufficient for robustness to336

shifts. The adversary tries to maximize weights on examples with value ≥ η (hyperparameter) and337

minimize on others. For the learner, in addition to the example it takes as input the adversary assigned338

weight for that example from the previous round and uses it to reweigh its loss in a minibatch. Both339

players are updated in a round (Algorithm 1).340

2We use θh, θw and l(θh) to denote w(θw; (x, y)), h(θh;x) and l(h(θh;x), y) respectively.
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B Theoretical Analysis341

The main objective of our analysis of BR-DRO is to show how adding a bitrate constraint on the342

adversary can: (i) give us tighter statistical estimates of the worst risk; and (ii) control the pessimism343

(excess risk) of the learned solution. First, we provide worst risk generalization guarantees using the344

PAC-Bayes framework [15], along with a result for kernel adversary. Then, we provide convergence345

rates and pessimism guarantees for the solution found by our online solver for a specific instance of346

W(γ). For both these, we analyze the constrained form of the conditional value at risk (CVaR) DRO347

objective [31] below.348

Bitrate-Constrained CVaR DRO. When the uncertainty set Q is defined by the set of all distri-349

butions Q that have bounded likelihood i.e., ∥q/p∥∞ ≤ 1/α0, we recover the original CVaR DRO350

objective [19]. The bitrate-constrained version of CVaR DRO is given in equation 6 (see Appendix G351

for derivation). Note that, slightly different from Section 2, we defineW as the set of all measurable352

functions w: X× Y 7→ [0, 1], since the other convex restrictions in equation 1 are handled by dual353

variable η. As in Section 2, W(γ) is derived from W using Definition 2.4. In equation 6, if we354

replace the bitrate-constrained classW(γ) with the unrestrictedW then we recover the variational355

form of unconstrained CVaR DRO in Duchi et al. [17].356

L∗
cvar(γ) = inf

h∈H,η∈R
sup

w∈W(γ)

R(h, η, w) where, R(h, η, w) = (1/α0)⟨l(h)− η, w⟩P + η (6)

B.1 Worst risk estimation bounds for BR-DRO.357

Since we are only given a finite sampled dataset D ∼ Pn, we solve the objective in equation 6 using358

the empirical distribution P̂n. We denote the plug-in estimates as ĥγ
D, η̂γD. This incurs an estimation359

error for the true worst risk. But when we restrict our adversary to ∆(W, γ), for a fixed learner h we360

reduce the worst-case risk estimation error which scales with the bitrate KL(· || π) of the solution361

(deviation from prior π). Expanding this argument to every learner inH, with high probability we362

also reduce the estimation error for the worst risk of ĥγ
D. Theorem B.1 states this generalization363

guarantee more precisely.364

Theorem B.1 (worst-case risk generalization). With probability ≥ 1− δ over D ∼ Pn, the worst365

bitrate-constrained α0-CVaR risk for ĥγ
D can be upper bounded by the following oracle inequality:366

sup
w∈W(γ)

R(ĥγ
D, η̂γ

D, w) <∼ L∗
cvar(γ) +

M

α0

√(
γ + log

(
1

δ

)
+ (d+ 1) log

(
L2n

γ

)
+ logn

)
/(2n− 1),

when l(·, ·) is [0,M ]-bounded, L-Lipschitz andH is parameterized by convex set Θ ⊂ Rd.367

Informally, Theorem B.1 tells us that bitrate-constraint γ gracefully controls the estimation error368

O(
√
(γ + C(H))/n) (where C(H) is a complexity measure) if we know that Assumption 2.5 is369

satisfied. While this only tells us that our estimator is consistent with Op(1/
√
n), the estimate may370

itself be converging to a degenerate predictor, i.e., L∗
cvar(γ) may be very high. For example, if the371

adversary can cleanly separate mislabeled points even after the bitrate constraint, then presumably372

these noisy points with high losses would be the ones mainly contributing to the worst risk, and373

up-weighting these points would result in a learner that has memorized noise. Thus, it becomes374

equally important for us to analyze the excess risk (or the pessimism) for the learned solution. Since375

this is hard to study for any arbitrary bitrate-constrained classW(γ), we shall do so for the specific376

class of reproducing kernel Hilbert space (RKHS) functions.377

Special case of bounded RKHS. Let us assume there exists a prior Π such thatW(γ) in Definition 2.4378

is given by an RKHS induced by Mercer kernel k : X × X 7→ R, s.t. the eigenvalues of the kernel379

operator decay polynomially, i.e., µj <∼ j−2/γ (γ < 2). Then, if we solve for ĥγ
D, η̂γD by doing kernel380

ridge regression over norm bounded (∥f∥W(γ)≤B ≤ 1) smooth functions f then we can control: (i)381

the pessimism of the learned solution; and (ii) the generalization error (Theorem B.2). Formally, we382

refer to pessimism for estimates ĥγ
D, η̂γD as excess risk defined as:383

excess risk := sup
w∈W(γ)

| inf
h,η

R(h, η, w)−R(ĥγ
D, η̂γD, w)|. (7)
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Theorem B.2 (bounded RKHS). For l,H in Theorem B.1, and forW(γ) described above ∃ γ0 s.t.384

for all sufficiently bitrate-constrainedW(γ) i.e., γ≤γ0, w.h.p. 1− δ worst risk generalization error385

is O
(
(1/n)

(
log(1/δ) + (d+ 1) log(nB−γLγ/2)

))
and the excess risk is O(B) for ĥγ

D, η̂γD above.386

Thus, in the setting described above we have shown how bitrate-constraints given indirectly by γ,R387

can control both the pessimism and statistical estimation errors. Here, we directly analyzed the388

estimates ĥγ
D, η̂γD but did not describe the specific algorithm used to solve the objective in equation 6389

with P̂n. Now, we look at an iterative online algorithm to solve the same objective and see how390

bitrate-constraints can also influence convergence rates in this setting.391

B.2 Convergence and excess risk analysis for an online solver.392

In the following, we provide an algorithm to solve the objective in equation 6 and analyze how393

bitrate-constraint impacts the solver and the solution. For convex losses, the min-max objective in394

equation 6 has a unique solution and this matches the unique Nash equilibrium for the generic online395

algorithm (game) we describe (Lemma B.3). The algorithm is as follows: Consider a two-player396

zero-sum game where the learner uses a no-regret strategy to first play h ∈ H, η ∈ R to minimize397

Ew∼δR(h, η, w). Then, the adversary plays follow the regularized leader (FTRL) strategy to pick398

distribution δ ∈ ∆(W(γ)) to maximize the same. Our goal is to analyze the bitrate-constraint γ’s399

effect on the above algorithm’s convergence rate and the pessimistic nature of the solution found.400

For this, we need to first characterize the bitrate-constraint classW(γ). If we assume there exists a401

prior Π such thatW(γ) is Vapnik-Chervenokis (VC) class of dimension O(γ), then in Theorem B.4,402

we see that the iterates of our algorithm converge to the equilibrium (solution) in O(
√

γ log n/T )403

steps. Clearly, the degree of bitrate constraint can significantly impact the convergence rate for a404

generic solver that solves the constrained DRO objective. Theorem B.4 also bounds the excess risk405

(equation 7) on P̂n.406

Lemma B.3 (Nash equilibrium). For convex l(h), l(h) ∈ [0,M ], the objective in equation 6 has a407

unique solution which is also the Nash equilibrium of the game above when played over compact sets408

H× [0,M ], ∆(W, γ). We denote this equilibrium as h∗
D(γ), η∗D(γ), δ∗D(γ).409

Theorem B.4. At time step t, if the learner plays (ht, ηt) with no-regret and the adversary plays δt410

with FTRL strategy that uses a negative entropy regularizer on δ then average iterates (h̄T , η̄T , δ̄T ) =411

(1/T )
∑T

t=1(ht, ηt, δt) converge to the equilibrium (h∗
D(γ), η∗D(γ), δ∗D(γ)) at rate O(

√
γ log n/T ).412

Further the excess risk defined above is O((M/α0)
(
1− 1

nγ

)
).413

C Detailed experiments414

Our experiments aim to evaluate the performance of BR-DRO and compare it with ERM and group415

shift robustness methods that do not require group annotations for training examples. We conduct416

empirical analyses along the following axes: (i) worst group performance on datasets that exhibit417

known spurious correlations; (ii) robustness to random label noise in the training data; (iii) aver-418

age performance on hybrid covariate shift datasets with unspecified groups; and (iv) accuracy in419

identifying minority groups. See Appendix F for additional experiments and details.420

Baselines. Since our objective is to be robust to group shifts without group annotations on training421

examples, we explore baselines that either optimize for the worst minority group (CVaR DRO [31])422

or use training losses to identify specific minority points (LfF [41], JTT [35]). Group DRO [46] is423

treated as an oracle. We also compare with the simple re-weighting baseline (RWY) proposed by424

Idrissi et al. [26].425

Implementation details. We train using Resnet-50 [24] for all methods and datasets except Civil-426

Comments, where we use BERT [58]. For our VIB adversary, we use a 1-hidden layer neural network427

encoder and decoder (one for each label). As mentioned in Section 2, the adversary takes as input428

the learner model’s features and the true label to generate weights. All implementation and design429

choices for baselines were adopted directly from Liu et al. [35], Idrissi et al. [26]. We provide model430

selection methodology and other details in Appendix F.431

Datasets. For experiments in the known groups and label noise settings we use: (i) Waterbirds [54]432

(background is spurious), CelebA [36] (binary gender is spuriously correlated with label “blond”); and433
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Method FMoW Camelyon17
Avg W-Reg Avg

ERM 53.3 (0.1) 32.4 (0.3) 70.6 (1.6)

JTT [35] 52.1 (0.1) 31.8 (0.2) 66.3 (1.3)

LfF [41] 49.6 (0.2) 31.0 (0.3) 65.8 (1.2)

RWY [26] 50.8 (0.1) 30.9 (0.2) 69.9 (1.3)

Group DRO [46] 51.9 (0.2) 30.4 (0.3) 68.5 (0.9)

CVaR DRO [31] 51.5 (0.1) 31.0 (0.3) 66.8 (1.3)

BR-DRO (VIB) (ours) 52.0 (0.2) 31.8 (0.2) 70.4 (1.5)

BR-DRO (l2) (ours) 53.1 (0.1) 32.3 (0.2) 71.2 (1.0)

Table 2: Average (Avg) and worst region (W-Reg for FMoW) test accuracies on Camelyon17 and FMoW.

CivilComments (WILDS) [11] where the task is to predict “toxic” texts and there are 16 predefined434

groups [29]. We use FMoW and Camelyon17 [29] to test methods on datasets that do not have explicit435

group shifts. In FMoW the task is to predict land use from satellite images where the training/test set436

comprises of data before/after 2013. Test involves both subpopulation shifts over regions (e.g., Africa,437

Asia) and domain generalization over time (year). Camelyon17 presents a domain generalization438

problem where the task is to detect tumor in tissue slides from different sets of hospitals in train and439

test sets.440

C.1 More experiments on robustness to noise.441

To further verify our claims, we set up a noisily labeled synthetic dataset (see Appendix F for details).442

In Figure 2a we plot training samples as well as the solutions learned by BR-DRO and and JTT on443

synthetic data. In Figure 1(right) we also plot exactly which points are upweighted by BR-DRO and444

JTT. Using both figures, we note that JTT mainly upweights the noisy points (in red) and memorizes445

them using xnoise. Without any weights on minority, it memorizes them as well and learns component446

along spurious feature. On the contrary, when we restrict the adversary with BR-DRO to be sparse447

(l1 penalty), it only upweights minority samples, since no sparse predictor can separate noisy points448

in the data. Thus, the learner can no longer memorize the upweighted minority and we recover the449

robust predictor along core feature.450

C.2 How does BR-DRO perform on more general covariate shifts?451

In Figure 2 we report the average test accuracies for BR-DRO and baselines on the hybrid dataset452

FMoW and domain generalization dataset Camelyon17. In (·) we report the standard error of the453

mean accuracy across five runs. Given its hybrid nature, on FMoW we also report worst region454

accuracy. First, we note that on these datasets group shift robustness baselines do not do better than455

ERM. Some are either too pessimistic (e.g., CVaR DRO), or require heavy assumptions (e.g., Group456

DRO) to be robust to domain generalization. This is also noted by Gulrajani and Lopez-Paz [22].457

Next, we see that BR-DRO (l2 version) does better than other group shift baselines on both both worst458

region and average datasets and matches ERM performance on Camelyon17. One explanation could459

be that even though these datasets test models on new domains, there maybe some latent groups460

defining these domains that are simple and form a part of latent subpopulation shift. Investigating461

this claim further is a promising line of future work.462

C.3 What fraction of minority is recovered by Bitrate-Constrained DRO?463

We claim that our less pessimistic objective can more accurately recover (upsample) the true minority464

group if indeed the minority group is simple (see Assumption 2.5 for our definition of simple). In465

this section, we aim to verify this claim. If we treat examples in the top 10% (chosen for post hoc466

analysis) fraction of examples as our predicted minorities, we can check precision and recall of this467

decision on the Waterbirds and CelebA datasets. Figure 3 plots these metrics at each training epoch468

for BR-DRO (with varying βvib), JTT and CVaR DRO. Precision of the random baseline tells us the469

true fraction of minority examples in the data. First we note that BR-DRO consistently performs much470

better on this metric than unconstrained CVaR DRO. In fact, as we reduce strength of βvib we recover471

precision/recall close to the latter. This controlled experiment shows that the bitrate constraint is472
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Figure 3: By considering the fraction of points upweighted by our adversary (top 10%) as the positive class we
analyze the precision and recall of this class with respect to the minority group. and do the same for JTT, random
baseline and CVaR DRO. BR-DRO achieves highest precision and matches recall with JTT asymptotically. We
also find that increasing bitrate constraint βvib helps improving precision/recall.

helpful (and very much needed) in practice to identify rare simple groups. In Figure 3 we observe that473

asymptotically, the precision of BR-DRO is better than JTT on both datasets, while the recall is similar.474

Since importance weighting has little impact in later stages with exponential tail losses [52, 13], other475

losses (e.g., polytail Wang et al. [56]) may further improve the performance of BR-DRO as it gets476

better at identifying the minority classes when trained longer.477

D Related Work478

Prior works in robust ML [e.g., 32, 33, 20] address various forms of adversarial or structured shifts.479

We specifically review prior work on robustness to group shifts. While those based on DRO optimize480

for worst-case shifts in an explicit uncertainty set, the robust set is implicit for some others, with most481

using some form of importance weighting.482

Distributionally robust optimization (DRO). DRO methods generally optimize for worst-case483

performance on joint (x, y) distributions that lie in an f -divergence ball (uncertainty set) around the484

training distribution [7, 44, 8, 9, 40, 17, 19]. Hu et al. [25] highlights that the conservative nature485

of DRO may lead to degenerate solutions when the unrestricted adversary uniformly upweights all486

misclassified points. Sagawa et al. [46] proposes to address this by limiting the adversary to shifts that487

only differ in marginals over predefined groups. However, in addition to it being difficult to obtain488

this information, Kearns et al. [27] raise “gerrymandering” concerns with notions of robustness that489

fix a small number of groups apriori. While they propose a solution that looks at exponentially many490

subgroups defined over protected attributes, our method does not assume access to such attributes491

and aims to be fair on them as long as they are realized by simple functions. Finally, Zhai et al.492

[60] avoid conservative solutions by solving the DRO objective over randomized predictors learned493

through boosting. We consider deterministic and over-parameterized learners and instead constrain494

the adversary’s class.495

Constraining the DRO uncertainty set. In the marginal DRO setting, Duchi et al. [18] limit496

the adversary via easier-to-control reproducing kernel hilbert spaces (RKHS) or bounded Hölder497

continuous functions [34, 57]. While this reduces the statistical error in worst risk estimation, the498

size of the uncertainty set (scales with the data) remains too large to avoid cases where an adversary499

can re-weight mislabeled and hard examples from the majority set [14]. In contrast, we restrict the500

adversary even for large datasets where the estimation error would be low, as this would reduce501

excess risk when we only care about robustness to rare sub-populations defined by simple functions.502

Additionally, while their analysis and method prefers the adversary’s objective to have a strong dual,503

we show empirical results on real-world datasets and generalization bounds where the adversary’s504

objective is not necessarily convex.505

Robustness to group shifts without demographics. Recent works [50, 16, 5] that aim to achieve506

group robustness without access to group labels employ various heuristics where the robust set is507

implicit while others require data from multiple domains [3, 59] or ability to query test samples [30].508

Liu et al. [35] use training losses for a heavily regularized model trained with empirical risk minimiza-509

tion (ERM) to directly identify minority data points with higher losses and re-train on the dataset that510

up-weights the identified set. Nam et al. [41] take a similar approach. Other methods [26] propose511

simple baselines that subsample the majority class in the absence of group demographics and the512
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majority group in its presence. Hashimoto et al. [23] find DRO over a χ2-divergence ball can reduce513

the otherwise increasing disparity of per-group risks in a dynamical system. Since it does not use514

features to upweight points (like BR-DRO) it is vulnerable to label noise. Same can be said about515

some other works (e.g., [35, 41]).516

Importance weighting in deep learning. Finally, numerous works [17, 31, 33, 43] enforce robustness517

by re-weighting losses on individual data points. Recent investigations [52, 13, 37] reveal that such518

objectives have little impact on the learned solution in interpolation regimes. One way to avoid this519

pitfall is to train with heavily regularized models [46, 47] and employ early stopping. Another way is520

to subsample certain points, as opposed to up-weighting [26]. In this work, we use both techniques521

while training our objective and the baselines, ensuring that the regularized class is robust to shifts522

under misspecification [57].523

E BR-DRO algorithm524

If the bitrate constraint is applied via the KL term in equation 5, we implement the adversary as a525

variational information bottleneck [2] (VIB), where the KL divergence with respect to a standard526

Gaussian prior controls the bitrate of the adversary’s feature set z ∼ p(z | x;θw). Increasing βvib can527

be seen as enforcing lower bitrate features i.e., reducing γ inW(γ) (smaller value of KL(δ || π) in528

the primal formulation in Definition 2.4). If the constraint is applied via the l2 term we implement529

the adversary as a linear layer. In some cases (e.g., Section 3) we use a sparsity constraint (l1 norm)530

on the linear adversary.531

Algorithm 1: Bitrate-Constraint DRO (Online Algorithm)
Input: Adversary VIB penalty βvib; Step sizes ηl, ηw; Dataset D = (xi, yi)

n
i=1

Initialize θ
(1)
h and θ

(1)
w

for t = 1, . . . , T do
From D, sample x, y ∼ D /* Sample datapoint */

θ
(t+1)
h ← ΠΘh

(
θ
(t)
h − ηh∇θh

[
l(θ

(t)
h (x), y) · θw(x, y)

])
/* Update θh */

θ
(t+1)
w ← ΠΘw

(
θ
(t)
w + ηw∇θw

Ladv(θ
(t)
w ;θ

(t)
h , βvib, βl2 , η)

)
/* Update θw */

end
Output: θ̄h = 1

T

∑T
t=1 θ

(t)
h , θ̄w = 1

T

∑T
t=1 θ

(t)
w

F Additional empirical results and other experiment details532

F.1 Hyper-parameter tuning methodology533

There are two ways in which we tune hyperparameters on datasets with known groups (CelebA,534

Waterbirds, CivilComments): (i) on average validation performance; (ii) worst group accuracy. The535

former does not use group annotations while the latter does. Similar to prior works [35, 26] we note536

that using group annotations (on a small validation set) does improve performance. In Table 3 we537

report our study which varies the the fraction p of group labels that are available at test time. For538

each setting of p, we do model selection by taking weighted (by p) mean over two entities (i) average539

validation on all samples, (ii) worst group validation on a fraction p of minority samples. In the case540

where p = 0, we only use average validation. We report our results on CelebA and Waterbirds dataset.541

For the two WILDS datasets we tune hyper-parameters on OOD Validation set.542

F.2 Synthetic dataset details543

We follow the explicit-memorization setup in Sagawa et al. [47] which we summarize here briefly.544

Let input x = [xcore,xspu,xnoise] where xcore | y ∼ N (y, σ2
core), xspu | a ∼ N (a, σ2

spu) and xnoise ∼545

N (0, (σ2
noiseId)/d). Here a ∈ {−1, 1} refers to a spurious attribute, and label is y ∈ {−1, 1}, We546

set a = y with probability P (maj) = 1−P (min). The level of correlation between a and y is controlled547

by P (maj). Additionally, we flip true label with probability P (noise).548
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Waterbirds CelebA
Method p = 0.0 p = 0.02 p = 0.05 p = 0.1 p = 0.0 p = 0.02 p = 0.05 p = 0.1

JTT 62.7 73.9 77.3 84.4 42.1 68.3 80.5 80.3
CVaR DRO 63.9 65.8 72.6 74.1 33.6 40.4 60.4 63.2

LfF 48.6 58.9 70.3 79.5 34.0 58.9 60.0 78.3
BR-DRO (VIB) 69.3 77.6 76.1 84.9 52.4 71.2 80.3 79.9
BR-DRO (l2) 68.9 75.2 79.4 86.1 55.8 63.5 74.6 80.4

Table 3: We check to what extent fraction of group annotations in the training data affect performance.
For each dataset and method, we tune its hyper-parameters on the average validation and worst group
(only on the small fraction p that is available). We see that while all methods consistently improve as
we increase group annotations and tune for worst group accuracy on the annotated samples, BR-DRO
does do better that prior works when tuned on just average validation (p = 0.). At the same time, we
note that this still does not match the performance of BR-DRO when tuned on worst group validation
(seen in Table 1).

F.3 Degree of constraint549

In Figure 4 we see how worst group performance varies on Waterbirds and CelebA as a function of550

increasing constraint. We also plot average performance on the Camelyon dataset. We mainly note551

that for either of the constraint implementations, only when we significantly increase the capacity do552

we actually see the performance of BR-DRO improve. The effect is more prominent on groups shift553

datasets with simple groups (Waterbirds, CelebA). Under less restrictive capacity constraints we note554

that its performance is similar to CVaR DRO (see Figure 3). This is expected since CVaR DRO is the555

completely unconstrained version of our objective.556
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Figure 4: Optimal bitrate-constraints for robustness to distributions shifts: For two versions of
capacity control: KL, l2 penalty (see Section 2) we show how worst group performance on Waterbirds,
CelebA and average performance on Camelyon test sets improves with increasing constraints under
either VIB (βvib) or linear (βl2 ) adversaries.

F.4 Hyper-parameter details.557

For all hyper-parameters of prior methods we use the ones state in their respective prior works. The558

implementation Group DRO, JTT, CVaR DRO is borrowed from the implementation made public559

by authors of Liu et al. [35]. For datasets Waterbirds, CelebA and CivilComments we choose the560

hyper-parameters (whenever applicable) learning rate, batch size, weight decay on learner, optimizer,561

early stopping criterion, learning rate schedules used by Liu et al. [35] for their implementation562

of CVaR DRO method. For datasets FMoW and Camelyon17 we choose values for these hyper-563

parameters to be the ones used by Koh et al. [29] for the ERM baseline. Details on BR-DRO specific564

hyper-parameters that we tuned are in Table 4. Also, note that we release our implementation with565

this submission.566

G Omitted Proofs567

First we shall state some a couple of technical lemmas that we shall refer to at multiple points.568

Then, we prove our theoretical claims in our analysis in Appendix B, in the order in which they569
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Hyper-parameter Waterbirds CelebA CivilComments FMoW Camelyon17

learning rate for adversary 0.01 0.05 0.001 0.02 0.01
threshold η 0.05 0.05 0.1 0.1 0.1

βvib 0.1 0.1 0.02 0.005 0.005
βl2 0.01 0.005 0.005 0.02 0.005

Table 4: Hyperparameters for our method on different datasets (tuned on worst group validation
performance). Note, that the threshold η here is the top x% fraction.

appear. Before we get into those we provide proof for our Corollary 2.2 and the derivation of570

Bitrate-Constrained CVaR DRO in Equation 6.571

Lemma G.1 (Hoeffding bound [55]). Let X1, . . . , Xn be a set of µi centered independent sub-572

Gaussians, each with parameter σi. Then for all t ≥ 0, we have573

P

[
1

n

n∑
i=1

(Xi − µi) ≥ t

]
≤ exp

(
− n2t2

2
∑n

i=1 σ
2
i

)
. (8)

Lemma G.2 (Lipschitz functions of Gaussians [55]). Let X1, . . . , Xn be a vector of iid Gaussian574

variables and f : Rn 7→ R be L-Lipschitz with respect to the Euclidean norm. Then the random575

variable f(X)− E[f(X)] is sub-Gaussian with parameter at most L, thus:576

P[|f(X)− E[f(X)]| ≥ t] ≤ 2 · exp
(
− t2

2L2

)
, ∀ t ≥ 0. (9)

G.1 Proof of Corollary 2.2577

Let us recall the definition of a well defined group structure. For a pair of measures Q≪ P we say578

G(P,Q) is well defined if given there exists a set of disjoint measurable sets GP,Q = {Gk}Kk=1 such579

that Gk ∈ Σ, Q(Gk) > 0, Q(G(P,Q)) = 1 and we have:580

K = min{|{G1, . . . , GM}| : p(x, y | Gm) = q(x, y | Gm) > 0,∀(x, y) ∈ Gm ∀m ∈ [M ]}

Now by definition K is finite. Thus if there exists two well defined group structures G1(P,Q) and581

G2(P,Q) for the same pair P,Q then it must be the case that K = G1(P,Q) = G2(P,Q).582

Then, there must exist G ∈ G1(P,Q) such that Q(G) > 0 and G′, G′′ ∈ G2(P,Q) where583

Q(G′), Q(G′′) > 0 and Q(G ∩G′), Q(G ∩G′′) > 0.584

Note that since G,G′, G′′ ∈ Σ that is closed under countable unions, we have that G∩G′ and G∩G′′585

are two sets where q(x, y) > 0 ∀(x, y) ∈ G ∩G′, G ∩G′′.586

Let (x1, y1) ∈ (G ∩ G′) and (x2, y2) ∈ (G ∩ G′′). From definition we know that587

q(x2, y2), q(x1, y1) > 0 and . Since both (x1, y1) and (x2, y2) are in G we have that:588

q(x1, y1) =
Q(G)

P (G)
· p(x1, y1) =

Q(G′)

P (G′)
· p(x1, y1) (10)

q(x2, y2) =
Q(G)

P (G)
· p(x2, y2) =

Q(G′′)

P (G′′)
· p(x2, y2) (11)

Thus, we can conclude that Q(G′)
P (G′) = Q(G′′)

P (G′′) . This implies that G′ ∪G′′ also satisfies the following589

that Q(G′ ∪G′′) > 0 and q(x, y | G′ ∪G′′) = p(x, y | G′ ∪G′′).590
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Thus, we can construct a new G3(P,Q) = {G ∈ G2(P,Q) : G /∈ {G′, G′′}} ∪ {G′ ∪G′′}. Clearly,591

G3(P,Q) satisfies all group structure properties and is smaller than G2(P,Q). Thus, we arrive at a592

contradiction which proves the claim that G(P,Q) is indeed unique whenever well defined.593

G.2 Derivation of Bitrate-Constrained CVaR DRO in equation 6594

Recall that we defineW as the set of all measurable functions w : X × Y 7→ [0, 1], since the other595

convex restrictions in equation 1 are handled by dual variable η. As in Section 2,W(γ) is derived596

from the newW using Definition 2.4. With that let us first state the CVaR objective [31].597

Lcvar(h, P ) := sup
q

∫
X×Y

q(x, y) · l(h)

s.t. q ≥ 0, ∥q/p∥∞ ≤ (1/α0),

∫
X×Y

q(x, y) = 1 (12)

The objective in q is linear with convex constraints, and has a strong dual (see Duchi et al. [17], Boyd598

et al. [12] for the derivation) which is given by:599

inf
η∈R

{
1

α0
EP (l(h)− η)+ + η

}
= inf

η∈R

{
1

α0
⟨(l(h)− η)+,1⟩P + η

}
= inf

η∈R

{
1

α0
⟨(l(h)− η),1(l(h)− η ≥ 0)⟩P + η

}
(13)

= inf
η∈R

sup
w∈W

{
1

α0
⟨(l(h)− η), w⟩P + η

}
(14)

The last equality is true since the set 1(l(h)− η ≥ 0) is measurable under P (based on our setup in600

Appendix B). Note that for any h, the objective 1
α0
⟨(l(h)− η), w⟩P + η is linear in w, and η. If we601

further assume the loss l(h) to be the l0−1 loss, it is bounded, and thus the optimization over η can be602

restricted to a compact set. Next,W is also a compact set of functions since we restrict our solvers to603

measurable functions that take values bounded in [0, 1].604

Lcvar(h, P ) = inf
η∈R

sup
w∈W

{
1

α0
⟨(l(h)− η), w⟩P + η

}
(15)

The above objective is precisely the Bitrate-Constrained CVaR DRO objective we have in equation 6.605

Later in the Appendix we shall need an equivalent form of the objective which we shall derive below.606

We can now invoke the Weierstrass’ theorem in Boyd et al. [12] to give us the following:607

Lcvar(h, P ) = inf
η∈R

sup
w∈W

{
1

α0
⟨(l(h)− η), w⟩P + η

}
=

1

α0
sup
w∈W

{
inf
η∈R
⟨(l(h)− η), w⟩P + η

}
(16)

Now, the final objective infh∈H Lcvar(h, P ) is given by:608

1

α0
inf
h∈H

sup
w∈W

{
inf
η∈R
⟨(l(h)− η), w⟩P + η

}
(17)
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In the above equation we can now replace the unconstrained classW with our bitrate-constrained609

classW(γ) to get the following:610

1

α0
inf
h∈H

sup
w∈W(γ)

{
inf
η∈R
⟨(l(h)− η), w⟩P + η

}
(18)

G.3 Proof of Theorem B.1611

For convenience we shall first restate the Theorem here.612

Theorem G.3 ([restated). worst-case risk generalization] With probability ≥ 1 − δ over sample613

D ∼ Pn, the worst risk for ĥγ
D can be upper bounded by the following oracle inequality:614

sup
w∈∆(W,γ)

R(ĥγ
D, η̂γ

D, w) − L∗
cvar(γ) <∼

M

α0

√(
γ + log

(
1

δ

)
+ (d+ 1) log

(
L2n

γ

)
+ logn

)
/(2n− 1),

when l(·, ·) is [0,M ]-bounded, L-Lipschitz andH is parameterized by convex set Θ ⊂ Rd.615

The overview of the proof can be split into two parts:616

• For each learner, first obtain the oracle PAC-Bayes [39] worst risk generalization guarantee617

over the adversary’s action space ∆(W, γ).618

• Then, apply uniform convergence bounds using a union bound over a covering of the class619

H to get the final result.620

Intuition: The only tricky part lies in the fact that oracle PAC-Bayes inequality would not give621

us arbitrary control over the generalization error for each learner, which we would typically get in622

Hoeffding type bounds. Hence, we need to ensure that the the worst risk generalization rate decays623

faster than how the size of the covering would increase for a ball of radius defined by the worst624

generalization error.625

Now, we shall invoke the following PAC-Bayes generalization guarantee stated (Lemma G.4) since626

R(h, η, w) ∈ [0,M/α0].627

Lemma G.4 (PAC-Bayes [15, 39]). With probability ≥ 1− δ over choice of dataset D of size n the628

following inequality is satisfied629

EPEQ(l0−1(h(x), y)) ≤ EP̂n
EQ(l0−1(h(x), y)) +

√
D(Q||P ) + log(1/δ) + 5

2 log n+ 8

2n− 1
(19)

A direct application of this gives us that with probability at least 1− ω: .630

Ew∼δR(h, η, w) ≤ Ew∼δ

[
1

α0
⟨l(h)− η, w⟩P̂n

]
+ η +

√
KL(δ || π) + log(1/ω) + 5

2 log n+ 8

2n− 1

Let R̂D(h, η, w) = 1
α0
⟨l(h)− η, w⟩P̂n

+ η Since the above inequality holds for any data dependent631

δ:.632

sup
δ∈∆(W,γ)

Ew∼δR(h, η, w) ≤ sup
δ∈∆(W,γ)

R̂D(h, η, w) + η +

√
KL(δ || π) + log(1/ω) + 5

2 log n+ 8

2n− 1


Further, we make use of the fact KL(δ || π) ≤ γ.633

≤ sup
δ1∈∆(W,γ)

[
R̂D(h, η, w)

]
+ sup

δ2∈∆(W,γ)

√KL(δ2 || π) + log(1/ω) + 5
2 log n+ 8

2n− 1


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Thus,634

sup
δ∈∆(W,γ)

Ew∼δR(h, η, w)− sup
δ∈∆(W,γ)

Ew∼δR̂D(h, η, w) ≤

√γ + log(1/δ) + 5
2 log n+ 8

2n− 1


To actually apply this uniformly over h, η, we would first need two sided concentration which we635

derive below as follows:636

Let ai = R̂D(h, η, δ)−R(h, η, δ), Since R(h, η, δ) ≤M/α0, we can apply Hoeffding bound with637

t = λ/n in Lemma G.1 on ai to get:638

EDexp (λ · ai) ≤ exp
λ2(M/α0)

2

8n
EπEDexp (λ · ai) ≤ Eπ exp

λ2(M/α0)
2

8n

Applying Fubini’s Theorem, followed by the Donsker Varadhan variational formulation we get:639

EDEπ [exp (λ · ai)] ≤ Eπ exp
λ2(M/α0)

2

8n

= ED exp sup
δ∈∆(W,γ)

[(λ · ai)− KL(δ || π)] ≤ exp
λ2(M/α0)

2

8n

The Chernoff bound finally gives us with probability ≥ 1− ω:640

EP̂n
EQ((h(x), y)) <∼ EPEQ((h(x), y)) +

M

α0

√
KL(δ || π) + log(1/ω) + log n

2n− 1

Using the reverse form of the empirical PAC Bayes inequality, we can do a derivation similar to the641

one following the PAC-Bayes bound in Lemma G.4 to get for any fixed η ∈ [0,M ], h ∈ H we get:642

∣∣∣∣∣ sup
δ∈∆(W,γ)

Ew∼δR(h, η, w)− sup
δ∈∆(W,γ)

Ew∼δR̂D(h, η, w)

∣∣∣∣∣ <∼ M

α0

√
KL(δ || π) + log(1/ω) + log n

2n− 1

<∼
M

α0

√
γ + log(1/ω) + log n

2n− 1

Because we see that in the above bound the dependence on δ, is given by a log term we are essentially643

getting an "exponential-like" concentration. So we can think about applying uniform convergence644

bounds over the classH× [0,M ] to bounds the above with high probability ∀(h, η) pairs.645

We will now try to get uniform convergence bounds with two approaches that make different646

assumptions on the class of functions l(h). The first is very generic and we will show why such a647

generic assumption is not sufficient to get an upper bound on the generalization that is O(1/
√
n) in648

the worst case. Then, in the second approach we show how assuming a parameterization will fetch us649

a rate of that form if we additionally assume that the loss function is L-Lipschitz.650

Approach 1:651

Assume l(h) lies in a class of (α, 1)-Hölder continuous functions Now we shall use the following652

covering number bound for (α, 1)-Hölder continuous functions to get a uniform convergence bound653

overH× [0,M ].654

Lemma G.5 (Covering number (α, 1)-Hölder continuous). Let X be a bounded convex subset of Rd
655

with non-empty interior. Then, there exists a constant K depending only on α and d such that656

logN (ϵ, Cα
1 (X ), ∥ · ∥∞) ≤ Kλ(X 1)

(
1

ϵ

)d/α

(20)

for every ϵ > 0, where λ(X 1) is the Lebesgue measure of the set {x : ∥x−X∥ ≤ 1}. Here, Cα
1 (X )657

refers to the class of (α, 1)-Hölder continuous functions.658
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We assume that l(h) is (α, 1)-Hölder continuous. And therefore by definition, of659

R(h, η, ·), the function is (α, 1)-Hölder continuous in (l(h), η). Similat argument applies for660

supδ∈∆(W,γ) Ew∼δR(h, η, w) since taking a pointwise supremum for a linear function over a convex661

set ∆(W, γ) would retain Hölder continuity for some value of α. Applying the above we get:662

logN (ϵ, sup
δ∈∆(W,γ)

Ew∼δR(·, ·, w), ∥ · ∥∞) <∼

(
M

α0

√
γ + log(1/ω) + log n

2n− 1

)−(d/α)

Now, we can show that with probability at least 1− δ, ∀h ∈ H we get:663

∣∣∣∣∣ sup
δ∈∆(W,γ)

Ew∼δR(h, η, w)− sup
δ∈∆(W,γ)

Ew∼δR̂D(h, η, w)

∣∣∣∣∣ (21)

<∼
M

α0

√
γ + log(N (ϵ, R(·, ·, w), ∥ · ∥∞)/δ) + log n

2n− 1
(22)

<∼
M

α0

√√√√√√γ +

((
M
α0

√
γ+log(1/δ)+logn

2n−1

)−(d/α)
)

+ log(1/δ) + log n

2n− 1
(23)

Note that in the above bound we cannot see if this upper bound shrinks as n → ∞, without664

assuming something very strong about α. Thus, we need covering number bounds that do not grow665

exponentially with the input dimension. And for this we turn to parameterized classes, which is the666

next approach we take. It is more for the convenience of analysis that we introduce the following667

parameterization.668

Approach 2:669

Let l(·, ·) be a [0,M ] bounded L-Lipschitz function in ∥ · ∥2 over Θ whereH be parameterized by a670

convex subset Θ ⊂ Rd. Thus we need to get a covering of the loss function supδ Ew∼δR(θ, η, w)671

in ∥ · ∥∞ norm, for a radius ϵ. A standard practice is to bound this with a covering N (Θ, ϵ
L , ∥ · ∥2),672

where ∥ · ∥2 is Euclidean norm defined on Θ ⊂ Rd.673

Lemma G.6 (Covering number for N (Θ × [0,M ] , ϵ
L , ∥ · ∥2) [55]). Let Θ be a bounded convex674

subset of Rd with .675

N (ϵ/L,Θ, ∥ · ∥) <∼

(
1 +

L

ϵ

)d+1

(24)

We now re-iterate the steps we took previously:676

∣∣∣∣∣ sup
δ∈∆(W,γ)

Ew∼δR(h, η, w)− sup
δ∈∆(W,γ)

Ew∼δR̂D(h, η, w)

∣∣∣∣∣ (25)

<∼
M

α0

√
γ + log(N (ϵ, R(·, ·, w), ∥ · ∥∞)/δ) + log n

2n− 1
(26)

<∼
M

α0

√√√√√γ + log

(
1 + L√

γ/n

)d+1

+ log(1/δ) + log n

2n− 1
(27)

<∼
M

α0

√√√√γ + (d+ 1) log
(

L2n
γ

)
+ log(1/δ) + log n

2n− 1
(28)
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Note that the above holds with probability atleast 1− δ and for ∀h, η. Thus, we can apply it twice:677

∣∣∣∣∣ sup
δ∈∆(W,γ)

Ew∼δR(ĥγ
D, η̂γD, w)− sup

δ∈∆(W,γ)

Ew∼δR̂DR(ĥγ
D, η̂γD, w)

∣∣∣∣∣
<∼

M

α0

√√√√γ + (d+ 1) log
(

L2n
γ

)
+ log(1/δ) + log n

2n− 1
678 ∣∣∣∣∣ sup

δ∈∆(W,γ)

Ew∼δR(h∗, η∗, w)− sup
δ∈∆(W,γ)

Ew∼δR̂DR(h∗, η∗, w)

∣∣∣∣∣
<∼

M

α0

√√√√γ + (d+ 1) log
(

L2n
γ

)
+ log(1/δ) + log n

2n− 1

where h∗, η∗ are the optimal for L∗
cvar. Combining the two above proves the statement in Theorem B.1.679

G.4 Proof of Theorem B.2680

Setup. Let us assume there exists a prior Π such thatW(γ) in Definition 2.4 is given by an RKHS681

induced by Mercer kernel k : X × X 7→ R, s.t. the eigenvalues of the kernel operator decay682

polynomially:683

µj <∼ j−2/γ

for (γ < 2). We solve for ĥγ
D, η̂γD by doing kernel ridge regression over norm bounded (∥f∥W(γ)≤M )684

smooth functions f . Thus,W(γ) is compact.685

argmax
w∈W(γ)),∥w∥W(γ)≤R

R(h, η, w) = argmax
w∈W(γ)),∥w∥W(γ)≤R

⟨l(h)− η, w⟩P + η (29)

argmax
w∈W(γ),∥w∥W(γ)≤R

EP1((l(h)− η) · w > 0) (30)

We show that we can control: (i) the pessimism of the learned solution; and (ii) the generalization686

error (Theorem B.2). Formally, we refer to pessimism for estimates ĥγ
D, η̂γD:687

excess risk or pessimism: sup
w∈W(γ)

| inf
h,η

R(h, η, w)−R(ĥγ
D, η̂γD, w)|

Theorem G.7 ((restated for convenience) bounded RKHS). For l,H in Theorem B.1, and forW(γ)688

described above ∃ γ0 s.t. for all sufficiently bitrate-constrainedW(γ) i.e., γ≤γ0, w.h.p. 1− δ worst689

risk generalization error is O
(
(1/n)

(
log(1/δ) + (d+ 1) log(nR−γLγ/2)

))
and the excess risk is690

O(M) for ĥγ
D, η̂γD above.691

Generalization error proof:692

Note that the objective in equation 30 is a non-parametric classification problem. We can convert this693

to the following non-parametric regression problem, after replacing the expectation with plug-in P̂n.694

inf
w∈W(γ)),∥w∥W(γ)≤R

1

n

n∑
i=1

(w(xi, yi)− (l(h(xi), yi)− η) + ϵi)
2 + λn∥w∥2W(γ) (31)
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where λn → 0 as n → ∞. Essentially, for non-parametric kernel ridge regression regression the695

regularization can be controlled to scale with the critical radius, that would give us better estimates696

and tighter localization bounds as we will see.697

Note that in the above problem we add variable ϵi which represents random noise ∼ N (0, σ2). Let698

σ2 = 1 for convenience. Since the noise is zero mean and random, any estimator maximizing the699

above objective on P̂n would be consistent with the estimator that has a noise free version. We can700

also thing of this as a form regularization (similar to λ), if we consider the kernel ridge regression701

problem as the means to obtain the Bayesian predictive posterior under a Bayesian prior that is a702

Gaussian Process GP(0, σ2k(x,x)), under the same kernel as defined above.703

First we will show estimation error bounds for the following KRR estimate:704

ŵγ
D = argmin

w∈W(γ)),∥w∥W(γ)≤R

1

n

n∑
i=1

(w(xi, yi)− (l(h(xi), yi)− η) + ϵi)
2 + λn∥w∥2W(γ) (32)

The estimation error would be measured in terms of P̂n norm i.e., ∥ŵγ
D − w∗∥P̂n

where705

w∗
γ(x, y) = argmin

w∈W(γ)),∥w∥W(γ)≤R

EPEϵ((l(h(x), y)− η)− w(x, y) + ϵ)2

is the best solution to the optimization objective in population.706

Next steps:707

• First, we get the estimation error in ∥ŵγ
D − w∗

γ∥P̂n
of P̂n.708

• Then using uniform laws [55] we can extend it to L2(P ) norm i.e., ∥ŵγ
D − w∗∥p.709

• Then we shall prove that if we convert the ŵγ
D and w∗ into prediction rules: ŵγ

D ≥ 0 and710

w∗
γ , then we can get the estimation error of prdedictor ŵγ

D ≥ 0 with respect to the optimal711

decision rule w∗
γ ≥ 0 in classW(γ).712

• The final step would give us an oracle inequality of the form in Theorem B.1.713

Based on the outline above, let us start with getting ∥ŵγ
D−w∗∥P̂n

. For this we shall use concentration714

inequalities from localization bounds (see Lemma G.8). Before we use that, we define the quantity δn,715

which is the critical radius (see Ch. 13.4 in [55]). For convenience, we also state it here. Formally,716

δn is the smallest value of δ that satisfies the following inequality (critical condition):717

Rn(δ)

δ
≤ R

2
· δ (33)

where,718

Rn(δ) := Eϵ

[
sup

g∈(F−f∗),∥g∥F≤R, ∥g∥P̂n
≤δ

∣∣∣∣∣ 1n
n∑

i=1

ϵig(xi, yi) · l(h(xi)− yi)

∣∣∣∣∣
]

and ϵ is some sub-Gaussian zero mean random variable.719

Lemma G.8 ( [55]). For some convex RKHS class F Let f̂ be defined as:720

f̂ ∈ argmin
f∈F,∥f∥F≤R

{
1

n

n∑
i=1

(yi − f(xi))
2 + λn∥f∥2F

}

then, with probability ≥ 1− c2 exp
(
−c3 nR2δ2n

σ2

)
and when λn ≥ δ2n we get:721

∥f̂ − f∗∥22 ≤ c0 inf
∥F∥≤R

∥f − f∗∥2n + c1R
2(δ2n + λn).

Note that it is standard exercise in statistics to derive the following closed form for the problem in722

equation 32:723
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ŵγ
D(·) = K̂n(·, Z)(K̂T

n K̂n + λnI)
−1 (l(h)D − ϵD)

where l(h)D is the loss vector and ϵD is the noise vector for dataset D and K̂n is the empirical kernel724

matrix given by K̂i,j =
1
nk((xi, yi), (xj , yj)), and Z is a matrix of (x, y) pairs in dataset.725

Corollary G.9. [55] Let µ̂j be the eigen values µ̂1 ≥ µ̂2 . . . ≥ µ̂n for the empirical Kernel matrix726

K̂, then we have for any δ satisfying727 √√√√ 2

n

(
n∑

i=1

min(δ2, ûj)

)
≤ R

4
δ2

, it is necessary that δ satisfies the critical condition in equation 33.728

To show the above critical condition we shall now use the polynomial decaying property that for the729

specific kernel induced byW(γ), as stated in our assumption in the beginning of this section. For this730

we take standard approach taken for polynomial decay kernels [61]. Let ∃C for some large C > 0731

such that µ̂j ≤ Cj−2/γ . Then for some k, such that δ2 ≥ ck−2/γ732

√√√√√ 1

n

 n∑
j=1

min(δ2, µ̂j)

 <∼

√√√√ 2

n

(
n∑

i=1

min(δ2, Cj−2/γ)

)

<∼

√√√√√ 2

n

kδ2 + C

n∑
j=k+1

j−2/γ)

 <∼

√√√√√ 2

n

kδ2 + C

∞∑
j=k+1

j−2/γ)


<∼

√
2

n

(
kδ2 + C

∫ ∞

j=k+1

z−2/γ dz)

)
<∼

√
2

n

(
kδ2 + Ck−2/γ+1 dz)

)
≤
√
2/n

(√
k · δ

)
≤ 1√

n
· δ1−γ/2

Now, setting the above into the critical condition equation from Corollary above:733

1√
n
· δ1−γ/2 ≤ R

4
δ2

=⇒ δ1+γ/2 ≥ 1√
nR

This tells us that:734

δ2n >∼

(
1

nR2

2
γ+2

)
(34)

is the critical radius.735

We shall later plug this into the bound we have into a uniform bound over the concentration inequality736

in Lemma G.8. The reason we need a uniform bound over Lemma G.8 is that in its current form,737

it only bounds ∥ŵγ
D − wγ

∗∥2P̂n
for a specific choice of η, h. In order to arrive at the worst risk738

generalization error of the form we have in Theorem B.1 we need to satisfy that with high probability739

1− δ ∀η, h, a critical concentration bound of the form in Lemma G.8 but over supη,h ∥ŵ
γ
D −wγ

∗∥2P̂n
.740

Let ϵ = c2 exp
(
c3nR

2 δn
2

σ2

)
. Since δ2n needs to be large enough (see condition in equation 34), we741

use Lemma G.8 in the following bound, incorporating δn condition we derived.742
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With high probability 1− ϵ:743

∥ŵγ
D − wγ

∗∥2P̂n

<∼ inf
w∈W(γ),∥w∥≤R

∥w − wγ
∗∥2P̂n

+R2 max

((
1

nR2

) γ+2
γ

,

(
log(1/ϵ)

1

nR2

))
(35)

To apply uniform convergence argument on the above we would need to apply a union bound on a744

covering of Θ× [0,M ], so that we get the probability bound to hold for all η, h.745

For this we use the same technique as in the proof of Theorem B.1. First, we shall use Lemma G.6746

to get a covering number bound for bounded convex subset Θ of Rd that parameterizes the learner747

(Theorem B.2) .748

N (β/L,Θ× [0,M ], ∥ · ∥) <∼

(
1 +

L

β

)d+1

(36)

And we know that a covering of Θ × [0,M ] in radius β/L, will fetch a covering for l(h) − η in749

β, since we assume l(·) to be Lipschitz in θ. Thus, all we need to prove bound equation 35 holds750

uniformly is to get a covering in radius R2 max
((

1
nR2

) 2
γ+2 ,

(
log(1/ϵ) 1

nR2

))
. Thus, a acovering in751

R2
((

1
nR2

) 2
γ+2

)
. Thus, the number of elements in cover are:752

J =

1 +
L(

R2
(

1
nR2

2
γ+2

))
d+1

For union bound we need:753

Jϵ/c2 = exp
(
−c3nR2δ2n

)
=⇒ log(

1

ϵ
) + log J >∼ c3nR

2δ2n

=⇒ log(
1

ϵ
) + (d+ 1) log

 L(
R2
((

1
nR2

) 2
2+γ

))
 >∼ c3nR

2δ2n

=⇒ log(
1

ϵ
) + (d+ 1) log

((
LR−2

) γ+2
2 nR2

)
>∼ c3nR

2δ2n

The uniform convergence bound that we get is R2 max

((
1

nR2

) γ+2
γ ,

(
log(J/ϵ) 1

nR2

))
. In the above754

sequence of steps we have shown that, due to the size of J , the second term would be maximum, or at755

least there exists a γ0, such that the second term would be higher for all γ ≥ γ0, for any sample size.756

Thus, we get the following probabilistic uniform convergence. With probability ≥ 1− ϵ, ∀η, h :757

∥ŵγ
D − wγ

∗∥2P̂n

<∼ inf
w∈W(γ),∥w∥≤R

∥w − wγ
∗∥2P̂n

(37)

<∼
1

n
log(

1

ϵ
) + (d+ 1) log

((
LR−2

) γ+2
2 nR2

)
(38)

<∼
1

n
log(

1

ϵ
) + (d+ 1) log

((
Lγ/2R−γ

)
n
)

(39)

(40)
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Applying the above twice, once one ŵγ
D and another on wγ

∗ we prove the generalization bound in758

Theorem B.2.759

Excess risk bound:760

In the same setting we shall now prove the excess risk bound. Recall the definition of excess risk:761

excess risk := sup
w∈W(γ)

| inf
h,η

R(h, η, w)−R(ĥγ
D, η̂γD, w)|.

Let h∗(w), η∗(w) = infh,η R(h, η, w), then:762

excess risk = sup
w∈W(γ)

| inf
h,η

R(h, η, w)−R(ĥγ
D, η̂γD, w)| (41)

≤ sup
w∈W(γ)

(
R(h∗(w), η∗(w), w)−R(ĥγ

D, η̂γD, w)
)

(42)

≤ sup
w∈W(γ)

(
1

α0
⟨l(h∗)− l(ĥγ

D)− (η∗(w)− η̂γD), w⟩P
)

(43)

≤ M

α0
sup

w∈W(γ)

(
(∥w∥L2(P ))

)
(44)

Note, that according to our assumption ∥w∥W(γ) ≤ B i.e., the smooth functions are bounded in763

RKHS norm. The following lemma relates bounds in RKHS norm to bound in L2(P ) bound for764

kernels with bounded operator norms:765

Lemma G.10. For an RKHSHk with norm ∥ · ∥Hk
:766

∥f∥L2(P ) = ∥T
1/2
K f∥Hk

≤
√
∥T 1/2

K ∥op · ∥f∥Hk

Proof:767

∥T 1/2
K f∥2Hk

= ⟨T 1/2
K f, T

1/2
K f⟩Hk

= ⟨f, TKf⟩Hk

=

∞∑
j=1

⟨ϕj , f⟩L2(P ), ⟨ϕj , TKf⟩L2(P )

λj

= ∥f∥2L2(P )

In the above λj are the Eigen values of the kernel and the Eigen functions ϕj are orthonormal and768

span L2(P )/ Thus, ∥f∥L2(P ) ≤ ∥T
1/2
K ∥op · ∥f∥Hk

. Since we assume polynomially decaying Eigen769

values for our kernel, it is easy to see that ∥T 1/2
K ∥op = O(1).770

Applying Lemma G.10 to equation 44, directly gives us the excess risk bound and completes the771

proof.772

excess risk <∼ ∥T
1/2
K ∥op ·B = O(B)

G.5 Proof of Theorem B.4773

Setup. The algorithm is as follows: Consider a two-player zero-sum game where the learner uses a774

no-regret strategy to first play h ∈ H, η ∈ R to minimize Ew∼δR(h, η, w). Then, the adversary plays775
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follow the regularized leader (FTRL) strategy to pick distribution δ ∈ ∆(W, γ) to maximize the same.776

The regularizer used is a negative entropy regularizer. Our goal is to analyze the bitrate-constraint γ’s777

effect on the above algorithm’s convergence rate and the pessimistic nature of the solution found. For778

this, we need to first characterize the bitrate-constraint classW(γ). So we assume there exists a prior779

Π such thatW(γ) is Vapnik-Chervenokis (VC) class of dimension O(γ).780

Note that R(h, η, w) is convex in h and linear in η, l. Thus, as we discuss in the derivation for781

equation 6 this objective optimized over convex sets has a unique saddle point (Nash equilibrium) by782

Weierstrass’s theorem. Thus, to avoid repetition we only discuss the proofs for the other two claims783

on convergence and excess risk.784

Convergence:785

Given that W(γ) is a VC class of dimension Cγ for some large C, we can use Sauer-Shelah [6]786

Lemma (stated) below to bound the total number of groups that can be identified by W(γ) in n787

points.788

Lemma G.11 (Sauer’s Lemma). The Vapnik-Chervonenkis dimension of a class F , denoted as789

VC-dim(F ), and it is the cardinality of the largest set S shattered by F . Let d = V C − dim(F), then790

for all m, C[m] = O(md)791

Thus, the total number of groups that can be proposed on n points byW(γ) is O(nγ). A similar792

observation was made in Kearns et al. [27]. Different from them, our goal is to analyze the algorithm793

iterates for our solver described above and bound its pessimism.794

First, for convergence rate we show that the above algorithm has a low regret—a standard exercise795

in online convex optimization. Note that any distribution picked by the adversary can be seen as796

multinomial over a finite set of possible groups that is let’s say K, and from discussion above we797

know that K = O(nγ). Further, the negative entropy regularizer is given as:798

B(δ) := c ·
K∑
i=1

δi log δi (45)

where the sum is over total possible groups identified byW(γ). Let the probability assigned to group799

i be denoted as δi. The FTRL strategy for adversary is given as:800

δT = argmin
δ∈∆(W(γ))

T−1∑
t=1

1

α0
⟨l(ht)− ηt, δt⟩P̂n

+ η + c ·
K∑
i=1

δi log δi (46)

Then the regret for not having picked a single action δ is given as:801

REGRETT (δ) :=

T∑
t=1

1

α0
⟨l(ht)− ηt, δt − δt+1⟩P̂n

+B(δ)−B(δ1) (47)

We bound the two terms in the above bound separately. With
∑k

k=1 δk = 1, we get the strong dual802

for the FTRL update above as:803

T−1∑
t=1

1

α0
⟨l(ht)− ηt, δt⟩P̂n

+ η + c ·
K∑
i=1

δi log δi + λ · (
K∑
i=1

δi − 1) (48)

Solving we get:804

δt(k) =
exp

(−1
c

)∑t−1
t=1 EP̂n

1
α0

(l(ht)− ηt|Gk) + η/K∑K
k=1 exp

(
1
α0

−1
c

)∑t−1
k=1(EP̂n

1
α0

(l(ht)− ηt|Gk) + η/K)
(49)
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where EP̂n
(l(ht)− ηt|Gk) is the expected empirical loss in group Gk and δt(k) is the adversary’s805

distribution at time step t for the kth group.806

Claim on stability:807

1

α0
⟨l(ht)− ηt, δt − δt+1⟩P̂n

≤ 1/c (50)

The above statement is true because,808

δt+1(i) = δt(i) · exp
(

1

α0c
E[l(ht)− ηt|Gi] + ηt/K

)
(51)

Thus, if l(ht) ∈ [0,M/α0], i.e., losses are bounded then:809

δt+1(i) ≥ δt(i) · e−1/c ≥ δt(i) · (1− 1/c). (52)

and our stability claim is easy to see. Thus, we have bounded the first term in our regret bound above.810

Further, we can to see that B(x)−B(x1) ≤ c logK. Thus, we have bounded both terms in the regret811

bound above in terms of c.812

REGRETT ≤ (T/c) + (c logK) (53)

Setting c =
√

T
logK , we get:813

REGRETT

T
≤
√

logK

T
(54)

Now, our VC claim gave K = O(nγ). Hence,814

REGRETT

T
= O

√
γ log n

T
(55)

Next, we use Theorem 9 from Abernethy et al. [1] that maps low regret O(ϵ) algorithms in zero-sum815

convex-concave games to ϵ-optimal equilibriums.816

Let regret be ϵ, then applying their theorem gives us:817

V ∗ − ϵ ≤ inf
h∈H,η∈R

RD(h, η, δ̄T ) ≤ V ∗ ≤ sup
δ∈∆(W(γ))

RD(h̄T , η̄T , δ) ≤ V ∗ + ϵ (56)

where818

V ∗ = RD(h∗
D(γ), η∗D(γ), δ∗D(γ)) = inf

h∈H,η∈R
sup

δ∈∆(W(γ))

1

α0
⟨l(h)− η, δ⟩+ η (57)

Excess risk:819

For excess risk we need to bound:820

1

α0
sup

h∈H,η∈R

∣∣∣∣∣ sup
δ∈∆(W(γ))

⟨l(h)− η, δ − δ∗(γ⟩|

∣∣∣∣∣ (58)

≤ M

α0

1

2
TV(δ − δ∗(γ)) ≤ M

2α0
(1− 1/K) =

M

α0
O(1− 1/nγ) (59)

In the above argument we used the fact that at equilibrium, δ∗(γ) would be uniform over all possible821

distinct group assignments. This completes our proof of Theorem B.4.822
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