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Abstract

Logistic regression remains one of the most widely used tools in applied statistics,
machine learning and data science. However, in moderately high-dimensional
problems, where the number of features d is a non-negligible fraction of the sample
size n, the logistic regression maximum likelihood estimator (MLE), and statistical
procedures based the large-sample approximation of its distribution, behave poorly.
Recently, Sur and Candès [2019] showed that these issues can be corrected by
applying a new approximation of the MLE’s sampling distribution in this high-
dimensional regime. Unfortunately, these corrections are difficult to implement
in practice, because they require an estimate of the signal strength, which is a
function of the underlying parameters β of the logistic regression. To address
this issue, we propose SLOE, a fast and straightforward approach to estimate the
signal strength in logistic regression. The key insight of SLOE is that the Sur
and Candès [2019] correction can be reparameterized in terms of the corrupted
signal strength, which is only a function of the estimated parameters β̂. We
propose an estimator for this quantity and show that dimensionality correction
with it is accurate in finite samples. We demonstrate the importance of routine
dimensionality correction in the Heart Disease dataset from the UCI repository,
and a genomics application using the UK Biobank. Compared to the existing
ProbeFrontier heuristic, SLOE is conceptually simpler and orders of magnitude
faster, making it suitable for routine use. Additionally, we provide consistency
guarantees in the relevant high-dimensional regime.

1 Introduction

Logistic regression is a workhorse in statistics, machine learning, data science, and many applied
fields. It is a generalized linear model that models a binary scalar outcome Y ∈ {0, 1} conditional on
observed features X ∈ Rd via

E[Y | X = x] = g(β>x), with g(t) := 1
1+exp(−t) , (1.1)

with the coefficients β fit using observed data. Logistic regression is popular as a scientific tool
because the model is often accurate, and comes with well-established statistical inference procedures
for quantifying uncertainty about the parameters β and predictions g(β>x) at test inputs x. For
example, most statistical software packages not only produce predictions from the model, but also
summaries such as confidence intervals (CIs) and p-values that enable practitioners to understand the
strength of evidence for the prediction in a quantitative way. These widely adopted estimation and
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(a) True and estimated coefficients
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(b) Calibration curve for predictions on iid test set.

Figure 1. Coefficients and calibration of the predictions from the MLE from simulated data with
n = 4000, d = 800. Neither the coefficients, nor predictions are converging to their true values as
predicted by standard large-sample asymptotic theory.

statistical inference routines are based on approximations from large-sample asymptotic theory of the
maximum likelihood estimator (MLE) β̂. These approximations come from the limiting distribution
of β̂ as the sample size n tends toward infinity, but the number of covariates d remains fixed.

Unfortunately, these standard approximations perform poorly when the number of covariates d
is of a similar order to the number of samples n, even when the sample size is large [Fan et al.,
2019]. Recently, Sur and Candès [2019] showed that, in this setting, the behavior of β̂ in finite
samples is better approximated by its limiting distribution in another regime, where the aspect ratio
κ := d/n > 0 is held fixed as both n and d grow to infinity. They show that the estimated coefficients
β̂ (and therefore, the predictions) have systematically inflated magnitude and larger variance than the
standard approximation predicts. The precise characterization of the limiting distribution of β̂ in Sur
and Candès [2019] and Zhao et al. [2020] justify a new approximation, which, in principle, facilitates
debiasing estimates and constructing CIs and p-values for parameters and test predictions, alike.

The goal of this paper is to make the application of these groundbreaking results practical. A
major barrier to adoption currently is that the calculation of these bias and variance corrections
requires knowing the signal strength γ2 := Var(β>X), which is challenging to estimate because
it is a function of the unknown parameter vector β. Sur and Candès [2019] proposed a heuris-
tic called ProbeFrontier to estimate this quantity, but this approach is computationally expensive,
conceptually complex, and hard to analyze statistically. We propose a simpler estimation proce-
dure. Our approach reparameterizes the problem in terms of the corrupted signal strength parameter
η2 := limn→∞Var(β̂>X) that includes the noise in the estimate β̂. This is more straightforward
(though non-trivial) to estimate. We propose the Signal Strength Leave-One-Out Estimator (SLOE),
which consistently estimates η2, and show that using this for inference yields more accurate CIs in
finite samples. Importantly, SLOE takes orders of magnitude less computation than ProbeFrontier,
having similar runtime to the standard logistic regression fitting routine.

2 Preliminaries

In this section, we revisit some fundamentals of statistical inference with logistic regression, review
recent advances in high dimensional settings by Sur and Candès [2019] and Zhao et al. [2020], and
discuss the implications of this paradigm shift in terms of better characterizing practice.

2.1 Logistic Regression and Statistical Inference

Estimates of β := (β1, · · · , βd) in the logistic regression model are usually obtained through
maximum likelihood estimation, by maximizing the empirical log-likelihood

β̂ := argmax
β∈Rd

1

n

n∑
i=1

Yi log(g(β>Xi)) + (1− Yi) log(1− g(β>Xi)). (2.1)

The log likelihood is concave, and has a unique maximizer whenever the outcomes are not linearly
separable in the covariates. We will use logistic regression synonymously with maximum likelihood
estimation in the logistic regression model, and call β̂ the MLE.
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The large-sample asymptotic statistical theory [Lehmann and Romano, 2005] taught in nearly
every university Statistics program characterizes the behavior of the estimated coefficients and
predictions in the limit as n → ∞ while holding the number of features d fixed. Under this
theory, estimates converge to their true value, β̂

p→ β, and the estimation error β̂ − β and pre-
diction error g(β̂>x)− g(β>x) will be small to observe, unless amplified by a factor of

√
n, in

which case
√
n(β̂ − β)

d
 N(0, I−1

β ), where Iβ := E[DβXX
>] is the Fisher information matrix,
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Figure 2. Histogram for p-values according
to the standard and correct Wald test for the
null coefficients in simulated data with κ =
0.1, γ2 = 5, n = 4000.

with Dβ := g(β>X)(1− g(β>X)).

Of course, when analyzing real data, data sci-
entists only have access to a finite number of
samples, and so this theory serves as an ap-
proximation characterization of the behavior ex-
pected in practice. If the approximation is good,
one can make inferences about the underlying
data generating distribution. For example, for
δ ∈ (0, 1), we can construct confidence inter-
vals (CIs) that contain the true parameters with
probability 1−δ. Propagating the uncertainty to
predictions gives CIs for the outcome probabili-
ties that can help contextualize machine learning
predictions for users such as scientists or clini-
cians [Kompa et al., 2021].

The large sample approximation is a good one
when the number of predictors is small relative to the number of observations. However, in modern
scientific studies and data-driven technology, while many samples may be collected, many features
of each sample are also collected. In such settings, the number of features d may be significant
compared to the sample size n; then, the large sample characterization can be quite misleading.

We can visualize the extent to which this breakdown in assumptions leads to bias. Figure 1 shows the
estimated coefficients and calibration curve for a logistic regression model fit on simulated data with
n = 4000 and p = 800. Despite n being reasonably large, these illustrate significant departures from
the behavior predicted by the large sample asymptotics. The magnitude of the estimated coefficients
is systematically overestimated and they are noisy. Additionally, the model is overconfident in its
predictions. Despite this, the classification accuracy of the resulting model on the in-distribution test
data is 0.70, which is close to the optimal accuracy of 0.77.

Recently, Sur and Candès [2019], Mai et al. [2019], and Zhao et al. [2020] showed that the behavior of
the MLE in high-dimensional settings is better characterized by a different asymptotic approximation.
In this approximation, the aspect ratio κ = d/n, instead of the number of predictors d, remains
fixed as n grows to infinity. Formally, they study a sequence of problems in which n, d → ∞;
d/n→ κ > 0, γ2 = Var(β>X) is fixed as d grows, 3 and the MLE exists asymptotically for (κ, γ).
Sur and Candès [2019], Zhao et al. [2020], and our work assume Xi is marginally Gaussian, and are
complementary to the mixture-of-Gaussians generative model studied by Mai et al. [2019].

The semantics of this asymptotic regime are a bit more complicated than the classical one; we can
no longer think of the argument in terms of a fixed problem with increasing data. However, The
characterization from this asymptotic theory better reflects the finite-sample behavior of the MLE β̂
when the data has a moderate aspect ratio κ.

For simplicity, we state the key result from this work in the case where the covariates are drawn from
a spherical Gaussian, i.e., X ∼ N(0, Id), but note that these results are generalized in Zhao et al.
[2020] to arbitrary covariance structures.4 So far, proof techniques only work for normally distributed
features, however empirical results (Fig. 4b and previous work) the work for sub-Gaussian features.
In this regime, the distribution of the MLE β̂ converges to a normal distribution asymptotically

3This prevents the expectations g(β>X) from converging to 0 or 1 as n grows. To satisfy this, the effect
of each covariate shrinks as n grows. It is complementary to sparsity models, being more realistic for many
problems where predictive performance comes from pooling many weak signals.

4Simulations suggest that our methods generalize to models including an intercept term when using the
intercept correction conjectured in Zhao et al. [2020].
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centered around the inflated parameter αβ, for some α > 1. In particular, for any coefficient βj ,
√
n
(
β̂j − αβj

)
d
 N(0, σ2

?), (2.2)

and for the predicted logit of an input5 x ∈ Rd with asymptotically finite norm and
√
nx>β = O(1),

√
n‖x‖−1

2

(
β̂>x− αβ>x

)
d
 N(0, σ2

?), (2.3)

for constants α and σ?, to be discussed later, that are only functions of κ and γ. The general
convergence result when X has an arbitrary covariance is stated in Theorem 3.1 of Zhao et al. [2020].

If α and σ? were known, this theory provides corrected approximate CIs and p-values. For example,
taking Φ−1 to be the quantile function of a standard normal distribution:

(1− δ) CI for βj :

(
β̂j
α
± Φ−1(1− δ/2)

σ?
αn1/2

)
(2.4)

p-value under βj = 0 : p = Φ−1(Z) where Z = β̂j/
σ?

αn1/2
. (2.5)

Figure 2 shows how the p-values obtained based on these adjustments have the expected behavior
(i.e., they are uniform when the null is true), whereas those from the standard approximation do not.

2.2 Calculating Dimensionality Corrections

Sur and Candès [2019] show that the constants α and σ? are determined by the solution to a system
of three non-linear equations, which depend implicitly on the aspect ratio κ and the signal strength
γ2 := Var(β>X): 

κ2σ2
? = E

[
2g(Q1)(λg(proxλG(Q2)))2

]
,

0 = E [g(Q1)Q1λg(proxλG(Q2))] ,

1− κ = E
[

2g(Q1)
1+λg′(proxλG(Q2))

]
,

(2.6)

where proxλG(s) = argmint λG(t) + 1
2 (s− t)2, for G the anti-derivative of g, and(

Q1

Q2

)
∼ N

(
0,

[
γ2 −αγ2

−αγ2 α2γ2 + κσ2
?

])
. (2.7)

Here, Q1 is a random variable with the same distribution (asymptotically) as the population logits
β>X , and Q2 is a random variable with the same distribution (asymptotically) as the logits with
the biased MLE plugged in β̂>X . The auxiliary parameter λ corresponds to the limiting average
eigenvalue of the inverse Hessian at the MLE, (1/n

∑n
i=1Xig

′(β̂>Xi)X
>
i )−1, which is useful for

making comparisons to asymptotic approximations from standard theory. Sur and Candès [2019]
note that this system has a unique solution so long as (κ, γ) take values at which the MLE exists
asymptotically. Once set up, these equations are straightforward to solve with numerical methods.

The key quantity needed to set up these equations is the signal strength parameter γ, which is not
directly observed. Thus, to correct for high dimensions in practice requires that γ be estimated. This
is difficult, as γ is itself a function of the unknown parameter β, and is the main focus of this paper.

Sur and Candès [2019] suggest a heuristic method, called ProbeFrontier, for estimating γ in practice.
The idea is to search for the (sub)sample size n′ < n such that the observations in the subsample
are linearly separable. Sub-sampling the data changes the aspect ratio κ without changing the signal
strength γ. For a fixed signal strength γ, there is a sharp aspect ratio cutoff κ?(γ) (the “frontier”)
above which the data is separable with high probability. Based on these ideas, ProbeFrontier then
inverts κ?(γ) to estimate γ from the empirical aspect ratio p/n′. This requires subsampling the data
repeatedly at various candidate aspect ratios, and for each subsample, checking whether the data are
linearly separable using a linear program. Repeatedly checking the separability is computationally
expensive, and the statistical behavior near the frontier makes analysis tricky.

5Note here that x is a sequence in n. Up to a 1/
√
d scale factor, these constraints are satisfied for a fixed

sequences of examples drawn from an iid test dataset with high probability.
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3 A Practical Method for Dimensionality-Corrected Inference

As we established above, the key to estimating confidence intervals for β or the predictions g(x>β) is
obtain a consistent estimate of γ2 to plug in to Eqs. (2.6) and (2.7) to get estimates of α and σ?. Here,
we describe our method for obtaining such an estimate. First, we reparameterize the covariance in
(2.7) in terms of a more easily-estimated “corrupted signal strength” parameter, and then, we derive a
computationally efficient estimator of it by approximating a consistent leave-one-out estimator.

We implemented this estimator in Python, using scikit-learn to perform the MLE, and numpy / scipy
[Harris et al., 2020, Virtanen et al., 2020] for the high dimensional adjustment and inference.

3.1 Reparameterization

We begin by reparameterizing the estimating equations (2.6) and (2.7) in terms of a quantity that is
easier to estimate. As it appears in Sur and Candès [2019], (2.7) is written in terms of the signal
strength γ2 = limn→∞Var(β>X), but it can also be written in terms of η2 := limn→∞Var(β̂>X).
Using the asymptotic properties of β̂ from Proposition 2.1, and Lemmas 2.1, 3.1 from Zhao et al.
[2020], the variance has a simple form: η2 = α2γ2 + κσ2

?. Thus, we can write (2.7) equivalently as(
Q1

Q2

)
∼ N

(
0,

[
η2 − κσstar2 −α

(
η2 − κσ2

?

)
−α

(
η2 − κσ2

?

)
η2

])
. (3.1)

We can think of η2 as the corrupted signal strength of the predictors, corrupted by the fact that we only
have an estimate β̂ of the true signal β in our predictors. Note that Var(β̂>X) = E[β̂>Σβ̂], which
suggests a natural strategy for estimate η2 if Σ were known. Shortly, we will define the (corrupted)
Signal Strength Leave-One-Out Estimator (SLOE), η̂2

SLOE, that estimates η2 without knowing Σ.

By plugging this estimate from the data along with the aspect ratio κ in to Eqs. (2.6) and (3.1), we
can derive estimates α̂, σ̂2

?, and λ̂ of the bias α, variance σ2
? and hessian inflation λ, respectively.

Then, we can construct CIs (2.4) and compute p-values (2.5) using these estimates.

3.2 SLOE Signal Strength Estimator

We now show how to estimate the corrupted signal strength η2 = limn Var(β̂>X) = limn E[β̂>Σβ̂],
using a computationally efficient approximation to an ideal, but impractical leave-one-out estimator.

The key challenge in estimating η is that the predictor covariance Σ must also be estimated. When
Σ̂ and β̂ are estimated from the same set of observed (Xi)

n
i=1, these quantities have non-trivial

dependence even in large samples, rendering the naïve estimate β̂>Σ̂β̂ asymptotically biased.

This dependence can be mitigated by a leave-one-out (LOO) estimator. In particular, let (β̂−i)
n
i=1 be

the set of n LOO MLEs, each calculated with all of the data except the i-th example. Define the LOO
estimator as the empirical variance of the LOO logits (β̂>−iXi)

n
i=1:

η̂2
LOO =

1

n

n∑
i=1

(β̂>−iXi)
2 −

(
1

n

n∑
i=1

β̂>−iXi

)2

. (3.2)

This estimator eliminates the problematic dependence between β̂ and Σ̂ because β̂−i is independent
of Xi. Theorem 1 shows that η̂LOO is consistent for η (see the Supplementary Materials for proof).
Theorem 1. Assume that γ and κ are in the range where the MLE exists asymptotically (see
Sur and Candès [2019, Theorem 1]), and that for each n, p(n) satisfies limn→∞ p/n = κ. Let
Σp be a p × p positive definite matrix with a bounded condition number, for all p, and β be a
p-dimensional vector satisfying limn→∞ β>Σpβ = γ2,

√
nβ

d
 Π, a distribution with a second

moment and
∑
j β

2
j → EΠ[β2]. Assume that Xi

iid∼ N(0,Σp), and Yi follows the logistic regression
model with parameter β given Xi, independent of the other observations. Then, η̂2

LOO
p→ η2.

Unfortunately, this LOO estimator is impractical, as it requires refitting the model n times. To address
this, we define the Signal Strength Leave-One-Out Estimator (SLOE). 6 SLOE replaces each

6In the spirit of the method we leave one ‘O’ out.
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LOO logit β̂>−iX with an approximation Si that is a simple update to the full-data logit β>X:

H = −
∑
j∈I

Xjg
′(β̂>Xj)X

>
j , Ui = X>i H

−1Xi, (3.3)

Si = β̂>Xi +
Ui

1 + g′(β̂>Xi)Ui
(Yi − g(β̂>Xi)),

η̂2
SLOE =

1

n

n∑
i=1

S2
i −

(
1

n

n∑
i=1

Si

)2

. (3.4)

To derive this estimator, we use leave-one-out techniques inspired by the theoretical analyses in
El Karoui et al. [2013] and Sur and Candès [2019]. Following along the derivation in Sur and Candès
[2019] to approximate β̂ − β̂−i, we write out the optimality conditions for β̂ and β̂−i respectively.
Let I = {1, . . . , n} be the indices of all the examples and I−i = {1, . . . , i− 1, i+ 1, . . . , n} be the
indices of all but the i-th example. Then, by the first order optimality conditions for the MLE,∑

j∈I
Xj(Yj − g(β̂>Xj)) = 0, and

∑
j∈I−i

Xj(Yj − g(β̂>−iXj)) = 0.

Taking the difference between these two equations gives

0 = Xi(Yi − g(β̂>Xi)) +
∑
j∈I−i

Xj(g(β̂>−iXj)− g(β̂>Xj)). (3.5)

We expect the difference between β̂−i and β̂ to be small, so we can approximate the difference
g(β̂>−iXj)− g(β̂>Xj) well with a Taylor expansion of g around β̂>Xj ,

0 ≈ Xi(Yi − g(β̂>Xi)) +
∑
j∈I−i

Xjg
′(β̂>Xj)X

>
j (β̂−i − β̂). (3.6)

When the MLE exists, the Hessian of the log likelihood for the full data H and leave-one-out data,

H−i = −
∑
j∈I−i

Xjg
′(β̂>Xj)X

>
j = H +Xig

′(β̂>Xi)Xi,
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Figure 3. Empirical convergence of SLOE over
sample sizes. Shows average squared differ-
ences over 1000 simulations of (η̂2SLOE − η2)2,
(β̂>Σβ̂ − η2)2, and (η̂2SLOE − β̂>Σβ̂)2. The
difference between β̂>Σβ̂ = Var(β̂>X) and
its limit η2 appears to be the dominant term.

are invertible. Therefore, we can solve for β̂−i−
β̂ to get

β̂−i − β̂ ≈ H−1
−iXi(Yi − g(β̂>Xi)).

Then, we can accurately approximate the term
β̂>−iXi as

β̂>Xi +X>i H
−1
−iXi(Yi − g(β̂>Xi)).

To estimate all of the matrix inverses efficiently,
we can take advantage of the fact that they are
each a rank one update away from the full Hes-
sian. Applying the Sherman-Morrison inverse
formula [Sherman and Morrison, 1950] gives

X>i H
−1
−iXi =

X>i H
−1Xi

1 + g′(β̂>Xi)X>i H
−1Xi

.

Therefore, inverting one matrix gives us what we need from all n inverse Hessians. Approximating
β̂>−iXi in η̂2

LOO with this gives us the SLOE estimator, η̂2
SLOE. To show that the SLOE estimator η̂2

SLOE
is consistent, we show the remainders from the Taylor approximation used to derive SLOE, (3.6),
vanish in the limit (see the Supplement for proof).
Proposition 2. Under the conditions of Theorem 1, the estimators η̂LOO and η̂SLOE are asymptotically
equivalent, η̂LOO = η̂SLOE + oP (1), and therefore, η̂SLOE

p→ η.
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Remark 1: The majority of the proof of Theorem 1 allows us to derive a rate of convergence,
η̂2 − β̂>Σβ̂ = oP (n1/4−ε), for any ε > 0. However, to show that β̂>Σβ̂ → η2, our proof relies on
the approximate message passing (AMP) construction of Sur and Candès [2019] and Zhao et al.
[2020]. Deriving rates of convergence for these estimators would require significant new technical
results on the analysis of AMP, none of which currently quantify convergence rates. In Figure 3, we
show that the estimation error in η̂SLOE is dominated by this latter difference in simulation, but the
empirical error has the shape of a standard n−1/2 rate. ♦

4 Simulations
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Figure 4. Coverage of true probabilities with 90% standard and
corrected CIs over all test examples and over 1000 simulations,
with n = 4000. Curves are terminated when the observed data are
separable in more than 10% of simulations and simulations with
numerical instabilities near the separable frontier (vertical dotted
lines) are dropped.
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In this section, we evaluate η̂SLOE in simulated data, where ground truth parameter values are known.
We show (1) that the asymptotic properties of η̂SLOE hold in realistic sample sizes; (2) that η̂SLOE
can be used to make effective dimensionality corrections even when the covariates X do not have a
Gaussian distribution, as assumed in the theory; and (3) that η̂SLOE requires orders of magnitude less
computation than the current heuristic ProbeFrontier.

Here, we evaluate approximations in terms of the coverage rate of 90% CIs for the prediction
probabilities µ := g(β>x) = P (Y = 1 | X = x). In each simulation, we calculate a 90% CI for µi
for each observation i in the corresponding test set, using the standard CI and the corrected CI, and
compute the fraction of CIs that contain the true µi. Valid 90% CIs will cover the target quantity 90%
of the time. This evaluation checks whether the CIs centering and width are appropriately calibrated,
and whether the normal approximation adequately captures the tail behavior of the estimator.

In our simulations, we use a data generating process parameterized by the sample size n, the aspect
ratio κ, and signal strength γ2. We draw n examples of covariate vectors X from a given distribution,
and, conditional on xi, calculate the µi according to the logistic regression model where β is
parameterized by γ as follows,

βj =


2γ/
√
d j ≤ d/8

−2γ/
√
d d/8 < j ≤ d/4

0 otherwise,

and finally, draw Yi ∼ Bernoulli (µi). We consider two different distributions for X . First, we
generate X ∼ N(0, Ip), as studied in the theory. Second, following an experiment in Sur and
Candès [2019], we draw X from a discrete distribution that models feature distributions encountered
in Genome-Wide Association Studies (GWAS). Here, each feature Xij takes values in {0, 1, 2},
according to the Hardy-Weinberg equilibrium with parameter pj varying between covariates in the
range [0.25, 0.75]. This setting is not explicitly covered by the theory, but we expect the approximation
to work well nonetheless because the features have thin tails.

We show the results of these coverage experiments, with n = 4000, in Figure 4a. In both the Gaussian
and simulated GWAS settings, across all practically feasible values of κ and γ, the corrected intervals
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Clinic Heart Disease dataset, with probabilities on the (a) absolute scale, and (b) logit scale.

computed with η̂SLOE reliably provide 90% coverage. This is in stark contrast to CIs generated under
standard theory whose coverage begins to drop off at κ > 0.05 (that is, 20 observations per covariate)
for all signal strengths. Notably, in the simulated GWAS setting that is not covered by theory, the
corrected intervals remain reliable while the standard CIs perform worse than in the Gaussian setting.

SLOE is accurate in finite samples and computationally efficient. Figure 5 compares the time to
perform estimation and inference with both SLOE and ProbeFrontier. For all dataset sizes, SLOE is
10x faster, and for n & 3000, SLOE is 100x faster, which is when speed matters the most.

5 Applications

Here, we present applications of dimensionality corrections with η̂SLOE, emphasizing the real-world
impact of the differences between standard and corrected statistical inference in logistic regression.
See the Supplementary Materials for an additional experiment on the UCI dataset “German Credit
Scoring”.

Prediction of Heart Disease Reliable uncertainty quantification is essential for supporting effective
decision-making in clinical applications [Kompa et al., 2021]. We show how the dimensionality
corrections substantially changes the uncertainty communicated by CIs for predicting a heart disease
diagnosis from physiological and demographic information from the Cleveland Clinic Heart Disease
dataset [Detrano et al., 1989]. Kompa et al. [2021] showed that logistic regression predictions are
sensitive to bootstrapping this training data, demonstrating that uncertainty estimation is important. 7

The Heart Disease dataset (downloadable from the UCI Machine Learning Repository) has 14
predictors, and 303 observations. Converting categorical variables to dummy variables, taking
interactions between sex and pain categorization given its clinical significance [Mehta et al., 2019],
and balancing the classes, gives 136 training examples and 20 predictors (κ = 0.15). SLOE estimates
a bias inflation factor α̂ of 1.40 for this data, so the logits in the standard MLE will be inflated
by a factor of 40%. Correcting these inflated logits significantly changes the center of the CIs for
downstream predictions. Figure 6 compares the standard CIs to the corrected CIs for a handful of test
examples, along with the true labels. Notice that the standard CIs are overconfident, with the top CI
being entirely above 99.8% probability of heart disease, when in fact, there wasn’t. The corrected CIs
show that in reality, much higher probabilities of misdiagnosis (i.e., 1 in 58 chance of being wrong,
rather than 1 in 140) are consistent with the training data. In clinical settings, the uncorrected CIs
could communicate an unwarranted sense of confidence in a diagnosis.

Genomics In medical genomics, it is common to build predictors for clinically relevant binary
phenotypes with logistic regression models, using genetic variants as features. Given a set of candidate
variants (predictors) identified by genome-wide association studies (GWAS) or other related methods,
practitioners often use p-values associated with the coefficients of the variants to interpret these
models (e.g. Ding et al., 2020). Here, we present a case study with real data, in which the corrected
p-values computed with η̂SLOE maintain their intended interpretation, unlike the standard p-values.

7The nonparametric bootstrap turns out to produce invalid CIs when κ > 0; see the Supplementary Materials.
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Figure 7. (a) Histogram of p-values for null coefficients (randomly selected SNPs not known to be
associated with glaucoma), from the standard and corrected logistic regression models. (b) Comparison
of the Benjamini–Hochberg Q-value threshold and the empirical proportion of false discoveries, using
the p-values from the standard and corrected logistic regression models.

We study the association of genetic predictors with glaucoma, an eye condition that damages the optic
nerve. We build a dataset from UK Biobank [Sudlow et al., 2015] with 127 variants directly associated
with glaucoma according to a recent meta-analysis of GWAS [Gharahkhani et al., 2020] and randomly
sample 1873 “null” single nucleotide polymorphisms (SNPs) also present in HapMap 3 [International
HapMap 3 Consortium et al., 2010], such that each sampled SNP is at least 100K base pairs away
from all associated variants and from each other, and that pairwise Pearson correlation in the training
set (see below) is no greater than 0.8, to avoid correlated features due to linkage disequilibrium. This
generates 2000 genetic predictors in total. Glaucoma status was determined based on touchscreen
questionnaire responses and hospital episode statistics as performed previously [Khawaja et al., 2018,
Alipanahi et al., 2021]. From this, we construct a training set of 5067 cases with glaucoma and 5067
age- and sex-matched controls (κ = 2000/10134 = 0.197), 8 train a logistic regression model, and
compute standard and corrected p-values with it.

Figure 7a shows p-values of the randomly selected variants whose effects we expect to be null. The
standard p-values are skewed while the corrected p-values follow the expected uniform distribution
closely, as we observed in simulated data (Figure 2). Uniform null p-values are important for
controlling the error rate in procedures applied to select important variants, e.g., for resource-intensive
follow-up. In Figure 7b, we investigate how these p-values interact with the Benjamini-Hochberg (BH)
procedure [Benjamini and Hochberg, 1995] for “discovering” important variants while controlling
false discovery rates. To compute an approximate empirical false discovery proportion, we take all
variants identified by the BH procedure, and compute the proportion of the null variants (as opposed
to known glaucoma-associated variants) in this set. The corrected p-values result in better false
discovery proportion calibration across a range of false discovery rate targets (Figure 7b).

6 Discussion

The groundbreaking work by Sur and Candès [2019] has significant implications for theoretical
understanding, uncertainty quantification, and generally, practical statistical inference in large scale
data. Connecting this theory to practice highlights some interesting insights and questions.

Bias and Variance In the regime that we analyze, these dimensionality corrections constitute a
something of a statistical free lunch: the corrections reduce both bias and variance, or, in the case of
confidence intervals, they both improve coverage to their nominal level (Figure 4a) while shortening
their length on the logit scale (Figure 6b). This occurs because bias is created by overfitting,9 as
opposed to underfitting, which we can correct. This systematic bias in the parameters appears in
downstream predictions, and unless corrected, does not vanish asymptotically. Because the bias
correction shrinks the coefficient estimates by a factor of 1/α, it also produces lower-variance
predictions, even after correcting for the too-small variance predicted by standard theory.

CIs and Regularized Predictions CIs with valid coverage are an attractive tool for quantifying
uncertainty about predictions, but in practice, point predictions are usually made with models that are
regularized to reduce the variance of the predictions, at the cost of some amount of bias. Yet, the CIs

8We reserve 1126 individuals (563 cases, 563 controls) sampled in the same way for a test set.
9To overfit, the model reduces training residuals by amplifying coefficient to produce extreme predictions.
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around the predictions that we produce are centered around unbiased estimates of the logits; thus, one
might ask whether these can produce coherent summaries together. In simulations, we find that the
1− δ CIs contain the optimal regularized predictor (selected via leave-one-out cross validation) more
than a 1− δ fraction of the time. This makes sense, as the LOOCV regularized predictor should be
closer to the true probability, which we know is within the CIs 1− δ of the time. If one preferred the
CIs to always include the regularized predictions, taking the convex hull of the CIs and regularized
predictions would give slightly larger, but more interpretable, CIs with higher-than-nominal coverage.

Broader Implications for ML It would be interesting to further explore the implications of these
observations in machine learning. The logistic regression MLE is closely related to the cross entropy
/ softmax loss used frequently in deep learning. The logistic regression model is directly related to
softmax probabilities through the independence of irrelevant alternatives assumption, potentially
enabling multi-class extensions of this work. However, the paradigm studied here focuses on the
underparameterized regime, whereas many deep learning models are overparameterized. Even in
large datasets where this may not be true, the signal is often strong enough that that the data are
separable, and so the MLE does not exist. Salehi et al. [2019] characterizes generalization into
regimes where the data are separable by adding regularization, but their results rely more on assuming
isotropic Gaussian features, whereas this work and Zhao et al. [2020] generalize well theoretically to
elliptical Gaussian features and experimentally to sub-Gaussian features.
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