
Adaptively Calibrated Critic Estimates for
Deep Reinforcement Learning

Nicolai Dorka Joschka Bödecker Wolfram Burgard
University of Freiburg

dorka@cs.uni-freiburg.de

Abstract

Accurate value estimates are important for off-policy reinforcement learning. Al-
gorithms based on temporal difference learning typically are prone to an over- or
underestimation bias building up over time. In this paper, we propose a general
method called Adaptively Calibrated Critics (ACC) that uses the most recent high
variance but unbiased on-policy rollouts to alleviate the bias of the low variance
temporal difference targets. We apply ACC to Truncated Quantile Critics [22],
which is an algorithm for continuous control that allows regulation of the bias with a
hyperparameter tuned per environment. The resulting algorithm adaptively adjusts
the parameter during training rendering hyperparameter search unnecessary and
sets a new state of the art on the OpenAI gym continuous control benchmark among
all algorithms that do not tune hyperparameters for each environment. Additionally,
we demonstrate that ACC is quite general by further applying it to TD3 [11] and
showing an improved performance also in this setting.

1 Introduction

Off-policy reinforcement learning is an important research direction as the reuse of old experience
promises to make these methods more sample efficient than their on-policy counterparts. This is an
important property for many applications such as robotics where interactions with the environment
are very time- and cost-intensive. Many successful off-policy methods make use of a learned Q-value
function [11, 14, 18, 27]. If the action space is discrete the Q-function can be directly used to generate
actions while for continuous action spaces it is usually used in an actor-critic setting where the policy
is trained to choose actions that maximize the Q-function. In both cases accurate estimates of the
Q-values are of crucial importance.

Unfortunately, learning the Q-function off-policy can lead to an overestimation bias [33]. Especially
when a nonlinear function approximator is used to model the Q-function, there are many potential
sources of bias. Different heuristics were proposed for their mitigation, such as the double estimator
in the case of discrete action spaces [35] or taking the minimum of two estimates in the case of
continuous actions [11]. While these methods successfully prevent extreme overestimation due to
their coarse nature, they can still induce under- or overestimation bias to a varying degree depending
on the environment [23].

To overcome these problems we propose a principled and general method to alleviate the bias
called Adaptively Calibrated Critics (ACC). Our algorithm uses the most recent on-policy rollouts to
determine the current bias of the Q-estimates and adjusts a bias controlling parameter accordingly.
This parameter adapts the size of the temporal difference (TD) targets such that the bias can be
corrected in the subsequent updates. As the parameter changes slower than the rollout returns, our
method still benefits from stable and low-variance temporal difference targets, while it incorporates
the information from unbiased but high variance samples from the recent policy to reduce the bias.

Deep Reinforcement Learning Workshop, 35th Conference on Neural Information Processing Systems (NeurIPS
2021), Sydney, Australia.

We apply ACC to Truncated Quantile Critics (TQC) [22], which is a recent off-policy actor-critic
algorithm for continuous control showing strong performance on various tasks. In TQC the bias can
be controlled in a finegrained way with the help of a hyperparameter that has to be tuned for every
environment. ACC allows to automatically adjusts this parameter online during the training in the
environment. As a result, it eliminates the need to tune this hyperparameter in a new environment,
which is very expensive or even infeasible for many applications.

We evaluate our algorithm on a range of continuous control tasks from OpenAI gym [4] and exceed
the current state of the art results among all algorithms that do not need tuning of environment specific
hyperparameters. For each environment ACC matches the performance of TQC with the optimal
hyperparameter for that environment. Further, we show that the automatic bias correction allows
to increase the number of value function updates performed per environment step, which results in
even larger performance gains in the sample-efficient regime. We additionally apply ACC to the TD3
algorithm [11] where it also leads to notably improved performance, underscoring the generality of
our proposed method.

To summarize, the main contributions of this work are:

1. We propose Adaptively Calibrated Critics, a new general algorithm that reduces the bias of value
estimates in a principled fashion with the help of the most recent unbiased on-policy rollouts.

2. As a practical implementation we describe how ACC can be applied to learn a bias controlling
hyperparameter of the TQC algorithm and show that the resulting algorithm sets a new state of
the art on the OpenAI continuous control benchmark suite.

3. We demonstrate that ACC is a general algorithm by additionally applying it to TD3.

To allow for reproducibility of our results we describe our algorithm in detail, report all hyperparame-
ters, use a large number of random seeds for evaluation, and open sourced the code1.

2 Background

We consider model-free reinforcement learning for episodic tasks with continuous state and action
spaces S and A. An agent interacts with its environment by selecting an action at ∈ A in state
st ∈ S for every discrete time step t. The agent receives a scalar reward rt and observes the new
state st+1. To model this in a mathematical framework we use a Markov decision process, defined by
the tuple (S,A,P,R, γ). Given an action a ∈ A in state s ∈ S the unknown state transition density
P defines a distribution over the next state. Rewards are given to the agent according to the reward
functionR and future rewards are discounted via the discount factor γ ∈ [0, 1].

The goal is to learn a policy π that maps a state s to a distribution over actions such that the sum of
future discounted rewards Rt =

∑T
i=t γ

i−tri is maximized. We use the term πφ for the policy with
parameters φ, that is trained to maximize the expected return J(φ) = Esi∼P,ai∼π[R0]. For a given
state-action pair (s, a) the value function is defined as Qπ(s, a) = Esi∼P,ai∼π[Rt|s, a], which is the
expected return when executing action a in state s and following π afterwards.

2.1 Soft Actor Critic

TQC extends Soft Actor-Critic (SAC) [14], which is a strong off-policy algorithm for continuous
control that uses entropy regularization. This means that while in the end we are interested in
maximizing the performance with respect to the total amount of reward collected in the environment,
SAC maximizes for an auxiliary objective that augments the original reward with the entropy of the
policy J(φ) = Est∼P,at∼π[

∑
t γ

t(rt + αH(π(·|st)))], whereH denotes the entropy.

A critic is learned that evaluates the policy π in terms of its Q-value of the entropy augmented reward.
The policy—called actor—is trained to choose actions such that the Q-function is maximized with an
additional entropy regularization

Jπ(φ) = E
st∼D,at∼πφ

[Qθ(st, at)− α log πφ(at|st)]. (1)

The weighting parameter α of the entropy term can be automatically adjusted during the training [15].
Both the training of actor and critic happen off-policy with transitions sampled from a replay buffer.

1https://github.com/Nicolinho/ACC

2

https://github.com/Nicolinho/ACC

2.2 Truncated Quantile Critics

The TQC algorithm uses distributional reinforcement learning [2] to learn a distribution over the
future augmented reward instead of a Q-function which is a point estimate for the expectation of
this quantity. In TQC this is done with quantile regression [6] which approximates the distribution
with Dirac delta functions Zθ(st, at) = 1

M

∑M
m=1 δ(θ

m(st, at)). The Diracs are located at the
quantile locations for fractions τm = 2m−1

m ,m ∈ {1, . . . ,M}. The network is trained to learn
the quantile locations θm(s, a) by regressing the predictions θm(st, at) onto the Bellman targets
ym(st, at) = rt + γ(θm(st+1, at+1)− α log πφ(at+1|st+1)) via the Huber quantile loss.

TQC uses an ensemble of N networks (θ1, · · · , θN) where each network θn predicts the distribution
Zθn(st, at) = 1

M

∑M
m=1 δ(θ

m
n (st, at)). A single Bellman target distribution is computed for all

networks. This happens by first computing all targets for all networks, pooling all targets together
in one set and sorting them in ascending order. Let k ∈ {1, . . . ,M}, then the kN smallest of these
targets yi are used to define the target distribution Y (st, at) = 1

kN

∑kN
i=1 δ(yi(st, at)). The networks

are trained by minimizing the quantile Huber loss which in this case is given by

L(st, at; θn) =
1

kNM

M,kN∑
m,i=1

ρHτm(yi(st, at)− θmn (st, at)), (2)

where ρHτ (u) = |τ − 1(u < 0)|L1
H(u) and L1

H(u) is the Huber loss with parameter 1.

The rationale behind truncating some quantiles from the target distribution is to prevent overestimation
bias. In TQC the number of dropped targets per network d = M − k is a hyperparameter that has to
be tuned per environment but allows for a finegrained control of the bias.

The policy is trained as in SAC by maximizing the entropy penalized estimate of the Q-value which
is the expectation over the distribution obtained from the critic

J(φ) = E
s∼D
a∼π

[
α log πφ(a|s)− 1

NM

M,N∑
m,n=1

θmn (s, a)

]
. (3)

3 Adaptively Calibrated Critics

In this section, we will first introduce the problem of estimation bias in TD learning. Then we will
present our method ACC followed by an explanation how it can be applied to TQC.

3.1 Over- and Underestimation Bias

The problem of overestimation bias in temporal difference learning with function approximation has
been known for a long time [33]. In Q-learning [37] the predicted Q-value Q(st, at) is regressed
onto the target given by y = rt + γmaxaQ(st+1, a). In the tabular case and under mild assumptions
the Q-values converge to that of the optimal policy [37] with this update rule. However, using a
function approximator to generate the Q-value introduces an approximation error. Even under the
assumption of zero mean noise corruption of the Q-value E[εa] = 0, an overestimation bias occurs in
the computation of the target value because of Jensen’s inequality

max
a

Q(st+1, a) = max
a

E[Q(st+1, a) + εa] ≤ E
[

max
a
{Q(st+1, a) + εa}

]
. (4)

In continuous action spaces it is not possible to take the maximum over all actions. The most
successful algorithms rely on an actor-critic structure where the actor is trained to choose actions that
maximize the Q-value [11, 14, 24]. So the actor can be interpreted an approximation to the argmax
of the Q-value.

With deep neural networks as function approximators other problems such as over-generalization
[8, 27] can occur where the updates to Q(st, at) also increases the target through Q(st+1, a) for all a
which could lead to divergence. There are many other potential sources for overestimation bias such
as stochasticity of the environment [16] or computing the Q-target from actions that lie outside of the
current training data distribution [21].

3

While for discrete action spaces the overestimation can be controlled with the double estimator
[16, 35], it was shown that this estimator does not prevent overestimation when the action space is
continuous [11]. As a solution the TD3 algorithm [11] uses the minimum of two separate estimators
to compute the critic target. This approach was shown to prevent overestimation but can introduce
an underestimation bias. In TQC [22] the problem is handled by dropping some targets from the
pooled set of all targets of an ensemble of distributional critics. This allows for more finegrained
control of over- or underestimation by choosing how many targets are dropped. TQC is able to
achieve an impressive performance but the parameter d determining the number of dropped targets
has to be set for each environment individually. This is highly undesirable for many applications
since the hyperparameter sweep to determine a good choice of the parameter increases the actual
number of environment interactions proportional to the number of hyperparameters tested. For many
applications like robotics this makes the training prohibitively expensive.

3.2 Dynamically Adjusting the Bias

In the following we present a new general approach to adaptively control bias emerging in TD targets
regardless of the source of the bias. Let Rπ(s, a) be the random variable denoting the sum of future
discounted rewards when the agent starts in state s, executes action a and follows policy π afterwards.
This means that the Q-value is defined as its expectation Qπ(s, a) = E[Rπ(s, a)]. For notational
convenience we will drop the dependency on the policy π in the following. We start with the tabular
case. Suppose for each state-action pair (s, a) we have a family {Q̂β(s, a)}β∈[βmin,βmax]⊂R of
estimators for Q(s, a) with the property that Q̂βmin(s, a) ≤ Q(s, a) ≤ Q̂βmax(s, a), where Q(s, a)
is the true Q-value of the policy π and Qβ a continuous monotone increasing function in β .

If we have samples from Ri ∼ R(s, a) an unbiased estimator for Q(s, a) is given by the average of
the Ri. This is also called Monte Carlo estimation [32]. We further define the estimator Q̂β∗(s, a),
where β∗ is given by

β∗(s, a) = arg min
β∈[βmin,βmax]

∣∣∣∣∣Q̂β(s, a)− 1

N

N∑
i=1

Ri(s, a)

∣∣∣∣∣. (5)

In the following Theorem we show that the estimator is unbiased under some assumptions.

Theorem 1 Let Qβ(s, a) be a continuous monotone increasing function in β and assume that for
all (s, a) it holds Q̂βmin(s, a) ≤ Q(s, a) ≤ Q̂βmax(s, a), the returns R(s, a) follow a symmetric
probability distribution and that Q̂βmin(s, a) and Q̂βmax(s, a) have the same distance to Q(s, a).
Then Qβ∗ from Equation 5 is an unbiased estimator for the true value Q for all (s, a).

The proof is provided in the appendix. The symmetry and same distance assumption can be replaced
by assuming that Q̂βmin(s, a) ≤ Ri ≤ Q̂βmax(s, a) with probability one. In this case the proof is
straightforward since Qβ can take any value for which Ri has positive mass.

We are interested in the case where Q̂ is given by a function approximator such that there is
generalization between state-action pairs and that it is possible to generate estimates for pairs for
which there are no samples of the return available. Consider off-policy TD learning where the
samples for updates of the Q-function are sampled from a replay buffer of past experience. While
the above assumptions might not hold anymore in this case, we have an estimator for all state-action
pairs and not just the ones for which we have samples of the return. Also in practice rolling out
the policy several times from each state action pair is undesirable and so we set N = 1 which
allows the use of the actual exploration rollouts. Our proposed algorithm starts by initializing the
bias-controlling parameter β to some value. After a number of environment steps and when the next
episode is finished, the Q-value estimates and actual observed returns are compared. Depending on
the difference β is adjusted according to

βnew = βold + α

Tβ∑
t=1

[
R(st, at)− Q̂(st, at)

]
, (6)

where α is a step size parameter and (st, at)
Tβ
t=1 are the Tβ ∈ N most recent state-action pairs. As a

result β is decreased in the case of overestimation, where the Q-estimates are larger than the actual

4

observed returns, and increased in the case of underestimation. We assumed that Qβ is continuous
and monotonically increasing in β. Hence, increasing β increases Qβ and vice versa. For updating
the Q-function the target will be computed from Qβ .

Only performing one update step and not the complete minimization from Equation 5 has the
advantage that β is changing relatively slow which means the targets are more stable. Through this
mechanism our method can incorporate the high variance on-policy samples to correct for under- or
overestimation bias. At the same time our method can benefit from the low variance TD targets. ACC
in its general form is summarized in Algorithm 1 in the appendix.

Other algorithms that attempt to control the bias arising in TD learning with non-linear function
approximators usually use some kind of heuristic that includes more than one estimator. Some
approaches use them to decouple the choice of the maximizing action and the evaluation of the
maximum in the computation of the TD targets [35]. Alternative approaches take the minimum,
maximum or a combination of both over the different estimators [1, 11, 12, 23]. All of these have in
common that the same level of bias correction is done for every environment and for all time steps
during training. In the deep case there are many different sources that can influence the tendency of
TD learning building up bias in non-trivial ways. ACC is more principled in the regard that it allows
to dynamically adjust the magnitude and direction of bias correction during training. Regardless of
the source and amount of bias ACC provides a way to alleviate it. This makes ACC promising to
work robustly on a wide range of different environments.

One assumption of ACC is that there is a way to adjust the estimated Q-value with a parameter β
such that Q̂β is continuous and monotonically increasing in β. There are many different functions
that are in accordance with this assumption. We give one general example of how such a Q̂β can be
easily constructed for any algorithm that learns a Q-value. Let Q̂ be the current estimate. Then define
Q̂β = β|Q̂|/K + Q̂, where K is a constant (e.g. 100) and [βmin, βmax] is some interval around 0.
In the following section we will present an application of ACC in a more sophisticated way.

3.3 Applying ACC to TQC

As a practical instantiation of the general ACC algorithm we apply it to adjust the number of targets
dropped from the set of all targets in TQC. Denote with dmax ∈ {0, . . . ,M} some upper limit of
targets to drop per network. Define βmin = 0, βmax = dmax and let d = dmax − β be the current
number of targets dropped for each network. Further, we write Qβ for the TQC estimate with dN
targets dropped from the pooled set of all targets. If dmax is set high enough the TQC estimate
without dropped targets Qβmax induces overestimation while the TQC estimate with dmax dropped
targets per net Qβmin induces underestimation.

In general, β ∈ [0, dmax] is continuous and hence also d is a continuous value. However, the number
of dropped targets from the pooled set of all targets has to be a discrete number in {0, . . . , NM}.
Thus, in the computation of the TD target the total number of dropped targets dN is rounded to the
nearest integer. We use a normalization when updating β. A moving average of the absolute value of
the difference between returns and estimated Q-values is stored. When updating β with Equation 6,
the expectation is divided by the moving average.

4 Experiments

We evaluate our algorithm on a range of continuous control tasks from OpenAI Gym [4] that makes
use of the physics engine MuJoCo [34] (version 1.5). First, we benchmark ACC against strong
methods that do not use environment specific hyerparameters. Then we compare the performance
of TQC with a fixed number of dropped targets per network with that of ACC. Next, we evaluate
the effect of more critic updates for ACC and show results in the sample efficient regime. Further,
we study the effect of ACC on the accuracy of the value estimate, and investigate the generality of
ACC by applying it to TD3. To give more insight into the learning dynamics we also analyze how the
calibration parameter develops during training in the appendix.

We implemented ACC on top of the PyTorch code published by the authors2 to ensure a fair
comparison. Because in TQC the tuned optimal number of dropped targets per network is for every

2https://github.com/bayesgroup/tqc_pytorch

5

https://github.com/bayesgroup/tqc_pytorch

0 1 2 3 4 5
1e6

0

2500

5000

7500

10000

12500

15000

17500

20000

Av
er
ag

e
ev
al
ua

tio
n
re
tu
rn

HalfCheetah

ACC
TD3
SAC

0 1 2 3 4 5
1e6

0

1000

2000

3000

4000

5000

6000

7000

8000
Walker2d

0.0 0.2 0.4 0.6 0.8 1.0
1e7

0

2000

4000

6000

8000

10000

12000

Av
er
ag

e
ev
al
ua

tio
n
re
tu
rn

Humanoid

0 1 2 3 4 5
1e6

0

2000

4000

6000

8000

10000
Ant

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Environment Steps 1e6

0

20

40

60

80

100

120

140

160

Av
er
ag

e
ev
al
ua

tio
n
re
tu
rn

Swimmer

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Environment Steps 1e6

0

500

1000

1500

2000

2500

3000

3500

4000

4500
Hopper

(a)

0 1 2 3 4 5
1e6

0

2500

5000

7500

10000

12500

15000

17500

20000

Av
er
ag

e
ev

al
ua

tio
n
re
tu
rn

HalfCheetah

ACC
TQC_drop_5
TQC_drop_2
TQC_drop_0

0 1 2 3 4 5
1e6

0

1000

2000

3000

4000

5000

6000

7000

8000
Walker2d

0.0 0.2 0.4 0.6 0.8 1.0
1e7

0

2000

4000

6000

8000

10000

12000

Av
er
ag

e
ev

al
ua

tio
n
re
tu
rn

Humanoid

0 1 2 3 4 5
1e6

0

2000

4000

6000

8000

10000
Ant

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Environment Steps 1e6

0

20

40

60

80

100

120

140

160

Av
er
ag

e
ev

al
ua

tio
n
re
tu
rn

Swimmer

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Environment Steps 1e6

0

500

1000

1500

2000

2500

3000

3500

4000

4500
Hopper

(b)

Figure 1: Learning curves for six different continuous control tasks from OpenAi gym. For all
environments version v3 was used. The shaded area represents mean ± standard deviation over the
10 trials. For readability the curves showing the mean are filtered with a uniform filter of size 15. In
(a) ACC applied to TQC is compared to other state of the arts methods for continuous control that use
the same hyperparameters for all environments. (b) shows the results for TQC with the number of
dropped quantiles per network fixed to different choices and the performance if this hyperparameter
is adjusted online with ACC.

environment set in the interval [0, 5], we set dmax = 5. At the beginning of the training we initialize
β = 2.5 and set the step size parameter to α = 0.1. We spend only a very limited amount of
computation time into into the tuning of the previously mentioned hyperparameters and describe
in the appendix in detail the process of choosing the selected hyperparameters. We also present
pseudocode for our method as well as the complete list of all hyperparameters in the appendix.

Compared to TQC the additional computational overhead caused by ACC is minimal because there is
only one update to β that is very cheap compared to one training step of the actor-critic and there are
at least Tβ = 1000 training steps in between one update to β.

During training, the policy is evaluated every 1,000 environment steps by taking the average over the
episode reward obtained by rolling out the current policy without sampling noise 10 times. For each
task and algorithm we average the results of 10 trials each with a different random seed.

4.1 Comparative Evaluation

We compare ACC to the state of the art continuous control methods SAC [14] (with learned tem-
perature parameter [15]) and TD3 [11]. The learning curves are shown in Figure 1a. On all six
environments ACC achieves considerably better results setting a new state of the art among all
algorithms without environment specific hyperparameters.

4.2 Fixing the Number of Dropped Targets

In this experiment we evaluate how well ACC performs when compared to TQC where we the number
of dropped targets per network d is fixed to some value. Since in the original publication for each
environment the optimal value was one of the three values 0, 2, and 5, we evaluated TQC with d fixed
to one of these values for each environment. To ensure comparability we used the same codebase
as for ACC. The results are shown in Figure 1b. It can be seen that ACC matches the performances
of TQC with the best hyperparameter in every environment. Furthermore, there is no single choice

6

0.0 0.2 0.4 0.6 0.8 1.0
1e6

0

2000

4000

6000

8000

10000

12000

14000

16000

Av
er

ag
e

ev
al

ua
tio

n
re

tu
rn

HalfCheetah

0.0 0.2 0.4 0.6 0.8 1.0
1e6

0

1000

2000

3000

4000

5000

6000

Walker2d

0.0 0.2 0.4 0.6 0.8 1.0
1e6

0

1000

2000

3000

4000

5000

6000

7000

Ant

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps 1e6

0

1000

2000

3000

4000

5000

6000

7000

Av
er

ag
e

ev
al

ua
tio

n
re

tu
rn

Humanoid
ACC_4q
ACC_2q
ACC_1q
TD3_4q
TD3_2q
TD3_1q
SAC_4q
SAC_2q
SAC_1q

0 1 2 3 4 5
Environment Steps 1e5

0

25

50

75

100

125

150

Swimmer

0 1 2 3 4 5
Environment Steps 1e5

0

500

1000

1500

2000

2500

3000

3500

4000

Hopper

(a)

0.0 0.2 0.4 0.6 0.8 1.0
1e6

0

2000

4000

6000

8000

10000

12000

14000

Av
er
ag

e
ev

al
ua

tio
n
re
tu
rn

HalfCheetah

ACC(TD3)
TD3

0.0 0.2 0.4 0.6 0.8 1.0
1e6

0

1000

2000

3000

4000

5000
Walker2d

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps 1e6

0

1000

2000

3000

4000

5000

Av
er
ag

e
ev

al
ua

tio
n
re
tu
rn

Ant

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps 1e6

0

500

1000

1500

2000

2500

3000

3500

4000
Hopper

(b)

Figure 2: The mean ± standard deviation over 10 trials. (a) results in the sample efficient regime
with different choices for the update number of the value function per environment step for each
algorithm. (b) Results for ACC applied to TD3 compared to pure TD3.

that can compete with ACC on all environments. With d = 0, TQC is substantially worse on three
environments and unstable on the Ant environment. Setting d = 2 is overall the best choice but still
performs clearly worse for two environments and is also slightly worse for Humanoid. Dropping
d = 5 targets per network leads to an algorithm that can compete with ACC only on two of the six
environments. The experiments showed that it is not possible to find one value for d that performs
well on all environments. Furthermore, even if there would be one tuned parameter that performs
equally well as ACC on a given set of environments we hypothesize there are likely very different
environments for which the specific parameter choice will not perform well. The principled nature of
ACC on the other hand provides reason to believe that it can perform robustly on a wide range of
different environments. This is supported by the robust performance on all considered environments.

4.3 Evaluation of Sample Efficient Variant

In principle more critic updates per environment step should make learning faster. However, because
of the bootstrapping in the target computation this can easily become unstable. The problem is that
as targets are changing faster, bias can build up easier and divergence becomes more likely. ACC
provides a way to detect upbuilding bias in the TD targets and to correct the bias accordingly. This
motivates to increase the number of gradient updates of the critic. In TD3, SAC and TQC one
critic update is performed per environment step. We conducted an experiment to study the effect of
increasing this rate up to 4. ACC using 4, 2 and 1 updates are denoted with ACC_4q, ACC_2q and
ACC_1q respectively. ACC_1q is equal to ACC from the previous experiments. We use the same
notation also for TD3 and SAC.

Scaling the number of critic updates by a factor of 4 increases the computation time by a factor of
4. But this can be worthwhile in the sample efficient regime, where a huge number of environment
interactions is not possible or the interaction cost dominate the computational costs. This for example
the case if the aim is to train robots in the real world. The results of our experiment are shown in
Figure 2a. It can be seen that in the sample efficient regime ACC4q further increases over plain ACC.
ACC4q reaches the performance that TD3 and SAC achieve at the end of the training in less than a
third of the amount of steps for five environments. On Humanoid it needs roughly half the number
of steps for that. Increasing the number of critic updates for TD3 and SAC shows mixed results,
increasing performance on some environment while decreasing performance on others. Only ACC
benefits from more critic updates on all environments, which supports the hypothesis that ACC is
successful at calibrating the critic estimate.

4.4 Analysis of the Value Estimate

To better understand the effect of ACC on the bias of the value estimate, we analyze the difference
between the value estimate and the corresponding observed return when ACC is applied to TQC. For

7

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Environment Steps 1e6

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
Va

lu
e

Er
ro

r

HalfCheetah

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Environment Steps 1e6

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00
Walker2d

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Environment Steps 1e6

0.0

0.2

0.4

0.6

0.8

1.0
Ant

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Environment Steps 1e6

0.0

0.2

0.4

0.6

0.8

1.0
Humanoid

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Environment Steps 1e6

0.0

0.2

0.4

0.6

0.8

1.0
Swimmer

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Environment Steps 1e6

0.0

0.2

0.4

0.6

0.8

1.0
Hopper

ACC
TQC_drop_5
TQC_drop_2
TQC_drop_0

Figure 3: The normalized absolute error of the value estimate. Shown are the mean ± the standard
deviation over 5 trials with a uniform filter of size 401 for readability.

each state-action pair encountered during exploration, we compute its value estimate at that time
and at the end of the episode compare it with the actual discounted return from that state onwards.
Hence, the state-action pair was not used to update the value function at the point when the value
estimate has been computed. If an episode ends because the maximum number of episode time-steps
has been reached, which is 1,000 for the considered environments, we ignore the last 100 state-action
pairs. The reason is that in TQC the value estimator is trained to ignore the episode timeout and
uses a bootstrapped target also at the end of the episode. We normalize for different value scales
by computing the absolute error between the value estimate and the observed discounted return and
divide that by the absolute value of the discounted return. Every 1,000 steps, the average over the
errors of the last 1,000 state-action pairs is computed. The results are plotted in Figure 3 and show
that ACC indeed achieves a low value error compared to TQC with fixed hyperparameter. This
supports our hypothesis that the strong performance of ACC applied to TQC indeed stems from better
values estimates.

4.5 Beyond TQC: Improving TD3 with ACC

To demonstrate the generality of ACC, we additionally applied it to TD3 algorithm [11], which
uses a actor-critic framework with two critics. These are initialized differently but are trained with
the same target value, which is the minimum over the two targets computed from the two critics.
This is done to prevent overestimation in the value estimates. While successfully preventing the
overestimation, using the minimum of the two target estimates is very coarse and can instead lead to
an underestimation bias. We applied ACC to TD3 by defining the target for each critic network to be
a convex combination between its own target and the target estimate coming from the minimum of
both:

yk = r + γ

(
β Qθ̄k(st+1, πφ̄(st+1)) + (1− β) min

i=1,2
Qθ̄i(st+1, πφ̄(st+1))

)
, (7)

where β ∈ [0, 1] is the ACC parameter that is adjusted to balance between under- and overestimation.
The results are displayed in Figure 2b and show that ACC also improves the performance of TD3.

5 Related Work

5.1 Overestimation in Reinforcement Learning

The problem of overestimation in Q-learning with function approximation was introduced by [33].
For discrete actions the double estimator has been proposed [16] where two Q-functions are learned
and one is used to determine the maximizing action, while the other evaluates the Q-function for
that action. The Double DQN algorithm extended this to neural networks [35]. However, Zhang
et al. [40] observed that the double estimator sometimes underestimates the Q-value and propose
to use a weighted average of the single and the double estimator as target. This work is similar to
ours in the regard that depending on the parameter over- or underestimation could be corrected. A
major difference to our algorithm is that the weighting parameter is computed from the maximum
and minimum of the estimated Q-value and does not use unbiased rollouts. Lv et al. [25] propose
a similar weighting but suggest a stochastic selection of either the single or double estimator. The
probability of choosing one or the other follows a predefined schedule. Other approaches compute
the weighted average of the minimum and maximum over different estimates for the Q-value [12, 21].
However, the weighting parameter is a fixed hyperparameter. The TD3 algorithm [11] proposed to

8

use the minimum over two Q-value estimates as the target. Maxmin Q-learning is another approach
for discrete action spaces that uses an ensemble of Q-functions. In the target computation, first
the minimum of over all Q-functions is computed followed by maximization with respect to the
action [23]. Decreasing the ensemble size increases the estimated targets while increasing the size
decreases the targets. Similarly to TQC this provides a way to control the bias in a more fine-grained
way; the respective hyperparameter has to be set before the start of the training for each environment,
however.

Other approaches have identified overgeneralization as a potential source of wrong or divergend TD
targets. The idea is that, in the case of function approximation, updates to Q(st, at) also change the
estimate of Q(st+1, at+1) which again changes Q(st, at) through the TD target [8]. In a recent work
[31], it is proposed to use a regularization term to account for that. Furthermore, this work uses a
combination of minimum and maximum over different Q-value estimates to compute the TD target.
However, the method has several environment specific hyperparameters.

What sets ACC apart from the previously mentioned works is that unbiased on-policy rollouts are
used to adjust a term that controls the bias correction instead of using some predefined heuristic.

5.2 Combining On- and Off-Policy Learning

There are many approaches that combine on- and off-policy learning by combining policy gradients
with off-policy samples [7, 9, 20, 29, 36]. In Gu et al. [13] an actor-critic is used where the critic is
updated off-policy and the actor is updated with a mixture of policy gradient and Q-gradient. This
differs from our work in that we are interested only in better critic estimates through the information
of on-policy samples. To learn better value estimates by combining on- and off-policy data many
works propose the use of some form of importance sampling [26, 28, 30]. In Hausknecht and Stone
[17] the TD target is computed by mixing Monte Carlo samples with the bootstrap estimator. These
methods provide a tradeoff between variance and bias. They differ from our work in using the actual
returns directly in the TD targets while we incorporate the returns indirectly via another parameter.
Bhatt et al. [3] propose the use of a mixture of on- and off-policy transitions to generate a feature
normalization that can be used in off-policy TD learning. Applied to TD3, learning becomes more
stable eliminating the need to use a delayed target network.

5.3 Hyperparameter Tuning for Reinforcement Learning

Most algorithms that tune hyperparameters of RL algorithms use many different instances of the
environment to find a good setting [5, 10, 19, 39]. There is, however, also work that adjusts a
hyperparameter online during training [38]. In this work the meta-gradient (i.e., the gradient of the
update rule) is used to adjust the discount factor and the length of bootstrapping intervals. However,
it would not be straightforward to apply this method to control the bias of the value estimate. Their
method also differs from ours in that they do not use a combination of on- and off-policy data.

6 Conclusion

We present Adaptively Calibrated Critics (ACC), a general off-policy algorithm that learns a Q-value
function with bias calibrated TD targets. The bias correction in the targets is determined via a
parameter that is adjusted by comparing the current value estimates with the most recently observed
on-policy returns. Our method allows to incorporate information from the unbiased sample returns
into the TD targets while keeping the high variance of the samples out. We apply ACC to Truncated
Quantile Critics, a recent off-policy continuous control algorithm that allows fine-grained control
of the TD target scale through a hyperparameter tuned per environment. With ACC, this parameter
can automatically be adjusted during training, obviating the need for extensive tuning. The strong
experimental results suggest that our method provides an efficient and general way to control the bias
occurring in TD learning.

Interesting directions for future work are to evaluate the effectiveness of ACC applied to algo-
rithms that work with discrete action spaces and when learning on a real robot where tuning of
hyperparameters is very costly.

9

Acknowledgements

The authors would like to thank the following people for their help throughout the process of
writing this paper, in alphabetical order: Daniel Honerkamp, Johannes Meyer, Niklas Wetzel and
Tim Welschehold. This work was supported by the European Union’s Horizon 2020 research and
innovation program under grant agreement No 871449-OpenDR and by the Freiburg Graduate School
of Robotics.

References
[1] Rishabh Agarwal, Dale Schuurmans, and Mohammad Norouzi. An optimistic perspective

on offline reinforcement learning. In International Conference on Machine Learning, pages
104–114. PMLR, 2020.

[2] Marc G Bellemare, Will Dabney, and Rémi Munos. A distributional perspective on reinforce-
ment learning. In International Conference on Machine Learning, pages 449–458, 2017.

[3] Aditya Bhatt, Max Argus, Artemij Amiranashvili, and Thomas Brox. Crossnorm: Normalization
for off-policy td reinforcement learning. arXiv preprint arXiv:1902.05605, 2019.

[4] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang,
and Wojciech Zaremba. Openai gym. arXiv preprint arXiv:1606.01540, 2016.

[5] Hao-Tien Lewis Chiang, Aleksandra Faust, Marek Fiser, and Anthony Francis. Learning
navigation behaviors end-to-end with autorl. IEEE Robotics and Automation Letters, 4(2):
2007–2014, 2019. doi: 10.1109/LRA.2019.2899918.

[6] Will Dabney, Mark Rowland, Marc Bellemare, and Rémi Munos. Distributional reinforce-
ment learning with quantile regression. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 32, 2018.

[7] Thomas Degris, Martha White, and Richard Sutton. Off-policy actor-critic. In International
Conference on Machine Learning, 2012.

[8] Ishan Durugkar and Peter Stone. Td learning with constrained gradients. In Proceedings of the
Deep Reinforcement Learning Symposium, NIPS 2017, Long Beach, CA, USA, December 2017.
URL http://www.cs.utexas.edu/users/ai-lab?NIPS17-ishand.

[9] Rasool Fakoor, Pratik Chaudhari, and Alexander J. Smola. P3o: Policy-on policy-off policy
optimization. In Proceedings of The 35th Uncertainty in Artificial Intelligence Conference,
volume 115 of Proceedings of Machine Learning Research, pages 1017–1027. PMLR, 2020.

[10] Stefan Falkner, Aaron Klein, and Frank Hutter. BOHB: Robust and efficient hyperparameter
optimization at scale. In Proceedings of the 35th International Conference on Machine Learning,
pages 1437–1446, 2018.

[11] Scott Fujimoto, Herke Hoof, and David Meger. Addressing function approximation error in
actor-critic methods. In International Conference on Machine Learning, pages 1582–1591,
2018.

[12] Scott Fujimoto, David Meger, and Doina Precup. Off-policy deep reinforcement learning
without exploration. In International Conference on Machine Learning, pages 2052–2062.
PMLR, 2019.

[13] Shixiang (Shane) Gu, Timothy Lillicrap, Richard E Turner, Zoubin Ghahramani, Bernhard
Schölkopf, and Sergey Levine. Interpolated policy gradient: Merging on-policy and off-policy
gradient estimation for deep reinforcement learning. In Advances in Neural Information
Processing Systems, volume 30, pages 3846–3855, 2017.

[14] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In Proceedings of the
35th International Conference on Machine Learning, pages 1861–1870, 2018.

10

http://www.cs.utexas.edu/users/ai-lab?NIPS17-ishand

[15] Tuomas Haarnoja, Aurick Zhou, Kristian Hartikainen, George Tucker, Sehoon Ha, Jie Tan,
Vikash Kumar, Henry Zhu, Abhishek Gupta, Pieter Abbeel, and Sergey Levine. Soft actor-critic
algorithms and applications. CoRR, abs/1812.05905, 2018. URL http://arxiv.org/abs/
1812.05905.

[16] Hado V Hasselt. Double q-learning. In Advances in Neural Information Processing Systems,
pages 2613–2621, 2010.

[17] Matthew Hausknecht and Peter Stone. On-policy vs. off-policy updates for deep reinforcement
learning. In Deep Reinforcement Learning: Frontiers and Challenges, IJCAI 2016 Workshop,
2016.

[18] Matteo Hessel, Joseph Modayil, Hado Van Hasselt, Tom Schaul, Georg Ostrovski, Will Dabney,
Dan Horgan, Bilal Piot, Mohammad Azar, and David Silver. Rainbow: Combining improve-
ments in deep reinforcement learning. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 32, 2018.

[19] Max Jaderberg, Valentin Dalibard, Simon Osindero, Wojciech M Czarnecki, Jeff Donahue, Ali
Razavi, Oriol Vinyals, Tim Green, Iain Dunning, Karen Simonyan, et al. Population based
training of neural networks. arXiv preprint arXiv:1711.09846, 2017.

[20] Tang Jie and Pieter Abbeel. On a connection between importance sampling and the likelihood
ratio policy gradient. In J. Lafferty, C. Williams, J. Shawe-Taylor, R. Zemel, and A. Culotta,
editors, Advances in Neural Information Processing Systems, volume 23, pages 1000–1008,
2010.

[21] Aviral Kumar, Justin Fu, Matthew Soh, George Tucker, and Sergey Levine. Stabilizing off-policy
q-learning via bootstrapping error reduction. In Advances in Neural Information Processing
Systems, volume 32, pages 11784–11794, 2019.

[22] Arsenii Kuznetsov, Pavel Shvechikov, Alexander Grishin, and Dmitry Vetrov. Controlling
overestimation bias with truncated mixture of continuous distributional quantile critics. In
International Conference on Machine Learning, pages 5556–5566. PMLR, 2020.

[23] Qingfeng Lan, Yangchen Pan, Alona Fyshe, and Martha White. Maxmin q-learning: Controlling
the estimation bias of q-learning. In International Conference on Learning Representations,
2020. URL https://openreview.net/forum?id=Bkg0u3Etwr.

[24] Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. arXiv
preprint arXiv:1509.02971, 2015.

[25] P. Lv, X. Wang, Y. Cheng, and Z. Duan. Stochastic double deep q-network. IEEE Access, 7:
79446–79454, 2019. doi: 10.1109/ACCESS.2019.2922706.

[26] A. Rupam Mahmood, Hado P van Hasselt, and Richard S Sutton. Weighted importance sampling
for off-policy learning with linear function approximation. In Advances in Neural Information
Processing Systems, volume 27, pages 3014–3022, 2014.

[27] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G
Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al.
Human-level control through deep reinforcement learning. Nature, 518(7540):529, 2015.

[28] Remi Munos, Tom Stepleton, Anna Harutyunyan, and Marc Bellemare. Safe and efficient
off-policy reinforcement learning. In Advances in Neural Information Processing Systems,
volume 29, pages 1054–1062, 2016.

[29] Brendan O’Donoghue, Remi Munos, Koray Kavukcuoglu, and Volodymyr Mnih. Combining
policy gradient and q-learning. In ICLR, 2016.

[30] Doina Precup. Eligibility traces for off-policy policy evaluation. Computer Science Department
Faculty Publication Series, page 80, 2000.

11

http://arxiv.org/abs/1812.05905
http://arxiv.org/abs/1812.05905
https://openreview.net/forum?id=Bkg0u3Etwr

[31] Lin Shao, Yifan You, Mengyuan Yan, Qingyun Sun, and Jeannette Bohg. Grac: Self-guided
and self-regularized actor-critic. arXiv preprint arXiv:2009.08973, 2020.

[32] Richard S. Sutton and Andrew G. Barto. Reinforcement learning: An introduction. MIT Press,
2018. ISBN 78-0262039246.

[33] Sebastian Thrun and Anton Schwartz. Issues in using function approximation for reinforcement
learning. In Proceedings of the 1993 Connectionist Models Summer School, pages 255–263,
1993.

[34] Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based
control. In IROS, pages 5026–5033. IEEE, 2012.

[35] Hado Van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with double
q-learning. In Thirtieth AAAI Conference on Artificial Intelligence, 2016.

[36] Ziyu Wang, V. Bapst, N. Heess, V. Mnih, R. Munos, K. Kavukcuoglu, and N. D. Freitas. Sample
efficient actor-critic with experience replay. In ICLR, 2017.

[37] Christopher JCH Watkins and Peter Dayan. Q-learning. Machine learning, 8(3-4):279–292,
1992.

[38] Zhongwen Xu, Hado P van Hasselt, and David Silver. Meta-gradient reinforcement learning. In
NeurIPS, 2018.

[39] Baohe Zhang, Raghu Rajan, Luis Pineda, Nathan Lambert, André Biedenkapp, Kurtland Chua,
Frank Hutter, and Roberto Calandra. On the importance of hyperparameter optimization for
model-based reinforcement learning. In International Conference on Artificial Intelligence and
Statistics, pages 4015–4023. PMLR, 2021.

[40] Zongzhang Zhang, Zhiyuan Pan, and Mykel J. Kochenderfer. Weighted double q-learning. In
Proceedings of the 26th International Joint Conference on Artificial Intelligence, IJCAI’17,
pages 3455–3461. AAAI Press, 2017. ISBN 978-0-9992411-0-3. URL http://dl.acm.org/
citation.cfm?id=3172077.3172372.

12

http://dl.acm.org/citation.cfm?id=3172077.3172372
http://dl.acm.org/citation.cfm?id=3172077.3172372

