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ABSTRACT

Building upon the abduction-action-step scheme and the structural causal model
framework, this paper introduces the Conditional Sparse Autoencoder (CSAE), a
novel approach for time series counterfactual estimation using encoder-decoder
based architectures with a sparsity constraint to disentangle the roles of the in-
puts in the expected outputs. We benchmark CSAE with Conditional Variational
Autoencoder (CVAE), the most widely adopted encoder-decoder architecture for
counterfactual estimation, showing that CSAE clearly outperforms CVAE in this
domain. Furthermore, we demonstrate the versatility of CSAE by extending it to
image-based counterfactual scenarios, obtaining promising results. This work has
important implications for a wide range of applications across various domains
including finance, healthcare, and transportation, where being able to perform ac-
curate counterfactual estimations is critical for decision-making.

1 INTRODUCTION

Understanding the complexities of causal reasoning is crucial for making sense of our world. This
type of reasoning allows to analyse interactions with our environment (interventions) and hypothet-
ical alternate worlds (counterfactuals). While fields like econometrics have long embraced causal
inference methods (Wold, 1954), the inclusion of these techniques in the domain of deep learning
(DL) is a more recent development (Kaddour et al., 2022; Schölkopf, 2022). Existing research in
DL has primarily focused on pattern recognition and predictive modeling, often failing to distinguish
between correlation and causation. This has resulted in DL models that are prone to biases (Zhao
et al., 2017), vulnerable to changes in input distribution (Szegedy et al., 2014), and generally lacking
in transparency (Kusner et al., 2017). Previous work has begun to address these gaps by integrating
causal methods for tasks like causal disentanglement (Yang et al., 2022; Parascandolo et al., 2018),
causal discovery (Sanchez et al., 2023; Goudet et al., 2018; Bengio et al., 2020), data augmentations
(Gowda et al., 2021; Kaushik et al., 2020) or causality-based explanations (Parafita & Vitrià, 2019;
Singla et al., 2020; Wu et al., 2023). More recently, some works have developed methods that allow
to answer counterfactual questions (Kaddour et al., 2022).

Counterfactuals allow to reason about alternative realities by asking ”what if” questions, and to
quantify the effects of hypothetical interventions on an outcome of interest, as if we could “re-
run” the world under different conditions. Works like Pawlowski et al. (2020) leverage deep learn-
ing prowess to estimate counterfactuals on the basis of Structural Causal Models (SCMs) and the
abduction-intervention-prediction process (Pearl, 2000). These papers work with images and re-
spond questions like “How would that brain scan be if the individual was 10 years older?”, or “How
would that face look if they were smiling?” (Pawlowski et al., 2020). However, these works often
do not disentangle enough the effects of the causal attributes over the output and lack precision. For
this reason, although counterfactual images are usually reasonable, when applying these methods to
some time series settings where more precision is required, the results are usually not satisfactory.

Time Series counterfactuals, which are the main focus of this paper, can help in identifying the causal
drivers of observed phenomena and in predicting the outcomes of interventions in many fields. For
example, in finance (Barocas et al., 2020), counterfactual analysis can be used to estimate the effect
of a hypothetical intervention, such as a change in interest rates, or in stock prices. In healthcare
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(Prosperi et al., 2020), causal inference can help in identifying the causal factors of diseases and in
evaluating the effectiveness of treatments (Zou et al., 2020) or, as the original industrial motivation
of the present article, in cases where a competitor product is introduced into the market, it is essential
to evaluate the counterfactual effect of the new product on the sales of the existing product, which
could help determine the optimal pricing strategy and marketing tactics for the existing product.

In this context, our work adapts the framework of SCMs and abduction-action-prediction process
to time series data, and introduces the Conditional Sparse Autoencoder (CSAE), a novel method
for counterfactual inference which is designed specifically to disentangle the effects of the causal
variables over the outcome. It has been conceived to allow sound time series counterfactuals and,
as shown in this paper, has proven to outperform Conditional Variational Autoencoder (CVAE), the
most used autoencoder based model for counterfactual inference. Additionally, we demonstrate that
CSAE is also effective for image counterfactuals.

The present paper is organized as follows: Sec. 2 provides a comprehensive overview of the extant
literature on counterfactual inference. Sec. 3, explicates the utilized methodology, which includes an
exposition of causality concepts, a definition of the methods and an explanation of the counterfactual
inference process within the context of our problem. Sec. 4 presents the datasets, models, metrics,
and results. Finally, the conclusions drawn from our work are expounded upon in Sec. 5.

2 RELATED WORK

Many works have appeared recently in the intersection among causality and machine learning. The
ones which are more close to ours are those about counterfactual estimation using deep generative
models, which are usually applied to images. Pawlowski et al. (2020) show how to jointly model
all the functional assignments in an SCM using deep generative models, and apply Variational Au-
toencoders (VAEs) (Kingma & Welling, 2022) and normalizing flows (Kobyzev et al., 2020). For
the same purpose, Dash et al. (2022) and Shen et al. (2021) use GANs (Goodfellow et al., 2014)
and Jeanneret et al. (2022) use diffusion models (Ulhaq et al., 2022). Another approach based on
Graph Neural Networks is proposed in Sanchez-Martin et al. (2021). Kim et al. (2020) proposes
a VAE-based approach that clusters the causal graph based on which features undergo interven-
tions, which is useful in the context of complex causal graphs with sensitive variables. Monteiro
et al. (2023) presents some useful metrics to evaluate counterfactuals. Sauer & Geiger (2021) use
deep neural networks to disentangle object shape, object texture and background in natural images.
Van Looveren & Klaise (2021) utilize class prototypes in order to find interpretable counterfactual
explanations. Parascandolo et al. (2017) use multiple competing models in order to retrieve a set of
independent mechanisms from a set of transformed data points in an unsupervised way.

There are other interesting works about causal representation learning with deep generative models
that do not tackle directly the problem of counterfactual inference but have a close relationship with
this work. CausalGAN Kocaoglu et al. (2017) and Liu et al. (2019) combine GANs (Goodfellow
et al., 2014) with SCMs, basing the generator architecture on an assumed causal graph. However,
these methods lack tractable abduction capabilities and therefore cannot generate counterfactuals
and reach only the second rung of the causal ladder (Pearl, 2000). Yang et al. (2022) propose a
method that learns a causal model, including the DAG, over latent variables from data and generates
counterfactual samples. Kumar et al. (2023) use a GAN based approach to address the specific
problem of spurious correlations in medical datasets.

In the field of causal machine learning applied to time series, some methods have been proposed that
either are not based on deep generative models or do not directly address the problem of counter-
factual inference. Tonekaboni et al. (2020) proposes a method for time series explanation that they
claim to be based on counterfactuals. However, their authors use forecast methods that do not take
into account actual observations and perform something more similar to an intervention. Liu et al.
(2022) imputes counterfactual outcomes for treated observations to estimate the average treatment
effects (ATEs) using techniques like fixed effects counterfactual estimator, interactive fixed effects
counterfactual estimator or matrix completion estimator. Bica et al. (2020) develops a method that
leverages the assignment of multiple treatments over time to estimate treatment effects in the pres-
ence of multi-cause hidden confounders. Ahmad et al. (2021) propose a method to detect causal
relationships in time series. ARCO (Carvalho et al., 2018) uses a combination of machine learning
and time series econometrics techniques to estimate the causal effects of a treatment on a outcome
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variable in a panel time series data setting when a single unit is treated and control group is not
available. Brodersen et al. (2015) propose a method that estimates counterfactual time series in the
presents of an event with two main information sources: the historical part of the time series, pre-
vious to the event, and other time series that were predictive of the target series prior to the event
and have not been affected by it. In our view, the fact that these models rely on time series other
than the target one represents a significant weakness, as it may not always be feasible to access data
with a reasonable predictive capacity. For this reason, it is not very reasonable to compare these
model with the ones that do not require external information sources, as the one we propose. On the
other hand, we believe that the actual values over which the counterfactual is to be obtained bring
an important information that should be used if it is possible, i.e. in the case a sufficient amount of
event and event-less data for a model to learn to separate the effects of the event from the rest of
effects in the actuals is available. For example, if something happens after and independently of the
event that alters the observed values of a time series, the effects of that happening should be reflected
in the counterfactual estimate.

Finally, there are other interesting counterfactual estimation approaches that are applied to tabular
data. Among them, Yoon et al. (2018), based in GANs and Vlontzos et al. (2021), based in Deep
Twin Networks, similar to siamese networks (Koch et al., 2015), stand out.

3 METHOD

This section begins with an overview of SCMs, followed by the introduction of CVAE, the most used
autoencoder based model for counterfactuals, and the explanation of CSAE, our proposed model.

3.1 BACKGROUND ON STRUCTURAL CAUSAL MODELS

The proposed approach for counterfactual estimation is based on the definition of counterfactual pro-
vided by Pearl (2000), which corresponds to the third rung of the causation ladder. Counterfactuals
can be operationalized by employing SCMs.

A SCM M := (S, p(ϵ)) consists of a collection S = {fi}Ni=1 of structural assignments hi :=
fi(ϵi;pai), where pai is the set of parents of hi (its direct causes), and a joint distribution
p(ϵ) =

∏N
i=1 p(ϵi) over mutually independent exogenous noise variables (i.e. unaccounted sources

of variation) (Pawlowski et al., 2020). As the assignments are assumed acyclic, a directed acyclic
graph (DAG) can represent relationships, with edges pointing from causes to effects in a causal
graph. A unique joint observational distribution PM(h) is determined by every SCM, fulfilling
the causal Markov assumption: each variable is independent of its non-effects given its direct
causes. Thus, it factorizes as PM(h) =

∏N
i=1(PM(hi | pai)), where each conditional distribu-

tion (hi | pai) is determined by its assignments and noise distribution (Peters et al., 2017).

SCMs allow to perform Counterfactual queries in a three-step procedure (Pearl, 2000): 1) Abduc-
tion: predict the ‘state of the world’ (the exogenous noise ϵ) that is compatible with the observed
data h, i.e. infer PM(ϵ | h). Replacing the prior distribution of noise variables p(ϵ) by this pos-
terior distribution, we obtain the counterfactual SCM Mh := (S, p(ϵ | h)); 2) Action: perform
an intervention (i.e. do(hi := h̃i)) to the counterfactual SCM which corresponds to the desired
manipulation, which generates the modified counterfactual SCM M̃ := Mh,do(h̃i)

; 3) Prediction:
compute the quantity of interest based on the distribution entailed by the modified counterfactual
SCM, PM̃(h). In the next section, we introduce autoencoder based approaches for counterfactual
inference and explain how they approximate structural equations and abduct the exogenous noise.

3.2 AUTOENCODER BASED MODELS FOR COUNTERFACTUAL ESTIMATION

A deep learning model can be used to perform counterfactuals if at the same time it is expressive
enough to approximate an structural equation and has abduction capabilities. Some autoencoder
based architectures fulfill both conditions and therefore are suitable for counterfactual estimation.
In this section, we first explain CVAE, the most used autoencoder based model for counterfactual
inference, and then we describe CSAE, our proposed approach.
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CVAE: The loss function for a classic CVAE (Kingma & Welling, 2022) with a β penalty (Higgins
et al., 2017), which correspond to the evidence lower bound (ELBO), is given by:

LCVAE(θ, ϕ) = Eqϕ(z|x,pa)[log pθ(x|z,pa)]− β KL[qϕ(z|x,pa) ∥ p(z))] (1)

where both qϕ(z|x,pa) and pθ(x|z,pa) are a set of dimension-wise independent normal distribu-
tions parameterised, respectively, by an encoder neural network Eϕ and a decoder neural network
Dθ, p(z) is an isotropic normal prior distribution, KL is the Kullback–Leibler divergence (Hall,
1987) and β is a penalization over KL (Higgins et al., 2017). In the model training, the ELBO func-
tion is maximized with respect to parameters of the neural networks using the re-parametrization
trick to sample from the approximate latent posterior: z = µϕ(x,pa) +αϕ(x,pa)⊙ ϵz ∼ N (0, I).

It is possible to generate a counterfactual sample x∗ by encoding an observation x and its parents pa,
i.e. obtaining the normal distribution qϕ(z|x,pa), where position and scale parameters come from
the encoder: µϕ, αϕ = Eϕ(x,pa), then sampling the latent posterior from this distribution: z ∼
qϕ(z|x,pa), and finally decoding it along with the counterfactual parents pa∗: x∗ ∼ pθ(x|z,pa∗).
Notice that, at a practical level, the counterfactual will be decoded from the latent sample in a
deterministic way: x∗ = Dθ(z,pa

∗).

There is a clear parallelism among this process and the abduction-action-prediction sequence pre-
viously defined, even if the latent variable z is not the same as the exogenous noise ϵ of the SCM
(Monteiro et al., 2023). Despite this, even if CVAE is a reasonable option to generate counterfac-
tuals, there are some relevant problems. On the one hand, the model can ignore, completely or
partially, the conditioning, which will produce that the latent variable z accounts for factors of varia-
tion that correspond to the conditioners, and thus the counterfactuals will be poor. Additionally, this
can make the decoder network not properly disentangle the effects of each parent on the observation.
These disentanglement problems can be addressed by using a more narrow bottleneck (reducing the
dimensionality of the latent space), by reducing the scale parameter of the prior distribution, or with
a β penalty on the KL. Nonetheless, all these measures solve only partially the described problems,
introduce trade-offs among the counterfactual soundness and the reconstruction capabilities (which
also affect the quality of the counterfactuals), and require an important effort of hyperparameter
search. Next, we introduce a novel approach that aims to overcome these issues.

3.2.1 IMPROVING COUNTERFACTUAL ESTIMATION WITH CONDITIONAL SPARSE
AUTOENCODER

A regular Autoencoder (AE) learns a low dimensional representation of a given input by jointly train-
ing an encoder Eϕ that outputs a latent compressed representation of the input and a decoder Dθ that
reconstructs the input from the latent variable. Even if it has the same encoder-decoder structure as
a VAE, conditioning an AE would not be useful at all for the purpose of estimating counterfactuals,
because if the latent space of the model is unconstrained, it will not use the conditionings at all and
counterfactual estimates will be poor.

Unlike a regular AE, in a sparse autoencoder the network is trained to, together with the aforemen-
tioned objective of a regular AE, enforce sparsity in the learned representation, meaning that the
values of this representation tend to be close to zero and only a small number of hidden units are
activated for a given input. This is achieved by adding an L1 or L2 regularization term over the
bottleneck latent variables to the AE loss. In this work, we propose to add a sparsity constraint to
an conditional AE to infer counterfactuals. Although Sparse autoencoders are well known in the
literature, to the best of our knowledge, conditioning them and using the sparse regularization to
perform counterfactuals is a novel approach. This proposed model, which we call CSAE, has the
following loss function:

LCSAE(x) = |x− x̂| − λ
∑
i

|zi| (2)

where x is the input variable, zi are the elements of the latent space vector z = Eϕ(x,pa), λ is the
hyperparameter of the penalty term, which in this work we have chosen to be L1, and x̂ is the recon-
struction term which stems from the decoder: x̂ = Dθ(z,pa

∗). As in CSAE, there is a parallelism
among the abduction-action-prediction scheme and how CSAE performs counterfactuals; thus, z
would make the function of the abducted exogenous noise and the action refers to the introduction
of the counterfactual parents pa∗ in the decoder instead of the factual parents pa.
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The quality of the estimated counterfactuals depends strongly on the capacity of the counterfactual
model to disentangle the roles of the inputs in the expected output, a problem which is common
in causal machine learning. Even if this is a relevant problem for all kinds of data, it is specially
critic for some time series settings as the required precision of the counterfactual is specially high,
thus making it key to effectively learn to separate the contributions of the parents from the rest of
contributions of the data generating process. This allows to properly reflect in the counterfactual
estimation any effects on the actual values of the time series that are independent of the parents.

To foster an AE based model’s disentanglement ability, the capacity of the latent space to seize
information must be limited in some way so that the latent varianle does not capture the information
that the conditioning bring, which would distort counterfactual estimation. Thus, it is not enough
that the decoder part of an autoencoder based model reconstructs properly the input given the latent
variable and the parents (which condition the model), but it has to be able to efficiently separate
the contributions of conditionings from the exogenous noise. In the case of CVAE, this is achieved
partially by adjusting hyperparameters like the latent space dimensionality and the scale parameter
of the prior distribution in order to limit the information that the latent space can capture while
enabling an accurate reconstruction. As mentioned in the previous subsection, the problem with
this approach is that there is a trade-off between disentanglement and reconstruction capacity and,
furthermore, the probabilistic nature of CVAE introduces additional errors as the input of the decoder
comes from a random sample of the posterior distribution that the encoder outputs and is not directly
the outcome of the encoder.

CSAE has been conceived as a solution to the disentanglement problem that CVAE and most of
the possible frameworks that could have been used feature. By introducing the sparsity loss in
Equation 2, the latent variables are forced to be as close to zero as possible while the reconstruction
capability of the model is almost unaltered. This implies that the latent space is forced to capture the
minimum necessary information for the decoder to perform the reconstruction and, given that the
parents condition the decoder, this implies to force the latent vectors to seize only the information
that is not present in the parents, which amounts to forcing the model to use the conditionings.

4 EXPERIMENTAL SECTION

In this section, we explain the datasets where the models have been applied, the metrics that have
been used to validate these models, the details of the models and baselines, and finally the results.

4.1 DATASETS FOR COUNTERFACTUAL ESTIMATION

4.1.1 TIME SERIES COUNTERFACTUALS

In this work, we estimate time series counterfactuals in the presence of events. All the time series
datasets share a common structure and can be described by the same simple causal graph. Let h
be the historical part of a time series previous to the entrance of an event e which only affects
the posterior steps of the time series, and y the actual values over which we want to compute the
counterfactual. h and e are the parents of y, and they are independent, i.e. there is no confounding.
e is a binary variable, where 0 indicates absence of event and 1 indicates presence of event. When
computing the counterfactuals, h remains constant and e is the only intervened variable. We have
applied our models to the following datasets:

TS Synthetic dataset. We have created a synthetic dataset of time series with 30 steps that initiate
always at time 0, have a trend that stems from a uniform distribution [-0.1,0.1] (meaning that this
amount is added at each step), a drop of 0.7 in the step 20 in case of series with event, and an
additional change at any randomly chosen step post-event with a value chosen uniformly within a
range from -0.7 to 0.7. This value represents the effect of a happening that affects the time series
both in case of event and without event, whereas the previous drop of 0.7 represents the effect of the
main event. Besides, a gaussian noise N(0, 0.1) is added to each step to make the time series more
realistic. As can be noticed, the only difference in the generating process of these data for time series
with and without event is the drop of 0.7, which allows to generate at the same time a time series
with or without event and its counterfactual ground truth. Thus, it is possible to use any traditional
metric to see how similar the counterfactual estimate is to the counterfactual ground truth.
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TS Semi-synthetic dataset. This dataset is based in Rosseman Store Sales dataset rossmann, a
public dataset from a Kaggle competition. It shows the daily sales of Rossmann drug stores from
2013 to 2015. We simulate a situation where the first Monday of every march from 2013 to 2015
includes an event that affects half of the stores (e.g. it could be a promotion, a marketing campaign,
etc.) and multiplies the sales by 1.1 the first day, 1.2 the second day, and 1.3 the rest of the days
during three weeks. We use the four weeks previous to the first Monday of march of each year as
historical time series and the following three weeks as actual values. As in the case of the synthetic
dataset, the simulated event allows to have a ground truth counterfactual. Rossman store sales are
influenced by many factors, including promotions, competition, school and state holidays, season-
ality, etc., and we want our counterfactual estimate to capture the effects of these factors in a better
way than if we used just the historical information.

TS Real world dataset. This dataset shows the monthly sales of a pharma company and, as in the
previous datasets, has two types of time series depending on whether an event has impacted them or
not. The event here corresponds to the month where a generic treatment enters the market, which
usually happens a few months after the date when the patent expires, which is not related with the
features of the drug or its sales. Thus, to consider that there is no confounding among the event and
other factors that alter sales is a good approximation to reality. We take 12 months as historical time
steps and 30 months as actuals. This is a private dataset as it contains company specific information.

4.1.2 IMAGE COUNTERFACTUALS: COLOR-MNIST

We demonstrate the general applicability of our proposed model by performing image counterfac-
tuals on color MNIST, a dataset based in MNIST dataset (LeCun & Cortes, 2010) that we construct
following Monteiro et al. (2023).As in the paper, in addition to the digit we introduce a new parent:
the digit’s hue. We colour each image by triplicating the grey-scale channel, setting the saturation to
1 and the hue uniformly to a value between 0 and 1. The causal graph of this setting is simple: the
digit and the hue are the parents of the image, and are independent, i.e. there is no confounding.

4.2 EVALUATED METRICS

In order to evaluate the performance of the proposed methods, we have used the following metrics,
some of which, as explained in each paragraph, are particular for some datasets:

MAE with the ground truth counterfactual. We compute Mean Absolute Error (MAE) among
the estimated counterfactual and the ground truth counterfactual for those settings where we know
it. It is possible to know the counterfactual ground truth in those settings where we control the
generative process over the parent of interest, i.e. synthetic and semi-synthetic time series datasets,
and color-MNIST with respect to the hue parent.

MBE with the ground truth counterfactual. We calculate Mean Bias Error (MBE) among the
estimated counterfactual and the ground truth counterfactual for the synthetic and semi-synthetic
time series datasets, which allows to detect bias in the counterfactual estimations.

Added Variations. This metric has been conceived as a proxy to evaluate the reliability of a coun-
terfactual estimate when the ground truth is not available, as it is the case of real world data. The
core idea is that, regardless of the time series values of the counterfactual estimate, if the method
is accurate, in the case that we introduce variations in the actuals, the model should understand that
they are the effect of some process that has nothing to do with the event and, therefore, should reflect
them in the counterfactual estimate. Thus, with this metric we can evaluate one property that such a
method should feature: added variations in the actuals should be reflected in the counterfactual es-
timate. This metric is implemented as follows: for each actual to be evaluated, several positive and
negative values in the order of the time series values are chosen; for each of this values, several win-
dows of few consecutive steps from the actuals are selected and the chosen value is added to those
steps. After that, a counterfactual estimate is obtained for every altered actual and it is compared to
the counterfactual estimate of the non-altered actual. Two quantities are obtained:

• Total difference: takes into account the difference among the altered counterfactual and
the base counterfactual in all the steps.
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• Altered steps difference: takes into account the difference among the altered counterfac-
tual and the base counterfactual only in the steps affected by the alteration.

These quantities are then divided by the expected difference, which is the product of the alteration
value and the number of affected steps. Thus, ideally the final results for both total and altered steps
and total differences should be both 1. The final results are obtained by averaging all calculations.
For a more formal explanation of these metrics, see appendix A. Even if this metric has been con-
ceived as proxy to evaluate at least one desirable property of counterfactual methods in the case of
real world datasets where ground truth is unavailable, it has been also applied to the synthetic and
semi-synthetic dataset.

Metrics from the Axiomatic Definition of Counterfactual. Recently, the paper Monteiro et al.
(2023) has proposed three metrics to measure soundness of a counterfactual inference model without
having access to ground truth counterfactuals. Their work is rooted in the Judea Pearl definition of
counterfactual (Pearl, 2000), the soundness theorem (Galles & Pearl, 1998), and the completeness
theorem (Halpern, 2000), which, together, state that composition, effectiveness and reversibility are
necessary and sufficient properties of counterfactuals in any causal model. Let x be an observation
with counterfactual parents pa, and x∗ a counterfactual of x with parents pa∗. Then, a counter-
factual function f can be defined in such a way that x∗ := f(x,pa,pa∗), where the abduction of
the exogenous noise ϵ is implicit. With this notation, where there is a distinction among the ideal
counterfactual function f and its approximation with a counterfactual model f̂, Monteiro et al. (2023)
define the axioms that an ideal counterfactual function must obey and propose, in relation to each
axiom, a metric to evaluate approximated counterfactual functions. In this work, we include these
metrics to evaluate counterfactuals in those settings where the ground truth counterfactual is not
known but also in the ones where it is known for completeness. The three metrics are the next ones:

(1) Composition: Intervening on a variable to have the value it would otherwise have without the
intervention will not affect other variables in the system. This implies the existence of a null trans-
formation f(x,pa,pa) = x since if pa∗ = pa, then x is not affected. Since the ideal model cannot
change an observation under the null transformation, we can measure how much the approximate
model deviates from the ideal by calculating the distance between the original observation and the
mth time null-transformed observation. Given a distance metric dx, such as MAE (which has been
selected in this work), an observation x with parents pa and a functional power m (which is always
1 in this work), we can measure composition as Compositionm := dx

(
x, f̂(x,pa,pa)

)
.

(2) Reversibility: Reversibility prevents the existence of multiple solutions due to feedback loops.
If a mechanism is invertible, this means that if x∗ := f(x,pa,pa∗), then x = f(x∗,pa∗,pa). In
other words, the mapping between the observation and the counterfactual is deterministic for invert-
ible mechanisms. For a further discussion on this topic, see Monteiro et al. (2023). Thus, we can
measure reversibility by calculating the distance between the original observation and the cycled-
back transformed observation. Setting p̂(m)(x,pa,pa∗) := f̂

(
f̂(x,pa,pa∗),pa∗,pa

)
, given a dis-

tance metric dx, an observation x with parents pa and a functional power m (which is 1 in this work),
we can measure reversibility as Reversibility(m)(x,pa,pa∗) := dx

(
x, p̂(m)(x,pa,pa∗)

)
. The

chosen distance metric in this work is MAE.

(3) Effectiveness: Intervening on a variable to have a specific value will cause the variable to
take on that value. Thus, suppose Pa is an oracle function that returns the parents of a variable, then
we have the following equality: Pa((f,pa,pa∗)). Effectiveness is difficult to measure objectively
without relying on data-driven methods. Following the original paper, we measure effectiveness
individually for each parent by creating a pseudo-oracle function P̂aK, which returns the value of
the parent paK given the observation. Using an appropriate distance metric dk, such as accuracy for
discrete variables or l1 distance for continuous ones, we measure effectiveness for each parent as
Effectivenessk(x,pa,pa

∗) = dk

(
P̂ak

(
ˆfk(x, pak, pa∗k)

)
, pa∗k

)
.
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Table 1: Results for time series datasets with both settings ef = 0 and ef = 1 over 10 random
seeds. We measure MAE and MBE with respect to the counterfactual ground truth, the total and
altered steps differences, and reconstruction and reversibility MAEs and effectiveness accuracy as a
fraction. Symbol ∼ means that the best results are the more similar ones to the indicated value.

Metric Method Synthetic 0 Synthetic 1 Semi-synth. 0 Semi-synth. 1 Real world 0 Real world 1

cf MAE ↓
LSTM .199± .005 .198± .005 .101± .004 .080± .002 – –
CVAE .138± .009 .137± .014 .105± .005 .083± .004 – –
CSAE .066 ± .007 .066 ± .003 .070 ± .003 .056 ± .004 – –

cf MBE ∼ 0
LSTM .001 ± .011 .001 ± .014 .003± .004 .002 ± .004 – –
CVAE −.067± .019 .067± .024 .011± .010 −.011± .009 – –
CSAE .002± .007 −.002± .015 -.001 ± .004 .002 ± .004 – –

Total Steps ∼ 1
CVAE .457 ± .091 .443 ± .066 .037 ± .011 .045 ± .110 .899 ± .024 1.372 ± .070
CSAE .946 ± .123 .981 ± .085 .747 ± .052 .750 ± .048 .849 ± .293 1.183 ± .098

Altered Steps ∼ 1
CVAE .388 ± .097 .360 ± .090 .109 ± .017 .109 ± .015 .312 ± .016 .710 ± .021
CSAE .874 ± .010 .920 ± .055 .300 ± .015 .468 ± .010 .558 ± .200 .794 ± .111

Reconstruction ↓ CVAE .116 ± .005 .116 ± .007 .081 ±.005 .101 ± .006 .065 ± .008 .061 ± .008
CSAE .051 ± .006 .052 ± .008 .045 ± .004 .059 ±.004 .039± .006 .042±.007

Reversibility ↓ CVAE .127 ± .004 .150 ± .014 .100 ± .015 .117 ± .016 .073 ± .009 .078 ± .007
CSAE .068 ± .011 .063 ± .009 .050 ± .004 .064 ± .005 .052 ± .005 .054 ± .004

Effectiveness ↑ CVAE 1.±0. 1. ± .0 .996± .006 .991 ±.004 .631 ± .005 .639 ± .005
CSAE .999 ±.002 1. ± .0 .992 ± .007 0.997 ± .003 .627 ± .005 .621± .006

4.3 MODELS AND BASELINES

In the time series setting, we compare the counterfactual estimations of CVAE and CSAE for all
the metrics described in 4.2, and we add as a benchmark, for the MAE and MBE comparison with
ground truth counterfactuals, a LSTM-based conditional forecast model that has as inputs only the
historical part of time series x and the value of the event e, predicting yf if e = ef or ycf if
e = ecf , where f accounts for factual and cf for counterfactual. Thus, it can be used as a simple
time series counterfactual estimator that does not take into account actual values. The encoder
and decoder architectures of both CVAE and CSAE are shared, and are based on 1D convolutional
and transposed convolutional layers, in a setting inspired in the VAE architecture for time series
generation proposed in Desai et al. (2021). To obtain effectiveness metrics, a model based on LSTM
layers has been trained to predict the value of the event.

As for the image setting with the color MNIST dataset, we compare CSAE and CVAE for the indi-
cated metrics in 4.2. In this case, the encoder and decoder architectures of both CSAE and CVAE
is also shared, and is based on 2D convolutional layers, in a setting based on the VAE architecture
of Monteiro et al. (2023). In fact, the CVAE experiment with the color-MNIST dataset is so similar
to the normal VAE experiment with the unconfounded dataset in Moteiro et al. (2023), except for
the value of the KL hyperparameter. To obtain effectiveness metrics, two models have been trained
based on convolutional layers: a classifier to predict the digit and a regressor to predict hue. To train
these classifiers, a data augmentation process over MNIST images has been performed. All methods
have been implemented with TensorFlow Abadi et al. (2015) and Keras Chollet et al. (2015), using
an Adam optimizer with a learning rate of 10−4 for time series CVAE and CSAE and of 10−3 for
the LSTM and image CVAE and CSAE. Other hyperparameters of CVAE and CSAE such as dimen-
sionality of latent space or the factor of their respective regularizations (KL for CVAE and L1 for
CSAE) are particular for each dataset and have been chosen after an optimization process. For more
details about implementation, the code of all models is available in the sumplementary materials,
where it is possible to reproduce all the experiments except the ones involving the real world dataset,
as it is protected by the company’s privacy policies and safeguarded against unauthorized access.

4.4 RESULTS

Table 1 shows the results of time series experiments for the three datasets described in Sec. 4.1.1
in two types of settings: 0 when the factual event ef = 0 and the counterfactual event ecf = 1,
and 1 when ef = 1 and ecf = 0. All values have been obtained after performing 10 experiments
with different random seeds, and the intervals correspond to the standard deviation. We see that, in
counterfactual MAE metric, CSAE has the best results with an important difference. MBE metric
allows to detect biases in the counterfactual estimations. For example, when using CVAE, the in-
ferred counterfactual of time series are often biased towards the actual values, because of its limited
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(a) Forecast | Synthetic ef = 1 (b) CVAE | Synthetic ef = 1 (c) CSAE | Synthetic ef = 1

(d) Forecast | Semi-synthetic ef = 1 (e) CVAE | Semi-synthetic ef = 1 (f) CSAE | Semi-synthetic ef = 1

Figure 1: Counterfactual estimation comparison among all the models based on one datum synthetic
and semi-synthetic datasets with ef = 1. The vertical line indicates the time step where the event
takes place, and the shown historical part is limited to 10 steps.

Table 2: Color MNIST results over 10 random seeds. We measure composition after the null inter-
vention and reversibility after one intervention cycle, effectiveness using digit accuracy, hue absolute
error in percentage points (hue∈ [0, 1]), and MAE with respect to counterfactual ground truth.

Model
hue intervention null-intervention digit intervention hue intervention
ground truth cf. composition effectiveness reversibility effectiveness reversibility

MAE ↓ MAE ↓ digit Acc.(%) ↑ hue MAE ↓ MAE ↓ digit Acc.(%) ↑ hue MAE ↓ MAE ↓
CVAE 4.20 ± .09 4.15 ± .09 98.51 ± .16 .65 ± .29 5.32 ± .08 99.60 ± .04 .66 ± .30 4.86 ± .10
CSAE 2.96 ± .09 2.93 ± .08 93.01 ± .93 .51 ± .21 4.13 ± .20 99.33 ± .08 .51 ± .22 3.59 ± .13

disentanglement capacity. This is reflected in MBE metrics, where CSAE and LSTM model have
similar values. In composition and reversibility metrics we see that CSAE outperforms CVAE, while
in effectiveness metrics results are comparable. Figure 1 shows a comparison among the results of
all the methods for one series from the synthetic dataset and one from the semi-synthetic dataset.

In Table 2, that compares CSAE and CVAE in color MNIST, we see that CSAE clearly outperforms
CVAE in composition, reversibility and, very importantly, in the ground truth counterfactual. On
the other side, CVAE outperforms CSAE in the digit effectiveness with digit intervention. Based on
proves with different models and hyperparemeters, there seem to be a trade-off among effectiveness
on the one hand and composition, reversibility and ground truth counterfactual on the other side.

5 CONCLUSION

In this paper, we have proposed the CSAE, a new autoencoder based model for counterfactual esti-
mation. We have demonstrated that introducing a sparse constraint on an autoencoder results is an
effective way to cleanly disentangle the roles of the inputs on the outputs in time series data, which
allows to estimate sound counterfactuals. On the other hand, we have shown that this approach is
also applicable to image data counterfactuals, where promising results have been obtained. Even if
in CSAE, like in CVAE, causal disentanglement is not theoretically guaranteed, the results indicate
its utility for counterfactual estimation. Future work could include strengthening the evidence that
CSAE is a proper model for image data, expanding the sparsity idea to other deep learning methods
or introducing CSAE in more complex SCMs.
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A ADDED VARIATIONS EQUATIONS

Let y = {yt} , t ∈ T be the time series of the actuals over which we want to perform counter-
factuals, h its correspondent historical time series previous to the event, ef the (factual) event, and
ŷcf = f̂(y, h, ef , ecf ), where f̂ is a counterfactual function and ecf is the counterfactual event, its
correspondent counterfactual estimation. Then, we consider a time series A = 0...0, vA...vA, 0...0
with T steps, where vA is the value of the alteration which is added only to a certain number
of consecutive steps. Let yA = y + A be the altered time series, then ŷAcf would be its corre-
spondent counterfactual estimation. We consider that, if our counterfactual model is correct, alter-
ations in the factual time series should be reflected in the counterfactual time series. Thus, ideally∑

i ŷ
A
cf(i) − ŷcf(i) =

∑
i Ai = nA · vA, where nA is the number of steps affected by the alteration

in A. Taking into account that we use different time series A with different values nA and vA, we
can express total differences metric for a single time series y (TD) as:

TD =

〈∑
i ŷ

A
cf(i) − ŷcf(i)

na · vA

〉
A

, (3)

and altered step differences (ASD) as

ASD =

〈∑
i ŷ

A
cf(i) − ŷcf(i)

na · vA
Ii∈sA

〉
A

, (4)

where sA is the set of altered steps (those with value vA and not 0) in A. We see that, ideally, the
result of these averages over the different alteration schemes should be 1. The results given in the
paper are the averages of these metrics over all the time series in the test set. The parameters nA, sA
and vA are particular for every dataset and can be seen in the submitted codes.

B COLOR MNIST COUNTERFACTUAL PLOTS

We show several plots of CVAE and CSAE color MNIST counterfactuals and compare them. In
Figure 2, we compare composition in CVAE and CSAE with four examples from the color MNIST
test dataset. The first images in the left for each subfigure correspond to the same image from color
MNIST. Then, in the first row we observe the first 16 null-transformed observations (i.e., 16 iterative
reconstructions) with CVAE and, in the second one, the same with CSAE.

In Figure 3, we compare reversibility in CVAE and CSAE with 8 cycled-back transformed ob-
servations with random counterfactual parents of hue and digit. Additionally to the cycled-back
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observations, we show the counterfactual observations. As in Figure 2, the first images in the left for
each subfigure correspond to the same image extracted from color MNIST, the first row corresponds
to CVAE transformation and the second one to CSAE.

(a) Digit is 5 and hue value is 0.201.

(b) Digit is 3 and hue value is 0.846.

(c) Digit is 7 and hue value is 0.217.

(d) Digit is 4 and hue value is 0.630.

Figure 2: Four examples of 16 null-transformed observations with CVAE (first row in each subfig-
ure) and CSAE (second row). First images in the left are the actual observations.
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(a) Original image corresponds to digit 9 and hue 0.392. Counterfactual labels are digit 5 and hue 0.900.

(b) Original image corresponds to digit 9 and hue to 0.213. Counterfactual labels are digit 3 hue 0.300.

(c) Original image corresponds to digit 5 and hue to 0.201. Counterfactual labels are digit 9 hue 0.500.

(d) Original image corresponds to digit 7 and hue to 0.217. Counterfactual labels are digit 4 and hue is 0.100.

Figure 3: Four examples of cycled-back transformed observations with random counterfactual par-
ents.First row in each subfigure corresponds to CVAE and second row to CSAE. First images in the
left are the actual observations.
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