
HGAP: Boosting Permutation Invariant and Permutation Equivariant in
Multi-Agent Reinforcement Learning via Graph Attention Network

Bor Jiun Lin 1 Chun-Yi Lee 1

Abstract
Graph representation has gained widespread ap-
plication across various machine learning do-
mains, attributed to its ability to discern corre-
lations among input nodes. In the realm of Multi-
agent Reinforcement Learning (MARL), agents
are tasked with observing other entities within
their environment to determine their behavior.
Conventional MARL methodologies often suffer
from training difficulties if Permutation Invariant
(PI) and Permutation Equivariant (PE) properties
are not considered during training. The adoption
of graph representation offers a solution to these
challenges by conceptualizing observed entities
as a graph. In this context, we introduce the Hy-
per Graphical Attention Policy (HGAP) Network,
which employs a graph attention mechanism to
fulfill the PI and PE properties, while also un-
derstanding inter-entity interactions for decision-
making. HGAP is assessed across various MARL
benchmarks to confirm its effectiveness and effi-
ciency. In addition, a series of ablation studies
are provided to demonstrate its adaptability, trans-
ferability, and the capability to alleviate the com-
plexities introduced by the POMDP constraint.

1. Introduction
Centralized Training with Decentralized Execution (CTDE)
(Oliehoek et al., 2008; Kraemer & Banerjee, 2016) paradigm
in Multi-agent Reinforcement Learning (MARL) enables
agents to acquire collective decision-making skills through
centralized training, while maintaining individual action
selection during execution. Several methodologies (Lowe
et al., 2017; Foerster et al., 2018a;b; Iqbal & Sha, 2019;
Jiang & Lu, 2018; Kim et al., 2019; Yang et al., 2018) have
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Figure 1. PI mandates that the agent treat the same types of entities
uniformly, irrespective of their order, and make consistent action
decisions. In contrast, PE demands that the agent understand the
mapping relationship of the other entities to itself, rather than
basing its actions on the entities’ positions within its observation.
(a) The agent moves toward the left even if the other entities’
embedding orders change; (b) The agent acts on the red entity
regardless of the positions of the entities in the agent’s observation.

Table 1. A comparison of different methods associated with the PI,
PE, and graph properties. An introduction to each method can be
found in the Appendix. The symbol ‘o’ indicates that the method
possesses the specified property, ‘x’ denotes the absence of it, and
‘△’ suggests that the method only implicitly exhibits that property.

Methods DA-MADDPG Set GNN UPDeT ASN HPN HGAP (Ours)
PI o o o △ o o o
PE x x x △ △ o o

Graph x x o x x x o

been proposed and demonstrated promising performance
in various MARL benchmarks, particularly those employ-
ing value factorization approaches (Sunehag et al., 2018;
Rashid et al., 2018; Son et al., 2019; 2020; Rashid et al.,
2020; Wang et al., 2021a; Yang et al., 2020a;b). The success
of value factorization methods has prompted modifications
to agent networks (Sun et al., 2021; Hu et al., 2021), which
have significantly enhanced training performance. However,
these modifications tend to neglect the significance of Per-
mutation Invariant (PI) and Permutation Equivariant (PE)
properties (Hao et al., 2023), which may result in reduced
training efficiency. PI necessitates consistent behavior de-
spite variations in the embedding orders of entities, while PE
involves understanding the mapping relationship between
specific entities and actions. Fig. 1 illustrates that PI re-
quires various arrangements of the same types of entities
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(a) 3m (E) (b) 1c3s5z (E) (c) 3s vs 5z (H) (d) 3s5 (H) (e) 6h vs 8z (S) (f) MMM2 (S)

Figure 2. This figure illustrates the attention maps for scenarios depicted in the last row from SMAC (Vinyals et al., 2017). The first row
indicates UPDeT, and the second row represents HGAP. The red, blue, and green dots represent the agent, allies, and enemies, respectively.
The grey-shaded circle represents the visible range of the agent. (E), (H), and (S) denote the Easy, Hard, and Super-Hard scenarios,
respectively. In each attention map, each horizontal row represents the attention of one agent/entity towards others, while each vertical
column shows the attention received by a certain agent/entity from the others. Notice that UPDeT cannot correctly identify prioritized
entities for decision-making, whereas HGAP not only focuses on crucial entities but also prioritizes the nearest ones based on their
distance. In (a), (c), (d), and (e), the agents primarily undertake attacking actions, hence focusing more on enemies. In (b), the agent does
not focus on other entities because it is retreating. This is due to the agent possessing a larger attacking range, leading it to prefer moving
backward to avoid attacks and to strike from a distance. In (f), the agent is a Medivac (a healing unit), thus it focuses more on its allies.

possessing identical information, enabling an agent to make
the same action decision regardless of the entities’ order,
while PE emphasizes that agents should learn the mapping
relationship of entities to the agent rather than the entities’
positions in its observation. Failure to consider these proper-
ties in the design of agent networks could lead to extended
learning time and might adversely impact training efficiency
and transferability (Hao et al., 2023). In addition, MARL
setups typically involve a Partially Observable Markov De-
cision Process (POMDP), which can further exacerbate the
above PI and PE issues, as the number of observable entities
is limited. Overlooking these would demand significantly
more training effort in developing effective CTDE policies.

To address the challenges, various CTDE-based MARL
methods have been explored. Table 1 shows that some
methods primarily focus on PI, while others consider
both PI and PE properties. Earlier works such as DA-
MADDPG (Ye et al., 2023), Set (Lee et al., 2019), and
GNN (Liu et al., 2019) have begun to account for PI through
data rearrangement-based augmentation. Nevertheless, they
require considerable training time and computational re-
sources and do not take PE into consideration (Hao et al.,
2023). Recent approaches such as UPDeT (Hu et al., 2021),
ASN (Wang et al., 2020b), and HPN (Hao et al., 2023)
have integrated both PI and PE properties into the design

of their agent networks through the use of either hypernet-
works (Wang et al., 2020b; Hao et al., 2023) or attention lay-
ers (Hu et al., 2021). HPN and ASN achieve these properties
by encoding the features of different entities separately, thus
avoiding issues related to the ordering of them. However,
both generate the embeddings of entities without consider-
ing the intercorrelations among different entities. UPDeT
employs attention layers to learn correlations, and while
attention layers inherently possess PI and PE properties im-
plicitly, they may yield inconsistent attention results (Hao
et al., 2023). Another concern is the increase in total train-
ing parameters (Wang et al., 2020b; Hao et al., 2023) (due
to additional hypernetworks) or computational costs (Hu
et al., 2021) (due to longer attention sequences) as the num-
ber of entities grows, which can lead to increased memory
requirements for training agent networks (Hao et al., 2023).
Furthermore, these methods do not account for entities that
are out of sight due to POMDP, which can further limit the
agent network’s representational capability and the agent’s
comprehension of other entities. Addressing these chal-
lenges is therefore the primary objective of this research.

To meet the above demands, Graph Attention Network
(GAT) (Veličković et al., 2018; Brody et al., 2022) has
emerged as a promising candidate to be integrated into the
agent network design to overcome the challenges. GATs
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have been applied to multiple domains (Bao et al., 2019)
and have demonstrated the capability to leverage dynamic
attention for learning correlations among different graph
nodes, which allows them to produce representative em-
beddings that enhance performance in various downstream
tasks (Park et al., 2022). This suggests its potential appli-
cability to MARL problems, where capturing correlations
among observed and/or even unobserved entities is crucial
in POMDP. Utilizing GAT’s graph representation capabil-
ity also enables an agent network to disregard the ordering
relationship of entities, which helps it achieve PI and PE
properties. Another key advantage of GAT is its feasibility
for addressing POMDP, due to its ability to infer unseen enti-
ties through graph-connected adjacent entities. This feature
allows the agent to extract environmental information from
graph-derived clues for more informed decision-making.

Fig. 2 presents an analysis between UPDeT and our pro-
posed GAT-based method. The attention heatmaps gener-
ated by UPDeT lack the capability to learn entity correla-
tions, especially in more challenging scenarios. In addition,
UPDeT fails to provide sufficient information for entities
out of sight. In contrast, our GAT-based method not only
focuses attention on crucial entities, such as opponents, but
also allocates attention based on their proximity. Moreover,
our method exhibits the ability to implicitly account for en-
tities out of sight by leveraging the strengths of GAT. These
advantages position GAT as an excellent solution, filling a
niche that prior approaches have not adequately addressed.

In light of the preceding discussions, we introduce a graph
attention-based agent network, termed ‘Hyper Graphical
Attention Policy Network (HGAP)’, as a solution to the
challenges discussed earlier. HGAP serves as a versatile
framework applicable to a wide range of MARL paradigms,
including actor-critic, value factorization, and policy-based
methodologies. HGAP employs GATv2 (Brody et al., 2022)
to extract correlations among entities, which also ensures its
adherence to the PI and PE properties. In addition, by lever-
aging GATv2’s property as a bi-directional complete graph,
HGAP possesses the ability to infer environmental clues,
even when entities are out of sight. This allows HGAP to
mitigate the challenges posed by POMDP. Moreover, HGAP
maintains a manageable number of parameters, even as the
number of entities increases. To substantiate the effective-
ness of HGAP, we conduct a series of experiments across
diverse MARL benchmarks (Vinyals et al., 2017; Ellis et al.,
2023; Mordatch & Abbeel, 2017). We also provide ablation
studies to validate HGAP’s applicability to different MARL
methodologies, its transfer learning capabilities, as well as
its efficacy in retrieving information about unseen entities.
The key contribution of this work is the evidence suggesting
that HGAP satisfies PI and PE, overcomes the constraints
of POMDP, and is applicable to various MARL paradigms.

2. Preliminaries
In this section, we begin by defining the MARL problem
with Dec-POMDP, and introduce the notation to be used.
Then, we present the formulation of GATv2. The back-
grounds for the PI and PE properties, as well as several
relevant MARL approaches, are detailed in the Appendix.

2.1. Definition of MARL (Dec-POMDP)

We model our MARL problem within the framework of De-
centralized Partially Observable Markov Decision Process
(Dec-POMDP) (Oliehoek & Amato, 2016). A Dec-POMDP
is formally defined as a tuple <N,O,S,A,U,T,R, γ>,
where N represents the set of agents, oi ∈ O denotes the ob-
servation of agent i, S denotes the global state space, and A
represents the action space. The global state s ∈ S includes
the joint agent observation (i.e., o1×o2×o3× ...×oN ) and
additional environmental information. T represents the state
transition probability function that maps from the current
global state and action space to the probability of reaching
subsequent states: S × A × S → [0, 1]. Each agent i can
apply an action ui

t ∈ Ai at each timestep t from its own
action space Ai ⊆ A to the environment and subsequently
receive a reward rit from reward function R : S × A. The
joint action space is defined as U = Πi∈NAi, and the joint
action is denoted as u = {ui|i ∈ N} ∈ U. The observation
of agent i at t is defined as oit = {oi,own

t , oi,1t , oi,2t , ..., oi,Kt },
where oi,own

t is the observed environmental information and
private information for agent i, and oi,jt refers to the infor-
mation observed from entity j among K entities. A policy
πi : O×Ai → [0, 1] specifies the probability distribution
over the actions for agent i. The objective for each agent
i is to learn a πi that maximizes the expected cumulative
reward G = Eπi

[
∑∞

t=0 γ
t · rit], where γ is a discount factor.

2.2. Graph Attention Transformer (GAT)

GAT is designed to process graph-structured data, typically
defined as G = (V,E), where nodes V represent entities
and edges E denote their interrelations. GAT employs atten-
tion mechanisms to dynamically adjust the significance of
nodes within a graph and assigns variable weights to them.
This capability enhances tasks such as node classification
and link prediction by prioritizing relevant nodes. GAT en-
ables more efficient handling of irregular data structures and
better representation of correlations among data elements.

In this work, we utilize GATv2 (Brody et al., 2022) and
describe it in the following context. Assuming a graph with
m nodes, we define W ∈ Rd×d′

as a node transformation
matrix, where d represents the dimension of the original en-
tity features and d′ denotes the size of the output embedding.
The embedding for node i, denoted as hi, is determined
by hi = W · νi, where νi ∈ Rd symbolizes the original
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Figure 3. An overview of the proposed Hyper Graphical Attention Policy (HGAP) framework.

entity feature of node i, i ∈ {1, · · · ,m}. GATv2 employs a
scoring function, fs : R2d′ → R, to assign a weight to every
edge (i, j), which reflects the significance of the features of
neighbor j to node i. The scoring function is defined as:

fs(hi, hj) = LeakyReLU(α⊤ · [hi||hj ]), (1)

where α ∈ R2d′
is a learned vector, and || denotes vector

concatenation. The attention weight ωi.j can be derived as:

ωi,j = Softmax(fs(hi, hj)) =
exp(fs(hi, hj))∑m

k=1 fs(hi, hk)
, (2)

With the scoring process, GATv2 calculates a new represen-
tation for each node i by taking a weighted average of the
transformed features of its neighboring nodes followed by
a nonlinearity transformation Ψ. This calculation uses the
normalized attention coefficients obtained from the scoring
function. Specifically, for a node i, GATv2 updates it as
h′
i[k] = Ψ(

∑m
j=1 ωk,j · hi[j]), where [k] is the kth element.

3. Methodology
In this section, we begin with an overview of the HGAP
framework and its components. Subsequently, we introduce
the graph-based entity relation embedding module, a key
element of HGAP. Following this, we delve into the action
generation module, which generates ego and engagement
actions. Lastly, we discuss the loss function used by HGAP.

3.1. Hyper Graphical Attention Policy Network (HGAP)

Fig 3 presents an overview of the HGAP framework for
MARL. Assuming an environment that contains m enti-
ties, including the agent itself, the objective of HGAP is
to enable an agent to efficiently learn an optimal policy

while still possessing the properties of PI, PE, and utilizing
GATv2 to represent the relationships between an agent and
different entities. HGAP comprises four major components:
(1) an Input Module τi = I(oi) that transforms a raw ob-
servation oi into a high-dimensional embedding τi, (2) a
Graph-based Entity Relation Embedding Module that rep-
resents the relationship of the entities within a graph as a
latent embedding zi, fostering a more comprehensive repre-
sentation of the relationships between agents and entities for
improved decision-making, and (3) an Action Generation
Module that recurrently embeds the past latent embedding
as hi = GRU(zi) to generate the state-action values for ego
actions, Qi(aego|oi), and engagement actions, Qi(aeng|oi).
Ego actions primarily affect the agent itself, without directly
influencing other entities. Engagement actions, on the other
hand, are actions an agent takes that directly affect or target
other entities. The design of the HGAP framework ensures
consistent behavior (PI) as well as facilitating the learning
of mapping relationships between entities and actions (PE).

Given an input oi containing features of m entities, HGAP
applies m independent weight matrices generated by a
hypernetwork, denoted as Htran, for transforming en-
tity features. These matrices are represented as Win =
[W in

0 , · · · ,W in
m−1]

⊤. The output is described as τi[j] =∑m−1
j=0 W in

j oi[j], where [j] indicates the j-th element. The
transformed features in our framework are designated as
entity embeddings, collectively denoted by τi. These em-
beddings are input into the Graph-based Entity Relation
Embedding Module, detailed in Section 3.2, to generate the
latent embedding zi. In line with prior methods such as
QMIX (Vinyals et al., 2017), MADDPG (Lowe et al., 2017),
and MAPPO (Yu et al., 2022), HGAP emploies a Gated
Recurrent Unit (GRU) (Chung et al., 2014) to produce the
hidden embedding hi. This embedding incorporates previ-
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(a) (b)
Figure 4. (a) Attention heatmap variation during training in SMAC 3s5z map at the initial state. (b) Initial position for all entities in 3s5z.

ous history to provide temporal information and serves as
a crucial component for the Action Generation Module to
generate the state-action values, as discussed in Section 3.3.

3.2. Graph-based Entity Relation Embedding Module

To identify the correlations between the agent and its ob-
served entities, the Graph-based Entity Relation Embedding
Module takes τi ∈ Rm×e as input, where m is the number
of entities and e represents the feature dimension of each
entity within the embedding τi. It then constructs an m×m
Correlation Matrix C ∈ Rm×m×2e, as depicted in Fig. 3,
where each entry Ck,j ∈ C is the concatenation of τi[k]
and τi[j], where k, j ∈ m. To facilitate GATv2 updates,
C must be transformed into an Attention Weight Matrix
Ω ∈ Rm×m for performing node updates, as described
in Section 2.2, where nodes in GATv2 correspond to the
entity embeddings τi[k], k ∈ m in HGAP. This transforma-
tion is achieved with another Weight Transformation Matrix
Γ ∈ Rm×m×2e, where each entry of Ω is Ωi,j = Γ⊤

i,jCi,j .

HGAP can then perform graph update operations as follows:

τ ′i [k] =

e∑
j=1

Ωk,j × τi[j]. (3)

As the dimensions of Ω are determined by the number of
entities, adjustments are necessary when transitioning to
new environments, thus preventing it from being fixed-sized.
As a result, HGAP employs a hypernetwork, Hatten, to
generate Γ, where each element of Γ is computed as Γi,k =
Hatten(o

i,k),∀k ∈ [1,m]. The embedding zi is obtained
by aggregating the updated entity embeddings τ ′i as follows:

zi = Aggregate(τ ′k|k ∈ [1,m]). (4)

Our experimental results, as depicted in Fig. 4, validate the
effectiveness of the Graph-based Entity Relation Embedding
Module in enabling the agent to quickly identify enemies
within a brief training duration. As training progresses,
Fig. 4 demonstrates the efficiency in the agent’s ability to
enhance its proficiency in focusing on its enemies (given the
agent’s role as an attacking unit) and to effectively identify
correlations within a short training period. The findings
substantiate the effectiveness of the proposed graph-based
module in facilitating more uniform and efficient training.

3.3. Action Generation Module

The function of the Action Generation Module is to utilize
the embedding zi to derive state-action values for ego and
engagement actions. An embedding hi generated by a GRU
retains the temporal information for the agent, which can
be used to derive the current action based on prior temporal
cues. Since zi is obtained through an aggregation function,
it ensures that the entry order of the entity embeddings in
τ ′i does not affect the outcome. This further ensures that
HGAP satisfies the PI property and can utilize hi to derive
ego actions subsequently. Therefore, we employ a fully
connected layer to map hi to the corresponding state-action
values for ego actions as Qi(aego|oi) for agent i. On the
other hand, directly using hi to derive engagement actions
without considering entity information and their embedding
orders would not fulfill the requirement of PE. As a result,
to derive the mapping relationship that links engagement
actions with observed entities, HGAP adopts an approach in-
spired by Wang et al. (2020b), in which a pairwise function
is used to generate the corresponding action-state values.
Specifically, the state-action value for the jth engagement
action is computed as Qi(aeng|oi)[j] = τ ′i [j]

⊤hi. The topo-
logical interpretation of this equation can be understood as
the cosine angle between hi and the entries of τ ′. When they
are proximate, the cosine angle nears zero, indicating a high
degree of correlation and suggesting that the corresponding
action should be given more consideration. The state-action
values are processed through a Softmax layer, and then the
action with the highest probability is selected for execution.

3.4. Loss Function

To optimize HGAP, we employ the temporal difference (TD)
error (Sutton & Barto, 2018) as the objective, same as the
approach employed in QMIX (Rashid et al., 2018). The loss
function used during training can be formulated as follows:

L(θ) =

b∑
i=1

[(ytoti −Qtot(τ ;u, s; θ))
2], (5)

where θ and θ− are the parameters of the agent and target
networks, respectively. θ− is periodically copied from θ. b
is the batch size, and ytoti = r +maxu′Q(τ ;u′, s′; θ−).
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4. Experimental Results
In this section, we begin by detailing our experimental se-
tups. This is followed by a comparison of HGAP against
various state-of-the-art (SOTA) methods. Then, we provide
a series of ablation studies to validate HGAP’s effective-
ness. These studies include applying HGAP within different
MARL frameworks, assessing its transferability, and evalu-
ating its comprehension of invisible entities under POMDP.

4.1. Experimental Setups

Environments. We evaluate the performance of HGAP on
three representative MARL environments: Multiple Par-
ticle Environments (MPE) (Mordatch & Abbeel, 2017),
SMAC (Vinyals et al., 2017), and SMACv2 (Ellis et al.,
2023). MPE is tailored explicitly for MARL, wherein agents
are represented as elementary particles within physics-based
simulations. The inherent simplicity of these basic environ-
ments not only eliminates the complexities found in more re-
alistic scenarios but also enables a concentrated examination
of essential elements related to MARL agent interactions.

SMAC serves as an evaluation platform for cooperative
MARL algorithms, which utilizes the strategy game Star-
Craft II as its foundation. The scenarios involve both agent
and enemy units, with the objective of eliminating the en-
emy within a predefined duration. Agents that are guided
by MARL algorithms interact with adversaries governed by
the game’s built-in AI heuristics. SMAC evaluates agent
performance based on a global reward computed at each
timestep, taking into account factors such as the number of
defeated enemies, inflicted damage, and the agents’ overall
success. The scenarios in SMAC contain Easy, Hard, and
Super-Hard difficulty levels defined by Vinyals et al. (2017).

SMACv2 is an evolved extension of SMAC and features
three significant changes: (1) randomized initial positions,
(2) randomized entity types, and (3) adjusted unit sight and
attack ranges. These introduce greater randomness and
diversity into the scenarios, and the purpose is to address the
previous limitations in SMAC concerning the assessment
of algorithmic robustness. In our experiments, we employ
five independent random seeds across all the environments
to ensure the robustness and reliability of our evaluations.

Observation and Action Space. In MPE, the action space
for each agent encompasses six potential operations: no
operation (no-op), pressing a button, and movements in four
directions (up, right, down, and left). The observation space
for these agents includes individual features (e.g., velocity
and position) and positional information about other entities.

In the SMAC and SMACv2 environments, the action space
for each agent is divided into two primary components: (i)
stop, no-op, and the four directions of movement (north,
south, east, and west), and (ii) attacks on the enemies. An

agent can attack an enemy if two conditions are met: (1) the
targeted enemy is alive, and (2) the enemy is both visible to
the agent and falls within its attack range. The observation
space in these environments includes the agent’s features,
such as the ability to move in four directions and its current
health status. Furthermore, it includes features of other
entities, such as visibility, health, normalized relative x-y
coordinates, and distance from the agent. In adherence to the
principles of POMDP, entities outside an agent’s sight range
are represented as zero in the corresponding observation.

Baselines. A wide range of CTDE-based MARL method-
ologies have been selected to evaluate different agent net-
work design strategies. These include the recurrent neu-
ral network (RNN) (Hausknecht & Stone, 2015) agent,
the attention-based UPDeT (Hu et al., 2021), and the
DFAC (Sun et al., 2021) and ResQ (Shen et al., 2022) net-
works, which represent distributional RL strategies. In ad-
dition, RODE (Wang et al., 2020a) is included to represent
role-based methodologies. Considering previous PI and PE
approaches, ASN (Wang et al., 2020b) and HPN (Hao et al.,
2023) have also been incorporated. All these agents employ
QMIX as the factorization network for a fair comparison.

To further demonstrate the adaptability of HGAP, a series
of ablation studies are conducted. First, HGAP is inte-
grated into action-critic frameworks, which include MAD-
DPG (Lowe et al., 2017), DA-MADDPG (Ye et al., 2023),
and PIC (Liu et al., 2019). Second, QMIX is replaced
with QPLEX (Wang et al., 2021a) to verify the robustness
of HGAP’s performance across different factorization net-
works. Lastly, HGAP is implemented in a policy-based
method, specifically MAPPO (Yu et al., 2022). We also
evaluate HGAP alongside other PI/PE methodologies. For
methods considering only the PI property, we include DA-
MADDPG, Set (Lee et al., 2019), and GNN (Liu et al.,
2019). Methods incorporating both PI and PE properties
include UPDeT, ASN, and HPN. All experiments are eval-
uated across five distinct random seeds, with shaded areas
in the figures representing the training variance. The hy-
perparameters for each method are configured based on the
optimal settings reported in their respective original papers,
with their detailed information available in Appendix F.

4.2. Agent Network Comparison

We explore a variety of agent network design strategies
for CTDE-based MARL methods, all of which utilize the
QMIX value factorization network for training. The results
of this experiment are illustrated in Fig. 5. It is observed
that agents (i.e., HGAP and HPN) considering both PI and
PE properties achieve higher test win rates compared to the
other baselines, particularly outperforming those based on
distributional RL and role-based strategies. Moreover, as
the complexity of the scenarios increases, HGAP exhibits
a more rapid rate of convergence compared to the other
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(a) 1c3s5z (E) (b) 3s vs 5z (H) (c) 5m vs 6m (H) (d) 3s5z vs 3s6z (S) (e) zerg 10 vs 11 (v2)

Figure 5. Test win rate comparison for different CTDE-based MARL approaches in SMAC and SMACv2 for comparing the agent network
design strategies. (E), (H), (S) stand for Easy, Hard, and Super-Hard scenarios in SMAC, and (v2) denotes the scenario from SMACv2.

(a) Navigation (N=10) (b) Predator-Prey (N=3)
Figure 6. Test win rate comparison for MADDPG variants in MPE
for validating HGAP’s adaptability to actor-critic based methods.

baselines. This indicates that HGAP is effective and robust
across a range of scenarios, even the more challenging ones
from SMACv2, which features increased stochasticity and
difficulty. Additional results are offered in Appendix G.1.

4.3. Ablation: Adaptability of HGAP

In this section, the integration of HGAP with multiple
MARL methods is presented to verify HGAP’s adaptability.

4.3.1. ACTOR-CRITIC NETWORK ADAPTABILITY

We first explore the application of HGAP within the
MADDPG framework, which results in a new variant
termed HGAP-MADDPG. This analysis compares HGAP-
MADDPG with the existing MADDPG on MPE. The learn-
ing curves presented in Fig. 6 demonstrate that HGAP-
MADDPG achieves superior performance when bench-
marked against HPN-MADDPG (Hao et al., 2023), PIC, DA-
MADDPG, and MADDPG. We examine HGAP-MADDPG
applied in large population environments in Appendix G.2.

4.3.2. FACTORIZATION NETWORK ADAPTABILITY

We next examine the efficacy and adaptability of HGAP
in conjunction with the QPLEX framework within the
SMACv2 environments. This variant is termed HGAP-
QPLEX. The results of this validation are illustrated in
Fig. 7. Based on these results, it can be observed that in-
tegrating HGAP with QPLEX enhances the test win rates
and achieves better efficiency than the conventional QPLEX
configuration. Further detailed results and discussions are
presented in AppendixG.3. This substantiates HGAP’s po-
tential to improve the robustness and effectiveness of other
factorization networks in complex, dynamic environments.

(a) protoss 10 vs 11 (b) terran 20 vs 23
Figure 7. Test win rates of QPLEX & HGAP-QPLEX in SMACv2.

(a) terran 10 vs 11 (b) zerg 20 vs 23
Figure 8. Test win rates: MAPPO & HGAP-MAPPO in SMACv2.

4.3.3. POLICY-BASED NETWORK ADAPTABILITY

Lastly, the integration of HGAP within the standard MAPPO
learning framework is evaluated in the context of SMACv2,
and this variant is termed HGAP-MAPPO. The test win
rates are depicted in Fig. 8. The results suggest that HGAP
enhances MAPPO and can yield improved performance
and training efficiency in policy-based approaches. This
finding demonstrates HGAP’s adaptability and effectiveness
in improving policy-based multi-agent learning strategies.
For additional analysis results, please refer to AppendixG.4.

4.4. Ablation: PI and PE Baselines Comparison

In this section, we compare HGAP with several baselines
that consider PI and PE. The PI-only baselines include: (i)
DA-MADDPG (DA), which enhances MADDPG by shuf-
fling the input order for additional training data, as described
by (Ye et al., 2023); (ii) Set, which applies the Set Trans-
former to QMIX’s state-action value functions for entity
embedding aggregation (Zaheer et al., 2017); and (iii) GNN,
which implements GNN (Liu et al., 2019) on its state-action
value functions within QMIX. The other baselines that con-
sider both PI and PE (i.e., UPDeT, ASN, and HPN) are
adopted without modification from their respective original
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(a) 10m vs 11m (H) (b) 6h vs 8z (S) (c) corridor (S) (d) MMM2 (S)
Figure 9. Test win rates for the PI/PE baselines in SMAC. A detailed introduction to the PI/PE baselines can be found in Appendix D.

(a) (b)
Figure 10. Transfer learning comparison between HPN and HGAP
in SMAC. The dashed lines represent the training of agents from
scratch in the target environments without pretraining, while
the solid lines indicate agents pre-trained in one scenario and
then transferred to the target scenario. (a) 5m vs 6m (H) →
10m vs 11m (H); and (b) 3s5z (H) → 3s5z vs 3s6z (S).

publications. The results evaluated in SMAC, shown in
Fig. 9, indicate that the performance of HGAP surpasses
HPN and the other baselines. It can be observed that con-
sidering both PI and PE in the agent network design can
indeed enhance training performance compared with the
baselines that do not consider both, such as DA, Set, and
GNN. HGAP’s superior performance over HPN and the
others is attributed to its design, which effectively captures
inter-entity relationships, thus providing more comprehen-
sive information for HGAP to perform decision-making.

4.5. Transfer Learning Comparisons
The flexible architecture design of HGAP suggests that
it can also be as a transferable framework, which allows
HGAP to potentially expedite the adaptation of a pre-trained
MARL policy to more complex scenarios with enhanced
learning efficiency. To validate this, we conduct an ex-
periment with HGAP and incorporat HPN as a baseline
across various transfer learning scenarios. We evaluat the
transferability of both HGAP and HPN using SMAC, with
the results presented in Fig. 10. The findings indicate that
HGAP achieves at least a 60% reduction in training time
compared to training agents from scratch. This demonstrates
HGAP’s capability to efficiently transfer pre-trained policies
to new and more challenging scenarios. Additional results
on HGAP’s transferability are available in Appendix G.5.

4.6. Competing Against Full-Information Opponents
We present an interesting experiment for a scenario in which
the opponents have access to complete environmental in-
formation, while the agent and its allies operate under the
POMDP constraint with limited sight range. As a result,

(a) 3s5z (H) (b) corridor (S)
Figure 11. A comparison of UPDeT, HPN, and HGAP in SMAC
under special setting that the enemies have full environmental
information, while the agent and allies are constrained by POMDP.

certain entities remain unobservable, whereas the enemies
enjoy an unlimited sight range. Many previous MARL stud-
ies have treated invisible entities as non-existent, which
constrains their representation capability of the environmen-
tal information. In contrast, HGAP employs a graph-based
representation strategy to enable the agent to implicitly infer
potential information associated with these invisible enti-
ties. We compare HGAP, HPN, and UPDeT under such
constraints. The results presented in Fig. 11 indicate that
HGAP exhibits superior evaluation performance in such a
setting due to its graph-based representation mechanism.

5. Conclusions
This study introduced HGAP, an agent network designed
for MARL that employs a graph attention mechanism to
encode the relationships among entities in an environment,
while maintaining the properties of PI and PE. The graph-
based embedding mechanism of HGAP further enables it
to address the constraints of POMDP by inferring informa-
tion from the graph. The experimental results conducted on
MPE, SMAC, and SMACv2 validated HGAP’s superiority
over various CTDE-based MARL methodologies. Further-
more, HGAP’s adaptability to different MARL framework
designs is demonstrated, including its adaptability to actor-
critic methods, a different value factorization frameworks,
and a policy-based method. We also explored transfer learn-
ing scenarios to show that HGAP’s architecture allows for
the efficient transfer of a pre-trained policy to new or more
challenging scenarios faster than the other baselines. Finally,
we present a compelling experiment demonstrating that,
even when enemies have full sight range and the agent and
its allies operate under POMDP constraints, the graph-based
embedding mechanism can still enable HGAP to outperform
the baselines under this constrained and challenging setup.
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Impact Statement
This paper presents research aimed at utilizing graph rep-
resentation and PI/PE properties to enhance agent policy
learning in multi-agent reinforcement learning with better
training efficiency. Our methodology can be easily inte-
grated into various MARL approaches and offers better
performance. While our research does not have any social
consequences, the potential social impact is positive, as it
can contribute to advancements in robotic applications.

Limitation
One of the limitations of the current HGAP framework
could be the absence of coach-based methodologies to en-
hance agent learning and performance. The integration of a
coach agent that provides critiques or strategic advice dur-
ing training could potentially improve the learning process
and the overall performance of the agents. Furthermore,
incorporating human-in-the-loop coaching, where human
experts offer real-time guidance, and curriculum learning
techniques that gradually increase task complexity under a
coach’s supervision, may facilitate more structured agent
learning. However, realizing effective coach-based learning
within the HGAP framework would require the development
of new architectures and algorithms to seamlessly integrate
coaching feedback and demonstrations. Techniques such
as imitation learning, inverse reinforcement learning, or hy-
brid coach-guided reinforcement learning approaches need
to be explored to fully leverage the potential benefits of
coach-based methods. By addressing these limitations and
combining HGAP with coach-based methods, a crucial fu-
ture direction of this work is to improve agent capabilities,
boost performance in complex environments, enable more
efficient multi-agent decision-making, and foster collabo-
ration between artificial agents and human domain experts.
This direction holds promise for tackling challenging real-
world problems and will be a focus of our future work.
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Appendix
This appendix aims to provide additional information that includes a summary of notations for the main manuscript,
background materials for various value factorization method baselines, and the foundational concept of the Transformer.
It also supplements the main manuscript with additional experimental results. Section A summarizes the notations used
throughout the paper. More specifically, Section B offers an in-depth discussion on contemporary value factorization
methodologies. In Section C introduces various aspects of MARL approaches. Furthermore, we also demonstrate some
PI and PE MARL methodologies in Section D. Section E briefly describes the concept of the Transformer model and the
attention mechanism. Section F details the hyperparameters employed in our experiments. Moreover, Section G provides
additional experimental results to complement those presented in the main manuscript. Lastly, we provide more graph
attention heatmaps to validate the effectness of GATv2 in Section H.

A. Notation Table
To enhance clarity and facilitate understanding of the notations used throughout our paper, Table A1 provides a comprehensive
summary of these notations.

Table A1. Notation table

Notation Descriptions

Dec-POMDPs Notations
N Set of agents in the environments i ∈ N

O Observation space oi ∈ O
S Global state space s ∈ S
A Action space ui

t ∈ Ai,∀i ∈ N

U Joint action space U = Πi∈NAi

T State transition function defining the probability from s to
s′ by taking u, where u ∈ U

P (s′ | s, u)

R Reward function R(s, u)

B. Background of the Value Factorization Methods
In this section, we elaborate on the core concepts of the mixing networks that we have selected for comparison with our
proposed methodology in the manuscript. These networks include VDN (Sunehag et al., 2018), QMIX (Rashid et al., 2018),
QTRAN (Son et al., 2019), Qatten (Yang et al., 2020a), and QPLEX (Wang et al., 2021a). The explanation aims to provide
an in-depth comprehension of their function and enable a meaningful comparison with our proposed approach.

The notations used in this section are defined as follows. N is the total number of agents and i ∈ N represents the index of
the agent. The joint history h =

〈
h1, ..., hN

〉
concatenates the action-observation history of each agent, where hi denotes

the individual action-observation history for agent i. The joint action u =
〈
u1, ..., uN

〉
is taken with joint history h to

estimate the joint action-value function Qjt(h, u) at every timestep t, where ui is the individual action taken by agent i.

B.1. Value Decomposition Network (VDN)

In VDN (Sunehag et al., 2018), the value factorization network, often referred to as the mixing network, operates under the
assumption of additivity in the value function. It represents the total return, denoted as Qjt, as a sum of individual utility
functions. Each of these functions is derived from the corresponding agent’s individual trajectory and action. This concept
can be represented as follows:

Qjt(h, u) =

N∑
i=1

Qi(hi, ui) . (6)
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The contribution of VDN lies in decomposing complex joint learning problems into smaller, more manageable sub-problems.
By value factorization, it simplifies the learning process of MARL agents.

B.2. QMIX

QMIX (Rashid et al., 2018) extends the concept of value factorization networks from VDN and employs a network to
estimate the joint action-value function Qjt. This function is modeled as a non-linear combination of individual utility
functions Qi(hi, ui).

The formulation of Qjt can then be expressed as follows:

Qjt(h, u) = Φ(Q1(h1, u1), Q2(h2, u2), ..., QN (hN , uN )), (7)

where Φ represents the monotonic function following the constraint ∂Φ
∂Qi

≥ 0. The weights of the mixing network in
QMIX originate from separate hypernetworks. Each hypernetwork accepts the state s as input and generates the weights
for a specific layer within the mixing network. The generated weights are also enforced to remain non-negative, which
ensures that QMIX adheres to the monotonicity constraint. The outputs of the hypernetworks are subsequently reshaped
into matrices of appropriate dimensions. On the other hand, the biases are generated using a similar approach but are not
subjected to non-negativity constraints, as described in the original manuscript of QMIX.

B.3. QTRAN

While VDN and QMIX have exhibited impressive performance in a number of MARL benchmarks, they face challenges
when encountering functions that deviate from additivity or monotonicity. These constraints impose limitations on the
representational capacity of the mixing network. In scenarios where the environment does not adhere to these constraints,
VDN and QMIX often encounter difficulties in appropriately factorizing the joint Q-value. To address these difficulties,
QTRAN (Son et al., 2019) proposed that a factorizable joint action-value function should conform to the following equation:

N∑
i=1

Qi(hi, ui)−Qjt(h, u) + Vjt(h) =

{
0, u = ū

≥ 0, u ̸= ū
, (8)

where Vjt(h) = maxu Qjt(h, u)−
∑N

i=1 Qi(hi, ūi), and ūi represents the optimal local action for agent i. The joint state
value function Vjt(h) incorporates joint observation-action history information. This enhancement, driven by the partial
observability from each agent, offers QTRAN an edge in terms of value representation capabilities, and therefore, better
performance, over VDN and QMIX.

B.4. Multi-Head Attention based Q-Value Mixing Network (Qatten)

QTRAN is introduced to ensure optimal decentralization. It preserves the additive assumption and mitigates the representa-
tional constraints associated with VDN and QMIX. However, QTRAN presents a computationally intractable optimization
problem. Recently, modules based on attention mechanisms have exhibited outstanding performance across various fields. In
Qatten (Yang et al., 2020a), the authors offer a theoretical analysis of the capacity of attention modules for joint action-state
value representation. This consideration takes into account a scenario with a continuous action space and the absence of
independent agents. Given these assumptions, it’s possible to establish the existence of constants, denoted as c(s), dependent
on the state s, which plays as the bias term. The joint action-value function, Qjt, can be expressed as:

Qjt(h, u⃗) ≈ c(s) +

K∑
k=1

wk

N∑
i=1

λi,kQi(hi, ui), (9)

where λi,k represents the output from the k-th head of the attention layer, k ∈ K denotes the index of the head in the
attention layer utilized in Qatten, and K is the total number of heads. In order to assign weight importance, Qatten attributes
wk = |fNN (s)|k to different heads. Qatten uses hypernetworks to generate the weights associated with different attention
heads in wk, where these weights adjust the Q-values associated with different heads based on global states s. Instead of
conducting self-attention between each pair of agents, Qatten transforms the global state information and joint actions into a
query matrix and a key matrix for attention. It then concatenates the individual action-value functions and transforms them,
resulting in the formation of a value matrix for attention. Qatten utilizes a multi-head attention mechanism within a mixing
network that distinctly models each agent’s influence on the overall system during the transformation of individual utilities
into Qjt.
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B.5. DuPLEX Dueling Multi-Agent Q-Learning (QPLEX)

The insufficiency of the joint value function class can detrimentally impact performance and pose a potential risk of training
instability in offline settings. Several approaches have emerged to address this structural limitation. Among these methods,
QTRAN employs two soft regularizations aiming at harmonizing the choice of greedy actions between joint and individual
value functions. Nevertheless, due to computational constraints, the implementation of these regularizations is inherently
approximate, relying on heuristics and providing no concrete guarantee of Individual-Global-Minimum (IGM) consistency.
To deal with this issue, QPLEX (Wang et al., 2021a) introduces an alternative strategy that incorporates a duplex dueling
network architecture to facilitate the factorization of the joint action-value function into individual utility functions. It
formulates the joint action-value function Qjt as follows:

Qjt(h, u) = Vjt(h) +Ajt(h, u)

=

n∑
i=1

Qi(hi, ui) +

n∑
i=1

(λi(h, a)− 1)Ai(hi, ui),
(10)

λi(h, u) =

K∑
k=1

λi,k(h, u)ϕi,k(τ)vk(h), (11)

where λi(h, u) represents the positive importance weights, which are generated through a multi-head attention layer using
global state information and joint actions as inputs. K denotes the number of heads, and vk(h) > 0 signifies a positive
key for each head. The QPLEX architecture comprises two key components: (i) individual utility functions Qi(hi, ui),
each characterized by a recurrent network dedicated to a particular agent, and (ii) a duplex dueling network that merges
these individual utility functions to create a joint action-value function Qjt, while conforming to the advantage-based IGM
constraint. The architecture employs a dot-product operation between the importance weight λi(h, u) and the corresponding
individual advantage function Ai(hi, ui). This is subsequently added to the joint state value function Vjt(h) =

∑N
i=1 Vi(h),

where Vi(h) = ωi(h)Vi(hi)+ bi(h). Please note that both ωi(h) and bi(h) are the outputs of a multilayer perceptron (MLP)
that uses the global state s as input. This MLP acts as a transformation mechanism for converting individual Vi(hi) to Vi(h).

C. Introduction to Various MARL approaches
In recent years, the landscape of Multi-Agent Reinforcement Learning (MARL) has been enriched by the introduction
of numerous methodologies, each exhibiting proficiency in various dimensions. This subsection aims to systematically
categorize these methodologies into three principal classes, namely: Actor-Critic approaches, Value Function Factorization
approaches, and Role-Based approaches.

C.1. Actor-Critic approaches

In multi-agent reinforcement learning, it is difficult to estimate the value function since each agent sees the environment as
constantly changing. A recent method, called multi-agent deep deterministic policy gradient (Lowe et al., 2017), addresses
this by using a centralized critic. This critic combines the observations and actions of all agents. Similarly, other approaches
like (Foerster et al., 2018a;b; Iqbal & Sha, 2019; Jiang & Lu, 2018; Kim et al., 2019; Yang et al., 2018; Ye et al., 2023) also
use centralized critics to manage the changing environment.

C.2. Value function factorization approaches

Recent advancements in multi-agent reinforcement learning often use the Centralized Training with Decentralized Execution
(CTDE) framework, which is effective for scalability and real-world application. The key element in CTDE is the
factorization network, which allocates the overall reward to each agent based on their collective decisions. VDN (Sunehag
et al., 2018) was the first to employ factorization networks, using a summation method, but it had limitations in representing
the capacity of joint action values. QMIX (Rashid et al., 2018) improved on this by introducing a monotonic constraint
and using hypernetworks for greater capacity. However, QMIX struggles with representing nonmonotonic joint action
value functions. To address this, various approaches have been proposed: QTRAN (Son et al., 2019) and QTRAN++ (Son
et al., 2020) use soft regularizations to align individual and joint value function decisions; WQMIX (Rashid et al., 2020)
applies a weighted projection emphasizing better joint actions; Qatten (Yang et al., 2020a) utilizes self-attention layers
to understand joint action correlations; and QPLEX (Wang et al., 2021a) introduces a dueling structure [cite] for duplex
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action-value functions, redefining the IGM principle with an advantage-based approach. Another research area within value
factorization networks is distributional RL. DMIX and DDN (Sun et al., 2021), extending QMIX and VDN, can distribute
stochastic joint state-action values into individual agent utilities, adhering to the DIGM principle. ResQ (Shen et al., 2022)
further innovates by using masking for non-monotonic mean joint value functions, fulfilling both IGM and DIGM principles
without limitations in representation.

C.3. Role-based approaches

Role-based learning offers a scalable approach to multi-agent learning by breaking down complex tasks into distinct roles.
ROMA (Wang et al., 2020a) integrates the concept of roles into MARL, allowing agents with similar duties to share their
learning experiences. Additionally, it incorporates two regularizers to ensure that roles are identifiable through specific
behaviors and are specialized for particular sub-tasks. Building on this idea, RODE (Wang et al., 2021b) proposes that
discovering roles can be more straightforward by initially dividing the joint action spaces based on the functionality of
actions, instead of learning roles from the beginning.

D. Introduction to Permutation Invariant (PI) and Permutation Equivariant (PE) approaches in
MARL

D.1. Data Augmentation

To minimize environmental interactions, DA-MADDPG (Ye et al., 2023) introduced a data augmented version of MADDPG.
This method creates additional training data by rearranging the order of inputs and then updates the model using this new
data. While effective, this approach demands more computational resources and takes longer. Moreover, the generated data,
having identical information to the original, should yield the same Q-value. However, training a function sensitive to input
order to produce the same output for differently ordered inputs is inefficient.

D.2. Set Representation

DeepSet (Zaheer et al., 2017) and Set Transformer (Lee et al., 2019) present a range of neural architectures that are Policy
Invariant (PI) and are designed for learning set representations. In these architectures, each element ei is individually
mapped to a latent space using a shared embedding layer ϕ(ei). The latent representations obtained are then combined
through a PI pooling layer. This layer is key to maintaining the PI characteristic of the entire function. For example, the
function f(E) = Γ(

∑k
i=1 ϕ(ei)), where Γ can be any function. This approach ensures that the output is invariant to the

order of the input elements.

D.3. Graph Neural Network

Graph Neural Networks (GNNs) (Wang et al., 2019; Battaglia et al., 2018; Jiang et al., 2020) offer a different perspective
compared to set-based approaches. Instead of treating an agent’s observation as a simple set, GNNs view these observations
as having topological relationships among the features of different entities. Just like set-based methods, GNNs also employ
shared embedding and pooling layers. These layers are adapted to learn functions specifically on graphs. These approaches
allow for a more nuanced understanding of the relationships and interactions between different elements in the agent’s
observations.

D.4. PE Functions

In the realm of deep learning, there has been research exploring the effectiveness of Policy Evaluation (PE) functions in
problems involving graphs (Maron et al., 2019). However, within the field of multi-agent reinforcement learning (MARL),
there are comparatively fewer studies that utilize the PE property. A notable exception is the Action Semantics Network
(ASN) (Wang et al., 2020b), which investigates the varied impacts of different action types. Nevertheless, ASN doesn’t
explicitly focus on the PE property in its approach. This indicates a potential area for further exploration in MARL,
leveraging the PE property to enhance understanding and performance.
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E. Background of Transformer
Transformer (Vaswani et al., 2017) is an attention-based model used in a wide range of deep learning frameworks and has
demonstrated excellent performance (Meng et al., 2022; Dosovitskiy et al., 2021). A typical Transformer model consists
of two sub-modules: an encoder and a decoder. The encoder generally maps the input space to a latent space, and the
decoder employs the resultant latent embedding to generate a sequence of target outputs. The most crucial component in a
Transformer is the attention layer, which can be formulated as follows:

Attention(Q,K,V) = softmax

(
QKT

√
dk

)
V , (12)

where Q is the query embedding, K denotes the key embedding, and V represents the value embedding. The three
embeddings can be learned via training. The scaling factor dk represents the dimension of the key embedding for
normalizing the dot-product of the query and key embeddings.

F. Hyperparameter Settings
Table A2 presents the hyperparameter settings used in our experiments, with each component optimized according to its
respective reference literature. For both our proposed Transfermer and the baseline methods, each training curve illustrated
in the main manuscript is based on five independent runs using different random seeds.

Table A2. Hyperparameter settings.

Hyperparameters Value

Batch size 32
Buffer size 5,000

Learning rate 0.0005
Gamma 0.99

Epsilon start 1.0
Epsilon end 0.05

Update target network interval 10,000
RNN hidden dimension 64
UPDeT embedding size 32
UPDeT attention heads 3
UPDeT attention layers 2
HPN embedding size 64

HGAP embedding size 64
HGAP attention layers 1

QMIX hypernet embedding 64
QMIX mixing embedding dimension 32

QTRAN opt loss 1
QTRAN nopt loss 0.1

QPLEX hypernet embedding 64
QPLEX mixing embedding dimension 32

QPLEX advantage hypernet embedding 64
QPLEX advantage hypernet layers 3

G. Additional Experimental Results
In this section, we provide supplemental evidence to substantiate the effectiveness of our methodology. In Section G.1,
we present results from additional SMAC scenarios to demonstrate the superior performance of HGAP over the other
agent network baselines discussed in the main manuscript. In Section G.2, we show that HGAP is capable of delivering
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better performance with a larger population compared with other approaches. Section G.3 and G.4 showcases additional
experimental results that validate the adaptivity of HGAP with different MARL frameworks, including QPLEX and MAPPO
respectively. Finally, Section G.5 provides experimental results to validate the transferability of HGAP in more cases.

G.1. Additional Agent Networks Comparison

In this section, we present additional comparisons of the training curves in addition to those presented in Fig 5 of the main
manuscript. These comparisons contrast the performance of HGAP with the other agent network baselines. In Fig. A1,
we can notice that the HGAP agents rise faster and achieve higher win rates than the baseline methods. These results thus
provide strong evidence for the effectiveness of the HGAP architecture in comparison to the other agent network designs.
We also provide a qualitative evaluation results for these baselines in difference benchmarks in Table A3.

(a) 3m (E) (b) 8m (E) (c) 2s3z (E) (d) 3s vs 3z (E)

(e) 3s5z (H) (f) 8m vs 9m (H) (g) 10m vs 11m (H) (h) 25m (H)

(i) 6h vs 8z (S) (j) 27m vs 30m (S) (k) bane vs bane (S) (l) MMM2 (S)

(m) corridor (S) (n) protoss 10 vs 11 (o) terran 10 vs 11

Figure A1. Test win rate comparison for different SOTA approaches in SMAC (Vinyals et al., 2017) and SMACv2 (Ellis et al., 2023). (E),
(H), (S) stand for Easy, Hard, and Super-Hard scenarios.
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Table A3. The averaged test win rates for all agent networks and mixing networks.

Environments Vanilla Role-based Quantile Fac PI/PE
Map Name Easy RNN UPDeT RODE DFAC ResQ ASN HPN HGAP Timesteps

3m Easy 96 98 100 100 100 99 100 100 1e6
8m Easy 98 99 99 100 100 100 100 100 1e6

3s vs 3z Easy 99 98 100 99 100 100 100 100 2e6
2s3z Easy 93 96 98 97 99 92 100 100 2e6

1c3s5z Easy 95 97 99 98 100 94 100 100 2e6
5m vs 6m Hard 62 73 96 94 93 86 98 100 5e6
8m vs 9m Hard 85 77 96 93 98 88 100 100 2e6

10m vs 11m Hard 88 92 97 99 100 94 100 100 5e6
25m Hard 79 83 92 91 98 88 99 100 5e6

SMAC 3s vs 5z Hard 73 88 94 96 99 93 100 100 5e6
3s5z Hard 75 81 91 93 96 88 100 100 5e6

MMM Hard 67 73 82 89 94 79 99 100 5e6
27m vs 30m Super Hard 53 69 72 83 89 77 96 100 1e7
3s5z vs 3s6z Super Hard 45 83 84 88 91 79 97 100 1e7

6h vs 8z Super Hard 27 43 73 84 94 59 98 100 1e7
bane vs bane Super Hard 77 82 89 92 95 86 99 100 1e7

corridor Super Hard 57 74 89 86 92 82 96 99 1e7
MMM2 Super Hard 81 84 96 93 95 88 97 100 1e7

protoss 5 vs 5 - 64 71 80 84 89 77 94 98 1e7
protoss 10 vs 11 - 53 62 71 80 86 73 91 96 1e7
protoss 20 vs 23 - 57 61 74 79 83 71 92 100 1e7

terran 5 vs 5 - 59 67 81 87 87 72 92 96 1e7
SMACv2 terran 10 vs 11 - 47 54 74 81 82 63 89 96 1e7

terran 20 vs 23 - 41 55 75 79 85 67 90 94 1e7
zerg 5 vs 5 - 53 63 79 83 88 71 94 92 1e7

zerg 10 vs 11 - 46 51 70 77 81 62 91 93 1e7
zerg 20 vs 23 - 49 57 69 79 83 63 89 95 1e7
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G.2. Large Population Environment

Previous MARL methodologies have often neglected to assess their ability to maintain consistent performance as the
population size increases. In light of this, we have conducted an ablation study incorporating varying numbers of entities to
ascertain that the HGAP surpasses other MARL approaches. Fig. A2 presents the comparative results across different entity
counts. Leveraging the PI and PE properties, HGAP exhibits convergence to superior training performance in comparison to
alternative methods. Notably, as the number of entities increases, the training performance gap between HGAP and other
methods widens, providing additional empirical support for the significance of the PI and PE properties.

(a) Navigation (N=100) (b) Predator-Prey (N=200)

Figure A2. Test win rate comparison for MADDPG variants in Navigation with larger population.

G.3. Additional Comparison of HGAP with QPLEX

To illustrate the applicability of the HGAP integrated with the value factorization method, additional experimental results
are presented and elaborated upon in Section 4.3.2. The corresponding outcomes are graphically depicted in Fig. A3. The
findings distinctly indicate that the HGAP agent, featuring PI and PE properties, effectively enhances training performance
compared with a recurrent-based network.

(a) protoss 5 vs 5 (b) protoss 20 vs 23 (c) terran 5 vs 5 (d) terran 10 vs 11

(e) zerg 5 vs 5 (f) zerg 10 vs 11 (g) zerg 20 vs 23

Figure A3. Test win rate comparison for QPLEX and HGAP-QPLEX in SMACv2 (Ellis et al., 2023).

G.4. Additional Comparison of HGAP with MAPPO

In order to assess the adaptability of the HGAP within policy-based MARL approaches, as expounded in Section 4.3.3,
additional experimental results comparing the original MAPPO and HGAP-MAPPO are presented in Fig. A4. The outcomes
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consistently affirm that an actor network imbued with PI and PE properties effectively mitigates the occurrence of redundant
learning scenarios wherein agents encounter identical information.

(a) protoss 5 vs 5 (b) protoss 10 vs 11 (c) protoss 20 vs 23 (d) terran 5 vs 5

(e) terran 20 vs 23 (f) zerg 5 vs 5 (g) zerg 10 vs 11

Figure A4. Test win rate comparison for MAPPO and HGAP-MAPPO in SMACv2 (Ellis et al., 2023).

G.5. Additional Transferability Comparison between HGAP and HPN

As discussed in Section 4.5, we have explored the comparative transferability between HPN and HGAP. In order to support
the argument that HGAP exhibits consistent adaptability across various transfer scenarios, additional experimental results for
these settings are showcased in Fig. A5. The findings substantiate the notion that HGAP possesses superior transferability
compared to HPN, highlighting the capacity of graph-based representations to retain and apply learned strategies in novel
scenarios.

(a) (b) (c) (d)

Figure A5. Transfer learning comparison between HPN and HGAP in SMAC (Vinyals et al., 2017). (a) 3m (E) → 8m (E). (b) 1c3s5z (E)
→ 3s vs 5z (H). (c) 8m (E) → 27m (S). (d) 3s5z vs 3s6z (S) → MMM2 (S).

H. Graph Attention Heatmap Variation
In this subsection, additional training heatmaps depicting the performance of HGAP across various SMAC maps are
presented. The outcomes demonstrate the rapid acquisition of policy knowledge by HGAP within a brief training duration,
resulting in a consistent and effective graph representation. Notably, the visual analysis reveals that agents exhibit a
heightened focus on adversaries, directing increased attention to enemies within close regions.
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(a) (b)

Figure A6. (a) Attention heatmap variation during training in SMAC (Vinyals et al., 2017) 3m map at the initial state. (b) The initial
position for all allies and enemies in 3m map.

(a) (b)

Figure A7. (a) Attention heatmap variation during training in SMAC (Vinyals et al., 2017) 1c3s5z map at the initial state. (b) The initial
position for all allies and enemies in 1c3s5z map.

(a) (b)

Figure A8. (a) Attention heatmap variation during training in SMAC (Vinyals et al., 2017) 3s vs 5z map at the initial state. (b) The initial
position for all allies and enemies in 3s vs 5z map.
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(a) (b)

Figure A9. (a) Attention heatmap variation during training in SMAC (Vinyals et al., 2017) 6h vs 8z map at the initial state. (b) The initial
position for all allies and enemies in 6h vs 8z map.

(a) (b)

Figure A10. (a) Attention heatmap variation during training in SMAC (Vinyals et al., 2017) MMM2 map at the initial state. (b) The initial
position for all allies and enemies in MMM2 map.
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