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Abstract
We study transfer learning for matrix completion
in a Missing Not-at-Random (MNAR) setting
that is motivated by biological problems. The
target matrix Q has entire rows and columns
missing, making estimation impossible without
side information. To address this, we use a noisy
and incomplete source matrix P , which relates to
Q via a feature shift in latent space. We consider
both the active and passive sampling of rows and
columns. We establish minimax lower bounds
for entrywise estimation error in each setting. Our
computationally efficient estimation framework
achieves this lower bound for the active setting,
which leverages the source data to query the most
informative rows and columns ofQ. This avoids
the need for incoherence assumptions required
for rate optimality in the passive sampling setting.
We demonstrate the effectiveness of our approach
through comparisons with existing algorithms on
real-world biological datasets.

1. Introduction
We study transfer learning in the context of matrix comple-
tion, a fundamental problem motivated by theory (Candès and
Recht, 2009; Candès and Tao, 2010) and practice (Fernández-
Val et al., 2021; Einav and Cleary, 2022; Gao et al., 2022).

A major body of work studies matrix completion in the
Missing Completely-at-Random (MCAR) setting (Jain et al.,
2013; Chatterjee, 2015; Chen et al., 2020), where each entry
is observed i.i.d. with probability p. A more general missing-
ness pattern, known as Missing Not-at-Random (MNAR),
considers an underlying propensity matrix pij so that the
(i, j)th entry is observed independently with probability
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pij (Ma and Chen, 2019; Bhattacharya and Chatterjee, 2022).
Various MNAR models have been formulated based on
missingness structures in panel data (Agarwal et al., 2023b),
recommender systems (Jedra et al., 2023), and electronic
health records (Zhou et al., 2023).

Motivated by biological problems, we consider a challenging
MNAR structure where most rows and columns of Q̃ (a
noisy version of Q) are entirely missing. Specifically, we
consider both the active sampling and passive sampling
settings for Q̃. In active sampling, a practitioner can
choose rows R and columns C so that entries in R×C are
observed. This follows experimental design constraints
in metabolite balancing experiments (Christensen and
Nielsen, 2000a), marker selection for single-cell RNA
sequencing (Vargo and Gilbert, 2020), patient selection
for companion diagnostics (Huber et al., 2022), and gene
expression microarrays (Hu et al., 2021).

The requirement that entire rows and columns must be
observed is due to real-world constraints, such as the use
of certain assays or experimental protocols. For example,
metabolite balancing is a method for measuring pairwise
metabolic interactions in cells, but requires choosing a set of
metabolites (rows & columns) beforehand (Christensen and
Nielsen, 2000b). Another example comes from gene expres-
sion microarray measurements, which require a choice of pa-
tients (rows) and genes (columns) to measure beforehand (Hu
et al., 2021). We study both of these settings in Section 3.

In the passive sampling setting, the practitioner cannot
choose the experiments. We model this by sampling each row
(column) with probability pRow (pCol). For example, microar-
ray analysis detects RNA segments corresponding to known
genes by using chemical hybridization. However, rows may
be missing because of a patient sample failing to hybridize,
and columns may be missing because of gene probe failure
(Hu et al., 2021). For an illustration, see Figure 1.

This setting is inherently difficult because there are many
entries (i,j) for which row i and column j are both missing in
Q̃. Clearly, even whenQ is low-rank and incoherent, estima-
tion is impossible without side information (Proposition 2.1).
Transfer learning is necessary to achieve vanishing estima-
tion error since no information aboutQij is known. Hence,
we consider transfer learning in a setting where one has a
noisy and masked P̃ corresponding to a source matrix P . P
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andQ are related by a distribution shift in their latent singular
subspaces (Definition 1.2), which is a common model in e.g.
Genome-Wide Association Studies (McGrath et al., 2024)
and Electronic Health Records (Zhou et al., 2023).

Contributions. Below, we list our contributions:

(i) We obtain minimax lower bounds for entrywise
estimation error for both the active (Theorem 2.2) and
passive sampling settings (Theorem 2.12).

(ii) We give a computationally efficient estimation
framework for both sampling settings. Our procedure is
minimax optimal for the active setting (Theorem 2.6).
We also establish minimax optimality for the passive
setting under incoherence assumptions (Theorem 2.9).

(iii) We compare the performance of our algorithm with
existing algorithms on real-world datasets for gene
expression microarrays and metabolic modeling
(Section 3).
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Figure 1. The missingness matrix for gene expression levels on
Day 2 of a sepsis study (Parnell et al., 2013) shows entire rows
(patients) and columns (genes) as missing, due to e.g. probe-target
hybridization failure of the Illumina HT-12 gene expression
microarray (Hu et al., 2021). We mark missing entries as 0 (white)
and present entries as 1 (blue). This motivates our missingness
model (Eq. (1) and Eq. (2)).

Setup. P,Q∈Rm×n are the underlying source and target
matrices, related by a distributional shift in their latent
singular subspaces (Definition 1.2). We observe a noisy and
possibly masked P̃ . The observation model of Q̃ depends
on which setting below we consider. We will introduce
both observation models here, and discuss the estimation
framework used for both models in Section 2.2.

(i) Active Sampling Setting. We have a budget of Trow
rows and Tcol columns. We select rows i1,...,iTrow and
columns j1,...,jTcol , possibly at random, and with re-
peats allowed. Let nij≥0 be the number of times both

row i and column j are chosen. Then, we have nij in-
dependent noisy observations Q̃(1)

i,j ,...,Q̃
(nij)
i,j such that:

Q̃
(t)
i,j =

{
Qij+ζ

(t)
i,j if nij>0,

⋆ otherwise,
(1)

For ζ(t)i,j
i.i.d∼ N (0,σ2

Q).

(ii) Passive Sampling Setting. Instead of row
and column budgets, there are probabilities
pRow, pCol ∈ [0, 1] corresponding to the random
row mask η1,...,ηm

i.i.d.∼ Ber(prow) and column mask
ν1, ... , νn

i.i.d∼ Ber(pcol). Entry (i, j) of Q is noisily
observed if ηi=νj=1, and missing otherwise.

Q̃ij=

{
Qij+ζi,j if ηi=νj=1,

⋆ otherwise,
(2)

where ζi,j
i.i.d∼ N (0,σ2

Q).

1.1. Organization of the Paper

We give our main theoretical findings, including lower and
upper bounds for the active and passive sampling settings,
in Section 2. Next, we compare our methods against existing
algorithms on real-world and synthetic datasets in Section 3.
Finally, we discuss related work in Section 4 and conclusions
in Section 5.

1.2. Notation and Problem Setup

We use lowercase letters a, b, c to denote (real) scalars,
boldface x,y,z to denote vectors, and uppercase A,B,C
to denote matrices. For n≥1, let [n] :={1,...,n}, In be the
identity matrix and (ei)

n
i=1 the canonical basis vectors. Let

a∨b :=max{a,b} and a∧b :=min{a,b}. For multisets S,T
andA∈Rm×n, letA[S,T ]∈R|S|×|T | be the submatrix with
row and column indices in S,T respectively, possibly with
repeated entries fromA. Let⊗ denote the tensor (Kronecker)
product: forA∈Rm×n,B∈Rs×t, (A⊗B)∈Rms×nt with
(A⊗B)i(r−1)+v,j(s−1)+w=AijBvw. We denote the Frobe-
nius norm as ∥A∥F , max norm as ∥A∥max := maxi,j |Aij |,
and 2→∞ norm as ∥A∥2→∞ := maxi∥ATei∥2. Asymp-
totics O(·),o(·),Ω(·),ω(·) are with respect to m∧n unless
specified otherwise. Recall that, for integer n,d such that
d≤ n, the Stiefel manifold On×d (Hatcher, 2002) consists
of allU ∈Rn×d such thatUTU=Id.

We now define matrix incoherence, which measures how
concentrated the entries of the singular vectors are.
Definition 1.1 (Incoherence). Let M be an m×n matrix
of rank d, and write its SVD as M = UΣV ⊤. The left
(resp. right) incoherence parameter ofM is defined as µU =
m∥U∥22→∞/d (resp. µV =n∥V ∥22→∞/d). The incoherence
parameter ofM is defined as µ(M) :=max{µU ,µV }.
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We now formally define the distribution shift from P toQ,
which generalizes the latent space rotation model (Xu et al.,
2013; McGrath et al., 2024).
Definition 1.2 (Matrix Transfer Model). In the matrix trans-
fer model, we have source and target matrices P,Q∈Rm×n

such that:

(i) (Low-Rank) LetP =UPΣPV
⊤
P for some d≤m∧nwhere

UP ∈Om×d,VP ∈On×d, and ΣP ⪰0 is diagonal d×d.

(ii) (Distribution shift) There exist T1,T2,R∈Rd×d such that
Q=UPT1RT

T
2 V

T
P , and ∥Ti∥2=O(1) for i=1,2.

We will define the parameter space as:

Fm,n,d=
{
(P,Q)∈Rm×n×Rm×n :P =UΣPV

T ,

Q=UT1RT
T
2 V

T ,U ∈Om×d,V ∈On×d,

T1,T2,R∈Rd×d,ΣP ⪰0

}
(3)

Definition 1.2 requires that the d-dimensional features
of rows and columns lie in a shared subspace for P, Q.
Consider the matrix of associations between m genetic
variants (e.g. the MC1R gene) and n phenotypes (e.g.
dark hair) for different populations P,Q (e.g. England and
Spain) (McGrath et al., 2024). The above model ensures that
the latent feature vector for a genotype (resp. phenotype)
inQ is a linear combination of those in P .

Note that T1,T2 are not necessarily rotations and can even
be singular. We set ∥Ti∥2 = O(1) to simplify theorem
statements, but it is not required.

2. Main Findings
We first show that without transfer – side information
from the source data P – completing the target matrix Q
is impossible. To this end, we present a minimax lower
bound on the expected prediction error. First, we define the
parameter space of matrices with bounded incoherence:

T (d)
mn =

{
Q∈Rm×n : rank(Q)≤d,

µ(Q)≤O
(
log(m∨n)

)}
. (4)

Proposition 2.1 (Minimax Error of MNAR Matrix Com-
pletion Without Transfer). Let m,n ≥ 1 and d ≤ m ∧ n.
Let Ψ = (Q,σ,pRow, pCol) where Q ∈ T (d)

mn , σ2 > 0, and
pRow,pCol∈ [0,1]. LetPΨ denote the law of the random matrix
Q̃ defined as in Eq. (2) with σQ=σ, and denote the expecta-
tion under this law as EΨ. The minimax rate of estimation is:

inf
Q̂

sup
Q∈T (d)

mn

inf
pRow≤.99
pCol≤.99

E
Ψ

[
1

mn
∥Q−Q̂∥2F

]
≥Ω(dσ2).

An immediate consequence of the above proposition is
that the minimax rate for max squared error ∥Q̂−Q∥2max is
also Ω(dσ2). We see that in both error metrics, vanishing
estimation error is impossible without transfer learning.

2.1. Lower Bound for Active Sampling Setting

We now give a minimax lower bound forQ estimation in the
active sampling setting.

Theorem 2.2 (Minimax Lower Bound forQ-estimation with
Active Sampling). Fixm,n and 2≤ d≤m∧n. Fix σ2> 0
and let |Ω|=Trow ·Tcol.

Let PP,Q,σ2 be the distribution of (P̃ ,Q̃) where P̃ :=P and

Q̃ :=Q+GwhereGij
i.i.d∼ N(0,σ2).

Let Q be the class of estimators which observe P̃ , and
choose row and column samples according to the budgets
Trow, Tcol as in Eq. (1), and then return some estimator
Q̂∈Rm×n. Then, there exists absolute constantC>0 such
that minimax rate of estimation is:

inf
Q̂∈Q

sup
(P,Q)∈Fm,n,d

EPP,Q,σ2 [∥Q̂−Q∥2max]≥
Cd2σ2

|Ω|
.

We prove Theorem 2.2 using a generalization of Fano’s
method (Verdú et al., 1994). We construct a family of dis-
tributions indexed by d2 source/target pairs (P (s),Q(s))d

2

s=1.
The source P is the same for all s, while each pair of target
matricesQ(s),Q(s′) differs in at most 2 entries. For example,
say entries (5,6) and (8,7) are different between Q(1) and
Q(2). Regardless of the choice of row/column samples, the
average KL divergence of a pair of targets is small. If e.g. the
entries (5,6),(8,7) are heavily sampled, then the estimator
can distinguish Q(1), Q(2) well, but cannot distinguish
Q(t),Q(t′) for all t,t′ pairs that are equal on (5,6) and (8,7).

2.2. Estimation Framework

Next, we describe our estimation framework. Given P̃
and Q̃[R,C], where R,C can come from either the active
(Eq. (1)) or passive sampling (Eq. (2)) setting, we estimate
Q̂ via the least-squares estimator.

Least Squares Estimator.

1. Extract features via SVD from P̃ = ÛP Σ̂P V̂
T
P .

2. Let Ω be the multiset of observed entries. Then solve

Θ̂Q :=arg min
Θ∈Rd×d

∑
(i,j)∈Ω

|Q̃ij−û⊤
i Θv̂j |2, (5)

where ûi := ÛTP ei,v̂j := V̂
T
P ej .
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3. Estimate Q̂:

Q̂ij= û
⊤
i Θ̂Qv̂j . (6)

This fully specifies Q̂ in the passive sampling setting
(Eq. (2)). For the active sampling setting, we must also
specify how rows and columns are chosen.

Active sampling poses two main challenges. First, it is not
clear how to leverage P̃ for sampling Q̃ because samples are
chosen before observing Q̃, so the distribution shift from P
to Q is unknown. Second, the best design depends on the
choice of estimator and vice versa.

Surprisingly, we show that for the right choice of experimen-
tal design, the optimal estimator is precisely the least-squares
estimator Q̂ as in Eq. (6). We use the classical G-optimal
design (Pukelsheim, 2006), which has been used in reinforce-
ment learning to achieve minimax optimal exploration (Latti-
more and Szepesvári, 2020b) and optimal policies for linear
Markov Decision Processes (Taupin et al., 2023).

Definition 2.3 (ϵ-approximate G-optimal design). Let
A⊂Rd be a finite set. For a distribution π :A→ [0,1], its
G-value is defined as

g(π) :=max
a∈A

[
aT

(∑
a∈A

π(a)aaT
)−1

a

]
.

For ϵ>0, we say π̂ is ϵ-approximatelyG-optimal if

g(π̂)≤(1+ϵ)inf
π
g(π).

If ϵ=0, we say π̂ is simplyG-optimal.

Notice that in Eq. (5), the covariates are tensor products
(v̂j⊗ûi) of column and row features. TheG-optimal design
is useful because it respects the tensor structure of the least-
squares estimator. We prove this via the Kiefer-Wolfowitz
Theorem (Lattimore and Szepesvári, 2020b).

Proposition 2.4 (Tensorization of G-optimal design). Let
U ∈ Rm×d1 , V ∈ Rn×d2 . Let ρ be a G-optimal design
for {UTei : i ∈ [m]} and ζ be a G-optimal design for
{V Tej : j ∈ [n]}. Let π(i, j) = ρ(i)ζ(j) be a distri-
bution on [m] × [n]. Then π is a G-optimal design on
{V Tej⊗UTei : i∈ [m],j∈ [n]}.

Consider a maximally coherent P that is nonzero at entry
(3,5) and zero elsewhere. ThenQ is also zero outside (3,5).
By the Kiefer-Wolfowitz Theorem, theG-optimal design for
rows (resp. columns) samples row 3 (resp. column 5) with
probability 1. So, if P̃ is not too noisy, then theG-optimal
design samples precisely the useful rows/columns.

In light of Proposition 2.4, we leverage the tensorization
property to sample rows and columns as follows.

Active Sampling. Given Û ,V̂ , and budget Trow,Tcol,

1. Compute ϵ-approximate G-optimal designs ρ̂, ζ̂ for
{ÛTP ei : i ∈ [m]} and {V̂ TP ej : j ∈ [n]} respectively,
with the Frank-Wolfe algorithm (Lattimore and
Szepesvári, 2020b).

2. Sample i1,...iTrow

i.i.d∼ ρ̂ and j1,...jTcol

i.i.d∼ ζ̂.

Finally, we specify the assumption we need on the source
data P̃ , called Singular Subspace Recovery (SSR).

Assumption 2.5 (ϵ-SSR). Given P̃ ∈ (R∪ {⋆})m×n, we
have access to a method that outputs estimates ÛP ∈Om×d

and V̂P ∈On×d, such that:

inf
WU∈Od×d

∥Û−UWU∥2→∞≤ϵSSR,

and inf
WV ∈Od×d

∥V̂ −VWV ∥2→∞≤ϵSSR
(7)

for some ϵSSR>0.

This assumption holds for a number of models. For instance,
recent works in both MCAR (Chen et al., 2020) and
MNAR (Agarwal et al., 2023b; Jedra et al., 2023) settings
give estimation methods for P̂ with entry-wise error bounds.
In Appendix A.2, we prove that these entry-wise guarantees,
combined with standard theoretical assumptions such as
incoherence, imply Assumption 2.5.

We now give our main upper bound, stated in terms of max
squared error. Note that our upper bound for max error
immediately implies upper bounds for commonly used
metrics including mean squared (Frobenius) error, root mean
squared error, and mean absolute error.

Theorem 2.6 (Generic error bound for active sam-
pling). Let Q̂ be the active sampling estimator with
Trow,Tcol ≥ 20d log(m+n). Then, for absolute constants
C,C ′>0, and all ϵ< 1

10 ,

P
P̃ ,Q̃

[
∥Q̂−Q∥2max≤C(1+ϵ)

(
d2σ2

Qlog(m+n)

|Tcol||Trow|

+d2ϵ2SSR∥Q∥22
)]

≥1−C ′(m+n)−2.

We will discuss implications of Theorem 2.6 in Remark 2.7.
First, we give some intuition. Notice that Theorem 2.6 (and
Theorem 2.9) gives an error bound as a sum of two terms,
which depend on the sample size and ϵSSR respectively. To
see why, let Ω be the set of observed entries, either in a pas-
sive or active sampling setting. Let ûi,v̂j be the covariates
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as in Eq. (5). The observation Q̃ij can be decomposed:

Q̃ij=Qij+(Q̃ij−Qij)

= û⊤
i ΘQv̂j+ ϵij︸︷︷︸

misspecification P̃

+(Q̃ij−Qij)︸ ︷︷ ︸
noise

(8)

The population estimand ΘQ∈Rd×d, which is estimated in
Eq. (5), is:

ΘQ :=WT
U T1RT

T
2 WV ,

where T1, T2 are the distribution shift matrices as in
Definition 1.2, andWU ,WV ∈Od×d are some rotations. The
misspecification error is due to the estimation error of the
singular subspaces of P and depends on ϵSSR as follows:

ϵij :=e
T
i (Û−UWU )ΘQV̂ ej

+eTi ÛΘQ(V̂ −VWV )ej

+eTi (Û−UWU )ΘQ(V̂ −VWV )ej

Therefore ϵ2ij = O(ϵ2SSR∥Q∥22) for all i, j.1 Notice the
misspecification error is independent of the estimator Θ̂Q,
so it will not depend on sample size. This explains the
appearance of the two summands in our upper bounds. The
first term depends on estimation error ΘQ− Θ̂Q, which is
unique to the sampling method. The second depends on
misspecification, which is common to both.

Remark 2.7 (Minimax Optimality for MNAR and MCAR
Source Data). The rate of Theorem 2.6 is minimax-optimal
in the usual transfer learning regime when target data is noisy
(σQ large) and limited (|Ω| := |Trow||Tcol| small).

Suppose P is rank d, µ-incoherent, with singular values
σ1 ≥ ··· ≥ σd, condition number κ and m = n. For the
MNAR P̃ setting, suppose each P̃ij has i.i.d. additive noise
N (0,σ2

P )with sampling sparsity factorn−β for β∈ [0,1] and
σP =O(1). By (Jedra et al., 2023), Q̂ is minimax-optimal if

4µ3d3κ2∥Q∥22
n1+

2−β
d

≲
σ2
Q

|Ω|
,

where ≲ ignores log(m+n)O(1) factors. For the MCAR
P̃ setting, suppose P̃ has additive noise N (0, σ2

P ) and
observed entries i.i.d. with probability p ≳ κ4µ2d2

n , with

σP
√

n
p ≲

σd(P )√
κ4µd

. Letting |Ω|=n2pRowpCol, by (Chen et al.,

2020), Q̂ is minimax-optimal if

µ6d4∥Q∥22
n2

≲
σ2
Q

|Ω|
.

1In fact ϵ2ij = O(ϵ2SSR∥R∥22), but we report bounds with the
weaker O(ϵ2SSR∥Q∥22) for ease of reading.

While the results of (Jedra et al., 2023; Chen et al., 2020)
used in Remark 2.7 require incoherence, recent work also
gives guarantees on ϵSSR without incoherence assumptions,
although in limited settings.

Remark 2.8 (Incoherence-free minimax optimality). Let
P ∈Rn×n be rank-1 and Hermitian, and P̃ =P+W where
W is Hermitian with i.i.d. N (0, σ2

P ) noise on the upper
triangle. Under the assumptions of (Yan and Levin, 2024),
for constantC>0, Q̂ is minimax optimal if

Cσ2
P (logn)

O(1)∥Q∥22
∥P∥22

≤
σ2
Q

|Ω|
.

Taking |Ω|=O(logn) since d= 1, and ∥Q∥2 =O(∥P∥2),
we require

Cσ2
P (logn)

O(1)≤σ2
Q.

2.3. Passive Sampling

We next give the estimation error for the passive sampling
setting. The rate almost exactly matches Theorem 2.6, but
we pay an extra factor due to incoherence. This is because
unlike the active sampling setting, if ℓ2 mass of the features
is highly concentrated in a few rows and columns, then
the passive sample will simply miss these with constant
probability. To give a high probability guarantee, we require
that features cannot be too highly concentrated.

Theorem 2.9 (Generic Error Bound for Q̂). Let Q̂ be as
in Eq. (6) and C > 0 an absolute constant. Suppose P has
left/right incoherence µU ,µV respectively, and pRow,pCol are
such that pRowm

Cdlogm≥µU+ ϵ2SSRm
d , pColn

Cdlogn≥µV +
ϵ2SSRn
d .

Let µ=µUµV . Then

P
[
∥Q̂−Q∥2max≤Cµ

(
d2σ2

Qlog(m+n)

pRowpColmn

+d2ϵ2SSR∥Q∥22
)]

≥1−O((m∧n)−2).

If P is coherent, the sample complexity |Ω| ≈ pRowpColmn
needed to achieve vanishing estimation error in Theorem 2.9
may be large. By contrast, our active sampling with G-
optimal design requires only |Ω|≳d2σ2

Q (Theorem 2.6). This
shows the advantage of active sampling, which can query
the most informative rows/columns when P is coherent.

2.4. Lower Bound for Passive Sampling

We give a lower bound for the passive sampling setting in
terms of a fixed, arbitrary mask. To exclude degenerate cases
such as all entries being observed, we require the following
definition.
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Definition 2.10 (Nondegeneracy). Let p > 0 and
η1,...,ηm

i.i.d∼ Ber(p). Let D∈{0,1}m×m be diagonal with
Dii=ηi. We say (ηi)

m
i=1 is p-nondegenerate for U ∈On×d

if
∣∣∥DU∥2−

√
p
∣∣≤ √

p

10 .

The Matrix Bernstein inequality (Chen et al., 2021) implies
that masks are nondegenerate with high probability.

Proposition 2.11. Under the conditions of Theorem 2.9,
the event that both (ηi)

m
i=1 is pRow-nondegenerate for ÛP

and that (νj)nj=1 is pCol-nondegenerate for V̂P holds with
probability ≥1−2(m∧n)−10.

We can now state our lower bound, proved via Fano’s method.

Theorem 2.12 (Minimax Lower Bound for Passive Sam-
pling). Let Fm,n,d be the parameter space of Theorem 2.2.
Let

Gm,n,d :=
{
(P,Q)∈Fm,n,d :P,Q areO(1)−incoherent

}
Suppose (ηi)

m
i=1, (νj)

n
j=1 are nondegenerate with respect

to U,V respectively. Let PQ,σ2,pRow,pCol be the law of the
random matrix Q̃ generated as in Eq. (2) with σ=σQ.

There exists absolute constantC>0 such that minimax rate
of estimation is:

inf
Q̂

sup
(P,Q)∈Gm,n,d

E
P(Q,σ2,pRow,pCol)

[
1

mn
∥Q̂−Q∥2F

∣∣∣∣(ηi)mi=1,

(νj)
n
j=1

]
≥

Cd2σ2
Q

pRowpColmn

We immediately obtain the same lower bound for max
squared error.

We see that our error rate for passive sampling in Theorem 2.9
is minimax-optimal when µ=O(1), modulo bounds on ϵSSR
as in Remark 2.7.

Unlike the lower bound for max squared error in active
sampling (Theorem 2.2), Theorem 2.12 gives a lower
bound for the mean-squared error, which is strictly stronger.
An interesting question is whether Theorem 2.12 can be
generalized to incoherence greater than a constant. We leave
this for future work.

3. Experiments
In this section, we compare both our active and passive
sampling estimators against existing methods on real-world
and simulated datasets.

Experimental setup. We compare against two baselines
from the matrix completion literature. First, we use the
MNAR matrix completion method of (Bhattacharya and

Table 1. Summary of real-world datasets. The 2→∞ norms are for
UP ,VP ,UQ,VQ respectively. Notice these are within [0,1] always,
and 2→∞ norm of 1 implies maximal coherence.

DATASET SHAPE RANK 2→∞ NORMS

GENE EXPR. 31 × 300 4 0.55, 0.30, 0.64, 0.38
METABOLIC 251 × 251 8 0.99, 0.99, 0.99, 0.99

Chatterjee, 2022). We tune the method by passing in the
true rank of Q as well as the rank of the mask matrix. Sec-
ond, we use the transfer learning method of (Levin et al.,
2022b). This method is designed for matrix completion, but
in a missingness structure different from our MNAR setting.
For shorthand, we will refer to these as BC22 and LLL22
respectively. See Appendix B for precise details of our imple-
mentations. Additionally, see Appendix B.1 for comparison
to a VAE baseline from (Ipsen et al., 2021).

The input to each of these, as well as our passive sampling
method, is the pair P̃ ,Q̃. The method of (Bhattacharya and
Chatterjee, 2022) requires input matrices to have entries
in [−1, 1] so we normalize all P̃ , Q̃ by their maximum
entry in absolute value, for all methods. We also com-
pute the active sampling estimator by fixing the budgets
Trow=m·pRow,Tcol=n·pCol throughout.

3.1. Real World Experiments

In this section we study real-world datasets on gene expres-
sion microarrays in a whole-blood sepsis study (Parnell et al.,
2013), and weighted metabolic networks of gram-negative
bacteria (King et al., 2016). Table 1 summarizes the datasets,
and Appendix B gives more details on our data preparation.

Patient Gene Expression Matrices. The matrices P,Q
represent the gene expression for patients in a sepsis
study (Parnell et al., 2013). Here P,Q∈R31×300 where Pij
measures the expression level of gene j in patient i on day
1 of the study, andQ corresponds to day 2 of the study.

Figure 2 displays the maximum squared error for a range
of masking probabilities on Q̃. We see that both active and
passive sampling perform well even at small sample sizes,
while the transfer baseline method (Levin et al., 2022b)
achieves a worse but nontrivial maximum error.

Notably, active sampling is no better than passive sampling
here. This makes sense becauseP,Q are relatively incoherent
(Table 1), so our theoretical guarantees are the same.

In fact, active sampling displays higher variation in error, due
to the variability in random sampling from the G-optimal
design. It is known that theG-optimal design for anyA⊂Rd
has support sizeO(d2) (Lattimore and Szepesvári, 2020a),
so the sampled set of rows and columns will vary somewhat
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from one experiment to the next.

Figure 2. Max-squared error of Q̂−Q. Here, Q̃ has pRow = pCol

varying along thex-axis, which displays p2Row. We setσQ=0.1, and
P is fully observed. For each method, we show the median of the
errors across 50 independent runs, as well as the [10,90] percentile.

Weighted Metabolic Network Adjacency Matrices.
We collect weighted metabolic networks from the BiGG
Genome Scale Metabolic Models repository (King et al.,
2016), consistent with recent work on transfer learning
for network estimation (Jalan et al., 2024). Specifically,
P, Q ∈ R251×251 where Pij ≥ 0 counts the number of
co-occurrences of metabolites i and j in a reaction for
organism P . Qij represents the same quantity in a different
organism Q. We use the gram-negative bacteria E. coli
W and P. putida for P,Q respectively. Unlike (Jalan et al.,
2024), we do not need to truncate the adjacency matrices
to {0,1}, allowing us to handle edge weights. This makes
a difference, because without truncation the edge weights
distribution is highly skewed for both P,Q (see Appendix B).

Figure 3 shows max squared error for a range of masking
probabilities on Q̃. We see that active sampling does well,
while passive sampling is very poor (note however, that pas-
sive sampling does relatively well for mean-squared error -
Figure 12). This is because P,Q are almost maximally coher-
ent (Table 1), so the assumptions of our guarantee for passive
sampling (Theorem 2.9) do not hold. By contrast, active
sampling performs well even in this highly coherent setting.

3.2. Simulations

In this section, we further probe the effects of incoherence
by testing on two highly coherent synthetic datasets
(described below). Table 2 displays our results, with
pRow=pCol=0.1,σQ=0.1, and P fully observed. Note that
0.1≈ 2dlogn

n here, so pRow,pCol are near the theoretical limit

Figure 3. Max-squared error of Q̂−Q, with the same experimental
parameters as Figure 2.

of our guarantees even for incoherent matrices.

Each table entry shows µ̂±2σ̂ for mean-squared error across
50 independent trials. We find that for a stylized example
of maximally coherent P,Q, active sampling is much better
than all other methods. However, for less stylized P,Q that
are still not incoherent, active and passive sampling are
comparable, and outperform both baselines.

Stylized Coherent Model. For n=200,d=5 we generate
UP ,VP ∈ {0,1}n×d via (UP )ii = 1, (VP )(n−i),i = 1.0 and
the other entries zero. We sample the diagonal entries of
ΣP ,ΣQ∈Rd×d iid uniformly at random from [0.5,1]. Then
P = UPΣPV

T
P and Q = UPΣQV

T
P . We call this class

“Coherent.”

Matrix Partition Model. For a less stylized class, let
m=300,n=200,d=5,a=0.1,b=0.8. We generate parti-
tionsUP ∈{0,1}m×d,VP ∈{0,1}n×d where each row is uni-
formly at random from {e1,...,ed}. Then,BP ∈ [0,1]d×d is
generated by samplingC∈ [0,1]d×d withCij

i.i.d∼ Unif([0,b])
and (BP )ij=Cij+1i=ja. Finally, we sample permutations
Π1,Π2 ∈ {0,1}d×d uniformly at random from all such per-
mutations. Then, P =UPBPV

T
P andQ=UPΠ1BPΠ

T
2 V

T
P .

We call this class “Matrix Partition Model” in analogy with
the Planted Partition Model (Abbe, 2017). Spectral argu-
ments show that such matrices are somewhat coherent (Lee
et al., 2014), although not maximally so.

3.3. Ablation Studies

Our main focus is to understand how sample budgets
Trow,Tcol, or probabilities pRow,pCol affects the estimation
error for transfer learning. We also perform ablation studies
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Table 2. Comparison of the errors of different approaches on
synthetic data.

COHERENT PARTITION

PASSIVE (OURS) 0.084 ± 0.039 ×10−3 0.040 ± 0.090
ACTIVE (OURS) 0.009 ± 0.015 ×10−3 0.046 ± 0.074
LLL22 0.061 ± 0.037 ×10−3 0.134 ± 0.011
BC22 0.789 ± 0.644 ×10−3 0.305 ± 0.002

Figure 4. Ablation study for the effect of additive target noise in
the Matrix Partition Model. For each method, we display the
median max-squared error across 10 independent runs, as well as
the [10,90] percentile.

to test the effect of other model parameters, such as rank,
dimension, noise variance, etc. Figure 4 shows the effect
of target noise variance on maximum error in the Matrix
Partition Model with m= 300,n= 200,d= 5,a= 0.1,b=
0.8,pRow=0.5,pCol=0.5. Due to space constraints, we defer
our additional ablation studies to Appendix B.

4. Related Work
We review the most relevant literature here. For additional
discussion, we refer to the surveys (De Handschutter et al.,
2021; Jafarov, 2022) for matrix completion and (Zhuang
et al., 2019; Kim et al., 2022) for transfer learning.

Matrix Completion. Most matrix completion algorithms
require a Missing Completely at Random (MCAR) assump-
tion (Candès and Recht, 2009; Chatterjee, 2015; Davenport
et al., 2014; Zhong et al., 2019), where eachQij is observed
with probability p independently of all others. The Miss-
ing Not-at-Random setting allows the masking probability
of Qij to depend on the value of Qij itself (Ma and Chen,
2019; Bhattacharya and Chatterjee, 2022; Jedra et al., 2023),

but still assumes that entries are masked independently of
one another. If masking variables are dependent, then au-
thors assume identifiability of the matrix conditioned on the
masking (Agarwal et al., 2023b), or that entries in every row
and column are observed (Simchowitz et al., 2023). By con-
trast, we study one of the simplest possible MNAR models in
which entries of Q̃ are not independent and entire rows and
columns can be missing. This MNAR model is motivated
by biological problems (Christensen and Nielsen, 2000a; Hu
et al., 2021; Einav and Cleary, 2022).

Transfer learning. Transfer learning has been well-studied
in learning theory (Ben-David et al., 2006; Cortes et al., 2008;
Crammer et al., 2008). Recent works address various super-
vised learning (Reeve et al., 2021; Cai and Wei, 2021b; Ma
et al., 2023; Cai and Pu, 2024) and unsupervised learning set-
tings (Gu et al., 2024; Ding and Ma, 2024). Statistical works
consider minimax rates of estimation, and computationally
efficient estimators to achieve such rates (Tripuraneni et al.,
2020; Agarwal et al., 2023a; Cai and Wei, 2021a; Ma et al.,
2023; Cody and Beling, 2023; Cai and Pu, 2024). In applica-
tions, transfer learning from data-rich to data-poor domains
has applications in biostatistics (Kshirsagar, 2015; Datta
et al., 2021), epidemiology (Apostolopoulos and Bessiana,
2020), computer vision (Tzeng et al., 2017; Neyshabur et al.,
2020), language models (Han et al., 2021), and other areas.

Transfer learning for matrix completion typically assumes
the source P and targetQ are observed in an MCAR fashion,
and are related through a rotation in latent space (Xu et al.,
2013; McGrath et al., 2024; He et al., 2024). Rotational
shift is a special case of our distribution shift model (Def-
inition 1.2), which allows for any linear shift in latent space.
On the other hand, works that study transfer learning for
specific classes of matrices typically assume distributional
shifts that are unique to those structures, such as in latent
variable networks (Jalan et al., 2024) or the log-linear word
production model (Zhou et al., 2023).

Optimal experimental design. Choosing a set of maxi-
mally informative experiments is a classical problem in statis-
tics (Smith, 1918; Pukelsheim, 2006) with connections to
active learning (Dasgupta, 2011), bandits (Abbasi-Yadkori
et al., 2011), and reinforcement learning (Lattimore et al.,
2020). Optimal designs have been studied for domain adap-
tation (Rai et al., 2010; Xie et al., 2022), misspecified regres-
sion (Lattimore et al., 2020), and linear Markov Decision
Processes (Jedra et al., 2023). In our active sampling setting,
we jointly query rows and columns to observe the corre-
sponding submatrix of Q̃, rather than one entry at a time
(Chakraborty et al., 2013; Ruchansky et al., 2015; Bhargava
et al., 2017). But, the optimal row queries depend on column
queries (and vice versa) – so we use the tensorization prop-
erty ofG-optimal designs (Proposition 2.4) to prove global
optimality with respect to joint row/column samplers.
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5. Conclusion and Future Work
We study transfer learning for a challenging MNAR model
of matrix completion. We obtain minimax lower bounds for
entrywise estimation ofQ in both the active (Theorem 2.2)
and passive sampling settings (Theorem 2.12). We give a
computationally efficient minimax-optimal estimator that
uses tensorization ofG-optimal designs in the active setting
(Theorem 2.6). Further, in the passive setting, we give
a rate-optimal estimator under incoherence assumptions
(Theorem 2.9). Finally, we experimentally validate our
findings on data from gene expression micoarrays and
metabolic modeling.

Future work could consider even more difficult missingness
structures, such as when the masks (ηi)

m
i=1, (νj)

n
j=1 are

dependent. If the mask can be partitioned into subsets
whose mutual dependencies are small, an Efron-Stein
argument (Paulin et al., 2016) may work. Is bounded
dependence necessary? Moreover, one can consider other
kinds of side information, such as gene-level features in
Genome-Wide Association Studies (McGrath et al., 2024).
Finally, there can be other interesting nonlinear models for
transfer between source and target matrices.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.
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A. Proofs and Additional Results
A.1. Preliminaries

We will repeatedly make use of the vectorization operator.

Definition A.1 (Vectorization). ForX∈Rn×d, the vectorization vec(X)∈Rnd is the vector whose first n entries correspond
to the first column ofX , and next n entries correspond to the second column ofX , and so on.

We can vectorize matrix products as follows.

Lemma A.2 ((Horn and Johnson, 2012)). LetA,B,X be matrices of shapes such thatAXB is well-defined. Then:

vec(AXB)=(BT⊗A)vec(X).

A.2. From Entrywise Guarantees to SSR

We prove that Assumption 2.5 follows from entrywise estimation guarantees on the source.

Proposition A.3. Let P anm×nmatrix of rank r. Let ϵ>0, and P̂ be a rank-r estimate of P , satisfying

∥P̂−P∥max≤ϵ∥P∥max. (9)

Consider the SVDs P =UΣV ⊤, and P̂ = Û Σ̂V̂ ⊤. Then, it holds that

min
W∈Or×r

∥U−ÛR∥2→∞

≤ (2
√
n+(2+

√
2)
√
mn∥UU⊤∥2→∞)∥P−P̂∥max

σr(P )

min
W∈Or×r

∥V −V̂ W∥2→∞≤

≤ (2
√
m+(2+

√
2)
√
mn∥V V ⊤∥2→∞)∥P−P̂∥max

σr(P )

provided that
√
mnϵ∥P∥max≤ σr(P )

2 .

Below, we give a result showing that entry-wise guarantees imply subspace recovery in the two-to-infinity guarantee.

Proof. We will only prove the result concerning the left subspaces U and Û . Our first step is to relate the errors ÛR−U
and UU⊤Û−U . We will introduce in our computations the sign matrix2 of U⊤Û , namely sgn(U⊤Û) which is a rotation
matrix. We have

min
W∈Or×r

∥UW−Û∥2→∞≤∥Usgn(U⊤Û)−Û∥2→∞

≤∥U(U⊤Û)−ÛU∥2→∞+∥U∥2→∞∥U⊤Û−sgn(U⊤Û)∥op.

Moreover, we also know (e.g., see Lemma 4.15 (Chen et al., 2021)) that

∥Û⊤U−sgn(Û⊤U)∥op≤∥sin(Θ)∥op,

and using the Theorem Davis-Kahan we obtain

∥Û⊤U−sgn(Û⊤U)∥op≤∥sin(Θ)∥op≤
√
2∥M−M̂∥op

σr(M)
.

Thus, we conclude that

min
W∈Or×r

∥UW−Û∥2→∞≤∥U(U⊤Û)−ÛU∥2→∞+

√
2∥U∥2→∞∥M−M̂∥op

σr(M)
. (10)

2The sign matrix of an n×n matrix Z with SVD UZΣZV
⊤
Z is given by sgn(Z)=UZV

⊤
Z ∈On×n .
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Next, we show that minW∈Or×r ∥UW − Û∥2→∞ can be well controlled by the error M −M̂ . On the one hand, we have
triangular inequality, and noting thatUU⊤M=M and Û Û⊤M̂=M̂ that

∥(UU⊤−Û Û⊤)M̂∥2→∞≤∥UU⊤M−Û Û⊤M̂∥2→∞+∥UU⊤(M−M̂)∥2→∞

≤∥M−M̂∥2→∞+∥UU⊤∥2→∞∥M−M̂∥op

On the other hand, we have

∥(UU⊤−Û Û⊤)M̂∥2→∞=∥(U(U⊤Û)−Û)Σ̂V̂ ⊤∥2→∞

=∥(U(U⊤Û)−Û)Σ̂∥2→∞

≥∥U(U⊤Û)−Û∥2→∞σr(M̂)

≥∥U(U⊤Û)−Û∥2→∞σr(M)−∥U(U⊤Û)−Û∥2→∞∥M−M̂∥op,

where in the last inequality we used Weyl’s inequality: |σr(M)−σr(M̂)|≤∥M−M̂∥op. We combine the above inequalities
to obtain

∥U(U⊤Û)−Û∥2→∞≤
∥M−M̂∥2→∞+∥UU⊤∥2→∞∥M−M̂∥op+∥U(U⊤Û)−Û∥2→∞∥M̂−M∥op

σr(M)

If the following condition holds

∥M−M̂∥op≤
√
mn∥M−M̂∥max≤

σr(M)

2
,

then

∥U(U⊤Û)−Û∥2→∞≤
∥M−M̂∥2→∞+∥UU⊤∥2→∞∥M−M̂∥op

σr(M)
+
1

2
∥U(U⊤Û)−Û∥2→∞

which in turn gives

∥U(U⊤Û)−Û∥2→∞≤
2∥M−M̂∥2→∞+2∥UU⊤∥2→∞∥M−M̂∥op

σr(M)
(11)

In summary we conclude that

min
W∈Or×r

∥UW−Û∥2→∞≤
2∥M−M̂∥2→∞+(2+

√
2)∥UU⊤∥2→∞∥M−M̂∥op

σr(M)
(12)

Using the inequalities

∥M−M̂∥2→∞≤
√
n∥M−M̂∥max and ∥M−M̂∥op≤

√
mn∥M−M̂∥max,

we can express our bounds as

min
W∈Or×r

∥UW−Û∥2→∞≤ (2
√
n+(2+

√
2)
√
mn∥UU⊤∥2→∞)∥M−M̂∥max

σr(M)
. (13)

A simple calculation also gives the following.

Proposition A.4. Suppose Û ∈ Om×r satisfies Assumption 2.5 with bound ϵSSR, and the population incoherence is
µU :=

m∥U∥2
2→∞
d . Then Û is γ-incoherent for γ≤2µU+

2ϵ2SSRm
d .

14
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A.3. Proof of Proposition 2.1

We require the following special case of Hoeffding’s inequality.

Lemma A.5. LetX1,...,Xn
i.i.d∼ Bernoulli(p). Then:

P
[∣∣∣∣∣ 1n∑

i

Xi−p

∣∣∣∣∣≥
√

logn

n

]
≤2n−2

The following concentration is standard.
Lemma A.6. Let x∼Sn−1. Then:

P[∥x∥∞≥C
√

logn

n
]≤1−O(n−1/2)

Proof. By Hoeffding’s inequality,

P
[∣∣∣∣∣∑

i

Xi−np

∣∣∣∣∣≥ t
]
≤2exp

(
− 2t2

n

)
Let t=

√
nlogn. The conclusion follows.

Finally, we require the following version of the Hanson-Wright inequality.
Theorem A.7 ((Rudelson and Vershynin, 2013) Theorem 2.1). LetA∈Rm×n be fixed and x∈Rn a random vector with
i.i.d. mean zero entries with variance 1 and ∥xi∥ψ2

≤K for all i. Then there exists constant c>0 such that for any t>0,

P
[
|∥Ax∥2−∥A∥F |>t

]
≤2exp

(
− ct2

K4∥A∥2

)

We are ready to state our lower bound.

Proof of Proposition 2.1. Let u1,...,ud ∈Rm be generated with iid N(0, 1m ) entries and v1,...,vd ∈Rm be generated with
iidN(0, 1n ) entries. LetQ=

∑d
i=1uiv

T
i .

We first analyze the incoherence of Q. We analyze the left-incoherence. Fix i∈ [m] and let y= (UTei). Then we apply
Theorem A.7 with x=

√
my andA=V , to obtain that ∥Ax∥=∥

√
mV UTei∥≤∥V ∥F+C ′K2∥V ∥2

√
lognwith probability

≥1−n−10 for absolute constantC ′>0. Since x has iidN(0,1) entries, the Orlicz norm constant is at mostK≤2. Taking
a union bound over all i, it follows that:

P
[
∥
√
mV UT ∥2→∞≤∥V ∥F+4C ′∥V ∥2

√
logn

]
≥1−O(n−9)

It follows that the left incoherence is at mostO(logn) with high probability. An identical application of Theorem A.7 with
A=U implies that the right-incoherence is at mostO(logm). Let E ′ be the event thatQ isO(log(n∨m)) incoherent. Let
Q be the random matrix generated as above, conditioned on E ′. Note that P[E ′]≥1−o(1).

Next, let I⊂ [m],J⊂ [n] be the rows and columns ofQ that are seen in Q̃. Then by Lemma A.5, |I|≤0.99m+
√
mlogmand

|J |≤0.99n+
√
nlognwith probability ≥1−2n−2−2m−2. Let E be the event that the bounds on I and J both hold.

Consider k∈ [m]\I,ℓ∈ [n]\J . None of the entries ofQ in the kth row or ℓth column are seen. Therefore, sincem−|I|≥Ω(m)

and n−|J | ≥ Ω(n), and since P[E ′]≥ 1− o(1), there exists a constant C such that for all i ∈ [d], V ar(ui;kvi;ℓ|Q̃)≥ C.
Therefore, sinceu1,...,ud,v1,...,vd are independent, for any Q̂, we have:

E[(Q̂kℓ−Qkℓ)2|Q̃]≥V ar(Qkℓ|Q̃)

≥
d∑
i=1

V ar(ui;kvi;ℓ|Q̃)

≥Cd

15
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Therefore, if we condition on E , then |[m]\I|≥Ω(m) and |[n]\J |≥Ω(n), so E[ 1
mn∥Q̂−Q∥2F |Q̃]≥cd for a constant c>0.

Since 1−2n−2−2m−2≥ 1
2 , we conclude that:

E[
1

mn
∥Q̂−Q∥2F |Q̃]≥ 1

2
E[

1

mn
∥Q̂−Q∥2F |Q̃,E ]

≥ cd

2

A.4. Proof of Theorem 2.2

We require a version of Fano’s theorem given in Theorem 7 of (Verdú et al., 1994).

Theorem A.8 (Generalized Fano). Let P be a family of probability measures, (D,d) a metric space, and θ :P→D a map that
extracts the parameters of interest. LetH⊂P be a finite subset of sizeM . Supposeα>0 is such that for any distinctHi,Hj ∈H,

d(θ(Hi),θ(Hj))≥α.

And, suppose that β>0 is such that:

log2+
1

M2

M∑
i=1

M∑
j=1

KL(Hi,Hj)≤βlogM.

Then,

inf
θ̂
sup
P∈P

E[d(θ(P ),θ̂)]≥α(1−β).

We also require a standard expression for the KL divergence of a pair of multivariate Gaussians.

Lemma A.9. Let µ,µ′ ∈Rd be distinct and Σ≻ 0. The KL divergence of two multivariate Gaussians sharing the same
covariance is given as:

KL(N (µ,Σ),N (µ′,Σ))=(µ−µ′)TΣ−1(µ−µ′)

We now prove our lower bound.

Proof of Theorem 2.2. Let U ∈Rm×d,V ∈Rn×d be such that Uii=1 and Vii=1 for i∈ [d], and all other entries are zero.
LetP =UV T . We construct a hypothesis space H={(P (ij),Q(ij) : i,j∈ [d]} of size d2 whereP (ij),Q(ij)∈Rm×n as follows.
For all members ij, we set P (ij)=P . Next, letR(ij)=γeie

T
j for γ>0 to be specified later. We setQ(ij)=UR(ij)V T .

First, notice for any (r,s) ̸=(i,j) that:

∥Q(ij)−Q(rs)∥2max=γ
2

Next, consider the KL divergences between a pair of hypotheses. Let (P̃ (ij),Q̃(ij)) be the distribution of the data under
hypothesis (P (ij),Q(ij)). Since P̃ (ij) = P (ij) = P for all (i,j), we must simply bound KL(Q̃(ij),Q̃(rs)) for each pair
(ij,rs). Now, let π(ij)

R ,π
(ij)
C be the row and column sampling distributions (possibly deterministic) respectively, based on

the source data P̃ (ij). Since P̃ (ij) = P (ij) = P for all (i,j) we know that there is a pair of distributions πR,πC such that
π
(ij)
R =πR,π

(ij)
C =πC for all (i,j). In other words the sampling cannot depend on the hypothesis index (i,j).

Next, we analyzeKL(Q̃(ij),Q̃(rs)). Each distribution depends on the randomness of πR,πC as well as the Gaussian noise.
LetR,C be the random multisets of rows and columns generated by πR,πC according to the prescribed row/column budgets.
By the chain rule for KL divergences (Theorem 2.15 of (Polyanskiy and Wu, 2024)), we have:

KL(Q̃(ij),Q̃(rs))= E
R,C

[
KL

((
Q̃(ij)|R,C),

(
Q̃(rs)|R,C)

)]

16
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Note that the marginal term involving π(ij)
R ,π

(ij)
C versus π(rs)

R ,π
(rs)
C is zero, because the distributions are equal for all ij,rs.

Next, for u ∈ [m], v ∈ [n], let nuv(R, C) be the number of times that (u, v) is sampled in R, C. Notice that
ER,C [nuv(R,C)]= |Ω|πR(u)πC(v). So, by Lemma A.9,

E
R,C

[
KL

((
Q̃(ij)|R,C),

(
Q̃(rs)|R,C)

)]
= E
R,C

[ ∑
u∈[m],v∈[n]

nuv(R,C)

σ2
Q

(Q(ij)
uv −Q(rs)

uv )2
]

= E
R,C

[
γ2

σ2
Q

(nij(R,C)+nrs(R,C))

]
=
γ2|Ω|
σ2
Q

(πR(i)πC(j)+πR(r)πC(s))

Hence, the average KL divergence for all pairs is:

1

d4

∑
(i,j)∈[d]2

∑
(r,s)∈[d]2

KL(Q̃(ij),Q̃(rs))=
γ2|Ω|
σ2
Qd

4

∑
(i,j)∈[d]2

∑
(r,s)∈[d]2

(πR(i)πC(j)+πR(r)πC(s))

≤ γ2|Ω|
σ2
Qd

4

∑
(i,j)∈[d]2

(1+d2πR(i)πC(j))

≤ γ2|Ω|
σ2
Qd

4
·2d2

=
2γ2|Ω|
σ2
Qd

2

Let γ2= 1
10

σ2
Qd

2

|Ω| . By Theorem A.8, we conclude that for d≥2, the minimax rate of estimation is at least 1
10γ

2= 1
100

σ2
Qd

2

|Ω|

A.5. Proof of Proposition 2.4

We use the classical characterization ofG-optimal designs due to Kiefer and Wolfowitz.

Theorem A.10 ((Kiefer and Wolfowitz, 1960)). Let π be a distribution on a finite space A⊂Rd. The following are equivalent:

• π isG-optimal.

• g(π)=d.

• For V (π) :=
∑

a∈Aπ(a)aa
T , π maximizes logdetV (π).

We now prove the tensorization ofG-optimal designs.

Proposition A.11 (Restatement of Proposition 2.4). Let ρ be aG-optimal design for {ÛTP ei : i∈ [m]} and ζ be aG-optimal
design for {V̂ TP ej : j ∈ [n]}. Let π(i, j) = ρ(i)ζ(j) be a distribution on [m]× [n]. Then π is a G-optimal design on
{̂̂V TP ej⊗UTP ei : i∈ [m]}.
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Proof. Let i∈ [m],j∈ [n]. Then by the Kiefer-Wolfowitz theorem,

g(π)=max
i,j

[
(V̂ TP ej⊗ÛTP ei)T

(∑
i,j

π(i,j)(V̂ TP ej⊗ÛTP ei)(V̂ TP ej⊗ÛTP ei)T
)−1

(V̂ TP ej⊗ÛTP ei)
]

=max
i,j

[
(V̂ TP ej⊗ÛTP ei)T

((∑
j

ζ(j)V̂ TP eje
T
j V̂

T
P

)
⊗
(∑

i

ρ(i)ÛTP eie
T
i Û

T
P

))−1

(V̂ TP ej⊗ÛTP ei)
]

=max
i,j

[
(V̂ TP ej⊗ÛTP ei)T

[(∑
j

ζ(j)V̂ TP eje
T
j V̂

T
P

)−1

⊗
(∑

i

ρ(i)ÛTP eie
T
i Û

T
P

)−1]
(V̂ TP ej⊗ÛTP ei)T

]

=max
i,j

[
(V̂ TP ej)

T

(∑
j

ζ(j)V̂ TP eje
T
j V̂

T
P

)−1

(V̂ TP ej)(Û
T
P ei)

T

(∑
i

ρ(i)ÛTP eie
T
i Û

T
P

)−1

(ÛTP ei)

]
=g(ρ)g(ζ)

=d2

Where the last step follows fromG-optimality of ρ and ζ. By Theorem A.10, π isG-optimal.

A.6. Proof of Theorem 2.6

We first prove a useful error decomposition.

Proposition A.12 (Decomposition). Let ÛP ∈Om×d,V̂POn×d be the estimates of the left/right singular vectors of P .Then
there exist matrices WU ,WV ∈ O(d,R) such that if T1,T2 are the distribution shift matrices as in Definition 1.2, and if
M=(WT

U T1)R(T
T
2 WV ), then:

Q= ÛP (W
T
U T1)R(T

T
2 WV )V̂

T
P +E

Where theE-error depends on the estimator error of P̂ .

E :=(ÛP−UPWU )MV̂ TP +ÛPM(V̂P−VPWV )
T+(ÛP−UPWU )M(V̂P−VPWV )

T

Proof. Let T1,T2∈Rd×d be the distributional shift matrices from Definition 1.2 such thatUQ=UPT1,VQ=VPT2.

LetWU be the solution to the Procrustes problem:

WU :=arg inf
W∈Od×d

∥UPW−ÛP ∥2→∞

And similarly,
WV :=arg inf

W∈Od×d
∥VPW−V̂P ∥2→∞

Next, letZ=T1RT
T
2 andM=WT

U ZWV . Further, let ∆U = ÛP−ÛPWU and ∆V = V̂P−V̂PWV . Then, we can writeQ as:

Q=UPT1R(VPT2)
T

=UPZV
T
P

=UPWUW
T
U ZWVW

T
V V

T
P

=(ÛP+∆U )W
T
U ZWV (V̂P+∆V )

T

= ÛPMV̂ TP +E

WhereE contains the cross-terms:

E=∆UMV̂ TP +ÛPM∆T
V +∆UM∆T

V

So we are done.
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We require a strong form of matrix concentration due to (Taupin et al., 2023).

Lemma A.13 (Design Matrix Concentration). Let π̂ be an ϵ-approximate G-optimal design on a finite set A⊂ Rd. Let
ρ,δ > 0 and t≥ 2(1+ϵ)( 1

ρ2 +
1
3ρ )dlog(

2d
δ ). Suppose Ω= {a1,...,at} is the multiset of t samples drawn i.i.d. from π̂, and

letWt=
1
t

∑t
i=1aia

T
i . Then:

P
[
(1−ρ)

∑
a∈A

π̂(a)aaT ⪯Wt⪯(1+ρ)
∑
a∈A

π̂(a)aaT
]
≥1−δ

In particular, since π̂ is ϵ-approximatelyG-optimal,

P
[

d

(1+ρ)
≤max

a∈A
∥a∥2

W−1
t

≤ (1+ϵ)d

(1−ρ)

]
≥1−δ

We also require the following standard bound on the maximum of Gaussians.

Lemma A.14 ((Vershynin, 2018) 2.5.10). LetX1,...,Xn
i.i.d∼ N(0,σ2). Then for all u>0,

P[max
i
X2
i ≥4σ2log(n)+2u2]≤exp(− u2

2σ2
).

Proof of Theorem 2.6. We first introduce some notation. LetSr,Sc be the multisets of rows/columns sampled andΩ=Sr×Sc.

Letψj= V̂ TP ej andφi= ÛTP ei. Then, let ϕ̂ij= V̂ TP ej⊗ÛTP ei=ψj⊗φk, andW =
∑
ij∈Ωϕ̂ijϕ̂

T
ij . Notice that:

W =

(∑
j∈Sc

ψjψ
T
j

)
⊗
(∑
i∈Sr

φiφ
T
i

)

Therefore, let W1 =
∑
j∈Sc

ψiψ
T
j and W2 =

∑
i∈Sr

φiφ
T
i for shorthand. Then W−1 exists iff W−1

1 ,W−1
2 exist. By

Lemma A.13, bothW−1
1 ,W−1

2 exist with probability at least 1−(m+n)−2, since Sr,Sc are both large enough by assumption.

Therefore, conditioning on the inverses existing, if we solve the least-squares system, we obtain M̂ ∈Rd×d such that:

vec(M̂)=(
∑
ij∈Ω

ϕ̂ijϕ̂
T
ij)

−1
∑
ij∈Ω

ϕ̂ijQ̃ij

Recall from Proposition A.12 thatQ= ÛPMV̂ TP +E, whereEij=ϵij is the misspecification error. Therefore, we can bound
the error of Q̂= ÛP M̂V̂ TP as:

Q̂ij−Qij=eTi ÛP (M̂−M)V̂ TP ej−ϵij
= ϕ̂Tijvec(M̂−M)+ϵij

=:E1;ij+E2;ij

E1;ij := ϕ̂
T
ijvec(M̂−M)

E2;ij :=ϵij
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LetGij
i.i.d∼ N(0,σ2

Q) be the additive noise for Q̃ij . Then, Q̃ij= ϕ̂Tijvec(M)+ϵij+Gij . Hence we can writeE1 as:

E1;kℓ=

(
ϕ̂Tkℓ(

∑
ij∈Ω

ϕ̂ijϕ̂
T
ij)

−1
∑
ij∈Ω

ϕ̂ijQ̃ij

)
−ϕ̂Tkℓvec(M)

= ϕ̂Tkℓ

(
(
∑
ij∈Ω

ϕ̂ijϕ̂
T
ij)

−1
∑
ij∈Ω

ϕ̂ij
(
ϕ̂Tijvec(M)+ϵij+Gij

))
−ϕ̂Tkℓvec(M)

= ϕ̂Tkℓ

(
(
∑
ij∈Ω

ϕ̂ijϕ̂
T
ij)

−1
∑
ij∈Ω

ϕ̂ij
(
ϵij+Gij

))

= ϕ̂Tkℓ

(
(
∑
ij∈Ω

ϕ̂ijϕ̂
T
ij)

−1
∑
ij∈Ω

ϕ̂ijϵij

)
+ϕ̂Tkℓ

(
(
∑
ij∈Ω

ϕ̂ijϕ̂
T
ij)

−1
∑
ij∈Ω

ϕ̂ijGij

)
=:E3;kℓ+E4;kℓ

We analyze E4 first. Let x=W−1
∑
ij∈Ω ϕ̂ijGij . For any k,ℓ, we wish to bound ϕ̂Tkℓx. Notice that x is a multivariate

Gaussian with mean 0. Its covariance is therefore:

E[xxT ]=
∑
ij∈Ω

∑
i′j′∈Ω

W−1ϕ̂ijϕ̂
T
i′j′W

−1E[GijGi′j′ ]=σ2
QW

−1
(∑
ij∈Ω

ϕ̂ijϕ
T
ij

)
W−1=σ2

QW
−1

Hence ϕ̂Tkℓx is a scalar Gaussian with mean zero and variance ϕ̂Tkℓσ
2
QW

−1ϕ̂kℓ. We next bound this quadratic form. Notice
that we can tensorize the quadratic form as:

ϕTkℓW
−1ϕkℓ=(ψℓ⊗φk)T (W1⊗W2)

−1(ψℓ⊗φk)
=(ψℓW

−1
1 ψℓ)(φkW

−1
2 φk)

We apply Lemma A.13 to each term in the product. With probability 1− 2(m+ n)−2, for Sr,Sc both of size at least
20dlog( 2d

m+n ),

∥ψℓ∥2W−1
1

∥φk∥2W−1
2

≤ (2+2ϵ)d2

|Sr||Sc|

Conditioning on this event, the variance of ϕ̂Tkℓx is at most
(1+ϵ)d2σ2

Q

|Ω|(1−ρ) , for |Ω|= |Sr||Sc|. Therefore, by Lemma A.14,

P
[

max
k∈[m],ℓ∈[n]

∣∣∣ϕ̂Tkℓx∣∣∣2≤20log(mn)
(2+2ϵ)σ2

Qd
2

|Ω|

]
≤δ+(mn)−2

Finally, we analyze the error termE3;kℓ. By the Cauchy-Schwarz inequality,

|E3;kℓ|≤
(∑
ij∈Ω

a2ij)
1/2

(∑
ij∈Ω

ϵ2ij)
1/2
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First, ∑
ij∈Ω

a2ij=
∑
ij∈Ω

ϕ̂TijW
−1ϕ̂kℓϕ̂

T
kℓW

−1ϕ̂ij

=
∑
ij∈Ω

tr
(
ϕ̂ijϕ̂

T
ijW

−1ϕ̂kℓϕ̂
T
kℓW

−1

)

= tr
(∑
ij∈Ω

ϕ̂ijϕ̂
T
ijW

−1ϕ̂kℓϕ̂
T
kℓW

−1

)

= tr
(
ϕ̂kℓϕ̂

T
kℓW

−1

)
=
∣∣∣ϕ̂TkℓW−1ϕ̂kℓ

∣∣∣
≤ (2+2ϵ)d2

|Ω|

For the other term, (∑
ij∈Ω

ϵ2ij
)1/2≤|Ω|1/2max

ij∈Ω
|ϵij |

It follows that maxk,ℓ|E3;kℓ|≤
√
2+2ϵ·dmaxi,j∈Ω|ϵij |. The conclusion follows.

A.7. Proof of Theorem 2.9

We require the following concentration result to control the sizes of masks.

Lemma A.15 (Bernoulli Concentration). LetX1,...,Xn
i.i.d∼ Bernoulli(p) for p∈(0,1). Then if p≥10logn,

P[

∣∣∣∣∣∑
i

(Xi−p)

∣∣∣∣∣≥ np

2
]≤n−ω(1)

Proof. By the scalar Bernstein inequality (Lemma A.16), we have forB=1 and ζ=np that:

P[

∣∣∣∣∣∑
i

(Xi−p)

∣∣∣∣∣≥τ ]≤2exp(− τ2/2

ζ+(Bτ/3)
)

Let τ=np/2. Then

P[

∣∣∣∣∣∑
i

(Xi−p)

∣∣∣∣∣≥τ ]≤2exp(
−10

8
logn)

≤2n−(logn)1/4

We are ready to prove the estimation error for passive sampling.

Proof of Theorem 2.9. Following the notation of the proof of Theorem 2.6, we want to bound E3;kℓ and E4;kℓ. However,
rather than usingG-optimality to bound quadratic forms of the type ϕ̂kℓW−1ϕ̂ij , we will apply spectral concentration via
Proposition A.17.
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To this end, we condition on the events that V̂ TP ΠRV̂P ⪰ pRow
2 and ÛTP ΠCÛP ⪰ pCol

2 . By Proposition A.4 and Proposition A.17,
the two events occur simultaneously with probability ≥1−2(m∧n)−10. ThenW−1 exists andW−1⪯ 4

pRowpCol
I . Therefore,

for all i,j,k,ℓ, by incoherence, ∣∣∣ϕ̂TkℓW−1ϕ̂ij

∣∣∣≤ 4

pRowpCol
∥ϕ̂kℓ∥∥ϕ̂ij∥

=
4

pRowpCol
∥φk∥∥φi∥∥ψℓ∥∥ψj∥

≤ 4

pRowpCol

(√µ2
Uµ

2
V d

4

m2n2
)

=
4

pRowpCol

µd2

mn

Hence, by Lemma A.14,

P
[

max
k∈[m],ℓ∈[n]

|E4;kℓ|2≤20log(mn)σ2
Q

4

pRowpCol

µd2

mn

]
≤2(m∧n)−10+(mn)−2.

Next, we analyzeE3. Let aij= ϕ̂TkℓW
−1ϕ̂ij . Let p=q=2. By the Cauchy-Schwarz inequality,

|E3;kℓ|≤
(∑
ij∈Ω

apij)
1/p

(∑
ij∈Ω

ϵqij)
1/q

First, we have: ∑
ij∈Ω

a2ij=
∑
ij∈Ω

ϕ̂TijW
−1ϕ̂kℓϕ̂

T
kℓW

−1ϕ̂ij

=
∑
ij∈Ω

tr
(
ϕ̂ijϕ̂

T
ijW

−1ϕ̂kℓϕ̂
T
kℓW

−1

)

= tr
(∑
ij∈Ω

ϕ̂ijϕ̂
T
ijW

−1ϕ̂kℓϕ̂
T
kℓW

−1

)

= tr
(
ϕ̂kℓϕ̂

T
kℓW

−1

)
=
∣∣∣ϕ̂TkℓW−1ϕ̂kℓ

∣∣∣
≤ 4µd2

pRowpColmn

On the other hand, (∑
ij∈Ω

ϵqij
)1/2≤|Ω|1/2max

ij∈Ω
|ϵij |

Notice E[|Ω|]=mnpRowpCol. By Lemma A.15, with probability ≥1−4(m∧n)−ω(1),

|Ω|≤ 9

4
pRowpColmn

Therefore, with probability ≥1−4(m∧n)−2, √
|Ω|

pRowpColmn
≤ 3

2

1
√
pRowpColmn

The conclusion follows.
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A.8. Proof of Proposition 2.11

We require the following version of the Matrix Bernstein Inequality (Chen et al., 2021).

Lemma A.16 (Matrix Bernstein Inequality). Suppose that {Yi : i=1,...,n} are independent mean-zero random matrices
of size d1×d2, such that ∥Yi∥2≤B almost surely for all i, and ζ≥max{∥E[

∑
iYiY

T
i ]∥2,∥E[

∑
iY

T
i Yi]∥2}. Then,

P
[∥∥∥∥ n∑

i=1

Yi

∥∥∥∥
2

≥τ
]
≤(d1+d2)exp

(
− τ2/2

ζ+Bτ/3

)

We now prove nondegeneracy of masks with high probability.

Proposition A.17 (Spectral Concentration). Suppose that V̂P and ÛP areµV ,µU -incoherent respectively. LetΠC ∈{0,1}n×n
be the random matrix with diagonal entries ν1,...,νn and similarly let ΠR∈{0,1}m×m have diagonal entries η1,...,ηm. Then,
assuming that µV ≤ pColn

400dlogn and µU ≤ pRown
400dlogn , we have:

P[ÛTP ΠRÛP ⪰pRow/2]≥1−m−10

P[V̂ TP ΠC V̂P ⪰pCol/2]≥1−n−10

Proof. Suppose that V̂P has rows y1,...,yn∈Rd. Then,

V̂ TP ΠC V̂P =

n∑
i=1

νiyiy
T
i .

Let vi=
√
nyi. Let pCol =E[νi]. We use p=pCol for shorthand. Notice E[V̂ TP ΠC V̂P ]=

∑
ipyiy

T
i =pId, since V̂ TP V̂P =Id.

Therefore, ∥∥∥∥∑
i

νiviv
T
i −pnId

∥∥∥∥
2

=

∥∥∥∥∑
i

(νi−p)vivTi
∥∥∥∥
2

Let Yi=(νi−p)vivTi . Note that E[Yi]=0. Next, let µ :=µV . By incoherence, ∥Yi∥2≤∥vi∥22≤µd for all i. Further,

max{∥E[
∑
i

YiY
T
i ]∥2,∥E[

∑
i

Y Ti Yi]∥2}=∥E[
∑
i

Y 2
i ]∥2

=p(1−p)∥
∑
i

∥vi∥22vivTi ∥2

≤p(1−p)nµd∥
∑
i

yiy
T
i ∥2

=p(1−p)nµd

Thus, by Lemma A.16, forB=µd and ζ=p(1−p)nµd, we have:

P
[∥∥∥∥ n∑

i=1

Yi

∥∥∥∥
2

≥τ
]
≤2nexp

(
− τ2/2

ζ+Bτ/3

)
Setting τ=10

√
p(1−p)nµdlogn∨10µd

√
logn implies that:

P
[∑

i

νiviv
T
i ⪰pn−τ

]
≥1−n−10

If µ≤ pn
400dlogn , then τ≤pn/2=pCol ·n/2. We conclude that P[V̂ TP ΠC V̂P ⪰pCol/2]≥1−n−10. An identical argument gives

P[ÛTP ΠRÛP ⪰pRow/2]≥1−m−10.
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Corollary A.18. Under the assumptions of Proposition A.17, the design matrix for passive sampling has rank d2 with
probability at least 1−2(m∧n)−10.

Proof. Let Ω⊂ [m]× [n] be the set of indices corresponding to the observed entries of Q̃. Let PΩ ∈ {0,1}|Ω|×mn be the
coordinate projection. The design matrix is precisely PΩ(V̂P⊗ÛP ). Then, notice that:(

PΩ(V̂P⊗ÛP ))T
(
PΩ(V̂P⊗ÛP ))=(V̂P⊗ÛP )TPTΩ PΩ(V̂P⊗ÛP )

=(V̂P⊗ÛP )T (ΠC⊗ΠR)(V̂P⊗ÛP )
= V̂ TP ΠC V̂P⊗ÛTP ΠRÛP

By Proposition A.17, this matrix has rank at least d2 with probability ≥1−2(m∧n)−10.

A.9. Proof of Theorem 2.12

We require the the Gilbert-Varshamov code (Guruswami et al., 2019).

Theorem A.19 (Gilbert-Varshamov). Let q≥2 be a prime power. For 0<ϵ< q−1
q there exists an ϵ-balanced codeC⊂Fnq

with rate Ω(ϵ2n).

We will use the following version of Fano’s inequality.

Theorem A.20 (Generalized Fano Method, (Yu, 1997)). Let P be a family of probability measures, (D,d) a pseudo-metric
space, and θ :P→D a map that extracts the parameters of interest. For a distinguished P ∈P , letX∼P be the data and
θ̂ := θ̂(X) be an estimator for θ(P ).

Let r≥2 and Pr⊂P be a finite hypothesis class of size r. Let αr,βr>0 be such that for all i ̸=j, and all Pi,Pj ∈Pr,

d(θ(Pi),θ(Pj))≥αr;
KL(Pi,Pj)≤βr.

Then

max
j∈[r]

EPj
[d(θ̂(X),θ(Pj))]≥

αr
2

(
1− βr+log2

logr

)
.

We can now prove Theorem 2.12.

Proof of Theorem 2.12. LetC⊂{0,1}d2 be the 0.1-balanced Gilbert-Varshmaov code as in Theorem A.19. LetU,V ∈Rn×d
be Stiefel matrices with incoherence parameter µ=O(1). Let P =UΣPV

T for a diagonal ΣP ≻0 to be specified later. Let
δQ>0 be a positive real to be specified later.

We will construct a family of source/target pairs indexed by C similar to (Jalan et al., 2024). Forw∈C, letBw ∈Rd×d be
defined as:

Bw;ij :=

{√
mn
2d wij=0

√
mn
d ( 12+δQ) wij=1

Then define (Pw,Qw)=(P,UBwV
T ).

For a fixed w ∈ C, the distribution of the data (AP , Q̃) depends on the random noise and masking of both AP , Q̃. Let
DR ∈ {0,1}m×m and DC ∈ {0,1}n×n be the diagonal matrices corresponding to the row/column masks for Q, and let
G∈Rm×n have iidN(0,σ2

Q) entries. Then Q̃=DR(Q+G)DC .

Now, we will apply Theorem A.20 to lower bound E
[

1
mn∥Q̂−Qw∥2F

∣∣∣∣DR,DC

]
. Fix any DR ∈ supp(E1),DC ∈ supp(E2.

Let P̃w,Q̃w denote the distribution of the data when the population matrices are Pw,Qw and we condition on the Q-mask
matricesDR,DC .
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By Theorem A.19, the hypothesis space indexed byC is such that log(|C|)≥C1d
2 for absolute constantC1>0. Next, for

distinctw,w′∈C,

KL((P̃w,Q̃w),(P̃w′ ,Q̃w′))=KL(P̃w′ ,P̃w)+KL(Q̃w,Q̃w′)

≤KL(Q̃w,Q̃w′)

=KL((DC⊗DR)vec(Qw+G),(DC⊗DR)vec(Qw′+G))

Notice that we do not use any properties of P̃w,P̃w′ , and in particular allow for deterministic P̃w=Pw=P .

SinceDC ,DR are fixed, this is simply the KL divergence of two multiariate Gaussians with the same covariance but different
means. Therefore, by Lemma A.9, we have that:

KL((P̃w,Q̃w),(P̃w′ ,Q̃w′))≤ 1

σ2
Q

vec(Qw−Qw′)T (DC⊗DR)
T (DC⊗DR)

−1(DC⊗DR)vec(Qw−Qw′)

=
1

σ2
Q

∥DR(Qw−Qw′)DC∥2F

=
1

σ2
Q

∥DRU(Bw−Bw′)V TDC∥2F

≤ 1

σ2
Q

∥DRU∥22∥DCV ∥22∥Bw−Bw′∥2F

≤ 5pRowpCol

σ2
Q

(
δ2Q
mn

d2
)d2

=
5pRowpColmnδ

2
Q

σ2
Q

.

In the penultimate step, we used the fact thatDR∈supp(E1),DC ∈supp(E2).

Next, for any distinctw,w′∈C, by Theorem A.19 we have that Pi,j∈[d][wij ̸=w′
ij ]≥0.1. Therefore,

∥Qw−Qw′∥F =∥U(Bw−Bw′)V T ∥F
=∥(Bw−Bw′)∥F

=

( ∑
i,j∈[d]:wij ̸=w′

ij

δ2Q
mn

d2

)1/2

≥ 1

10
δQ

√
mn

In the notation of Theorem A.20, we have:

αr :=
1

10
δQ

√
mn

βr=
5pRowpColmnδ

2
Q

σ2
Q

Since log(|C|) ≥ C1d
2, we set δQ =

√
C1d2σ2

Q

10pRowpColmn
so that that βr = C1d

2

2 . Therefore, by Theorem A.20, for absolute
constantsC2,C3,C4>0,

min
DR∈supp(E1),DC∈supp(E2)

E
[

1

mn
∥Q̂−Qw∥2F

∣∣∣∣DR,DC

]
≥ C2α

2
r

mn

≥C3δ
2
Q

≥
C4d

2σ2
Q

pRowpColmn

The conclusion follows.
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B. Additional Experiments and Details
Compute environment. We run all experiments on a Linux machine with 378GB of CPU/RAM. The total compute time
across all results in the paper was less than 4 hours.

Dataset details. For the gene expression experiments, we gather whole-blood sepsis gene expression data sampled by (Par-
nell et al., 2013), available at https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=gse54514. We
take the intersection of rows and columns present on days 1 and 2 of the study, and then filter by the 300 most expressed
columns (genes) on day 1, to obtain P,Q∈R31×300. Here Pij is the expression level of gene j for patient i on day 1, and
Qij is the same on day 2.

For the metabolic networks experiments, we access the BiGG genome-scale metabolic models datasets (King et al., 2016) at
http://bigg.ucsd.edu. We use the same set of shared metabolites for iWFL1372 (the source species P ) and IJN1463
(the target speciesQ) as (Jalan et al., 2024). The resulting networks are weighted undirected graphs with adjacency matrices
P,Q∈R251×251 where Pij counts the number of co-occurrences of metabolites i,j in iWFL1372, and Qij does the same
for IJN1463.

Details of the baselines. For the method of (Bhattacharya and Chatterjee, 2022), we use the estimator from their Section
2.2, but modify step (3) to truncate to the true rank d, and in step (6) truncate to the true rank of the propensity matrix whose
(i,j) entry is ηiνj . The propensity rank is always 1 in our case. This is the estimator Q̂BC22∈Rm×n.

For the method of (Levin et al., 2022b), we use the estimator from their Section 3.3, with weightswP ,wQ based on estimated
sub-gamma parameters of the noise for P̃ ,Q̃. Then, letQ′∈Rm×n be:

Q′
ij :=

{
wP

wP+wQ
P̃ij+

wQ

wP+wQ
Q̃ij Q̃ij ̸=⋆

P̃ij otherwise

We return the rank-d SVD truncation ofQ′ as Q̂LLL22∈Rm×n.

We will discuss additional ablation experiments in Section B.2, and experiments on the real-world data in Section B.3.

B.1. Comparison to the not-MIWAE Method

In this section, we present additional experiments to compare our methods against the not-MIWAE method of (Ipsen et al.,
2021). Specifically, we compare our active and passive sampling methods on Max Squared Error, Mean Squared Error
(MSE), Mean Absolute Error (MAE), and Root Mean Squared Error (RMSE). For ease of comparison, we report the results
of Figure 2 (gene expression transfer) and Figure 3 (metabolic transfer) again in the tables below. The MAE/RMSE numbers,
and the results of the not-MIWAE method, are new.

For the gene expression transfer problem (Figure 2), our methods out-perform not-MIWAE with pRow=pCol=0.5. We train
not-MIWAE until convergence, with the latent dimension equal to the true matrix rank ofQ, and a batch size of 32. For gene
expression data, the errors are reported in in Table 3 below.

Method MSE Max Squared Error MAE RMSE
Passive (Ours) 0.004385 0.300035 0.044493 0.055198
Active (Ours) 0.018225 0.372105 0.103285 0.114654
LLL22 0.151792 0.626293 0.343497 0.389449
BC22 0.570254 1.000000 0.678862 0.754897
not-MIWAE 0.207850 1.000000 0.415913 0.455765

Table 3. Performance comparison of different methods in the setting of Figure 2, with pRow =pCol =0.5.

Next, we perform the same experiment for the metabolic transfer problem (Figure 3) in Table 4.

Note that our methods may perform better because not-MIWAE is a non-transfer baseline. This further emphasizes the
significance of the transfer setting, which our methods capture, as well as the method of (Levin et al., 2022a).
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Method MSE Max Squared Error MAE RMSE
Passive (Ours) 0.000217 1.292995 0.000934 0.014638
Active (Ours) 0.000024 0.294249 0.000669 0.004883
LLL22 0.000360 0.651176 0.006931 0.018147
BC22 0.003790 1.000000 0.021086 0.055543
not-MIWAE 0.006666 1.000000 0.030307 0.076831

Table 4. Performance comparison of different methods in the setting of Figure 3, with pRow =pCol =0.5.

B.2. Ablation Studies

Throughout this section we use the Partitioned Matrix Model with a=0.1,b=0.8 from Section 3. For each setting, we hold
all parameters fixed and vary one parameter pto observe the effect of all algorithms on both Max Sqaured Error and Mean
Squared Error. The default settings are:

• Matrices P,Q∈Rm×n withm=300,n=200.

• The parameters a=0.8,b=0.1 in the Partitioned Matrix Model.

• Additive noise for Q̃ is iid N (0,σ2
Q) with σQ=0.1.

• The rank is d=5.

• pRow=pCol=0.5, so the probability of seeing any entry ofQ is 0.25.

For all experiments, we test for 10 independent trials at each parameter setting and display the median error of each method,
along with the [10,90] percentile.

Figure 9 shows that all methods do poorly in max error when P is masked. Our methods are best in mean-squared error. This
is because the Matrix Partition Model is highly coherent, as can be shown from spectral partitioning arguments (Lee et al.,
2014). Therefore, the max-squared error is high, as we would expect from Remark 2.7 and the results of (Chen et al., 2020).

Figure 5. We test the effect of growing the target additive noise parameter σQ.
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Figure 6. We test the effect of growing the target additive noise parameterσP . Each entry ofP is observed with i.i.d. additive noiseN (0,σ2
P ).

Figure 7. We test the effect of growing n for P,Q∈R300×n.

B.3. Additional Real-World Experiments

We first display the weighted adjacency matrices for P,Q for the metabolic networks setting of Section 3 as Figure 10
and Figure 11. It is evident that the edge weights show significant skew. Note that the colorbar for both visualizations is
logarithmically scaled.

Next, we report mean-squared error for the same experimental settings discussed in Section 3. Figure 13 shows the results for
gene expression. Figure 12 shows the results for metabolic data; notably, despite poor performance in max-squared error, the
passive sampling estimator is reasonably good in mean-squared error, although not as good as the active sampling estimator.
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Figure 8. We test the effect of rank.

Figure 9. We test the effect of masking entries of P in a Missing Completely-at-Random setup with probability p. Note that the errors
for active and passive sampling are almost identical, so we use different markers (circle and triangle resp.) to distinguish them. We see
that our methods do better in mean-squared error (left) while max error is poor for all methods (right).
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Figure 10. The source matrix P in the setting of Figure 3.
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Figure 11. The target matrix Q in the setting of Figure 3.
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Figure 12. The mean-squared error of each Q̂−Q in the setting of Figure 3.
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Figure 13. The mean-squared error of each Q̂−Q in the setting of Figure 2.
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