TRAVELREASONER: REASONING-AUGMENTED TRAVEL SURVEY SIMULATIONS WITH LARGE REASONING MODELS

Anonymous authorsPaper under double-blind review

000

001

002

004

006

008 009 010

011 012 013

014

015

016

017

018

019

021

023

025

026

027

028

029

031

033

035

037

040

041

042

043

044

045

046

047

048

051

052

ABSTRACT

Travel survey plays a central role in a wide range of applications, such as urban planning and traffic management. Large language models (LLMs) have recently demonstrated huge potential in simulating human behaviours. However, previous works in travel survey simulation research have primarily focused on tuning LLMs to directly fit travel survey data, overlooking the underlying reasoning process behind human decision-making. The emergence of large reasoning models (LRMs) has achieved tremendous success in solving complex tasks, offering unique opportunities to simulate a realistic travel survey through LLM reasoning. In this paper, we introduce *TravelReasoner*, a novel framework that enhances travel survey simulations by integrating the reasoning capabilities of LRMs. We construct *Chain-of-Trips* from publicly available trip-chain records in the National Household Travel Survey (NHTS). This dataset captures the step-by-step reasoning process behind real-world travel decisions. To improve the accuracy and rationality of LRMs' in-domain reasoning, we propose a post-training pipeline via curriculum learning. Experiments demonstrate that TravelReasoner substantially outperforms strong baselines, location consistency improved by 6.8%, and time consistency improved by 4.1%, while producing interpretable intermediate reasoning traces that enable transparent and explainable simulations. Our findings highlight the promise of LRMs for complex decision modeling and open new opportunities for applying NLP to urban systems. Data and code are available at https://anonymous.4open.science/r/TravelReasoner-4037

1 Introduction

Understanding human travel behavior is essential for designing efficient transportation systems, guiding urban planning, and supporting evidence-based policy evaluation (Handy, 1996). Travel surveys remain a primary tool in this domain (Stopher & Greaves, 2007). However, traditional travel surveys face significant challenges (Westat, 2018), including low response rates, high collection costs, and insufficient contextual data. These limitations hinder their scalability and reliability, particularly in dynamic urban environments. As a result, there is a pressing need for effective alternatives that can efficiently generate realistic travel data. In addition, several studies have demonstrated the feasibility of using large language models(LLMs) to simulate human behaviorPark et al. (2023); Gao et al. (2024); Piao et al. (2025), offering a promising direction for travel simulation.

Recent advances have explored the use of LLMs to generate synthetic travel surveys (Li et al., 2024; Bhandari et al., 2024; Zhang & Xu, 2025). Current LLM-based simulation approaches typically rely on training with large-scale text data, enabling models to replicate human travel patterns. Despite their promise, these methods still fall short in several areas, particularly in capturing the deep reasoning and complex behaviors underlying human travel decisions (Bhandari et al., 2024). While LLMs can generate plausible activity sequences, they often fail to account for the intricate decision-making processes behind travel choices, leading to simulations that lack behavioral realism and interpretability. The emergence of large reasoning models (LRMs) has enhanced model performance on complex reasoning tasks (Xu et al., 2025), and integrating their reasoning capabilities with simulations has enabled the capture of more realistic travel trajectories.

In this paper, we introduce TravelReasoner, a novel framework for enhancing travel simulation using LRMs. The core of our approach lies in improving travel survey simulations by integrating the advanced reasoning capabilities of LRMs. Unlike prior research, which treats trips as discrete sequences, we reframe travel chains as chains of thought. To support this, we construct the Chain-of-Trips dataset, derived from the National Household Travel Survey (NHTS) data. This dataset captures the intricate causal, temporal, and motivational structures behind travel decisions by simulating a first-person perspective. We address several critical questions—whether, why, when, where, and how—step by step, reflecting the reasoning process behind each decision. Additionally, we propose a two-stage post-training pipeline, combined with supervised fine-tuning, to optimize behavioral authenticity and first-person coherence in the generated travel narratives.

We validate our approach through extensive experiments on multiple city-level simulation tasks, benchmarking it against traditional methods and an existing LLM baseline. Our experimental results show that the proposed TravelReasoner significantly outperforms the strongest baseline, location consistency improved by 6.8% and time consistency improved by 4.1%. Moreover, our model demonstrates strong cross-domain generalization, as it performs well across datasets from different cities, highlighting its broad applicability.

The key contributions of this work are as follows:

- We are the first to apply LRMs to travel behavior modeling and survey simulation. And we introduce the Chain-of-Trips dataset based on real-world NHTS data, which captures multi-level reasoning patterns in travel decision-making.
- We propose a two-stage post-training pipeline that combines supervised fine-tuning to enhance the model's reasoning capabilities and the fidelity of generated behaviors.
- Our extensive experiments demonstrate the advantages of our approach in terms of reasoning plausibility, behavioral consistency, and cross-domain generalization.

2 RELATED WORKS

2.1 Travel Survey Simulation

Simulating travel surveys has long been pursued as a cost-effective alternative to traditional data collection, which often suffers from high costs, privacy concerns, and low response rates(Greaves & Stopher, 2000; Mattson, 2012; Administration, 2017). Early approaches employed Monte Carlo sampling based on decision tree clustering of households to model trip attributes(Greaves & Stopher, 2000; Stopher & Pointer, 2004), later extended using neural networks to enhance transferability across regions(Mohammadian et al., 2010), albeit with limited success in capturing temporal or modal details. Agent-based models (ABMs) simulate travel behavior by modeling individuals with synthetic needs and preferences(Kim et al., 2019; 2020), effectively generating location-based social network data, though often limited in capturing diverse or rare activity chains.

Recent research has turned to large language models (LLMs) for survey simulation, leveraging their capacity to encode common-sense and contextual knowledge from large corpora(Brown et al., 2020; Petroni et al., 2019; JIAWEI et al., 2024; Wang et al., 2023). LLMs have been shown to predict next destinations and generate human-like activity sequences. (Bhandari et al., 2024) proposes a LLM-based framework that prompts models to generate synthetic travel diaries. Their evaluation—at pattern, trip, and activity-chain levels—demonstrates that fine-tuned LLMs can outperform both base models and agent-based simulations, producing data that closely resembles actual survey distributions even in cities unseen during training.

2.2 REASONING WITH LARGE LANGUAGE MODELS

Reasoning with large language models (LLMs) has emerged as a central focus in recent NLP research. While early LLMs demonstrated strong capabilities in language understanding and pattern completion, they often lacked explicit multi-step reasoning abilities required for tasks such as commonsense inference, planning, and decision modeling(Ouyang et al., 2022). To bridge this gap, recent work has explored various prompting strategies—such as Chain-of-Thought prompting(Wei et al., 2022; Liu et al., 2025)—that elicit step-by-step reasoning traces from LLMs. Further advances

introduced Interaction-of-Thought(Zhao et al., 2025), a method that simulates reasoning as multiagent interaction, improving coherence and factual accuracy in complex tasks like recommendation and planning.

Several efforts fine-tune LLMs on domain-specific reasoning corpora to improve transferability and robustness(Ouyang et al., 2022; Hu et al., 2022). This includes training models on structured reasoning tasks (e.g., math word problems, game states) and aligning outputs through reinforcement learning with feedback (Ouyang et al., 2022; Shao et al., 2024b). Such techniques have shown success in enhancing both reasoning quality and interpretability, crucial for high-stakes domains like healthcare, law, and urban planning. However, their application to travel survey simulation—where decisions involve personal constraints, preferences, and sequential dependencies—remains underexplored.

Building on prior work, we present a reasoning-augmented LLM framework for simulating travel behavior. In contrast to existing LLM-based simulators that primarily capture surface-level correlations, our approach explicitly models reasoning traces through supervised fine-tuning and reinforcement-based feedback. This enables more behaviorally realistic and interpretable simulations, bridging the gap between statistical accuracy and transparent decision modeling.

3 TRAVELREASONER

In this section, we present **TravelReasoner**, a reasoning-augmented framework for travel survey simulation. We first provide an overview of the simulation process, then describe the construction of the *Chain-of-Trips* dataset from real NHTS data, and finally detail our two-stage training paradigm designed to enhance reasoning and improve generalization in travel survey simulation.

3.1 Overview

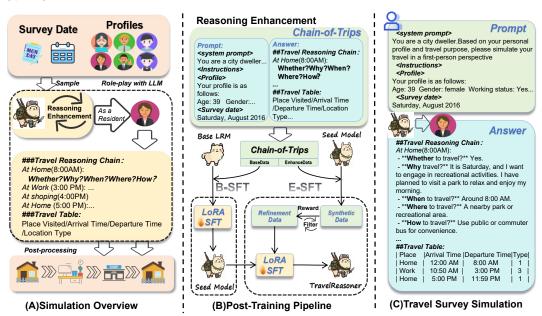


Figure 1: Overview of the TravelReasoner framework. It consists of: (A) travel data generation based on profiles and survey dates, (B) post-training pipeline via two-stage supervised fine-tuning, and (C) first-person simulation of travel decisions.

The overall design of TravelReasoner is illustrated in Figure 1. In (A), given a sampled survey date and a user profile (e.g., age, gender, employment status) from the NHTS dataset, the model is prompted to assume the role of a city resident and simulate daily travel behavior from a first-person perspective. The simulation yields two complementary outputs: (1) a *Travel Reasoning Chain*, which captures sequential decision-making at each time step (e.g., whether to travel, why, where,

when, and how), and (2) a structured *Travel Table*, recording trip attributes such as location type, arrival time, and departure time. Post-processing the Travel Table reconstructs a complete activity chain, providing a realistic mobility trajectory. This design enables the model to generate not only plausible trip sequences but also interpretable reasoning aligned with human decision processes, producing synthetic survey data suitable for urban planning, transportation modeling, and behavioral analysis.

Figure 1(B) illustrates the two-stage pipeline designed to enhance reasoning capabilities. In the first stage, we perform supervised fine-tuning on a portion of the Chain-of-Trips dataset, enabling the model to learn structured reasoning patterns based on real-world behavior. In the second stage, we use another portion of the dataset to generate answers for the fine-tuned model in the first stage, and then select high-quality question-answer pairs for the second stage of fine-tuning. These pairs are then used for additional fine-tuning, allowing the model to learn through self-reinforcement and encouraging it to generate logically consistent trip chains.

Figure 1(C) presents an example after training. Given a user profile and a survey date, the model simulates detailed travel behavior from a first-person perspective. At each time point, it explicitly reasons through core behavioral questions—whether to travel, why, where, when, and how—producing natural language justifications alongside structured trip records. This demonstrates the model's ability to generate interpretable, goal-directed, and contextually grounded travel behavior.

3.2 Chain-of-Trips Construction

To support reasoning-augmented travel modeling, we construct *Chain-of-Trips*, a structured dataset derived from the NHTS. Each instance represents a single day of travel decisions from a first-person perspective, conditioned on contextual factors such as demographics, activity purposes, and temporal constraints.

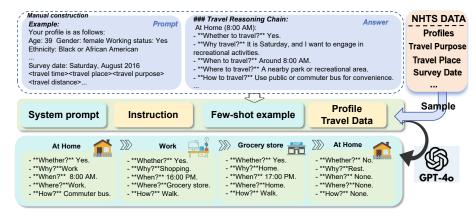


Figure 2: Construction of the *Chain-of-Trips* dataset from NHTS data. User profiles and travel records are extracted to build structured prompts with few-shot examples. GPT-40 then generates step-by-step reasoning chains under realistic decision contexts.

As shown in Figure 2, we first sample user profiles and daily travel logs from NHTS, including attributes such as age, gender, employment status, ethnicity, and survey date, along with trip sequences. We organize this information into structured prompts with four components: (1) a system prompt specifying the simulation objective, (2) task instructions defining the reasoning scope, (3) a manually constructed few-shot example demonstrating the reasoning structure, and (4) the target user profile with contextual details. Few-shot examples, curated from real NHTS patterns, are critical for guiding interpretable, multi-step decision trajectories.

Given this setup, a language model (GPT-40) generates a *Travel Reasoning Chain*, reflecting step-by-step decisions (whether to travel, why, where, when, and how), and a parallel *Travel Table*, recording structured trip attributes such as location type, arrival time, and departure time. Each dataset instance is represented as a triplet (Q, R, A): the prompt Q contains the system message, task instruction, and user profile; the reasoning component R is the generated *Travel Reasoning Chain*; and the answer A is the corresponding *Travel Table*. This triplet provides the supervision

signal for training. By jointly modeling travel sequences and the reasoning behind them, *Chain-of-Trips* enables the model to learn realistic mobility patterns together with human-aligned decision logic. This dual-format representation—natural language reasoning plus structured outputs—offers a rich training signal for grounding LLMs in the travel behavior domain. Detailed prompts can be found in Appendix A.3.

3.3 Post-training Pipeline

To enhance the model's ability to simulate human-like travel reasoning, we employ a two-stage training pipeline combined with LoRA ((Hu et al., 2022)), a parameter-efficient adaptive method. In the first stage, we fine-tune the model using Chain-of-Trips data to enhance its structured reasoning capabilities. In the second stage, we applied self-learning to improve the model's inference stability and further enhance its inference quality.

3.3.1 Supervised Fine-tuning

We fine-tune the model on the *Chain-of-Trips* dataset using LoRA, which freezes the pretrained weights and introduces a pair of trainable low-rank matrices into each target layer. Formally, instead of updating the full weight matrix $W_0 \in \mathbb{R}^{d \times k}$, LoRA parameterizes the weight update as:

$$\Delta W = AB, \quad A \in \mathbb{R}^{d \times r}, \ B \in \mathbb{R}^{r \times k}, \ r \ll \min(d, k),$$
 (1)

where r is the low-rank dimension. The effective weight becomes $W = W_0 + \Delta W$, while only A and B are trainable. This design enables efficient fine-tuning with orders-of-magnitude fewer trainable parameters compared to full-parameter updates.

Each training instance is represented as a triplet (Q, R, A), where Q is the prompt, R the reasoning chain, and A the structured answer table. We concatenate (Q, R, A) as the target output and optimize the standard auto-regressive language modeling objective:

$$\mathcal{L}_{SFT} = -\sum_{t=1}^{T} \log P_{\theta}(y_t \mid y_{< t}, Q), \tag{2}$$

where y_t denotes the t-th token in the combined target (R, A), and θ are the LoRA-augmented model parameters.

3.3.2 Two-stage training pipeline

We propose a two-stage training pipeline that incorporates the principles of curriculum learning, consisting of a Base Supervised Fine-Tuning (B-SFT) stage and an Enhanced SFT (E-SFT) stage.

In the B-SFT stage, we fine-tune the LRM using a portion of the Chain-of-Trips dataset, enabling it to grasp the fundamental paradigms and preliminary reasoning capabilities of the domain task, thereby constructing a baseline model.

In the E-SFT stage, we design an iterative self-optimization process to enhance the model's performance further. First, we use the LRM obtained in the B-SFT stage to generate a large number of candidate samples. Then, through manual screening and high-quality data curation (human-in-the-loop curation), our screening metric is shown in Equation 3. We screen the top 20% of question-answer pairs in the answers to construct a small, high-quality "golden" dataset. Finally, we use this refined dataset for a second round of fine-tuning, resulting in the final reasoning model, TravelReasoner. This stage significantly improves the model's reasoning capabilities by integrating the model's generation capabilities with human prior knowledge.

$$\operatorname{Reward} = A \cdot \exp\left(-\frac{\operatorname{AverLoc}}{\alpha}\right) + B \cdot \exp\left(-\frac{-\operatorname{TimeCons}}{\beta}\right) + C \cdot \exp\left(-\frac{\operatorname{EditDist}}{\gamma}\right) \tag{3}$$

Where AverLoc represents the Mean Absolute Error (MAE) between the generated chain and the actual chain, TimeCons represents the Root Mean Square Error (RMSE) between the generated stay time and the actual time, EditDist represents the edit distance between the generated chain and the actual chain. A, B, and C are the indicator weights, and α, β , and γ are the scaling factors. Here, we use A = 0.2, B = 0.4, C = 0.4, C = 0.4, C = 0.4, and C = 0.4,

4 EXPERIMENTAL SETUP

4.1 Dataset

We base our study on the 2017 NHTS Trip Chaining Dataset*, a large-scale survey conducted by the U.S. Federal Highway Administration. The dataset provides comprehensive, real-world records of individual travel behavior, including trip-level information such as departure and arrival times, trip purposes, and visited locations, as well as detailed sociodemographic profiles of participants (e.g., age, gender, race, education level, employment status, and household income). These rich attributes make the dataset particularly suitable for modeling reasoning-aware travel behavior.

For our purposes, the NHTS data serves two roles. First, it provides the foundation for constructing the *Chain-of-Trips* dataset, where individual travel trajectories are reformulated into structured prompts and reasoning chains. Second, it supports evaluation, allowing us to benchmark the plausibility and coherence of simulated outputs against realistic human travel behavior. This dual role enables both robust model training and meaningful empirical validation.

4.2 IMPLEMENTATION DETAILS

We utilize DeepSeek-R1-Distill-Llama-8B as our experimental model, setting the temperature to 0.6 and top-p to 1. In line with the configurations in SigSpatial (Bhandari et al., 2024), we restrict travel locations to 20 categories. Our experiments leverage real-world NHTS data and carefully curated question-answer pairs, conducted across four cities(San Francisco, San Diego, Austin, Atlanta). During the B-SFT phase, we fine-tune the model using Low-Rank Adaptation with the Adam optimizer, a learning rate of 1e-4, and 2000 training samples. In the E-SFT phase, we used the inference outputs of the model trained in phase 1 on an additional 1,000 training examples and selected 200 high-quality inference data points for this phase of training. More details can be found in Appendix A.1.

4.3 BASELINES

We used the following methods as baselines. These methods leverage the LLM's ability to process and reason about complex, semantically rich data to generate and predict mobility behaviors. These methods are more flexible and adaptable, and can handle a variety of tasks by combining human-like reasoning and contextual understanding, such as V-LRM(vanilla LRM), LRM-CoT(Wei et al., 2022), Bhandari24(Bhandari et al., 2024), CoPB(Shao et al., 2024a), and LLMob(JIAWEI et al., 2024).

- V-LRM: Represents a vanilla LRM, an untrained version of the model that has not yet undergone any specialized training or fine-tuning.
- LRM-CoT: Utilizes large language models to simulate mobility, enhancing the generation of mobility intentions by incrementally breaking down reasoning processes.
- **Bhandari24**: A model focused on spatially-augmented generation, which incorporates geographic factors and personal preferences to simulate mobility behavior.
- **CoPB**: A workflow that integrates the Theory of Planned Behavior into mobility behavior generation, incorporating attitudes, subjective norms, and perceived behavioral control to improve the accuracy of mobility predictions.
- **LLMob**: An LLM agent framework that accounts for individual activity patterns and motivations, employing a self-consistency approach to align LLMs with real-world activity data, and a retrieval-augmented strategy for interpretable activity generation.

4.4 EVALUATION METRICS

To comprehensively evaluate the quality of simulated travel behavior, we adopt three complementary metrics. These metrics assess accuracy at the trip level, temporal consistency, and sequence-level similarity. Together, they provide a holistic evaluation of both individual trajectories and aggregated mobility patterns. See Table 4.4 for a detailed description of the metrics.

^{*}https://nhts.ornl.gov/

Metric	Formula	Description
AverLoc	$\frac{1}{N} \sum_{i=1}^{N} \hat{\ell}_i - \ell_i $	The mean absolute error (MAE) between the generated chain and the actual chain length.
TimeCons	$\sqrt{\frac{1}{N}\sum_{i=1}^N(\hat{t}_i-t_i)^2}$	Root mean square error (RMSE) of the dwell time between the generated and actual chains.
EditDis	$\frac{1}{N} \sum_{i=1}^{N} \text{Lev}(\hat{s}_i, s_i)$	Edit distance between the generated chain and the actual chain.

Specifically, $\hat{\ell}_i$ and ℓ_i denote the predicted and ground-truth location categories, respectively. \hat{t}_i and t_i represent predicted and actual stay durations. Finally, \hat{s}_i and s_i are the predicted and ground-truth location sequences, and Lev(\cdot) denotes the Levenshtein distance.

5 RESULTS AND ANALYSIS

5.1 ZERO-SHOT AND FEW-SHOT

Table 1 presents the results of our preliminary experimental analysis. We perform comparative experiments using both the baseline model and the semantic reasoning model in zero-shot and few-shot scenarios.

	Model	AverLoc	TimeCons	EditDis
Zero-shot	Base	21.04	349.03	23.36
	Reasoning	4.01	145.33	6.29
Few-shot	Base	2.07	126.61	3.92
	Reasoning	2.33	114.99	4.31

Table 1: Experiments with the base model and reasoning model in zero-shot and few-shot scenarios. For few-shot scenarios, we manually construct chain-of-thought samples. The base model used is Llama-3.1-8B, and the reasoning model is DeepSeek-R1-Distill-Llama-8B.

The preliminary results indicate that the reasoning model outperforms the baseline in zero-shot settings, providing strong justification for its use in subsequent experiments. In the few-shot scenario, we carefully designed three Chain-of-Thought examples to facilitate model learning through imitation. The introduction of CoT examples substantially enhances the imitation capabilities of both models, validating the construction of the Chain-of-Trip dataset for training generalization models.

5.2 Main results

In this section, we present the key experimental results of TravelReasoner and compare its performance with well-known baselines, including V-LRM, LRM-CoT, CoPB, LLMob, and Bhandari24, using the AverLoc, TimeCons, ODSim, and EdiDis metrics introduced in Section 4.4.

The results, presented in Tables 2 and 7, demonstrate that TravelReasoner consistently achieved either the best or second-best performance across all evaluation metrics. For instance, on the San Francisco dataset, TravelReasoner recorded an AverLoc of 1.85, outperforming the strong baseline Bhandari24 (1.91). Furthermore, it achieved the best results in terms of temporal consistency (TimeCons = 91.88) and sequence edit distance (EditDis = 2.84). Similarly, across datasets from three additional cities, TravelReasoner outperformed all other methods, highlighting its robustness in diverse urban contexts. These findings underscore that TravelReasoner not only generates accurate trip sequences but also preserves high temporal rationality and behavioral consistency, thereby validating the efficacy of our reasoning-enhanced approach in travel simulation. On average, TravelReasoner improves location consistency by 6.8% and time consistency by 4.1% compared to the strongest baseline.

		San Francisco			San Diego	
	AverLoc	TimeCons	EditDis	AverLoc	ODSim	EditDis
V-LRM	4.01	145.33	6.29	4.08	156.39	6.22
LRM-CoT	3.69	147.60	5.95	3.94	151.80	6.06
CoPB	6.72	198.04	9.12	5.81	175.12	8.40
LLMob	2.74	131.22	5.09	2.80	128.02	5.02
Bhandari24	<u>1.91</u>	<u>96.40</u>	<u>3.17</u>	<u>1.94</u>	<u>97.62</u>	<u>3.06</u>
TravelReasoner	1.85	91.88	2.84	1.90	89.90	2.85

Table 2: Performance comparison of TravelReasoner with the baseline model on the San Francisco and San Diego datasets. Bold indicates the best result, and underlined indicates the second-best result. V-LRM represents a vanilla LRM, an untrained LRM.

In addition to the overall performance, we also analyze the results of TravelReasoner for different demographic groups in the San Francisco dataset, including age, gender, and income categories. As shown in Table 3 and Table 6, the model demonstrates consistent performance across these groupings. Specifically, TravelReasoner achieved AverLoc of 1.77/1.93 for males and females, and 1.69/1.93 for younger (under 40) and older (40 and over) groups. 1.73/1.93 in the low-income and high-income groups, respectively, and 1.77/1.94. Whether in spatial accuracy (AverLoc), temporal consistency (TimeCons), or sequence edit distance (EditDis), TravelReasoner outperforms or approaches the best baseline Bhandari24. These findings suggest that TravelReasoner is not only effective at generating accurate travel sequences at a city-wide level but also exhibits a strong ability to adapt to various demographic profiles, further validating the robustness and versatility of our reasoning-enhanced approach in diverse urban contexts.

	Male			Female			
	AverLoc	TimeCons	EditDis	AverLoc	TimeCons	EditDis	
V-LRM	4.12	149.1	6.28	3.91	141.72	6.31	
LRM-CoT	3.65	147.96	5.83	3.74	147.25	6.08	
CoPB	6.91	196.13	9.22	6.54	199.90	9.02	
LLMob	2.93	127.08	5.17	2.56	135.39	5.02	
Bhandari24	<u>1.94</u>	<u>96.21</u>	<u>3.21</u>	1.87	<u>96.58</u>	<u>3.14</u>	
TravelReasoner	1.77	88.43	2.72	1.93	95.19	2.96	

Table 3: Performance comparison of TravelReasoner and baseline models on different groups(gender) on the San Francisco dataset. Bold indicates the best result, and underlined indicates the second-best result. v-LRM represents a vanilla LRM, an untrained LRM.

5.3 Cross-city generalization

To validate the model's cross-domain generalization, we used data from four cities (San Francisco, Austin, San Diego, and Atlanta) for training and tested it on Dallas-Fort Worth and Los Angeles (see Table 4).

Experimental results show that TravelReasoner maintains its strong performance in novel cities, maintaining its lead over other baselines in AverLoc and EditDis. For example, on the Dallas–Fort Worth dataset, TravelReasoner achieved an AverLoc score of 1.87 and an EditDis score of 2.67, both outperforming Bhandari24 (1.95/2.93). It also achieved the best results on the Los Angeles dataset (AverLoc = 1.85, EditDis = 2.79), with significant improvements in temporal consistency. This shows that the model can not only learn reasonable travel patterns in the training city, but also be transferred to unseen urban scenes, showing good cross-domain generalization ability. This ability is crucial for real-world travel simulation because practical applications often require the transfer of models between different cities without the need for a large amount of local annotated data.

	Dallas-Fort Worth			Los Angeles			
	AverLoc	TimeCons	EditDis	AverLoc	ODSim	EditDis	
V-LRM	3.93	143.65	6.13	4.03	142.21	6.21	
LRM-CoT	3.97	137.28	6.12	4.16	144.19	6.32	
CoPB	5.49	191.60	7.80	2.54	143.18	4.88	
LLMob	2.97	130.91	5.27	6.13	189.60	8.38	
SigSpatial	<u>1.95</u>	<u>89.70</u>	<u>2.93</u>	<u>1.91</u>	102.08	<u>3.12</u>	
TravelReasoner	1.87	82.99	2.67	1.85	94.50	2.79	

Table 4: Our method generalizes to other cities. We train it using travel data from four cities (San Francisco, Austin, San Diego, Atlanta) and evaluate it using data from Dallas-Fort Worth and Los Angeles.

5.4 ABLATION STUDIES

 To further assess the contribution of each module in our approach, we conducted ablation experiments using datasets from San Francisco and San Diego (see Table 5).

Compared to V-LRM, the inclusion of B-SFT resulted in significant improvements across all evaluation metrics, highlighting the crucial role of supervised fine-tuning in learning fundamental reasoning patterns. The introduction of E-SFT, based on a self-learning paradigm, further enhances model performance, demonstrating that the enhanced fine-tuning stage improves reasoning consistency and behavioral rationality through the incorporation of high-quality, human-curated samples. Overall, the two-stage training pipeline is synergistic, with both stages being indispensable. The fully integrated TravelReasoner outperforms the reduced version in terms of both accuracy and consistency.

	San Francisco			San Diego		
	AverLoc	TimeCons	EditDis	AverLoc	ODSim	EditDis
V-LRM	4.01	145.33	6.30	4.08	156.39	6.22
TR(w/o E-SFT)	1.89	100.12	3.27	1.89	<u>97.24</u>	<u>3.21</u>
TravelReasoner	1.85	91.88	2.84	<u>1.90</u>	89.90	2.85

Table 5: This table shows the results of ablation experiments in San Francisco and San Diego. V-LRM represents a vanilla LRM, an untrained LRM.

6 Conclusion

In this work, we introduce TravelReasoner, a novel framework designed to enhance travel survey simulations through LRMs. By leveraging the reasoning capabilities of LRMs, we are able to simulate human travel behavior in a more interpretable and behaviorally plausible manner. The core of our approach is the Chain-of-Trips dataset, which enables the model to learn structured decision-making patterns from real-world travel data. Our post-training pipeline optimizes the model's ability to generate realistic, first-person travel simulations. Experimental results demonstrate that Travel-Reasoner outperforms baseline models in both accuracy and behavioral coherence, producing travel simulations that closely mirror human mobility patterns. Specifically, TravelReasoner improves location consistency by 6.8% and time consistency by 4.1% compared to the strongest baseline. Moreover, the reasoning traces generated by the model provide valuable insights into the underlying cognitive processes driving travel decisions. In future work, we aim to explore the integration of additional contextual data, such as environmental factors or real-time urban events, to refine the realism of our simulations further.

ETHICS STATEMENT

This research uses the publicly available NHTS dataset, which is de-identified and does not compromise personal privacy. The synthetic travel data generated by TravelReasoner is intended for research and policy analysis, not for individual profiling. We adhere to research integrity standards and do not involve direct human experimentation or sensitive information.

REPRODUCIBILITY STATEMENT

We describe the data construction, training process, and evaluation methods in detail in the main text and appendix, and provide a link(https://anonymous.4open.science/r/TravelReasoner-4037) to an anonymized code repository to facilitate replication of experimental results and validation of model performance.

REFERENCES

- Federal Highway Administration. National household travel survey, 2017. https://nhts.ornl.gov.
- Prabin Bhandari, Antonios Anastasopoulos, and Dieter Pfoser. Urban mobility assessment using llms. In *Proceedings of the 32nd ACM International Conference on Advances in Geographic Information Systems*, pp. 67–79, 2024.
- Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are few-shot learners. *Advances in neural information processing systems*, 33:1877–1901, 2020.
- Chen Gao, Xiaochong Lan, Nian Li, Yuan Yuan, Jingtao Ding, Zhilun Zhou, Fengli Xu, and Yong Li. Large language models empowered agent-based modeling and simulation: A survey and perspectives. *Humanities and Social Sciences Communications*, 11(1):1–24, 2024.
- Stephen P Greaves and Peter R Stopher. Creating a synthetic household travel and activity survey: Rationale and feasibility analysis. *Transportation Research Record*, 1706(1):82–91, 2000.
- Susan Handy. Methodologies for exploring the link between urban form and travel behavior. *Transportation Research Part D: Transport and Environment*, 1(2):151–165, 1996.
- Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. *ICLR*, 1(2):3, 2022.
- WANG JIAWEI, Renhe Jiang, Chuang Yang, Zengqing Wu, Ryosuke Shibasaki, Noboru Koshizuka, Chuan Xiao, et al. Large language models as urban residents: An Ilm agent framework for personal mobility generation. *Advances in Neural Information Processing Systems*, 37:124547–124574, 2024.
- Joon-Seok Kim, Hamdi Kavak, Umar Manzoor, Andrew Crooks, Dieter Pfoser, Carola Wenk, and Andreas Züfle. Simulating urban patterns of life: A geo-social data generation framework. In *Proceedings of the 27th ACM SIGSPATIAL international conference on advances in geographic information systems*, pp. 576–579, 2019.
- Joon-Seok Kim, Hyunjee Jin, Hamdi Kavak, Ovi Chris Rouly, Andrew Crooks, Dieter Pfoser, Carola Wenk, and Andreas Züfle. Location-based social network data generation based on patterns of life. In 2020 21st IEEE International Conference on Mobile Data Management (MDM), pp. 158–167. IEEE, 2020.
- Xuchuan Li, Fei Huang, Jianrong Lv, Zhixiong Xiao, Guolong Li, and Yang Yue. Be more real: Travel diary generation using llm agents and individual profiles. *arXiv preprint arXiv:2407.18932*, 2024.
 - Peijie Liu, Fengli Xu, and Yong Li. Token signature: Predicting chain-of-thought gains with token decoding feature in large language models. *arXiv preprint arXiv:2506.06008*, 2025.

- Jeremy Wade Mattson. Travel behavior and mobility of transportation-disadvantaged populations: Evidence from the national household travel survey. Technical report, Upper Great Plains Transportation Institute Fargo, ND, USA, 2012.
 - Abolfazl Kouros Mohammadian, Mahmoud Javanmardi, and Yongping Zhang. Synthetic household travel survey data simulation. *Transportation Research Part C: Emerging Technologies*, 18(6): 869–878, 2010.
 - Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow instructions with human feedback. Advances in neural information processing systems, 35: 27730–27744, 2022.
 - Joon Sung Park, Joseph O'Brien, Carrie Jun Cai, Meredith Ringel Morris, Percy Liang, and Michael S Bernstein. Generative agents: Interactive simulacra of human behavior. In *Proceedings of the 36th annual acm symposium on user interface software and technology*, pp. 1–22, 2023.
 - Fabio Petroni, Tim Rocktäschel, Patrick Lewis, Anton Bakhtin, Yuxiang Wu, Alexander H Miller, and Sebastian Riedel. Language models as knowledge bases? *arXiv preprint arXiv:1909.01066*, 2019
 - Jinghua Piao, Yuwei Yan, Jun Zhang, Nian Li, Junbo Yan, Xiaochong Lan, Zhihong Lu, Zhiheng Zheng, Jing Yi Wang, Di Zhou, et al. Agentsociety: Large-scale simulation of Ilm-driven generative agents advances understanding of human behaviors and society. arXiv preprint arXiv:2502.08691, 2025.
 - Chenyang Shao, Fengli Xu, Bingbing Fan, Jingtao Ding, Yuan Yuan, Meng Wang, and Yong Li. Chain-of-planned-behaviour workflow elicits few-shot mobility generation in llms. *arXiv preprint arXiv:2402.09836*, 2024a.
 - Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang, Mingchuan Zhang, YK Li, Yang Wu, et al. Deepseekmath: Pushing the limits of mathematical reasoning in open language models. *arXiv preprint arXiv:2402.03300*, 2024b.
 - Peter R Stopher and Stephen P Greaves. Household travel surveys: Where are we going? *Transportation Research Part A: Policy and Practice*, 41(5):367–381, 2007.
 - Peter R Stopher and Graham Pointer. Monte carlo simulation of household travel survey data with bayesian updating. *Road & Transport Research*, 13(4):22, 2004.
 - Xinglei Wang, Meng Fang, Zichao Zeng, and Tao Cheng. Where would i go next? large language models as human mobility predictors. *arXiv preprint arXiv:2308.15197*, 2023.
 - Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in neural information processing systems, 35:24824–24837, 2022.
 - Westat. 2017 nhts data user guide. https://nhts.ornl.gov/assets/2017UsersGuide.pdf, 2018. Accessed: 2025-07-22.
 - Fengli Xu, Qianyue Hao, Zefang Zong, Jingwei Wang, Yunke Zhang, Jingyi Wang, Xiaochong Lan, Jiahui Gong, Tianjian Ouyang, Fanjin Meng, et al. Towards large reasoning models: A survey of reinforced reasoning with large language models. *arXiv preprint arXiv:2501.09686*, 2025.
 - Meijing Zhang and Ying Xu. Transmode-llm: Feature-informed natural language modeling with domain-enhanced prompting for travel behavior modeling. In *Large Language Models for Scientific and Societal Advances*, 2025.
 - Keyu Zhao, Fengli Xu, and Yong Li. Reason-to-recommend: Using interaction-of-thought reasoning to enhance Ilm recommendation. *arXiv preprint arXiv:2506.05069*, 2025.

A APPENDIX

594

595 596

597 598

600

601

602 603

604

605 606

642

644

645

646

A.1 IMPLEMENTATION DETAILS

Dataset Quality For the NHTS data, we first performed an initial filtration by removing trips with fewer than 3 or more than 10 locations for each city, and ensuring that no data contained three consecutive locations. During the creation of the chain-of-trips dataset, we employ a system prompt, instruction, few-shot examples, and task prompts (which can be found in Appendix A.3), and use the advanced closed-source model GPT-4 to construct the travel inference chain data.

Detailed Experimental Parameter Setting During training and inference, we use the existing integrated Llama-factory for fine-tuning and Vllm for efficient inference, respectively.

Below are examples of Llama-factory fine-tuning parameters and VIIm inference parameters.

```
607
608
609
610
         CUDA_VISIBLE_DEVICES=xxx llamafactory-cli train \
611
            --stage sft \
            --do_train \
612
            --model_name_or_path
613
                ./model/lora/v11/DeepSeek-R1-Distill-Llama-8B-trained \
614
            --dataset train_travel_reasoning_data_enhance \
615
            --dataset_dir ./data \
            --template deepseekr1 \
616
            --finetuning_type lora
617
            --lora_target
618
                q_proj,v_proj,k_proj,o_proj,up_proj,down_proj,gate_proj \
619
            --lora_rank 64 --lora_alpha 128 --lora_dropout 0.05 \
620
            --output_dir ./saves/DeepSeek-R1-Distill-Llama-8B/lora/large/sft \
            --overwrite_output_dir \
621
            --cutoff_len 4096 \
622
            --preprocessing_num_workers 16 \
623
            --per_device_train_batch_size 4 \
624
            --per_device_eval_batch_size 2 \
625
            --gradient_accumulation_steps 4 \
            --lr_scheduler_type cosine \
626
            --logging_steps 10 \
627
            --warmup ratio 0.03 \
            --save_strategy steps \
629
            --save_steps 200 \
630
            --eval_steps 100 \
            --do eval \
631
            --eval_strategy steps \
632
            --load_best_model_at_end \
633
            --metric_for_best_model eval_loss \
634
            --greater_is_better false \
635
            --learning_rate 1e-4 \
            --num_train_epochs 5 \
636
            --val_size 0.1
637
            --plot_loss \
638
            --save_total_limit 3 \
639
            --bf16
640
641
```

```
VIlm Inference Parameters Example

llm = LLM(model_name, tensor_parallel_size=2)
sampling_params = SamplingParams(
    temperature=0.6,
    top_p=1,
```

```
top_k=50,
    max_tokens=4096,
    repetition_penalty=1.0
)
response = llm.generate(prompt, sampling_params,use_tqdm=False)
```

Compute Resources We train and infer LRM on two A100 GPUs with 80GB of RAM. Each experiment took from several minutes to several hours, depending on the number of training and test sets.

A.2 SUPPLEMENTARY EXPERIMENTAL RESULTS

This section presents the supplementary experimental results of this paper.

Group experiment(SF) Table 6 presents a performance comparison between TravelReasoner and other baseline models on the San Francisco dataset, stratified by demographic groups, including gender (male vs. female), age (younger than 40 years vs. 40 years and older), and income (low income: household annual per capita income below \$40,000; high income: household annual per capita income above \$40,000).

	Younger			Older		
	AverLoc	TimeCons	EditDis	AverLoc	TimeCons	EditDis
V-LRM	3.52	146.67	5.58	4.37	144.37	6.81
LRM-CoT	2.91	147.24	5.00	4.25	147.86	6.64
CoPB	7.01	199.24	9.20	6.52	197.22	9.06
LLMob	2.94	134.76	5.13	2.61	128.86	5.07
Bhandari24	<u>1.90</u>	<u>99.29</u>	<u>3.07</u>	1.91	94.33	<u>3.25</u>
TravelReasoner	1.73	94.76	2.71	1.93	89.82	2.94

	Low-income			High-income			
	AverLoc	TimeCons	EditDis	AverLoc	TimeCons	EditDis	
V-LRM	3.36	139.56	5.53	4.74	153.48	7.15	
LRM-CoT	4.06	145.18	6.2	3.41	153.27	5.80	
CoPB	5.76	176.20	8.09	7.61	220.85	10.08	
LLMob	2.83	128.54	5.10	2.66	135.03	5.09	
Bhandari24	<u>1.80</u>	<u>91.65</u>	2.98	2.02	102.57	<u>3.40</u>	
TravelReasoner	1.77	90.14	2.68	1.94	95.19	3.02	

Table 6: Performance comparison of TravelReasoner and baseline models on different groups on the San Francisco dataset. Bold indicates the best result, and underlined indicates the second-best result. v-LRM represents a vanilla LRM, an untrained LRM.

Main Table Supplementary Experiments Table 7 shows the performance comparison of Travel-Reasoner and other baseline models on the Atlanta and Austin datasets.

Ablation study Table 8 shows the results of ablation experiments in Austin and Atlanta.

	Atlanta			Austin		
	AverLoc	TimeCons	EditDis	AverLoc	TimeCons	EditDis
V-LRM	3.92	133.76	5.98	4.98	154.24	7.12
LRM-CoT	3.38	138.93	5.51	3.76	141.58	5.90
CoPB	5.74	177.04	7.96	5.84	184.39	8.14
LLMob	2.87	136.33	5.09	2.81	137.24	5.06
Bhandari24	<u>1.81</u>	<u>93.79</u>	<u>2.76</u>	1.75	<u>92.11</u>	<u>2.85</u>
TravelReasoner	1.77	88.38	2.65	1.77	90.09	2.71

Table 7: Performance comparison of TravelReasoner with the baseline model on the Atlanta and Austin datasets. Bold indicates the best result, and underlined indicates the second-best result. v-LRM represents a vanilla LRM, an untrained LRM.

	Atlanta			Austin		
	AverLoc	TimeCons	EditDis	AverLoc	ODSim	EditDis
V-LRM	3.92	133.76	5.98	4.98	154.24	7.12
TR(w/o E-SFT)	1.75	100.02	3.02	1.83	<u>96.12</u>	<u>3.10</u>
TravelReasoner	<u>1.77</u>	88.38	2.65	1.77	90.09	2.71

Table 8: This table shows the results of ablation experiments in Austin and Atlanta. V-LRM represents a vanilla LRM, an untrained LRM.

A.3 PROMPT

Construction prompt Here's a prompt example for constructing a chain of trips. This includes a system prompt, instructions, a few-shot example, and a target task.

Instruction

Instructions:

- If "home" is part of the travel activities on the specified date, please make sure to include it in the list.
- The exact arrival and departure times recorded in the travel diary.
- 3. Enter the arrival time and departure time carefully, because a certain travel time needs to be maintained to ensure the

```
756
             rationality of the trip, and the arrival time of the current
757
             location is always later than the departure time of the
758
             previous location.
759
         4. Note that in the travel plan, the difference between the
760
             departure time of the previous location and the arrival time of
761
             the current location represents the travel time, and the
             difference between the arrival time and departure time of a
762
             location represents the stay time at that location.
763
         5. For [Location Type], please use only the numeric codes provided
764
             helow:
765
766
         Location type code:
         1: Regular home activities (chores, sleep)
767
         2: Work from home (paid)
768
         3: Work
769
         4: Work-related meeting/trip
770
         5: Volunteer activities (not paid)
771
         6: Drop off/pick up someone
         7: Change type of transportation
772
         8: Attend school as a student
773
         9: Attend child care
774
         10: Attend adult care
775
         11: Buy goods (groceries, clothes, appliances, gas)
776
         12: Buy services (dry cleaners, banking, service a car, etc)
         13: Buy meals (go out for a meal, snack, carry-out)
777
         14: Other general errands (post office, library)
778
         15: Recreational activities (visit parks, movies, bars, etc)
779
         16: Exercise (go for a jog, walk, walk the dog, go to the gym, etc)
         17: Visit friends or relatives
781
         18: Health care visit (medical, dental, therapy)
         19: Religious or other community activities
782
         97: Something else
783
784
785
```

Few-Shot example

786 787 788

789

790

791

792

793

794

795

796 797

798

799

800 801

802

803

804

805

806

807

808 809

```
Example:
Your profile is as follows:
Age: 39
Gender: female
Ethnicity: Black or African American
Education: Some college or associates degree
Working status: Yes
Household annual income per capita: $42,500
Place of residence: San Francisco
Survey date: Saturday, August 2016
You conducted the following travel activities on the survey date
    (travel time, travel origin --> travel destination, travel
   purpose, travel purpose summary, travel distance (miles),
   transportation method):
1.8:00-9:00, Regular home activities (chores, sleep) --> Recreational
   activities (visit parks, movies, bars, movies, etc.),
   Social/Recreational, Home-based trip (social/recreational),
   15.056, Public or commuter bus
2.10:00-10:50, Recreational activities (visit parks, movies, bars,
   movies, etc.) -->Work, Work, Not a home-based trip, 5.26,
   Public or commuter bus
3.15:00-17:00, Work-->Regular home activities (chores, sleep),
   Home, Home-based trip (work), 20.409, Public or commuter bus
```

```
Please construct a travel reasoning chain from a first-person
811
            perspective based on your portrait and travel purpose (whenever
            you are at each location, think about traveling to the next
813
            location, including whether to travel? Why travel? When to
814
            travel? Where to travel? How to travel (in terms of
815
            transportation)? ), your travel should follow the Instructions
            content, and then generate your complete travel plan (this
816
            table shows your stay time in each place, not the travel time),
817
            as follows:
818
         | Visited Places | Arrival Time | Departure Time | Place Type |
819
         |----|
820
         | [Place Name] | [HH:MM AM/PM] | [Place Type] |
821
         Answer:
822
         ### Travel Reasoning Chain:
823
824
         #### At Home (8:00 AM):
825
         - **Whether to travel?** Yes.
         - **Why travel?** It is Saturday, and I want to engage in
826
             recreational activities. I have planned to visit a park to
            relax and enjoy my morning.
828
         - **When to travel?** Around 8:00 AM.
         - **Where to travel?** A nearby park or recreational area.
830
         - **How to travel?** Use public or commuter bus for convenience.
831
         #### At Recreational Activity Location (10:00 AM):
832
         - **Whether to travel?** Yes.
833
         - **Why travel?** I have a work commitment later in the morning, so
834
            I need to leave the park and head to my workplace.
835
         - **When to travel?** Around 10:00 AM to ensure I arrive at work on
            time.
836
         - **Where to travel?** My workplace.
837
         - **How to travel?** Use public or commuter bus.
838
839
         #### At Work (3:00 PM):
840
         - **Whether to travel?** Yes.
841
         - **Why travel?** After finishing work, I want to head back home
            and relax for the rest of the day.
         - **When to travel?** I will leave work at 3:00 PM to get home in
843
            the afternoon.
844
         - **Where to travel?** Home.
845
         - **How to travel?** Use public or commuter bus.
846
         #### At Home (5:00 PM):
847
         - **Whether to travel?** No.
         - **Why travel?** After a full day of recreational and work
849
            activities, I need to prepare dinner and recharge for the
850
            upcoming workweek.
         - **When to travel?** Not applicable.
851
         - **Where to travel?** Not applicable.
852
         - **How to travel?** Not applicable.
853
854
855
         ### Complete Travel Plan Table:
856
857
                              |Arrival Time|Departure Time|Location Type|
         IPlace Visited
858
                            ---|------|------|
859
                              | 12:00 AM | 8:00 AM
                                                         | 1
860
                                           | 10:00 AM
         |Recreational Activity| 9:00 AM
                              | 10:50 AM | 3:00 PM
                                                         | 3
         |Work
861
                               | 5:00 PM
                                           | 11:59 PM
         | Home
                                                         | 1
862
863
```

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882 883

884

885 886

887

888

889

890

891

892

893

894

895

896

897

898

899

900 901 902

903

904 905 906

907

908

909

910

911

912

913

914 915

916

917

```
Task:
Your profile is as follows:
Age: 77
Gender: male
Ethnicity: White
Education: Bachelor degree
Working status: No
Household annual income per capita: $112,500
Place of residence: San Francisco
Survey date: Tuesday, August 2016
You conducted the following travel activities on the survey date
   (travel time, travel origin-->travel destination, travel
   purpose, travel purpose summary, travel distance (miles),
   transportation method):
1.16:50-17:05, Regular home activities (chores, sleep) -->Buy goods
    (groceries, clothes, appliances, gas), Shopping/Errands,
   Home-based trip(shopping), 2.712, Van
2.17:20-17:35, Buy goods (groceries, clothes, appliances,
   gas) --> Buy goods (groceries, clothes, appliances, gas),
   Shopping/Errands, Not a home-based trip, 1.494, Van
3.17:45-17:50, Buy goods (groceries, clothes, appliances,
   gas) --> Volunteer activities (not paid), Something else, Not a
   home-based trip, 0.853, Van
Please construct a travel reasoning chain from a first-person
   perspective based on your portrait and travel purpose (whenever
   you are at each location, think about traveling to the next
   location, including whether to travel? Why travel? When to
   travel? Where to travel? How to travel (in terms of
   transportation)? ), your travel should follow the Instructions
   content, and then generate your complete travel plan (this
   table shows your stay time in each place, not the travel time),
   as follows:
| Visited Places | Arrival Time | Departure Time | Place Type |
|-----|
| [Place Name] | [HH:MM AM/PM] | [HH:MM AM/PM] | [Place Type] |
```

Chain-of-Trips example Here's a demonstration of the main question-answer pairs in the Chain-of-Trips.

```
You are a city dweller. Based on your personal profile and travel purpose, please simulate your travel in a first-person perspective, construct a reasoning chain (whenever you are in a place, think about your travel plan to the next place, including whether to travel? Why travel? When to travel? Where to travel? How to travel (in terms of transportation)?), your travel should follow the Instructions content, and then generate your complete travel plan table (the table shows your stay time in each place, not the travel time).

The final output must follow the following table format:

| Visited Places | Arrival Time | Departure Time | Place Type |
```

```
918
         | [Place Name]
                          | [HH:MM AM/PM] | [HH:MM AM/PM] | [Place Type] |
919
         Instructions:
921
         1. If "home" is part of the travel activities on the specified
922
             date, please make sure to include it in the list.
923
         2. The exact arrival and departure times recorded in the travel
924
             diary.
         3. Enter the arrival time and departure time carefully, because a
925
             certain travel time needs to be maintained to ensure the
926
             rationality of the trip, and the arrival time of the current
927
             location is always later than the departure time of the
928
             previous location.
         4. Note that in the travel plan, the difference between the
929
             departure time of the previous location and the arrival time of
930
             the current location represents the travel time, and the
931
             difference between the arrival time and departure time of a
932
             location represents the stay time at that location.
933
         5. For [Location Type], please use only the numeric codes provided
             below:
934
935
         Location type code:
936
         1: Regular home activities (chores, sleep)
937
         2: Work from home (paid)
938
         3: Work
         4: Work-related meeting/trip
         5: Volunteer activities (not paid)
940
         6: Drop off/pick up someone
941
         7: Change type of transportation
942
         8: Attend school as a student
943
         9: Attend child care
         10: Attend adult care
944
         11: Buy goods (groceries, clothes, appliances, gas)
945
         12: Buy services (dry cleaners, banking, service a car, etc)
946
         13: Buy meals (go out for a meal, snack, carry-out)
947
         14: Other general errands (post office, library)
948
         15: Recreational activities (visit parks, movies, bars, etc)
949
         16: Exercise (go for a jog, walk, walk the dog, go to the gym, etc)
         17: Visit friends or relatives
         18: Health care visit (medical, dental, therapy)
951
         19: Religious or other community activities
952
         97: Something else
953
         Task:
954
         Your profile is as follows:
955
         Age: 77
956
         Gender: male
957
         Ethnicity: White
958
         Education: Bachelors degree
         Working status: No
959
         Household annual income per capita: $112,500
960
         Place of residence: San Francisco
961
         Survey date: Tuesday, August 2016
962
963
         Please construct a travel reasoning chain from a first-person
             perspective based on your portrait and travel purpose (whenever
964
             you are at each location, think about traveling to the next
965
             location, including whether to travel? Why travel? When to
966
             travel? Where to travel? How to travel (in terms of
967
             transportation)? ), your travel should follow the Instructions
968
             content, and then generate your complete travel plan (this
             table shows your stay time in each place, not the travel time),
969
             as follows:
970
          | Visited Places | Arrival Time | Departure Time | Place Type |
971
```

```
972
           -----|----|-----|
973
         | [Place Name] | [HH:MM AM/PM] | [HH:MM AM/PM] | [Place Type] |
974
975
        Answer:
976
         ### Travel Reasoning Chain:
977
         #### At Home (16:50 PM):
978
         - **Whether to travel?** Yes.
979
         - **Why travel?** I need to buy groceries and essentials for the
980
            household. It is a convenient time to head out now.
981
         - **When to travel?** At 16:50 PM.
982
        - **Where to travel?** A nearby grocery store.
         - **How to travel?** Drive a van for personal convenience and to
983
            carry purchased goods.
984
985
         #### At First Shopping Location (17:20 PM):
986
         - **Whether to travel?** Yes.
         - **Why travel?** After finishing my shopping at the first
987
            location, I need to visit another store for additional items
988
            that were unavailable at the first location.
989
         - **When to travel?** Around 17:20 PM.
990
         - **Where to travel?** Another nearby store.
991
         - **How to travel?** Drive the van.
992
         #### At Second Shopping Location (17:45 PM):
993
         - **Whether to travel?** Yes.
994
         - **Why travel?** After completing my shopping errands, I plan to
995
            participate in volunteer activities scheduled for the evening.
996
         - **When to travel?** At 17:45 PM.
997
         - **Where to travel?** The volunteer activity location.
         - **How to travel?** Drive the van.
998
999
1000
1001
         ### Complete Travel Plan Table:
1002
         |Place Visited
                               |Arrival Time|Departure Time|Location Type|
1003
         |-----|
1004
                       | 12:00 AM | 4:50 PM
                                                           | 1
         | Home
1005
         |First Shopping Location | 5:05 PM
                                             | 5:20 PM
                                                           1 11
         |Second Shopping Location| 5:35 PM
                                           | 5:45 PM
                                                           | 11
1007
         |Volunteer Activity
                               | 5:50 PM
                                           | 11:59 PM
                                                            1.5
1008
1009
```

A.4 THE USE OF LARGE LANGUAGE MODELS

1010

1011 1012

1013

1014

We use LLMs as a general-purpose auxiliary tool, primarily for the following purposes: a. Text polishing and grammar review. LLMs were used to improve the clarity, grammatical accuracy, and fluency of certain passages. b. Syntactic and lexical optimization: Without changing the core ideas and scientific content, LLM assisted in optimizing sentence structure and vocabulary selection.