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ABSTRACT

Travel survey plays a central role in a wide range of applications, such as urban
planning and traffic management. Large language models (LLMs) have recently
demonstrated huge potential in simulating human behaviours. However, previ-
ous works in travel survey simulation research have primarily focused on tun-
ing LLMs to directly fit travel survey data, overlooking the underlying reasoning
process behind human decision-making. The emergence of large reasoning mod-
els (LRMs) has achieved tremendous success in solving complex tasks, offering
unique opportunities to simulate a realistic travel survey through LLM reasoning.
In this paper, we introduce TravelReasoner, a novel framework that enhances
travel survey simulations by integrating the reasoning capabilities of LRMs. We
construct Chain-of-Trips from publicly available trip-chain records in the Na-
tional Household Travel Survey (NHTS). This dataset captures the step-by-step
reasoning process behind real-world travel decisions. To improve the accuracy and
rationality of LRMs’ in-domain reasoning, we propose a post-training pipeline via
curriculum learning. Experiments demonstrate that TravelReasoner substantially
outperforms strong baselines, location consistency improved by 6.8%, and time
consistency improved by 4.1%, while producing interpretable intermediate rea-
soning traces that enable transparent and explainable simulations. Our findings
highlight the promise of LRMs for complex decision modeling and open new op-
portunities for applying NLP to urban systems. Data and code are available at
https://anonymous.4open.science/r/TravelReasoner-4037

1 INTRODUCTION

Understanding human travel behavior is essential for designing efficient transportation systems,
guiding urban planning, and supporting evidence-based policy evaluation (Handy, 1996). Travel
surveys remain a primary tool in this domain (Stopher & Greaves, 2007). However, traditional
travel surveys face significant challenges (Westat, 2018), including low response rates, high collec-
tion costs, and insufficient contextual data. These limitations hinder their scalability and reliability,
particularly in dynamic urban environments. As a result, there is a pressing need for effective alterna-
tives that can efficiently generate realistic travel data. In addition, several studies have demonstrated
the feasibility of using large language models(LLMs) to simulate human behaviorPark et al. (2023);
Gao et al. (2024); Piao et al. (2025), offering a promising direction for travel simulation.

Recent advances have explored the use of LLMs to generate synthetic travel surveys (Li et al., 2024;
Bhandari et al., 2024; Zhang & Xu, 2025). Current LLM-based simulation approaches typically rely
on training with large-scale text data, enabling models to replicate human travel patterns. Despite
their promise, these methods still fall short in several areas, particularly in capturing the deep reason-
ing and complex behaviors underlying human travel decisions (Bhandari et al., 2024). While LLMs
can generate plausible activity sequences, they often fail to account for the intricate decision-making
processes behind travel choices, leading to simulations that lack behavioral realism and interpretabil-
ity. The emergence of large reasoning models (LRMs) has enhanced model performance on complex
reasoning tasks (Xu et al., 2025), and integrating their reasoning capabilities with simulations has
enabled the capture of more realistic travel trajectories.
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In this paper, we introduce TravelReasoner, a novel framework for enhancing travel simulation us-
ing LRMs. The core of our approach lies in improving travel survey simulations by integrating
the advanced reasoning capabilities of LRMs. Unlike prior research, which treats trips as discrete
sequences, we reframe travel chains as chains of thought. To support this, we construct the Chain-
of-Trips dataset, derived from the National Household Travel Survey (NHTS) data. This dataset
captures the intricate causal, temporal, and motivational structures behind travel decisions by simu-
lating a first-person perspective. We address several critical questions—whether, why, when, where,
and how—step by step, reflecting the reasoning process behind each decision. Additionally, we
propose a two-stage post-training pipeline, combined with supervised fine-tuning, to optimize be-
havioral authenticity and first-person coherence in the generated travel narratives.

We validate our approach through extensive experiments on multiple city-level simulation tasks,
benchmarking it against traditional methods and an existing LLM baseline. Our experimental re-
sults show that the proposed TravelReasoner significantly outperforms the strongest baseline, loca-
tion consistency improved by 6.8% and time consistency improved by 4.1%. Moreover, our model
demonstrates strong cross-domain generalization, as it performs well across datasets from different
cities, highlighting its broad applicability.

The key contributions of this work are as follows:

• We are the first to apply LRMs to travel behavior modeling and survey simulation. And
we introduce the Chain-of-Trips dataset based on real-world NHTS data, which captures
multi-level reasoning patterns in travel decision-making.

• We propose a two-stage post-training pipeline that combines supervised fine-tuning to en-
hance the model’s reasoning capabilities and the fidelity of generated behaviors.

• Our extensive experiments demonstrate the advantages of our approach in terms of reason-
ing plausibility, behavioral consistency, and cross-domain generalization.

2 RELATED WORKS

2.1 TRAVEL SURVEY SIMULATION

Simulating travel surveys has long been pursued as a cost-effective alternative to traditional data
collection, which often suffers from high costs, privacy concerns, and low response rates(Greaves
& Stopher, 2000; Mattson, 2012; Administration, 2017). Early approaches employed Monte Carlo
sampling based on decision tree clustering of households to model trip attributes(Greaves & Stopher,
2000; Stopher & Pointer, 2004), later extended using neural networks to enhance transferability
across regions(Mohammadian et al., 2010), albeit with limited success in capturing temporal or
modal details. Agent-based models (ABMs) simulate travel behavior by modeling individuals with
synthetic needs and preferences(Kim et al., 2019; 2020), effectively generating location-based social
network data, though often limited in capturing diverse or rare activity chains.

Recent research has turned to large language models (LLMs) for survey simulation, leveraging their
capacity to encode common-sense and contextual knowledge from large corpora(Brown et al., 2020;
Petroni et al., 2019; JIAWEI et al., 2024; Wang et al., 2023). LLMs have been shown to predict next
destinations and generate human-like activity sequences. (Bhandari et al., 2024) proposes a LLM-
based framework that prompts models to generate synthetic travel diaries. Their evaluation—at
pattern, trip, and activity-chain levels—demonstrates that fine-tuned LLMs can outperform both
base models and agent-based simulations, producing data that closely resembles actual survey dis-
tributions even in cities unseen during training.

2.2 REASONING WITH LARGE LANGUAGE MODELS

Reasoning with large language models (LLMs) has emerged as a central focus in recent NLP re-
search. While early LLMs demonstrated strong capabilities in language understanding and pattern
completion, they often lacked explicit multi-step reasoning abilities required for tasks such as com-
monsense inference, planning, and decision modeling(Ouyang et al., 2022). To bridge this gap,
recent work has explored various prompting strategies—such as Chain-of-Thought prompting(Wei
et al., 2022; Liu et al., 2025)—that elicit step-by-step reasoning traces from LLMs. Further advances
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introduced Interaction-of-Thought(Zhao et al., 2025), a method that simulates reasoning as multi-
agent interaction, improving coherence and factual accuracy in complex tasks like recommendation
and planning.

Several efforts fine-tune LLMs on domain-specific reasoning corpora to improve transferability and
robustness(Ouyang et al., 2022; Hu et al., 2022). This includes training models on structured rea-
soning tasks (e.g., math word problems, game states) and aligning outputs through reinforcement
learning with feedback (Ouyang et al., 2022; Shao et al., 2024b). Such techniques have shown suc-
cess in enhancing both reasoning quality and interpretability, crucial for high-stakes domains like
healthcare, law, and urban planning. However, their application to travel survey simulation—where
decisions involve personal constraints, preferences, and sequential dependencies—remains under-
explored.

Building on prior work, we present a reasoning-augmented LLM framework for simulating travel
behavior. In contrast to existing LLM-based simulators that primarily capture surface-level cor-
relations, our approach explicitly models reasoning traces through supervised fine-tuning and
reinforcement-based feedback. This enables more behaviorally realistic and interpretable simula-
tions, bridging the gap between statistical accuracy and transparent decision modeling.

3 TRAVELREASONER

In this section, we present TravelReasoner, a reasoning-augmented framework for travel survey
simulation. We first provide an overview of the simulation process, then describe the construction of
the Chain-of-Trips dataset from real NHTS data, and finally detail our two-stage training paradigm
designed to enhance reasoning and improve generalization in travel survey simulation.

3.1 OVERVIEW

(A)Simulation Overview (B)Post-Training Pipeline (C)Travel Survey Simulation

Reasoning
Enhancement

As a 
Resident

Sample

###Travel Reasoning Chain：
At Home(8:00AM):
   Whether?Why?When?Where?How？
At Work (3:00 PM): ...
At shoping(4:00PM)
At Home (5:00 PM):...
###Travel Table:
Place Visited/Arrival Time/Departure Time
/Location Type

Reasoning Enhancement

##Travel Reasoning Chain：
At Home(8:00AM):  
 - **Whether to travel?** Yes.
 - **Why travel?** It is Saturday, and I want 
to engage in recreational activities. I have 
planned to visit a park to relax and enjoy my 
morning.
 - **When to travel?** Around 8:00 AM.
 - **Where to travel?** A nearby park or 
recreational area.
 - **How to travel?** Use public or commuter 
bus for convenience.
...
##Travel Table:
| Place    |Arrival Time |Departure Time|Type|
| Home   |   12:00 AM  |     8:00 AM       |   1   |
| Work    |   10:50 AM  |      3:00 PM      |   3   |
| Home   |    5:00 PM   |    11:59 PM      |   1   |

<system prompt>
You are a city dweller...
<Instructions>
<Profile>
Your profile is as 
follows:
Age: 39   Gender:...
<Survey date>
Saturday, August 2016

  <system prompt>
You are a city dweller.Based on your personal 
profile and travel purpose, please simulate your 
travel in a first-person perspective
  <Instructions>
  <Profile>
Your profile is as follows:
Age: 39  Gender: female  Working status: Yes...
  <Survey date>
Saturday, August 2016

##Travel Reasoning Chain：
At Home(8:00AM):        
   

...
##Travel Table:
Place Visited/Arrival Time 
/Departure Time/Location 
Type...

Reward

Filter

Role-play with LLM

Post-processing

Figure 1: Overview of the TravelReasoner framework. It consists of: (A) travel data generation
based on profiles and survey dates, (B) post-training pipeline via two-stage supervised fine-tuning,
and (C) first-person simulation of travel decisions.

The overall design of TravelReasoner is illustrated in Figure 1. In (A), given a sampled survey
date and a user profile (e.g., age, gender, employment status) from the NHTS dataset, the model is
prompted to assume the role of a city resident and simulate daily travel behavior from a first-person
perspective. The simulation yields two complementary outputs: (1) a Travel Reasoning Chain,
which captures sequential decision-making at each time step (e.g., whether to travel, why, where,
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when, and how), and (2) a structured Travel Table, recording trip attributes such as location type,
arrival time, and departure time. Post-processing the Travel Table reconstructs a complete activity
chain, providing a realistic mobility trajectory. This design enables the model to generate not only
plausible trip sequences but also interpretable reasoning aligned with human decision processes,
producing synthetic survey data suitable for urban planning, transportation modeling, and behavioral
analysis.

Figure 1(B) illustrates the two-stage pipeline designed to enhance reasoning capabilities. In the first
stage, we perform supervised fine-tuning on a portion of the Chain-of-Trips dataset, enabling the
model to learn structured reasoning patterns based on real-world behavior. In the second stage, we
use another portion of the dataset to generate answers for the fine-tuned model in the first stage,
and then select high-quality question-answer pairs for the second stage of fine-tuning. These pairs
are then used for additional fine-tuning, allowing the model to learn through self-reinforcement and
encouraging it to generate logically consistent trip chains.

Figure 1(C) presents an example after training. Given a user profile and a survey date, the model sim-
ulates detailed travel behavior from a first-person perspective. At each time point, it explicitly rea-
sons through core behavioral questions—whether to travel, why, where, when, and how—producing
natural language justifications alongside structured trip records. This demonstrates the model’s abil-
ity to generate interpretable, goal-directed, and contextually grounded travel behavior.

3.2 CHAIN-OF-TRIPS CONSTRUCTION

To support reasoning-augmented travel modeling, we construct Chain-of-Trips, a structured dataset
derived from the NHTS. Each instance represents a single day of travel decisions from a first-person
perspective, conditioned on contextual factors such as demographics, activity purposes, and tempo-
ral constraints.

System prompt Instruction Few-shot example Profile
Travel Data

### Travel Reasoning Chain:
 At Home (8:00 AM):
- **Whether to travel?** Yes.
- **Why travel?** It is Saturday, and I want to engage in 
recreational activities.
- **When to travel?** Around 8:00 AM.
- **Where to travel?** A nearby park or recreational area.
- **How to travel?** Use public or commuter bus for convenience.
...

Example:
Your profile is as follows:
Age: 39  Gender: female Working status: Yes
Ethnicity: Black or African American
...
Survey date: Saturday, August 2016
<travel time><travel place><travel purpose> 
<travel distance>...

NHTS DATA

Sample

At Home

- **Whether?** Yes.
- **Why?**Work
- **When?**  8:00 AM.
- **Where?**Work.
- **How?** Commuter bus.

Work

- **Whether?** Yes.
- **Why?**Shopping.
- **When?** 16:00 PM.
- **Where?**Grocery store.
- **How?** Walk.

- **Whether?** Yes.
- **Why?**Home.
- **When?** 17:00 PM.
- **Where?**Home.
- **How?** Walk.

Grocery store

- **Whether?** No.
- **Why?**Rest.
- **When?** None.
- **Where?**None.
- **How?** None.

At Home

Manual construction

Figure 2: Construction of the Chain-of-Trips dataset from NHTS data. User profiles and travel
records are extracted to build structured prompts with few-shot examples. GPT-4o then generates
step-by-step reasoning chains under realistic decision contexts.

As shown in Figure 2, we first sample user profiles and daily travel logs from NHTS, including
attributes such as age, gender, employment status, ethnicity, and survey date, along with trip se-
quences. We organize this information into structured prompts with four components: (1) a system
prompt specifying the simulation objective, (2) task instructions defining the reasoning scope, (3)
a manually constructed few-shot example demonstrating the reasoning structure, and (4) the tar-
get user profile with contextual details. Few-shot examples, curated from real NHTS patterns, are
critical for guiding interpretable, multi-step decision trajectories.

Given this setup, a language model (GPT-4o) generates a Travel Reasoning Chain, reflecting step-
by-step decisions (whether to travel, why, where, when, and how), and a parallel Travel Table,
recording structured trip attributes such as location type, arrival time, and departure time. Each
dataset instance is represented as a triplet (Q,R,A): the prompt Q contains the system message,
task instruction, and user profile; the reasoning component R is the generated Travel Reasoning
Chain; and the answer A is the corresponding Travel Table. This triplet provides the supervision
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signal for training. By jointly modeling travel sequences and the reasoning behind them, Chain-
of-Trips enables the model to learn realistic mobility patterns together with human-aligned decision
logic. This dual-format representation—natural language reasoning plus structured outputs—offers
a rich training signal for grounding LLMs in the travel behavior domain. Detailed prompts can be
found in Appendix A.3.

3.3 POST-TRAINING PIPELINE

To enhance the model’s ability to simulate human-like travel reasoning, we employ a two-stage
training pipeline combined with LoRA ((Hu et al., 2022)), a parameter-efficient adaptive method. In
the first stage, we fine-tune the model using Chain-of-Trips data to enhance its structured reasoning
capabilities. In the second stage, we applied self-learning to improve the model’s inference stability
and further enhance its inference quality.

3.3.1 SUPERVISED FINE-TUNING

We fine-tune the model on the Chain-of-Trips dataset using LoRA, which freezes the pretrained
weights and introduces a pair of trainable low-rank matrices into each target layer. Formally, instead
of updating the full weight matrix W0 ∈ Rd×k, LoRA parameterizes the weight update as:

∆W = AB, A ∈ Rd×r, B ∈ Rr×k, r ≪ min(d, k), (1)
where r is the low-rank dimension. The effective weight becomes W = W0 + ∆W , while only
A and B are trainable. This design enables efficient fine-tuning with orders-of-magnitude fewer
trainable parameters compared to full-parameter updates.

Each training instance is represented as a triplet (Q,R,A), where Q is the prompt, R the reasoning
chain, and A the structured answer table. We concatenate (Q,R,A) as the target output and optimize
the standard auto-regressive language modeling objective:

LSFT = −
T∑

t=1

logPθ(yt | y<t, Q), (2)

where yt denotes the t-th token in the combined target (R,A), and θ are the LoRA-augmented model
parameters.

3.3.2 TWO-STAGE TRAINING PIPELINE

We propose a two-stage training pipeline that incorporates the principles of curriculum learning,
consisting of a Base Supervised Fine-Tuning (B-SFT) stage and an Enhanced SFT (E-SFT) stage.

In the B-SFT stage, we fine-tune the LRM using a portion of the Chain-of-Trips dataset, enabling
it to grasp the fundamental paradigms and preliminary reasoning capabilities of the domain task,
thereby constructing a baseline model.

In the E-SFT stage, we design an iterative self-optimization process to enhance the model’s perfor-
mance further. First, we use the LRM obtained in the B-SFT stage to generate a large number of
candidate samples. Then, through manual screening and high-quality data curation (human-in-the-
loop curation), our screening metric is shown in Equation 3. We screen the top 20% of question-
answer pairs in the answers to construct a small, high-quality ”golden” dataset. Finally, we use
this refined dataset for a second round of fine-tuning, resulting in the final reasoning model, Trav-
elReasoner. This stage significantly improves the model’s reasoning capabilities by integrating the
model’s generation capabilities with human prior knowledge.

Reward = A · exp
(
−AverLoc

α

)
+B · exp

(
−−TimeCons

β

)
+ C · exp

(
−EditDist

γ

)
(3)

Where AverLoc represents the Mean Absolute Error (MAE) between the generated chain and the
actual chain, TimeCons represents the Root Mean Square Error (RMSE) between the generated stay
time and the actual time, EditDist represents the edit distance between the generated chain and the
actual chain. A,B, and C are the indicator weights, and α, β, and γ are the scaling factors. Here,
we use A = 0.2, B = 0.4, C = 0.4, α = 2, β = 60, and γ = 2.
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4 EXPERIMENTAL SETUP

4.1 DATASET

We base our study on the 2017 NHTS Trip Chaining Dataset*, a large-scale survey conducted by the
U.S. Federal Highway Administration. The dataset provides comprehensive, real-world records of
individual travel behavior, including trip-level information such as departure and arrival times, trip
purposes, and visited locations, as well as detailed sociodemographic profiles of participants (e.g.,
age, gender, race, education level, employment status, and household income). These rich attributes
make the dataset particularly suitable for modeling reasoning-aware travel behavior.

For our purposes, the NHTS data serves two roles. First, it provides the foundation for construct-
ing the Chain-of-Trips dataset, where individual travel trajectories are reformulated into structured
prompts and reasoning chains. Second, it supports evaluation, allowing us to benchmark the plau-
sibility and coherence of simulated outputs against realistic human travel behavior. This dual role
enables both robust model training and meaningful empirical validation.

4.2 IMPLEMENTATION DETAILS

We utilize DeepSeek-R1-Distill-Llama-8B as our experimental model, setting the temperature to 0.6
and top-p to 1. In line with the configurations in SigSpatial (Bhandari et al., 2024), we restrict travel
locations to 20 categories. Our experiments leverage real-world NHTS data and carefully curated
question-answer pairs, conducted across four cities(San Francisco, San Diego, Austin, Atlanta).
During the B-SFT phase, we fine-tune the model using Low-Rank Adaptation with the Adam opti-
mizer, a learning rate of 1e-4, and 2000 training samples. In the E-SFT phase, we used the inference
outputs of the model trained in phase 1 on an additional 1,000 training examples and selected 200
high-quality inference data points for this phase of training. More details can be found in Appendix
A.1.

4.3 BASELINES

We used the following methods as baselines. These methods leverage the LLM’s ability to process
and reason about complex, semantically rich data to generate and predict mobility behaviors. These
methods are more flexible and adaptable, and can handle a variety of tasks by combining human-
like reasoning and contextual understanding, such as V-LRM(vanilla LRM), LRM-CoT(Wei et al.,
2022), Bhandari24(Bhandari et al., 2024), CoPB(Shao et al., 2024a), and LLMob(JIAWEI et al.,
2024).

• V-LRM: Represents a vanilla LRM, an untrained version of the model that has not yet
undergone any specialized training or fine-tuning.

• LRM-CoT: Utilizes large language models to simulate mobility, enhancing the generation
of mobility intentions by incrementally breaking down reasoning processes.

• Bhandari24: A model focused on spatially-augmented generation, which incorporates ge-
ographic factors and personal preferences to simulate mobility behavior.

• CoPB: A workflow that integrates the Theory of Planned Behavior into mobility behavior
generation, incorporating attitudes, subjective norms, and perceived behavioral control to
improve the accuracy of mobility predictions.

• LLMob: An LLM agent framework that accounts for individual activity patterns and mo-
tivations, employing a self-consistency approach to align LLMs with real-world activity
data, and a retrieval-augmented strategy for interpretable activity generation.

4.4 EVALUATION METRICS

To comprehensively evaluate the quality of simulated travel behavior, we adopt three complementary
metrics. These metrics assess accuracy at the trip level, temporal consistency, and sequence-level
similarity. Together, they provide a holistic evaluation of both individual trajectories and aggregated
mobility patterns. See Table 4.4 for a detailed description of the metrics.

*https://nhts.ornl.gov/
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Metric Formula Description

AverLoc 1

N

N∑
i=1

|ℓ̂i − ℓi| The mean absolute error (MAE) between the generated
chain and the actual chain length.

TimeCons

√√√√ 1

N

N∑
i=1

(t̂i − ti)2 Root mean square error (RMSE) of the dwell time be-
tween the generated and actual chains.

EditDis 1

N

N∑
i=1

Lev(ŝi, si) Edit distance between the generated chain and the actual
chain.

Specifically, ℓ̂i and ℓi denote the predicted and ground-truth location categories, respectively. t̂i and
ti represent predicted and actual stay durations. Finally, ŝi and si are the predicted and ground-truth
location sequences, and Lev(·) denotes the Levenshtein distance.

5 RESULTS AND ANALYSIS

5.1 ZERO-SHOT AND FEW-SHOT

Table 1 presents the results of our preliminary experimental analysis. We perform comparative
experiments using both the baseline model and the semantic reasoning model in zero-shot and few-
shot scenarios.

Model AverLoc TimeCons EditDis

Zero-shot Base 21.04 349.03 23.36
Reasoning 4.01 145.33 6.29

Few-shot Base 2.07 126.61 3.92
Reasoning 2.33 114.99 4.31

Table 1: Experiments with the base model and reasoning model in zero-shot and few-shot scenarios.
For few-shot scenarios, we manually construct chain-of-thought samples. The base model used is
Llama-3.1-8B, and the reasoning model is DeepSeek-R1-Distill-Llama-8B.

The preliminary results indicate that the reasoning model outperforms the baseline in zero-shot set-
tings, providing strong justification for its use in subsequent experiments. In the few-shot scenario,
we carefully designed three Chain-of-Thought examples to facilitate model learning through imi-
tation. The introduction of CoT examples substantially enhances the imitation capabilities of both
models, validating the construction of the Chain-of-Trip dataset for training generalization models.

5.2 MAIN RESULTS

In this section, we present the key experimental results of TravelReasoner and compare its perfor-
mance with well-known baselines, including V-LRM, LRM-CoT, CoPB, LLMob, and Bhandari24,
using the AverLoc, TimeCons, ODSim, and EdiDis metrics introduced in Section 4.4.

The results, presented in Tables 2 and 7, demonstrate that TravelReasoner consistently achieved
either the best or second-best performance across all evaluation metrics. For instance, on the San
Francisco dataset, TravelReasoner recorded an AverLoc of 1.85, outperforming the strong base-
line Bhandari24 (1.91). Furthermore, it achieved the best results in terms of temporal consistency
(TimeCons = 91.88) and sequence edit distance (EditDis = 2.84). Similarly, across datasets from
three additional cities, TravelReasoner outperformed all other methods, highlighting its robustness
in diverse urban contexts. These findings underscore that TravelReasoner not only generates accu-
rate trip sequences but also preserves high temporal rationality and behavioral consistency, thereby
validating the efficacy of our reasoning-enhanced approach in travel simulation. On average, Trav-
elReasoner improves location consistency by 6.8% and time consistency by 4.1% compared to the
strongest baseline.
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San Francisco San Diego

AverLoc TimeCons EditDis AverLoc ODSim EditDis

V-LRM 4.01 145.33 6.29 4.08 156.39 6.22
LRM-CoT 3.69 147.60 5.95 3.94 151.80 6.06

CoPB 6.72 198.04 9.12 5.81 175.12 8.40
LLMob 2.74 131.22 5.09 2.80 128.02 5.02

Bhandari24 1.91 96.40 3.17 1.94 97.62 3.06

TravelReasoner 1.85 91.88 2.84 1.90 89.90 2.85

Table 2: Performance comparison of TravelReasoner with the baseline model on the San Francisco
and San Diego datasets. Bold indicates the best result, and underlined indicates the second-best
result. V-LRM represents a vanilla LRM, an untrained LRM.

In addition to the overall performance, we also analyze the results of TravelReasoner for different
demographic groups in the San Francisco dataset, including age, gender, and income categories.
As shown in Table 3 and Table 6, the model demonstrates consistent performance across these
groupings. Specifically, TravelReasoner achieved AverLoc of 1.77/1.93 for males and females, and
1.69/1.93 for younger (under 40) and older (40 and over) groups. 1.73/1.93 in the low-income and
high-income groups, respectively, and 1.77/1.94. Whether in spatial accuracy (AverLoc), tempo-
ral consistency (TimeCons), or sequence edit distance (EditDis), TravelReasoner outperforms or
approaches the best baseline Bhandari24. These findings suggest that TravelReasoner is not only
effective at generating accurate travel sequences at a city-wide level but also exhibits a strong abil-
ity to adapt to various demographic profiles, further validating the robustness and versatility of our
reasoning-enhanced approach in diverse urban contexts.

Male Female

AverLoc TimeCons EditDis AverLoc TimeCons EditDis

V-LRM 4.12 149.1 6.28 3.91 141.72 6.31
LRM-CoT 3.65 147.96 5.83 3.74 147.25 6.08

CoPB 6.91 196.13 9.22 6.54 199.90 9.02
LLMob 2.93 127.08 5.17 2.56 135.39 5.02

Bhandari24 1.94 96.21 3.21 1.87 96.58 3.14

TravelReasoner 1.77 88.43 2.72 1.93 95.19 2.96

Table 3: Performance comparison of TravelReasoner and baseline models on different
groups(gender) on the San Francisco dataset. Bold indicates the best result, and underlined indi-
cates the second-best result. v-LRM represents a vanilla LRM, an untrained LRM.

5.3 CROSS-CITY GENERALIZATION

To validate the model’s cross-domain generalization, we used data from four cities (San Francisco,
Austin, San Diego, and Atlanta) for training and tested it on Dallas-Fort Worth and Los Angeles (see
Table 4).

Experimental results show that TravelReasoner maintains its strong performance in novel cities,
maintaining its lead over other baselines in AverLoc and EditDis. For example, on the Dallas–Fort
Worth dataset, TravelReasoner achieved an AverLoc score of 1.87 and an EditDis score of 2.67, both
outperforming Bhandari24 (1.95/2.93). It also achieved the best results on the Los Angeles dataset
(AverLoc = 1.85, EditDis = 2.79), with significant improvements in temporal consistency. This
shows that the model can not only learn reasonable travel patterns in the training city, but also be
transferred to unseen urban scenes, showing good cross-domain generalization ability. This ability
is crucial for real-world travel simulation because practical applications often require the transfer of
models between different cities without the need for a large amount of local annotated data.

8
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Dallas-Fort Worth Los Angeles

AverLoc TimeCons EditDis AverLoc ODSim EditDis

V-LRM 3.93 143.65 6.13 4.03 142.21 6.21
LRM-CoT 3.97 137.28 6.12 4.16 144.19 6.32

CoPB 5.49 191.60 7.80 2.54 143.18 4.88
LLMob 2.97 130.91 5.27 6.13 189.60 8.38

SigSpatial 1.95 89.70 2.93 1.91 102.08 3.12

TravelReasoner 1.87 82.99 2.67 1.85 94.50 2.79

Table 4: Our method generalizes to other cities. We train it using travel data from four cities (San
Francisco, Austin, San Diego, Atlanta) and evaluate it using data from Dallas-Fort Worth and Los
Angeles.

5.4 ABLATION STUDIES

To further assess the contribution of each module in our approach, we conducted ablation experi-
ments using datasets from San Francisco and San Diego (see Table 5).

Compared to V-LRM, the inclusion of B-SFT resulted in significant improvements across all evalu-
ation metrics, highlighting the crucial role of supervised fine-tuning in learning fundamental reason-
ing patterns. The introduction of E-SFT, based on a self-learning paradigm, further enhances model
performance, demonstrating that the enhanced fine-tuning stage improves reasoning consistency and
behavioral rationality through the incorporation of high-quality, human-curated samples. Overall,
the two-stage training pipeline is synergistic, with both stages being indispensable. The fully inte-
grated TravelReasoner outperforms the reduced version in terms of both accuracy and consistency.

San Francisco San Diego

AverLoc TimeCons EditDis AverLoc ODSim EditDis

V-LRM 4.01 145.33 6.30 4.08 156.39 6.22
TR(w/o E-SFT) 1.89 100.12 3.27 1.89 97.24 3.21
TravelReasoner 1.85 91.88 2.84 1.90 89.90 2.85

Table 5: This table shows the results of ablation experiments in San Francisco and San Diego. V-
LRM represents a vanilla LRM, an untrained LRM.

6 CONCLUSION

In this work, we introduce TravelReasoner, a novel framework designed to enhance travel survey
simulations through LRMs. By leveraging the reasoning capabilities of LRMs, we are able to sim-
ulate human travel behavior in a more interpretable and behaviorally plausible manner. The core
of our approach is the Chain-of-Trips dataset, which enables the model to learn structured decision-
making patterns from real-world travel data. Our post-training pipeline optimizes the model’s ability
to generate realistic, first-person travel simulations. Experimental results demonstrate that Travel-
Reasoner outperforms baseline models in both accuracy and behavioral coherence, producing travel
simulations that closely mirror human mobility patterns. Specifically, TravelReasoner improves
location consistency by 6.8% and time consistency by 4.1% compared to the strongest baseline.
Moreover, the reasoning traces generated by the model provide valuable insights into the underly-
ing cognitive processes driving travel decisions. In future work, we aim to explore the integration
of additional contextual data, such as environmental factors or real-time urban events, to refine the
realism of our simulations further.

9
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ETHICS STATEMENT

This research uses the publicly available NHTS dataset, which is de-identified and does not com-
promise personal privacy. The synthetic travel data generated by TravelReasoner is intended for
research and policy analysis, not for individual profiling. We adhere to research integrity standards
and do not involve direct human experimentation or sensitive information.

REPRODUCIBILITY STATEMENT

We describe the data construction, training process, and evaluation methods in detail in the
main text and appendix, and provide a link(https://anonymous.4open.science/r/
TravelReasoner-4037) to an anonymized code repository to facilitate replication of exper-
imental results and validation of model performance.
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A APPENDIX

A.1 IMPLEMENTATION DETAILS

Dataset Quality For the NHTS data, we first performed an initial filtration by removing trips
with fewer than 3 or more than 10 locations for each city, and ensuring that no data contained three
consecutive locations. During the creation of the chain-of-trips dataset, we employ a system prompt,
instruction, few-shot examples, and task prompts (which can be found in Appendix A.3), and use
the advanced closed-source model GPT-4 to construct the travel inference chain data.

Detailed Experimental Parameter Setting During training and inference, we use the existing
integrated Llama-factory for fine-tuning and Vllm for efficient inference, respectively.

Below are examples of Llama-factory fine-tuning parameters and Vllm inference parameters.

Llama-factory Fine-tuning Parameters Example

CUDA_VISIBLE_DEVICES=xxx llamafactory-cli train \
--stage sft \
--do_train \
--model_name_or_path

./model/lora/v11/DeepSeek-R1-Distill-Llama-8B-trained \
--dataset train_travel_reasoning_data_enhance \
--dataset_dir ./data \
--template deepseekr1 \
--finetuning_type lora \
--lora_target

q_proj,v_proj,k_proj,o_proj,up_proj,down_proj,gate_proj \
--lora_rank 64 --lora_alpha 128 --lora_dropout 0.05 \
--output_dir ./saves/DeepSeek-R1-Distill-Llama-8B/lora/large/sft \
--overwrite_output_dir \
--cutoff_len 4096 \
--preprocessing_num_workers 16 \
--per_device_train_batch_size 4 \
--per_device_eval_batch_size 2 \
--gradient_accumulation_steps 4 \
--lr_scheduler_type cosine \
--logging_steps 10 \
--warmup_ratio 0.03 \
--save_strategy steps \
--save_steps 200 \
--eval_steps 100 \
--do_eval \
--eval_strategy steps \
--load_best_model_at_end \
--metric_for_best_model eval_loss \
--greater_is_better false \
--learning_rate 1e-4 \
--num_train_epochs 5 \
--val_size 0.1 \
--plot_loss \
--save_total_limit 3 \
--bf16

Vllm Inference Parameters Example

llm = LLM(model_name, tensor_parallel_size=2)
sampling_params = SamplingParams(

temperature=0.6,
top_p=1,

12
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top_k=50,
max_tokens=4096,
repetition_penalty=1.0

)
response = llm.generate(prompt, sampling_params,use_tqdm=False)

Compute Resources We train and infer LRM on two A100 GPUs with 80GB of RAM. Each
experiment took from several minutes to several hours, depending on the number of training and test
sets.

A.2 SUPPLEMENTARY EXPERIMENTAL RESULTS

This section presents the supplementary experimental results of this paper.

Group experiment(SF) Table 6 presents a performance comparison between TravelReasoner and
other baseline models on the San Francisco dataset, stratified by demographic groups, including
gender (male vs. female), age (younger than 40 years vs. 40 years and older), and income (low
income: household annual per capita income below $40,000; high income: household annual per
capita income above $40,000).

Younger Older

AverLoc TimeCons EditDis AverLoc TimeCons EditDis

V-LRM 3.52 146.67 5.58 4.37 144.37 6.81
LRM-CoT 2.91 147.24 5.00 4.25 147.86 6.64

CoPB 7.01 199.24 9.20 6.52 197.22 9.06
LLMob 2.94 134.76 5.13 2.61 128.86 5.07

Bhandari24 1.90 99.29 3.07 1.91 94.33 3.25

TravelReasoner 1.73 94.76 2.71 1.93 89.82 2.94

Low-income High-income

AverLoc TimeCons EditDis AverLoc TimeCons EditDis

V-LRM 3.36 139.56 5.53 4.74 153.48 7.15
LRM-CoT 4.06 145.18 6.2 3.41 153.27 5.80

CoPB 5.76 176.20 8.09 7.61 220.85 10.08
LLMob 2.83 128.54 5.10 2.66 135.03 5.09

Bhandari24 1.80 91.65 2.98 2.02 102.57 3.40

TravelReasoner 1.77 90.14 2.68 1.94 95.19 3.02

Table 6: Performance comparison of TravelReasoner and baseline models on different groups on
the San Francisco dataset. Bold indicates the best result, and underlined indicates the second-best
result. v-LRM represents a vanilla LRM, an untrained LRM.

Main Table Supplementary Experiments Table 7 shows the performance comparison of Travel-
Reasoner and other baseline models on the Atlanta and Austin datasets.

Ablation study Table 8 shows the results of ablation experiments in Austin and Atlanta.
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Atlanta Austin

AverLoc TimeCons EditDis AverLoc TimeCons EditDis

V-LRM 3.92 133.76 5.98 4.98 154.24 7.12
LRM-CoT 3.38 138.93 5.51 3.76 141.58 5.90

CoPB 5.74 177.04 7.96 5.84 184.39 8.14
LLMob 2.87 136.33 5.09 2.81 137.24 5.06

Bhandari24 1.81 93.79 2.76 1.75 92.11 2.85

TravelReasoner 1.77 88.38 2.65 1.77 90.09 2.71

Table 7: Performance comparison of TravelReasoner with the baseline model on the Atlanta and
Austin datasets. Bold indicates the best result, and underlined indicates the second-best result. v-
LRM represents a vanilla LRM, an untrained LRM.

Atlanta Austin

AverLoc TimeCons EditDis AverLoc ODSim EditDis

V-LRM 3.92 133.76 5.98 4.98 154.24 7.12
TR(w/o E-SFT) 1.75 100.02 3.02 1.83 96.12 3.10
TravelReasoner 1.77 88.38 2.65 1.77 90.09 2.71

Table 8: This table shows the results of ablation experiments in Austin and Atlanta. V-LRM repre-
sents a vanilla LRM, an untrained LRM.

A.3 PROMPT

Construction prompt Here’s a prompt example for constructing a chain of trips. This includes a
system prompt, instructions, a few-shot example, and a target task.

system prompt

You are a city dweller. Based on your personal profile and travel
purpose, please simulate your travel in a first-person
perspective, construct a reasoning chain (whenever you are in a
place, think about your travel plan to the next place,
including whether to travel? Why travel? When to travel? Where
to travel? How to travel (in terms of transportation)?), your
travel should follow the Instructions content, and then
generate your complete travel plan table (the table shows your
stay time in each place, not the travel time).

The final output must follow the following table format:
| Visited Places | Arrival Time | Departure Time | Place Type |
|----------------|--------------|----------------|------------|
| [Place Name] | [HH:MM AM/PM]| [HH:MM AM/PM] | [Place Type]|

Instruction

Instructions:
1. If "home" is part of the travel activities on the specified

date, please make sure to include it in the list.
2. The exact arrival and departure times recorded in the travel

diary.
3. Enter the arrival time and departure time carefully, because a

certain travel time needs to be maintained to ensure the

14
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rationality of the trip, and the arrival time of the current
location is always later than the departure time of the
previous location.

4. Note that in the travel plan, the difference between the
departure time of the previous location and the arrival time of
the current location represents the travel time, and the
difference between the arrival time and departure time of a
location represents the stay time at that location.

5. For [Location Type], please use only the numeric codes provided
below:

Location type code:
1: Regular home activities (chores, sleep)
2: Work from home (paid)
3: Work
4: Work-related meeting/trip
5: Volunteer activities (not paid)
6: Drop off/pick up someone
7: Change type of transportation
8: Attend school as a student
9: Attend child care
10: Attend adult care
11: Buy goods (groceries, clothes, appliances, gas)
12: Buy services (dry cleaners, banking, service a car, etc)
13: Buy meals (go out for a meal, snack, carry-out)
14: Other general errands (post office, library)
15: Recreational activities (visit parks, movies, bars, etc)
16: Exercise (go for a jog, walk, walk the dog, go to the gym, etc)
17: Visit friends or relatives
18: Health care visit (medical, dental, therapy)
19: Religious or other community activities
97: Something else

Few-Shot example

Example:
Your profile is as follows:
Age: 39
Gender: female
Ethnicity: Black or African American
Education: Some college or associates degree
Working status: Yes
Household annual income per capita: $42,500
Place of residence: San Francisco
Survey date: Saturday, August 2016

You conducted the following travel activities on the survey date
(travel time, travel origin-->travel destination, travel
purpose, travel purpose summary, travel distance (miles),
transportation method):

1.8:00-9:00, Regular home activities (chores, sleep)-->Recreational
activities (visit parks, movies, bars, movies, etc.),
Social/Recreational, Home-based trip (social/recreational),
15.056, Public or commuter bus

2.10:00-10:50, Recreational activities (visit parks, movies, bars,
movies, etc.) -->Work, Work, Not a home-based trip, 5.26,
Public or commuter bus

3.15:00-17:00, Work-->Regular home activities (chores, sleep),
Home, Home-based trip (work), 20.409, Public or commuter bus

15
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Please construct a travel reasoning chain from a first-person
perspective based on your portrait and travel purpose (whenever
you are at each location, think about traveling to the next
location, including whether to travel? Why travel? When to
travel? Where to travel? How to travel (in terms of
transportation)? ), your travel should follow the Instructions
content, and then generate your complete travel plan (this
table shows your stay time in each place, not the travel time),
as follows:

| Visited Places | Arrival Time | Departure Time | Place Type |
|----------------|--------------|----------------|------------|
| [Place Name] | [HH:MM AM/PM]| [HH:MM AM/PM] | [Place Type]|

Answer:
### Travel Reasoning Chain:

#### At Home (8:00 AM):
- **Whether to travel?** Yes.
- **Why travel?** It is Saturday, and I want to engage in

recreational activities. I have planned to visit a park to
relax and enjoy my morning.

- **When to travel?** Around 8:00 AM.
- **Where to travel?** A nearby park or recreational area.
- **How to travel?** Use public or commuter bus for convenience.

#### At Recreational Activity Location (10:00 AM):
- **Whether to travel?** Yes.
- **Why travel?** I have a work commitment later in the morning, so

I need to leave the park and head to my workplace.
- **When to travel?** Around 10:00 AM to ensure I arrive at work on

time.
- **Where to travel?** My workplace.
- **How to travel?** Use public or commuter bus.

#### At Work (3:00 PM):
- **Whether to travel?** Yes.
- **Why travel?** After finishing work, I want to head back home

and relax for the rest of the day.
- **When to travel?** I will leave work at 3:00 PM to get home in

the afternoon.
- **Where to travel?** Home.
- **How to travel?** Use public or commuter bus.

#### At Home (5:00 PM):
- **Whether to travel?** No.
- **Why travel?** After a full day of recreational and work

activities, I need to prepare dinner and recharge for the
upcoming workweek.

- **When to travel?** Not applicable.
- **Where to travel?** Not applicable.
- **How to travel?** Not applicable.

---

### Complete Travel Plan Table:

|Place Visited |Arrival Time|Departure Time|Location Type|
|---------------------|------------|--------------|-------------|
|Home | 12:00 AM | 8:00 AM | 1 |
|Recreational Activity| 9:00 AM | 10:00 AM | 15 |
|Work | 10:50 AM | 3:00 PM | 3 |
|Home | 5:00 PM | 11:59 PM | 1 |
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Target Task

Task:
Your profile is as follows:
Age: 77
Gender: male
Ethnicity: White
Education: Bachelor degree
Working status: No
Household annual income per capita: $112,500
Place of residence: San Francisco
Survey date: Tuesday, August 2016

You conducted the following travel activities on the survey date
(travel time, travel origin-->travel destination, travel
purpose, travel purpose summary, travel distance (miles),
transportation method):

1.16:50-17:05, Regular home activities (chores, sleep)-->Buy goods
(groceries, clothes, appliances, gas), Shopping/Errands,
Home-based trip(shopping),2.712, Van

2.17:20-17:35, Buy goods (groceries, clothes, appliances,
gas)-->Buy goods (groceries, clothes, appliances, gas),
Shopping/Errands, Not a home-based trip, 1.494, Van

3.17:45-17:50, Buy goods (groceries, clothes, appliances,
gas)-->Volunteer activities (not paid), Something else, Not a
home-based trip, 0.853, Van

Please construct a travel reasoning chain from a first-person
perspective based on your portrait and travel purpose (whenever
you are at each location, think about traveling to the next
location, including whether to travel? Why travel? When to
travel? Where to travel? How to travel (in terms of
transportation)? ), your travel should follow the Instructions
content, and then generate your complete travel plan (this
table shows your stay time in each place, not the travel time),
as follows:

| Visited Places | Arrival Time | Departure Time | Place Type |
|----------------|--------------|----------------|------------|
| [Place Name] | [HH:MM AM/PM]| [HH:MM AM/PM] | [Place Type]|

Chain-of-Trips example Here’s a demonstration of the main question-answer pairs in the Chain-
of-Trips.

Chain-of-Trips

You are a city dweller. Based on your personal profile and travel
purpose, please simulate your travel in a first-person
perspective, construct a reasoning chain (whenever you are in a
place, think about your travel plan to the next place,
including whether to travel? Why travel? When to travel? Where
to travel? How to travel (in terms of transportation)?), your
travel should follow the Instructions content, and then
generate your complete travel plan table (the table shows your
stay time in each place, not the travel time).

The final output must follow the following table format:
| Visited Places | Arrival Time | Departure Time | Place Type |
|----------------|--------------|----------------|------------|
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| [Place Name] | [HH:MM AM/PM]| [HH:MM AM/PM] | [Place Type]|

Instructions:
1. If "home" is part of the travel activities on the specified

date, please make sure to include it in the list.
2. The exact arrival and departure times recorded in the travel

diary.
3. Enter the arrival time and departure time carefully, because a

certain travel time needs to be maintained to ensure the
rationality of the trip, and the arrival time of the current
location is always later than the departure time of the
previous location.

4. Note that in the travel plan, the difference between the
departure time of the previous location and the arrival time of
the current location represents the travel time, and the
difference between the arrival time and departure time of a
location represents the stay time at that location.

5. For [Location Type], please use only the numeric codes provided
below:

Location type code:
1: Regular home activities (chores, sleep)
2: Work from home (paid)
3: Work
4: Work-related meeting/trip
5: Volunteer activities (not paid)
6: Drop off/pick up someone
7: Change type of transportation
8: Attend school as a student
9: Attend child care
10: Attend adult care
11: Buy goods (groceries, clothes, appliances, gas)
12: Buy services (dry cleaners, banking, service a car, etc)
13: Buy meals (go out for a meal, snack, carry-out)
14: Other general errands (post office, library)
15: Recreational activities (visit parks, movies, bars, etc)
16: Exercise (go for a jog, walk, walk the dog, go to the gym, etc)
17: Visit friends or relatives
18: Health care visit (medical, dental, therapy)
19: Religious or other community activities
97: Something else

Task:
Your profile is as follows:
Age: 77
Gender: male
Ethnicity: White
Education: Bachelors degree
Working status: No
Household annual income per capita: $112,500
Place of residence: San Francisco
Survey date: Tuesday, August 2016

Please construct a travel reasoning chain from a first-person
perspective based on your portrait and travel purpose (whenever
you are at each location, think about traveling to the next
location, including whether to travel? Why travel? When to
travel? Where to travel? How to travel (in terms of
transportation)? ), your travel should follow the Instructions
content, and then generate your complete travel plan (this
table shows your stay time in each place, not the travel time),
as follows:

| Visited Places | Arrival Time | Departure Time | Place Type |
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|----------------|--------------|----------------|------------|
| [Place Name] | [HH:MM AM/PM]| [HH:MM AM/PM] | [Place Type]|

Answer:
### Travel Reasoning Chain:

#### At Home (16:50 PM):
- **Whether to travel?** Yes.
- **Why travel?** I need to buy groceries and essentials for the

household. It is a convenient time to head out now.
- **When to travel?** At 16:50 PM.
- **Where to travel?** A nearby grocery store.
- **How to travel?** Drive a van for personal convenience and to

carry purchased goods.

#### At First Shopping Location (17:20 PM):
- **Whether to travel?** Yes.
- **Why travel?** After finishing my shopping at the first

location, I need to visit another store for additional items
that were unavailable at the first location.

- **When to travel?** Around 17:20 PM.
- **Where to travel?** Another nearby store.
- **How to travel?** Drive the van.

#### At Second Shopping Location (17:45 PM):
- **Whether to travel?** Yes.
- **Why travel?** After completing my shopping errands, I plan to

participate in volunteer activities scheduled for the evening.
- **When to travel?** At 17:45 PM.
- **Where to travel?** The volunteer activity location.
- **How to travel?** Drive the van.

---

### Complete Travel Plan Table:

|Place Visited |Arrival Time|Departure Time|Location Type|
|------------------------|------------|--------------|-------------|
|Home | 12:00 AM | 4:50 PM | 1 |
|First Shopping Location | 5:05 PM | 5:20 PM | 11 |
|Second Shopping Location| 5:35 PM | 5:45 PM | 11 |
|Volunteer Activity | 5:50 PM | 11:59 PM | 5 |

A.4 THE USE OF LARGE LANGUAGE MODELS

We use LLMs as a general-purpose auxiliary tool, primarily for the following purposes: a. Text
polishing and grammar review. LLMs were used to improve the clarity, grammatical accuracy, and
fluency of certain passages. b. Syntactic and lexical optimization: Without changing the core ideas
and scientific content, LLM assisted in optimizing sentence structure and vocabulary selection.
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