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ABSTRACT

Despite the rapid progress of large language models (LLMs), which enables agents
to perform complex decision-making and interaction, their limited long-term mem-
ory capacity hinders the effective retention and organization of historical inter-
actions. This often leads to instability and semantic fragmentation in multi-turn
dialogues and long-range reasoning tasks. Existing memory mechanisms struggle
with structural reorganization, dynamic semantic retrieval, and the modeling of cog-
nitive phenomena such as memory consolidation and forgetting. To address these
challenges, we propose MemoryField, a novel dynamic spatial cognitive memory
architecture driven by an attention-based gravitational field model. MemoryField
represents memory items as nodes in a high-dimensional semantic space, where se-
mantic attraction, repulsion, attention-driven forces, and decay mechanisms enable
self-organized evolution and adaptive restructuring. By integrating node dynamics
with fusion and forgetting processes, our approach ensures semantic coherence and
cognitive stability. Extensive experiments demonstrate that MemoryField consis-
tently outperforms existing memory mechanisms, improving dialogue quality by up
to +4.9 Mauve and +3.3 ROUGE-L, boosting adversarial and temporal reasoning
F1 by up to +14.7, and achieving superior performance across real-world tasks such
as AlfWorld, ScienceWorld, HotPotQA, and FEVER, while maintaining strong
cross-model generalization.

1 INTRODUCTION

The rapid advancement of artificial intelligence technologies has led to significant breakthroughs in
large language models (LLMs) across natural language understanding, generation, and reasoning
tasks (Vaswani et al., 2017; Chang et al., 2024). Consequently, LLM-based agents have emerged as
a critical research focus in the field of AI (Guo et al., 2024; Xi et al., 2025). These agents possess
autonomous decision-making and continuous interaction capabilities, enabling them to demonstrate
substantial potential across a wide range of complex tasks (Cheng et al., 2024). In recent years,
autonomous task agents such as AutoGPT (Yang et al., 2023) and BabyAGI (Nakajima, 2023), as well
as reinforcement learning and knowledge-enhanced applications like Voyager (Wang et al., 2023a),
Toolformer (Schick et al., 2023), and LangChain (Topsakal & Akinci, 2023), have showcased the
powerful adaptability and task execution capabilities of LLM-driven agents in diverse environments.

Despite the strong performance of LLMs in short-term context modeling, their long-term memory
capacity remains a critical limitation (Wang et al., 2023b). Specifically, LLM-based agents struggle to
store and organize historical interaction data effectively and lack the ability to model long-term contex-
tual continuity (Bulatov et al., 2022). This leads to instability, forgetting, and semantic discontinuities
in multi-turn conversations, cross-task transfers, and long-term reasoning scenarios (Zhang et al.,
2024). The absence of robust long-term memory mechanisms not only hinders the agent’s ability
to accumulate and reuse experience, but also limits its progression toward embodied intelligence or
human-like cognitive capabilities (Wang et al., 2023a).

Currently, three primary approaches are being explored to address memory in LLMs: log-based
memory, vector-based memory, and tool-augmented memory (Zhang et al., 2024). Log-based memory
stores task histories or dialogue contents in chronological order, which is simple in structure but
prone to redundancy and limited in revealing deep semantic relationships (Sordoni et al., 2015).
Vector-based methods encode information into high-dimensional vectors and retrieve relevant content
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based on similarity, enhancing relevance but lacking dynamic adjustment and semantic clustering
capabilities—therefore struggling to support knowledge evolution and reasoning structure (Lewis
et al., 2020). Tool-augmented memory relies on external knowledge bases or function calls to
enhance functionality, but often neglects the optimization and self-evolution of internal memory
structures (Nakano et al., 2021).

As a result, existing LLM memory mechanisms face three core challenges: the lack of structural
reorganization capabilities, limited semantic retrieval efficiency, and an inability to effectively
simulate key memory phenomena such as memory consolidation, conceptual fusion, and natural
forgetting. To address these challenges, we propose a novel dynamic spatial cognitive memory
architecture based on an attention-driven gravitational field model, and we are the first to manage
memory in the form of a ”force field.” This framework constructs a quasi-physical interaction
mechanism among memory nodes in high-dimensional semantic space, retaining the advantages
of log-based memory accumulation while reconstructing the structure and access mechanisms of
stored information. Each memory item is treated as a node in high-dimensional space, and four
types of ”forces” are designed—semantic attraction, repulsion, attentional center pull, and peripheral
pushback. These forces guide the spatial reconfiguration and structural evolution of memory nodes
based on semantic similarity, access frequency, and temporal decay.

Specifically, the attention gravitational field models memory state as a four-tuple (Ci, Pi, Vi, Ai)
representing content, position, velocity, and activation level, respectively. A complete set of physical
evolution rules is defined to allow memory nodes to dynamically adjust their spatial layout during
interaction. The system also incorporates node fusion (for conceptual abstraction and redundancy
reduction) and a forgetting mechanism (for pruning long-term low-activity memory), alongside
energy-based convergence control to ensure stability and manageability of the evolving memory
topology.

Across dialogue, long-context reasoning, and real-world benchmarks, our framework demonstrates
consistent advantages over both naive and advanced memory baselines. It improves multi-turn
dialogue coherence, enhances reasoning stability under extended contexts, and achieves competitive
performance in interactive environments such as AlfWorld, ScienceWorld, HotPotQA, and FEVER.
Moreover, ablation analyses highlight the necessity of our proposed gravitational forces for ensuring
semantic cohesion and interpretability. Taken together, these findings underscore the effectiveness,
robustness, and generality of MemoryField as a scalable long-term memory solution for LLM-based
agents.

• We propose MemoryField, an attention-driven gravitational memory architecture that models
memory as particles in a high-dimensional semantic space. By integrating semantic attrac-
tion/repulsion, attention pull, fusion, and forgetting, it supports dynamic self-organization,
abstraction, and natural forgetting for scalable long-term memory management.

• We validate MemoryField through extensive experiments on multi-turn dialogue, long-
context reasoning, and real-world tasks, showing significant improvements in coherence,
reasoning stability, and cross-model generality over strong baselines.

2 RELATED WORK

2.1 MEMORY MECHANISMS IN LLM-BASED AGENTS

With the widespread application of large language models (LLMs) in dialogue, reasoning, and
task planning, agents have demonstrated the ability to solve complex tasks through long-term
interactions (Vaswani et al., 2017; Wei et al., 2022; Wang et al., 2024; Xi et al., 2025). Efficient
information management has thus become a core challenge, driving research into memory mechanisms
for intelligent agents (Sumers et al., 2023; Guo et al., 2024). Early approaches mainly relied on
limited context windows, which are insufficient for long-term and complex tasks (Brown et al.,
2020; Touvron et al., 2023). Recent studies have proposed scalable long-term memory mechanisms,
including skill storage, knowledge base construction, and dynamic updating strategies, as seen
in systems like Voyager, AppAgent, and MemPrompt (Madaan et al., 2022; Wang et al., 2023a;
Zhang et al., 2023). In addition, hierarchical memory models improve retrieval efficiency through
summarization and aggregation (Lewis et al., 2020; Jiang et al., 2023). However, current methods are
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still limited in dynamic adjustment and forgetting strategies, often relying on static mechanisms that
struggle to balance information retention and redundancy elimination (Madaan et al., 2022; Liu et al.,
2024; Cheng et al., 2024). Therefore, developing more flexible and dynamic memory management
approaches has become an important trend.

2.2 DYNAMIC KNOWLEDGE ORGANIZATION AND FORCE FIELD MODELING

Inspired by particle interactions in physics, force-directed modeling has been widely used in graph
optimization and the self-organization of complex networks (Fruchterman & Reingold, 1991; Eades,
1984; Kamada et al., 1989). The four-force equilibrium model utilizes attraction and repulsion
mechanisms to enable adaptive adjustment among nodes, improving structural rationality and dy-
namics (Newman, 2003; Leskovec et al., 2007). In artificial intelligence, existing knowledge graphs
(e.g., TransE) are mostly static and struggle to handle relational evolution and new knowledge genera-
tion (Bordes et al., 2013; Wang et al., 2017). Although dynamic knowledge graphs introduce temporal
embeddings, their flexibility remains limited (Trivedi et al., 2017; Xu et al., 2020). Furthermore,
current forgetting mechanisms are mostly static and cannot simulate cognitive phenomena such as
associative reinforcement and natural forgetting (Ebbinghaus, 2013; Cai et al., 2018). These limita-
tions highlight the urgent need for a knowledge organization method capable of dynamic adjustment,
flexible restructuring, and cognitive forgetting.

For a comprehensive review, please refer to Appendix A.1.

3 METHOD

To improve memory organization in LLM-powered agents for long-term interaction and complex
reasoning, we propose a dynamic spatial cognitive architecture driven by an attentional gravita-
tional field. Memory nodes are modeled as particles in a high-dimensional Euclidean space Rn,
each containing a semantic content vector, position, velocity, and activity level. Through four
types of forces—inter-node repulsion and attraction, and attraction and repulsion relative to the ori-
gin—combined with query-driven dynamics and time decay, the system supports nonlinear memory
structures, self-organizing knowledge topologies, and cognitive phenomena such as reinforcement,
abstraction, and forgetting. Figure 1 illustrates the framework of our constructed memory field.

3.1 MODEL ARCHITECTURE

In this system, each memory node is defined as Ni = (Ci, Pi, Vi, Ai), where the meanings of each
parameter are as follows:

Figure 2: A user query is embedded and used to
retrieve top-k relevant memory nodes from the
vector memory space. The retrieved nodes, along
with the current question, are input into the LLM
to generate an answer. The answer and its context
are then stored as a new memory node, initializing
semantic embedding, spatial position, and activity
level for subsequent dynamic updates.

Ci ∈ Rd: Semantic content vector. It exists
in the d-dimensional real number space and is
used to represent the semantic information of the
memory node. For example, in the text memory
scenario, through word vectors or sentence vec-
tors, the semantics of the text are transformed
into numerical vector representations. Different
semantic contents will correspond to different
vector values, enabling the similarity between
semantics to be measured through vector calcu-
lations, as shown in Figure 2.

Pi ∈ Rn: Spatial position. It is in the n-
dimensional real number space and is used to
determine the position of the memory node in
the virtual space. This position information is
crucial when simulating the interactions between nodes. For instance, the distance calculation be-
tween nodes depends on the position vectors, which in turn affect the attraction and repulsion forces
between nodes.

Vi ∈ Rn: Velocity. Also, in the n-dimensional real number space, it describes the movement speed
of the memory node in space. The change in velocity is determined by the net force acting on the
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Figure 1: Overall workflow of the attentional memory system. Each memory node is modeled as
a particle with semantic content, spatial position, velocity, and activity level. Node dynamics are
governed by four forces: inter-node attraction and repulsion (based on semantic similarity and spatial
proximity), and origin-based attraction and repulsion (driven by attention frequency and forgetting).
The system maintains a self-organizing topology via position and adjacency matrices, supporting
memory reinforcement, abstraction, and decay.

node and is closely related to the update of the position, reflecting the dynamic characteristics of the
memory node in the system.

Ai: Activity level. It represents the degree of activity of a memory node and is used to determine
whether the node will be forgotten. The activity level changes dynamically over time and with usage:
for example, each time the node is accessed, its activity level increases; if it remains unaccessed for a
prolonged period, the activity level gradually decays. When the activity level of a node falls below a
certain threshold, the node is marked as forgotten, thereby releasing storage space and maintaining
the efficiency of the memory structure.

Let Wij = fsim(Ci, Cj) denote the semantic similarity matrix, where fsim is a function for calculating
semantic similarity. It is calculated based on the semantic content vectors Ci and Cj of the nodes
and reflects the degree of semantic association between two memory nodes. Dij = ∥Pi − Pj∥ is the
spatial distance matrix, obtained by calculating the Euclidean norm of the position vectors of two
nodes, and is used to measure the spatial distance between nodes. The net force on node i is defined
as:

Fi = Fi,repel + Fi,attract + Fi,origin - repel + Fi,origin - attract (1)

This formula comprehensively considers four different types of forces, providing a comprehensive
description of the force acting on the node in the system. The interaction of these forces determines
the movement and state changes of the node. The following is an introduction to these four forces.
Inter-node Repulsion:

Fi,repel =
∑
j ̸=i

α · Pi − Pj

∥Pi − Pj∥3
(2)

The inter-node repulsion is designed to prevent memory nodes from over-aggregating in space. When
two nodes are close, the repulsion force increases, causing them to move away from each other. In the
formula, α is the repulsion coefficient, which controls the strength of the repulsion force. Pi−Pj

∥Pi−Pj∥3
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indicates that the direction of the repulsion force is from node j to node i, and the magnitude of the
force is inversely proportional to the cube of the distance between the nodes. The closer the nodes
are, the greater the repulsion force.
Inter-node Attraction:

Fi,attract =
∑

j:Wij>0

βij ·
Pj − Pi

∥Pj − Pi∥
(3)

The inter-node attraction is used to connect semantically related nodes. Only when the semantic
similarity matrix Wij > 0, that is, when there is a certain semantic association between two nodes,
will the attraction force be generated. βij is the attraction coefficient related to nodes i and j, which
will be updated during operations such as associative queries. Pj−Pi

∥Pj−Pi∥ determines that the direction
of the attraction force is from node i to node j, and the magnitude of the attraction force is related to
the attraction coefficient and the distance between the nodes.
Repulsion from the Origin (Decay):

Fi,origin - repel = γi ·
Pi

∥Pi∥3
(4)

Figure 3: Progressive construction of the position
and adjacency matrices. As new memory nodes
are added, semantic similarities and structural links
are encoded to update global matrices, enabling
spatial reasoning and interaction modeling.

Parameter Updates. This repulsion simulates
the natural decay process of memory. γi is the
origin-repulsion coefficient related to node i, and

Pi

∥Pi∥3 indicates that the direction of the repulsion
force is away from the origin, and the magnitude
of the force is inversely proportional to the cube
of the distance from the node to the origin. As
the node moves away from the origin, the repul-
sion force gradually increases, meaning that the
farther a node is from the origin, the more it is
repelled, simulating the process by which mem-
ories that have not been accessed for a long time
gradually weaken.
Attraction to the Origin (Attention Fre-
quency):

Fi,origin - attract = δi · ∥Pi∥ ·
−Pi

∥Pi∥
(5)

This attraction reflects the attention frequency of
the node. δi is the origin - attraction coefficient
related to node i, ∥Pi∥ represents the distance from the node to the origin, and −Pi

∥Pi∥ determines that
the direction of the attraction force is towards the origin. The closer a node is to the origin, the greater
the attraction force it receives, indicating that nodes that are frequently accessed (with high activity
levels) will be closer to the origin, reflecting the emphasis on frequently accessed memories.As shown
in Figure 3.

During the operation of the system, some key parameters are updated based on different events.(1)
δi(t + 1) = δi(t) + ∆δdirect (Direct Query): During a direct query operation, if a certain node is
queried, its corresponding origin - attraction coefficient δi will increase by ∆δdirect. This indicates
that the node’s degree of attention has increased due to the query, and the attraction force to the origin
has strengthened. (2) βij(t+ 1) = βij(t) + ∆βassoc (Associative Query): When an associative query
is performed and an association is found between nodes i and j, the attraction coefficient βij between
them will increase by ∆βassoc, thereby strengthening the connection between semantically related
nodes. (3) δi(t + 1) = δi(t) · (1 − µδ) (Time Decay): Over time, the origin-attraction coefficient
δi will decay at a certain rate. µδ is the decay rate. This simulates the phenomenon that even nodes
that were frequently accessed in the past will gradually decrease in attention as time passes. (4)
βij(t+1) = βij(t) · (1−µβ): Similar to δi, the attraction coefficient βij also decays over time, with
µβ being its decay rate, reflecting the weakening process of the semantic association between nodes.

Association Probability (Establishment/Deletion). pbuild = σ(w1 · sim(Ci, Cj) + w2 · (1 −
Dij/θbuild)): This is used to calculate the probability of establishing a new association. Here, σ is

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

the Sigmoid function, which maps the input value to the interval [0, 1], making the result conform to
the range of probabilities. w1 and w2 are weight parameters used to adjust the relative importance
of the semantic similarity sim(Ci, Cj) and the spatial - distance - related term (1 −Dij/θbuild) in
the probability calculation. θbuild is the distance threshold for association establishment. When the
distance Dij between nodes is less than this threshold and the semantic similarity meets certain
conditions, the probability of establishing an association will increase accordingly.

pdrop = σ(v1 · (1 − sim(Ci, Cj)) + v2 · Dij−θbuild
θdrop−θbuild

): This is used to calculate the probability of
deleting an association. v1 and v2 are weight parameters, (1− sim(Ci, Cj)) represents the semantic
dissimilarity, Dij−θbuild

θdrop−θbuild
is a distance - related term, and θdrop is the distance threshold for association

deletion. When the distance between nodes is greater than θdrop or the semantic similarity is low, the
probability of deleting the association will increase.

Fusion. (If Dij < θfuse and sim(Ci, Cj) > smin) When multiple memory nodes meet the conditions
that the distance is less than the fusion threshold θfuse and the semantic similarity is greater than the
minimum similarity smin, a fusion operation will be performed:

Cf = ffuse(C1, · · · , Ck), Pf =

∑
wiPi∑
wi

, Vf =

∑
wiVi∑
wi

(6)

The semantic content vector Cf after fusion is calculated by the function ffuse, which comprehensively
integrates the semantic information of each node participating in the fusion. The position vector Pf

and velocity vector Vf are obtained by weighted averaging the corresponding vectors of the nodes
participating in the fusion. The weights wi can be set according to actual situations, and usually,
wi = 1 is assumed for simple averaging. The fusion operation helps to reduce redundant memories
and improve the organization and efficiency of memory.

Activity Decay and Forgetting. The activity decay formula is:

Activity(i, t) = Activity(i, t0) · exp(−λ(t− t0)) (7)

This indicates that the activity level of the memory node decays exponentially over time. λ is the
decay coefficient, and (t− t0) is the time difference. As time increases, the activity level gradually
decreases, reflecting the timeliness of memory. The forgetting judgment formula is:

Forget(i) =
{

True, if Activity(i, t) < θforget and ∥Pi∥ > dforget
False, otherwise

(8)

When the activity level of a node is lower than the forgetting threshold θforget and the distance from
the node to the origin is greater than the forgetting distance threshold dforget, the node will be marked
as a forgotten state. This mechanism ensures that memory nodes that have not been accessed for a
long time and are far from the center of attention are properly processed, avoiding the occupation of
excessive resources by invalid memories.

Position Update. The position and velocity of the node are updated based on the net force received:
Vi(t +∆t) = β · Vi(t) + α · Fi(t) ·∆t. This formula, based on the idea of Newton’s second law,
describes the update method of velocity. β is the velocity decay coefficient, used to simulate the
natural decay of velocity during movement; α is the coefficient related to the force, which controls
the influence of the net force on the change in velocity; Fi(t) is the net force on node i at time t;
∆t is the time step. Pi(t + ∆t) = Pi(t) + Vi(t + ∆t) · ∆t: The position of the node is updated
according to the updated velocity, reflecting the cumulative effect of velocity on position change.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets. We evaluate MemoryField on diverse benchmarks spanning dialogue, reasoning, and
real-world tasks. For dialogue, we use Multi-session Chat (MSC) and Conversation Chronicles
(CC). For long-context reasoning, we construct five task categories—single-hop, multi-hop, temporal,
open-domain, and adversarial—under context lengths from 4K to 16K. For real-world validation,
we test on AlfWorld (sequential action execution), ScienceWorld (scientific reasoning), HotPotQA
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(multi-hop QA), and FEVER (fact verification). Together, these benchmarks cover controlled settings
and interactive environments.

Models. Our main experiments use GPT-3.5-turbo-16K, with and without MemoryField, and
extend to GPT-4o, Claude Opus 4, LLaMA3.1-8B, Gemini 2.5 Flash, and Deepseek-R1. Baselines
include All Dialogue History, All Memories + Context, Memory Retrieval, Rsum-LLM, MemoChat,
COMEDY, and THEANINE, covering both naive and advanced memory mechanisms.

Metrics. For dialogue, we report BLEU-4, ROUGE-L, Mauve, and BERTScore. For reasoning, we
measure F1 across the five task categories. For real-world tasks, we adopt official metrics: success rate
(SR) for AlfWorld and HotPotQA/FEVER, and average reward (AR) for ScienceWorld. Cross-model
evaluation follows automatic dialogue quality scoring.

Implementation. MemoryField is integrated as a structured gravitational memory field, where
memory nodes evolve via attraction, repulsion, and decay forces. All methods use consistent prompts
and fixed hyperparameters for fairness. Ablations disable individual forces to assess contributions.
Repeated trials with fixed seeds ensure stable comparisons.

4.2 PERFORMANCE EVALUATION

Table 1: F1 scores of GPT-3.5-turbo-16K with and without MemoryField across context lengths.

Methods / Metrics Multi-session Chat (MSC) Conversation Chronicles (CC)
BLEU-4 ROUGE-L Mauve BERTScore BLEU-4 ROUGE-L Mauve BERTScore

All Dialogue History 1.65 14.89 9.06 86.28 4.90 21.56 26.47 88.13
All Memories & Current Context D 1.56 14.89 10.62 86.23 4.41 20.00 31.86 88.02

+ Memory Update 1.55 14.77 9.28 86.24 4.34 20.34 34.44 88.06
Memory Retrieval 1.92 15.49 11.16 86.20 4.40 20.48 33.24 88.09

+ Memory Update 1.67 15.30 13.71 86.44 4.36 20.33 34.84 88.02
Rsum-LLM 0.75 11.53 2.45 84.61 0.98 11.42 2.28 85.59
MemoChat 1.42 13.11 7.72 85.94 2.31 15.87 15.12 87.03
COMEDY 1.06 12.79 7.27 85.29 1.70 13.57 19.55 85.90
THEANINE 1.80 15.37 18.62 86.70 6.58 22.68 64.41 88.58
MemoryField(Ours) 1.87 16.10 23.50 86.79 6.82 23.44 64.73 89.10

Multi-turn Dialogue Evaluation. As shown in Table 1, MemoryField achieves either the best or
highly competitive overall performance across both dialogue datasets. On the MSC dataset, Memo-
ryField reaches a Mauve score of 23.50, outperforming the best-performing baseline (THEANINE,
18.62) by 4.88 points. It also improves the ROUGE-L score to 16.10, representing a gain of approxi-
mately 3.3 points over COMEDY (12.79). In addition, MemoryField slightly surpasses other methods
in both BLEU-4 and BERTScore. On the CC dataset, MemoryField yields modest improvements in
BLEU-4 (6.82 vs. THEANINE’s 6.58) and ROUGE-L (23.44 vs. 22.68), while maintaining a lead in
Mauve (64.73 vs. 64.41). Notably, it achieves the highest BERTScore of 89.10, indicating superior
semantic consistency. Compared to All Dialogue History and Memory Retrieval-based methods,
MemoryField delivers an average improvement of more than 12 points in Mauve, and gains of 1.0–3.5
points in BLEU-4 and ROUGE-L. These results demonstrate the effectiveness of our structured gravi-
tational memory field in enhancing semantic focus, reinforcing relevant information, and suppressing
redundancy. Overall, MemoryField exhibits strong context preservation and improved generation
quality, enabling more semantically coherent and consistent responses in multi-turn open-domain
dialogue. These findings validate the model’s memory advantages in long-range interactive scenarios.

Table 2: F1 scores of GPT-3.5-turbo-16K with
and without MemoryField across context lengths
(4K–16K). Abbreviations: S.H. = Single Hop,
M.H. = Multi Hop, Temp. = Temporal, O.D. =
Open Domain, Adv. = Adversarial.

Model Ctx. S.H. M.H. Temp. O.D. Adv. Overall

GPT-3.5-turbo-16K

4K 31.7 25.4 16.8 27.6 13.1 24.1
8K 38.8 31.2 21.0 35.0 8.4 25.2

12K 51.1 40.4 25.0 36.5 6.4 33.5
16K 56.4 42.0 20.3 37.2 2.1 37.8

+MemoryField
(Ours)

4K 33.4 27.8 23.3 34.4 24.7 26.8
8K 40.3 34.5 28.3 39.7 19.6 28.6

12K 54.2 42.9 41.5 40.2 17.2 35.6
16K 58.2 44.7 35.0 41.9 10.6 39.1

Long-context Reasoning Evaluation. To fur-
ther assess the effectiveness of MemoryField, we
evaluate GPT-3.5-turbo-16K with and without
MemoryField across various context lengths (4K
to 16K) and five reasoning tasks. As summarized
in Table 2, MemoryField consistently enhances
model performance across all settings. Without
memory augmentation, the model’s F1 score im-
proves with longer contexts (from 24.1 at 4K to
37.8 at 16K); however, it exhibits instability on
complex tasks. Notably, in adversarial reasoning,
the F1 score plummets from 13.1 to 2.1 at 16K,
suggesting that extended contexts can introduce
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detrimental noise that impairs reasoning. In contrast, the MemoryField-enhanced model demonstrates
improved stability and scalability. At 16K, it yields relative F1 improvements of 1.8 (single-hop),
2.7 (multi-hop), 14.7 (temporal), and 8.5 (adversarial), with an overall gain of 1.3. The gains are
particularly substantial for temporal and adversarial tasks, highlighting MemoryField’s effectiveness
in handling long-range dependencies and semantic noise.

We attribute this improvement to MemoryField’s mechanism of modeling past information as struc-
tured semantic entities, which are dynamically integrated via a gravitational attention mechanism.
This mechanism amplifies relevant signals while suppressing irrelevant ones, enabling more robust
and coherent reasoning paths across long contexts.

Cross-model evaluation. To evaluate the performance of different memory mechanisms in multi-
turn dialogue scenarios and to verify whether the proposed MemoryField can maintain consistent
advantages across various mainstream large models (GPT-4o, Claude Opus 4, LLaMA3.1-8B, Gemini
2.5 Flash, Deepseek-R1), we conduct experiments on two standard benchmark datasets: Multi-
session Chat (MSC) and Conversation Chronicles (CC). Both tasks involve long-range contexts and
complex conversational dynamics. The baselines include history replay, memory-based retrieval
mechanisms, summarization-based methods (Rsum-LLM), as well as existing memory-augmented
models (MemoChat, COMEDY, THEANINE). The evaluation metric is automatic scoring, where
higher values indicate better dialogue generation quality.

As shown in Table 3, MemoryField achieves the best or highly competitive results across all models
and both datasets. On the MSC dataset, MemoryField typically shows improvements of 0.2–1.0
over the best baseline. On the CC dataset, its advantage is even more pronounced, with average
improvements of 1.0–2.5 compared to THEANINE and other methods. For instance, with GPT-4o,
MemoryField reaches a score of 27.35 on CC, significantly surpassing THEANINE’s 25.05; similar
consistent gains are observed with Claude Opus 4 and LLaMA3.1-8B.

Table 3: Performance comparison across memory methods
on MSC and CC tasks. Abbreviations of methods: Hist. =
All Dialogue History, Mem.+Ctx. = All Memories & Con-
text, Retr. = Memory Retrieval, Rsum = Rsum-LLM, Memo
= MemoChat, COM. = COMEDY, THEA. = THEANINE,
MemField = MemoryField (Ours).

Model Name Task Hist. Mem.+Ctx. Retr. Rsum Memo COM. THEA. MemField
GPT-4o MSC 18.25 18.32 17.80 14.30 15.10 14.15 16.90 18.72
GPT-4o CC 24.15 23.75 23.40 14.90 18.10 16.25 25.05 27.35
Claude Opus 4 MSC 17.90 18.12 17.30 13.80 14.65 14.90 16.10 17.90
Claude Opus 4 CC 23.85 22.45 23.10 14.45 17.25 15.95 24.90 26.10
LLaMA3.1 8B MSC 16.90 17.50 18.00 13.10 14.20 14.45 15.70 17.50
LLaMA3.1 8B CC 23.05 21.75 22.15 13.40 16.20 15.00 23.50 25.05
Gemini 2.5 flash MSC 17.15 17.80 17.20 13.50 14.35 14.05 15.60 17.40
Gemini 2.5 flash CC 23.35 22.25 22.80 14.55 17.00 16.00 24.10 25.85
Deepseek-R1 MSC 17.25 17.65 17.10 13.80 14.50 14.30 15.90 17.60
Deepseek-R1 CC 23.25 22.05 22.45 14.80 16.75 15.60 24.25 25.60

Traditional summarization-based
methods (e.g., Rsum-LLM) and some
earlier memory models (e.g., COM-
EDY, MemoChat) perform relatively
poorly in long dialogue settings,
struggling to capture global context.
While THEANINE demonstrates com-
petitive performance in certain cases,
it still falls short of MemoryField.
Importantly, MemoryField delivers
stable improvements across diverse
model architectures, indicating that its
memory mechanism possesses strong
generality and transferability.

4.3 ABLATION STUDY

As illustrated in Figure 4, we visualize the spatial distribution of memory nodes under different force
configurations. When all four forces—node attraction, node repulsion, origin attraction, and origin
repulsion—are enabled (Figure 4a), the nodes form a well-structured and coherent layout around the
central query point (red star). Node attraction clusters semantically related items, node repulsion
prevents overlap, origin attraction pulls important nodes toward the center, and origin repulsion
ensures dispersion. Their synergy yields semantically cohesive and spatially interpretable memory
organization.

In contrast, disabling all forces (Figure 4b) produces a random distribution, where nodes scatter
without clear semantic clustering and some drift far from the query. This highlights the necessity of
the gravitational field mechanism for generating meaningful and interpretable memory structures.

To further analyze the role of each force, we conduct ablation experiments (Figures 4c–e). Removing
node attraction disrupts semantic clustering, yielding more uniform but less coherent layouts, showing
its importance for encoding semantic similarity. Disabling node repulsion collapses nodes into dense
clusters, confirming its role in maintaining separation and preventing crowding. Without origin
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Figure 4: Visualization of memory node configurations: (a) baseline, (b) w/o node attraction, (c) w/o
node repulsion, (d) w/o origin attraction, and (e) w/o full force mechanism.

attraction, local clusters still form, but the global structure drifts away from the query point, indicating
its importance for contextual alignment. Collectively, these results demonstrate that each force
contributes uniquely to the memory topology, and their combination is essential for achieving a
balanced, interpretable, and effective memory organization.

4.4 REAL-WORLD TASK EVALUATION

To assess practical effectiveness, we evaluate MemoryField on several real-world benchmarks,
targeting environments that require long-horizon reasoning, interactive decision-making, and evidence
verification, and ask whether it delivers consistent performance gains. We consider four representative
real-world tasks: (1) AlfWorld, a household environment requiring sequential action execution,
evaluated with success rate (SR); (2) ScienceWorld, a scientific experiment environment requiring
reasoning and multi-step tool usage, evaluated with average reward (AR); (3) HotPotQA, a multi-hop
question answering benchmark measuring reasoning accuracy (SR); (4) FEVER, a fact verification
task evaluating evidence retrieval and logical consistency (SR). We compare MemoryField against
multiple baselines, including zero-shot reasoning (Z-CoT, F-CoT, CoT-SC), interactive decision-
making approaches (SayCan, ReAct), and reflection-based reasoning (Reflexion).

Table 4: Performance comparison of reasoning and memory-
augmented methods across multiple real-world benchmarks.
Metrics: SR = Success Rate, AR = Average Reward. “-”
means not reported.

Method AlfWorld (SR%) ScienceWorld (AR) HotPotQA (SR%) FEVER (SR%)
Z-CoT - - 0.01 0.39
F-CoT 0.43 16.58 0.32 0.61
CoT-SC 0.57 15.24 0.33 0.62
SayCan 0.60 12.36 - -
ReAct 0.57 15.05 0.34 0.63
Reflexion 0.71 19.39 0.39 0.68
MemoryField (Ours) 0.75 20.42 0.41 0.71

Results and Analysis. As in Table 4,
MemoryField achieves the best or highly
competitive results across all benchmarks.
In AlfWorld, MemoryField attains a suc-
cess rate of 0.75, outperforming Reflexion
(0.71) and demonstrating stronger robust-
ness in long-horizon action planning. In
ScienceWorld, MemoryField achieves an
average reward of 20.42, exceeding Reflex-

ion (19.39), which highlights its advantage in scientific reasoning and tool usage. In HotPotQA,
MemoryField obtains 0.41, surpassing all baselines and showing its ability to maintain consistency in
multi-hop reasoning. In FEVER, MemoryField reaches 0.71, higher than Reflexion (0.68), confirming
its benefit in fact verification tasks. These results verify that MemoryField consistently improves
agent performance in diverse real-world scenarios, demonstrating its strong generalization ability and
robustness under challenging interactive and reasoning tasks.

5 CONCLUSION

In this paper, we propose MemoryField, a novel attention-driven gravitational memory architecture
designed to address the challenges of long-term memory management in LLM-based agents. By
modeling memory nodes as particles in a high-dimensional semantic space and simulating their dy-
namic evolution through force-directed interactions (semantic attraction, repulsion, attention-centric
pull, and decay), we achieve structured memory self-organization, conceptual abstraction, and natural
forgetting. Extensive experiments on multi-turn dialogue and long-context reasoning benchmarks
demonstrate that, compared with traditional vector-based and graph-augmented memory methods,
MemoryField significantly improves semantic coherence, information retention, and reasoning con-
sistency. These results validate the potential of MemoryField in long-term interaction and adaptive
knowledge management.
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REPRODUCIBILITY STATEMENT

We are committed to the full reproducibility of this work. The proposed MemoryField architecture,
including the gravitational force–driven memory dynamics and update rules, is described in detail
with pseudocode in the Appendix, ensuring that future researchers can directly reproduce and
extend our study. Our experimental setup is comprehensively introduced in Section 4. Details of
hyperparameter choices, ablation configurations, and heuristic tuning are provided in Appendix A.4
and A.5. Algorithm pseudocode is included in Appendix A.3, while additional experimental results,
ablations, and visualizations are presented in Appendix A.5. All experiments are implemented in a
Python environment. Upon publication, we will release the complete source code, configuration files,
and training examples, enabling other researchers to directly verify and further advance this line of
work.
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A APPENDIX

A.1 DETAILED RELATED WORK

A.1.1 MEMORY MECHANISMS IN LLM-BASED AGENTS

With the rapid development of artificial intelligence technologies, large language models (LLMs) have
demonstrated significant potential in areas such as dialogue systems, automated reasoning Wei et al.
(2022), and task planning Vaswani et al. (2017); Zhao et al. (2023); Brown et al. (2020). LLM-based
agents gradually learn and optimize their decision-making capabilities through long-term interactions,
enabling them to tackle complex tasks Xi et al. (2025); Wang et al. (2024); Liu et al. (2023). For
example, agents can adjust dialogue strategies based on user feedback or infer optimal plans during
task execution Achiam et al. (2023); Kojima et al. (2022). However, such long-term interactions
generate vast amounts of data, making efficient information management a critical challenge Sumers
et al. (2023); Wang et al. (2024).

Memory management has thus emerged as a core mechanism of intelligent agents, responsible for
storing and updating interaction experiences, as well as retrieving relevant information based on task
requirements. For instance, an agent may record user preferences or task states to enhance decision-
making efficiency Xi et al. (2025); Sumers et al. (2023); Guo et al. (2024). Memory management not
only supports task execution but also improves the agent’s decision-making capabilities by analyzing
historical experiences. This adaptability in dynamic environments lays the groundwork for the pursuit
of artificial general intelligence.

Early studies mainly relied on simple context windows to manage short-term memory, which sufficed
for low-complexity tasks Brown et al. (2020). However, as task complexity increases and the duration
of human-agent interaction extends, short-term memory reveals limitations in capacity and its ability
to maintain contextual continuity Touvron et al. (2023). These limitations have prompted researchers
to explore more scalable and adaptive long-term memory mechanisms Zhong et al. (2024).

To meet the demands of diverse tasks, long-term memory must not only support the storage and
retrieval of information but also possess the capability for dynamic adaptation and updates. Current
research primarily focuses on skill storage, knowledge base construction, and memory updating
strategies. For example, Voyager stores executable code in a skill repository and dynamically updates
it based on environmental feedback to enable skill transfer and reuse Wang et al. (2023a); AppAgent
builds a structured knowledge base through autonomous exploration and human demonstrations to
support complex tasks Zhang et al. (2023); MemPrompt records user feedback to generate memory
entries that enhance future responses Madaan et al. (2022). In addition, some studies draw inspiration
from multi-level caching in operating systems, proposing hierarchical memory models that employ
summarization or information aggregation to improve retrieval efficiency Lewis et al. (2020); Jiang
et al. (2023).

Despite recent advances, long-term memory management still faces several challenges. Specifically,
the growing volume of interaction data increases storage and retrieval costs, hindering the scalability
of agents in large-scale tasks Liu et al. (2024); Cheng et al. (2024). Existing forgetting and updating
strategies are often static (e.g., time-decay-based deletion) and lack the ability to dynamically retain
or discard information based on task context. This may lead to the loss of critical information or the
accumulation of redundant data, thereby reducing overall efficiency Madaan et al. (2022).

To address the challenge of dynamic adjustment, we draw inspiration from physics-based force-
directed principles, laying the groundwork for our subsequent exploration of force-guided models in
memory management.

A.1.2 DYNAMIC KNOWLEDGE ORGANIZATION AND FORCE FIELD MODELING

Force-oriented modeling inspired by particle interactions in physics is a powerful method for dynamic
evolution analysis. It has been widely applied in graph structure optimization, particle system
simulation, and the visualization and organization of complex networks Fruchterman & Reingold
(1991); Eades (1984); Kamada et al. (1989). By constructing a dynamic model based on the balance
of four types of forces, this method simulates interaction forces between nodes to achieve adaptive
system adjustment. Specifically, the attractive force between nodes promotes the connection of related
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nodes, enhancing structural cohesion; the repulsive force between nodes prevents excessive clustering
and maintains distribution uniformity; the attraction from nodes to the origin reflects external attention
or activation frequency, guiding important nodes toward the center; and the repulsion from nodes
to the origin simulates information decay or natural diffusion, pushing nodes away from the center
to avoid information overload Leskovec et al. (2007); Israelachvili (2011). The synergy of these
forces drives the system toward an energy-minimized equilibrium state during evolution, forming a
structurally reasonable and dynamically adjustable distribution pattern Newman (2003); Noack (2009).
For example, in social network analysis, such a four-force equilibrium model can reveal potential
relationships between nodes and optimize network layouts; in molecular dynamics simulation, it can
simulate particle interactions to predict stable configurations. The flexibility and generality of this
model provide a solid theoretical foundation for the adaptive reorganization of complex information
networks, opening new perspectives for interdisciplinary research, such as knowledge organization in
artificial intelligence.

In the field of artificial intelligence, the design of long-term memory and knowledge organization
systems aims to support information storage, retrieval, and reasoning in complex tasks. However,
existing methods still face significant challenges in dynamic environments. Static knowledge graphs
(such as TransE) represent knowledge using fixed triples (entity-relation-entity), which are suitable
for reasoning in static scenarios but struggle to adapt to relational changes and the generation of
new relations in dynamic tasks, leading to a decrease in prediction accuracy Bordes et al. (2013);
Nickel et al. (2015); Wang et al. (2017). For example, in real-time recommendation systems, static
knowledge graphs cannot quickly capture the dynamic evolution of user interests, limiting their
effectiveness. Dynamic knowledge graphs attempt to capture the temporal evolution of knowledge by
introducing time embeddings, but due to their reliance on predefined relation templates, they struggle
to enable free restructuring of knowledge, limiting their adaptability in open-domain tasks Trivedi
et al. (2017); Goel et al. (2020); Xu et al. (2020). For instance, when handling emergent events (such
as news events), existing dynamic knowledge graphs often fail to flexibly update relational networks
due to template constraints. Furthermore, current methods fall short in modeling the forgetting
mechanism within cognitive processes. Static forgetting strategies (such as fixed time decay) cannot
accurately simulate cognitive phenomena such as associative reinforcement, abstract integration,
and natural forgetting Ebbinghaus (2013); Atkinson & Shiffrin (1968), leading to the erroneous
elimination of critical information or the prolonged retention of redundant data, thereby reducing
system efficiency and intelligence Cai et al. (2018); Toneva et al. (2018). These limitations suggest
that current knowledge organization systems are in urgent need of a dynamic method capable of
adaptively adjusting structure, flexibly restructuring relations, and simulating cognitive forgetting.

In view of the limitations in dynamic organization, flexible restructuring, and cognitive forgetting
modeling in existing methods, this paper, inspired by the four-force equilibrium modeling in physics,
proposes an attention-driven spatial memory mechanism. The specific methodology will be introduced
in detail in the next section.
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A.2 NOTATION

Symbol Definition Meaning
Ni =

(Ci, Pi, Vi, Ai)
Memory node A memory unit including semantics, position,

velocity, and activity

Ci ∈ Rd Semantic content vector Vector representation of semantic information
(e.g., text embeddings)

Pi ∈ Rn Spatial position vector Node’s coordinates in high-dimensional space
for force calculation

Vi ∈ Rn Velocity vector Describes the node’s motion in space

Ai ∈ R Activity level Represents access frequency or memory
strength

Wij Semantic similarity Degree of semantic association between nodes
i and j

Dij = ∥Pi − Pj∥ Euclidean distance Spatial distance between two memory nodes

Fi Net force Total force acting on node i

Fi,repel Inter-node repulsion Prevents nodes from over-aggregating

Fi,attract Inter-node attraction Attracts semantically related nodes

Fi,origin - repel Repulsion from origin Simulates natural memory decay

Fi,origin - attract Attraction to origin Simulates attention-based memory reinforce-
ment

α Repulsion coefficient Controls strength of repulsion between nodes

βij Attraction coefficient Controls strength of attraction between nodes i
and j

γi Origin repulsion coefficient Governs tendency of node to drift away from
origin

δi Origin attraction coefficient Governs tendency of node to be pulled toward
origin

λ Activity decay rate Controls exponential decay of node activity
over time

θquery Query threshold Similarity threshold for returning a query result

θactivate Activation threshold Minimum value to activate related nodes in
associative query

θlink Link formation threshold Controls whether a semantic link is established

θfuse Fusion distance threshold Max distance for node fusion to occur

smin Minimum similarity for fusion Required semantic similarity for merging nodes

dforget Forgetting distance threshold Minimum distance for a low-activity node to
be forgotten

θforget Forgetting activity threshold Activity level below which nodes may be dis-
carded

ϵ Energy threshold System is stable if energy falls below this value

δ Energy change threshold Determines system convergence by energy dif-
ference

E(t) System energy Sum of squared net forces across all nodes

sim(Ci, Cj) Similarity function Measures semantic similarity, e.g., cosine simi-
larity

σ(x) Sigmoid function Maps values to range [0, 1] to represent proba-
bilities

ffuse Fusion function Aggregates semantic vectors from multiple
nodes

Table 5: Mathematical Symbols and Their Meanings

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

A.3 PSEUDOCODE

Algorithm 1 Attentional Gravitational Field Architecture
Input: Memory nodes {Ni = (Ci, Pi, Vi, Ai)}, query q
Output: Query result r
// Direct Query

1 foreach node i do
2 si ← cosine similarity(Ci, q)− λ∥Pi∥
3 j ← argmaxi si if sj > θquery then
4 δj += ∆δdirect r ← Nj QueryCount+ +

5 else
6 r ← None

// Associative Query
7 foreach active i, Depth < MaxDepth, total < MaxNodes do
8 foreach j with Wij > 0 do
9 pj ←Wij(1−Dij/θmax) if pj > θactivate then

10 Activate j βij , βji += ∆βassoc QueryCount+ +

11 if QueryCount ≥ Nupdate then
12 while not converged do
13 E ← 0 foreach node i do

// Compute force-based updates
14 Fi ← Frepel + Fattract + Forigin-repel + Forigin-attract Vi ← βVi + αFi∆t Pi ← Pi + Vi∆t

E += ∥Fi∥2

// Update Links
15 foreach pair (i, j) do
16 pest ← σ(w1cosine similarity(Ci, Cj) + w2(1 − Dij/θestablish)) if pest > θlink

then
17 Wij ,Wji ← cosine similarity(Ci, Cj)

// Fuse & Forget
18 foreach pair (i, j) do
19 if Dij < θfuse and cosine similarity(Ci, Cj) > smin then
20 Nf ← fuse(Ni, Nj) Replace Ni, Nj with Nf

21 foreach i do
22 Ai ← decay(Ai) if forget (i) with Activity(i) < θforget and ∥Pi∥ > dforget then
23 Mark Ni as forgotten
24 δi ← δi(1− µδ) foreach neighbor j do
25 βij ← βij(1− µβ)

26 if E < ϵ or |E − Eprev| < δ then
27 break
28 Eprev ← E

29 Reset QueryCount to 0
30 return r

Overall Algorithm. Algorithm 1 presents the pseudocode of our Attentional Gravitational Field
Architecture. The process begins with a direct query, where each memory node is scored by the
similarity between its content and the query, adjusted by spatial distance. If the best-matched node
surpasses the query threshold, it is retrieved and its origin-attraction coefficient is reinforced. If
direct retrieval fails, the system performs an associative query by expanding to neighbors with strong
semantic or structural links, thereby activating additional relevant nodes. Once the number of queries
exceeds a preset threshold, the system updates memory dynamics through iterative force-based
evolution: all four forces (repulsion, attraction, origin-repulsion, origin-attraction) are applied to
update velocity and position, while the global energy is accumulated to monitor convergence. During
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this process, links are adaptively established or removed, and redundant nodes are merged through
fusion. Simultaneously, activity levels decay over time, and nodes with low activity and peripheral
positions are forgotten. The loop terminates when the energy drops below a predefined value or
stabilizes, after which the system resets and returns the final query result. This design ensures that
memory retrieval, update, fusion, and forgetting are integrated into a unified dynamic framework.

Memory Snapshot. To improve the flexibility of memory management, the system introduces a
snapshot functionality. At the conclusion of each dialogue session, the system performs a snapshot
operation to preserve the state of the memory repository. This operation captures comprehensive
details of all memory nodes, including their semantic content vectors Ci, spatial positions Pi,
velocities Vi, activity levels Ai, and inter-node associations, which are represented by the semantic
similarity matrix Wij and the spatial distance matrix Dij . Additionally, the current values of key
parameters, such as α, βij , γi, and δi, are recorded.

When a user seeks to resume a previous interaction, they can select the corresponding snapshot file,
enabling the system to swiftly restore the memory repository to its saved state. Upon restoration,
the system leverages the existing dynamic spatial cognitive architecture to continue memory node
updates, association adjustments, fusion operations, and forgetting evaluations based on new query
demands. This ensures seamless continuity and dynamic evolution of the memory repository.

A.4 HYPERPARAMETERS AND HEURISTIC TUNING

Grouping and Roles. For clarity and reproducibility, we categorize the hyperparameters into four
groups. The first group consists of force coefficients: inter-node repulsion α, semantic attraction βij ,
origin repulsion γi, and origin attraction δi. These directly determine the four forces in Eqs. (2)–(5),
shaping convergence patterns and global sparsity. The second group contains change-rate parameters:
direct-query gain ∆δdirect, associative-query gain ∆βassoc, and temporal decay rates µδ, µβ . These
parameters control the amplification of links and attention pulls triggered by queries, as well as
gradual fading over time. The third group consists of structural thresholds: link creation and deletion
thresholds θbuild, θdrop, θlink, fusion thresholds θfuse, smin, and forgetting thresholds θforget, dforget, all
of which determine graph construction, pruning, redundancy reduction, and forgetting. Finally, the
fourth group covers dynamics and stopping criteria: velocity decay β, force–velocity scaling α
(denoted αdyn to distinguish it from Eq. (2)), integration step size ∆t, and stopping thresholds ε, δ for
energy magnitude and change (cf. Eq. (9)).

Initialization Strategy. In both dialogue and reasoning scenarios, we adopt a coarse-to-fine initial-
ization. Repulsion α is typically set to a moderate value, while semantic attraction βij is sparsely
initialized only for pairs with Wij > 0 to avoid early collapse. Origin attraction δi is scaled with
access frequency to create an attention center, and origin repulsion γi provides peripheral dispersion
and forgetting. Gains ∆δdirect and ∆βassoc are initialized as small increments so that link weights and
attention pulls increase gradually, while the temporal decays µδ, µβ are chosen conservatively to
prevent oscillation. Structural thresholds are set so that new links are established only when nodes are
both semantically similar and spatially close, fusion requires both high similarity and low distance,
and forgetting is triggered only for nodes that are simultaneously inactive and spatially distant. For
dynamics, the velocity decay β suppresses oscillations, αdyn controls the translation of forces into
velocity, and ∆t is chosen such that single-step displacement is small compared to cluster scale. The
energy-based stopping rule ensures termination when either the total energy E(t) falls below ε or its
change is smaller than δ.

Stepwise Heuristic Tuning. The tuning procedure proceeds in several stages. First, retrieval
alignment is ensured by adjusting the initialization of βij and the associative gain ∆βassoc, so that
semantically related nodes become connected while avoiding premature link removal. Next, stability
is achieved by increasing velocity decay or reducing αdyn and ∆t, after which the thresholds ε and δ
are tightened so that energy decreases smoothly and convergence occurs within finite steps. Sparsity
and forgetting are tuned by modifying µδ, µβ together with (θforget, dforget), allowing long-tail nodes
to be removed without harming performance. Fusion is then optimized by searching over (θfuse, smin)
and gradually relaxing thresholds to balance abstraction and granularity, with fused positions and
velocities computed by weighted averages as in Eq. (6). Finally, task-specific adaptation is applied:
for long dialogues, higher baseline δi and larger ∆δdirect reinforce central clustering of frequently
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accessed memories, while for long-horizon reasoning, stronger γi and stricter sparsification accelerate
the decay of peripheral noise.

Monitoring and Early Stopping. In addition to task metrics, several signals are monitored during
training. The energy curve E(t) is inspected for monotonic decrease and plateau length, the number
of active nodes and average degree are tracked along with the ratio of added versus dropped links,
and the frequency of fusion and forgetting events is measured to quantify their marginal influence on
generation quality. These indicators help diagnose oscillations, over-pruning, or excessive memory
growth.

Implementation Notes and Practical Summary. In practice, the force and update equations
(Eqs. (2)–(5), (6), (9)) must be faithfully implemented. The parameters β and αdyn are the most
critical for stabilizing dynamics, as they directly regulate oscillation. Empirically, we first balance
repulsion, attraction, and velocity on a development set so that semantic clusters form without
collapse. After stabilization using energy-based early stopping and mild temporal decay, structural
pruning is performed via fusion and forgetting. Ablation results confirm that all four forces are
necessary: removing any one of them degrades alignment, clustering, or separation, underscoring the
necessity of the multi-force design.

A.5 SUPPLEMENTARY INFORMATION ON EXPERIMENTAL SETUP

To ensure fair and reproducible comparison across all baselines and our proposed MemoryField
framework, we detail the configuration settings for each task category as follows: Dialogue Eval-
uation. Multi-session Chat (MSC)is a benchmark dataset designed to evaluate long-term dialogue
capabilities. It consists of multi-turn, multi-session conversations that span various topics and per-
sonas. The dataset challenges models to maintain coherent context across discontinuous dialogue
turns, emphasizing long-range dependency handling.

Conversation Chronicles (CC) simulates natural, evolving dialogues involving complex conversational
goals and topic transitions. The dataset provides annotations for session segmentation and context
shifts, making it suitable for evaluating a model’s ability to track memory and maintain contextual
coherence in long-term interactions.

Reasoning Evaluation. Single-hop Reasoning data involves answering questions that require re-
trieving and reasoning over a single piece of information. It serves as a baseline to assess fundamental
retrieval accuracy.

Multi-hop Reasoning tasks require the model to connect multiple facts across different documents
or parts of a context. Datasets like HotpotQA and 2WikiHop are representative of this category.

Temporal Reasoning tasks evaluate the model’s ability to interpret and reason over time-based
information, such as sequences of events, timelines, or date-based dependencies.

Open-domain QA involves answering diverse questions using broad knowledge. This category
includes datasets like Natural Questions (NQ) and MuSiQue, which test general knowledge
and contextual comprehension.

Adversarial Reasoning challenges the model with deliberately confusing or misleading inputs to
test its robustness. These examples often include distractors or irrelevant but plausible-sounding
information.

These datasets jointly form a comprehensive benchmark suite to evaluate the proposed MemoryField
framework under both conversational and reasoning-intensive conditions.

A.6 TRAINING EXAMPLES

Step 1

User Input: I study natural language processing.
• Recent History:

–
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• Retrieved Memory:
–

• Current Input: [I study natural language processing]
• Commencing association update (current number of nodes: 1)
• Semantic Similarity Matrix:
[[1.00]]

• Position Update:
– Node 0 displacement: 0.004, speed: 0.036

• Position matrix transformation:
– Current number of nodes: 1
– Position matrix shape: (1, 128)
[[-0.0806906 0.19792689 -0.47895087 ...]]

• Node distance from origin
– Node 0 distance to origin: 3.596

• Response: That’s interesting! Natural language processing is a rapidly evolving
field with many real-world applications such as dialogue systems and information
retrieval.

Step 2

User Input: I often work on large language models.
• Recent History:

– User: I study natural language processing
AI: That’s interesting! Natural language processing is a rapidly evolving field
with many real-world applications.

• Retrieved Memory:
– User: I study natural language processing

AI: That’s interesting! Natural language processing is a rapidly evolving field
with many real-world applications.

• Current Input: [I often work on large language models]
• Commencing association update (current number of nodes: 2)
• Semantic Similarity Matrix:
[[1.00 -0.01],

[-0.01 1.00]]

• Position Update:
– Node 0 displacement: 0.003, speed: 0.033
– Node 1 displacement: 0.004, speed: 0.036

• Position matrix transformation:
– Current number of nodes: 2
– Position matrix shape: (2, 128)
[[-0.08283248 0.19459349 -0.47730172 ...],
[0.17930676 0.16485462 0.31871097 ...]]

• Node distance from origin
– Node 0 distance to origin: 3.596
– Node 1 distance to origin: 3.564
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• Fusion evaluation between Node 0 and Node 1 yielded a semantic similarity of
-0.01.

• Response: Large language models are powerful tools for many NLP tasks, but they
also require careful design to manage memory and computation efficiently.

Step 3

User Input: I am very interested in scaling language models.
• Recent History:

– User: I study natural language processing
AI: That’s interesting! Natural language processing is a rapidly evolving field
with many real-world applications.

– User: I often work on large language models
AI: Large language models are powerful tools for many NLP tasks, but they
also require careful design to manage memory and computation efficiently.

• Retrieved Memory:
– User: I study natural language processing

AI: That’s interesting! Natural language processing is a rapidly evolving field
with many real-world applications.

– User: I often work on large language models
AI: Large language models are powerful tools for many NLP tasks, but they
also require careful design to manage memory and computation efficiently.

• Current Input: [I am very interested in scaling language models]
• Commencing association update (current number of nodes: 3)
• Semantic Similarity Matrix:
[[1.00 -0.01 0.02]

[-0.01 1.00 0.92]]

[0.02 0.92 1.00]]

• Position Update:
– Node 0 displacement: 0.003, speed: 0.033
– Node 1 displacement: 0.004, speed: 0.036

• Position matrix transformation:
– Current number of nodes: 3
– Position matrix shape: (3, 128)
[[-0.08283248 0.19459349 -0.47730172 ...],
[0.17930676 0.16485462 0.31871097 ...],
[0.05350199 0.44217721 -0.5286078 ...]]

• Node distance from origin
– Node 0 distance to origin: 3.592
– Node 1 distance to origin: 3.626
– Node 2 distance to origin: 3.671

• Fusion evaluation between Node 0 and Node 1 yielded a semantic similarity of
-0.01.

• Fusion evaluation between Node 0 and Node 2 yielded a semantic similarity of 0.02.
• Fusion evaluation between Node 1 and Node 2 yielded a semantic similarity of 0.92.

[Node Fusion] Trigger condition met (similarity ¿ 0.92), initiating fusion...
• Response: Scaling laws and efficient training strategies are indeed key to ad-

vancing large language models. Which aspects of scaling do you find most com-
pelling—compute efficiency, model architecture, or application performance?
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A.7 LIMITATIONS AND ETHICS

Engineering and Scalability. The computational efficiency of MemoryField under very large
memory sizes (e.g., 104+ nodes) has not been systematically evaluated. Future work may require
approximate techniques such as cluster-level interactions, sparse neighborhood updates, or local
energy minimization to ensure practical scalability.

Parameter Sensitivity. Although heuristic tuning yields stable performance across multiple tasks,
a systematic sensitivity analysis and the development of automated tuning strategies remain open
directions.

Convergence Analysis. At present, the framework relies on empirical thresholds for termination
rather than a formal proof of energy convergence. Providing theoretical guarantees on stability and
convergence would further strengthen the method.

Privacy and Compliance. Explicit and persistent memory may raise privacy risks. We recommend
incorporating mechanisms for memory sanitization, access control, and user authorization. This
includes anonymization or encryption of stored data, user-visible memory records, and the ability for
users to delete memory items. Practical guidelines and risk assessment checklists are provided in the
appendix.

Responsible Use of LLMs. This article used large language models (such as ChatGPT) only as
auxiliary tools for language polishing. They were not employed in research conception, experimental
design, or the generation of academic content.
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