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ABSTRACT

Reparameterization aims to improve the generalization of deep neural networks by
transforming convolutional layers into equivalent multi-branched structures dur-
ing training. However, there exists a gap in understanding how reparameterization
may change and benefit the learning process of neural networks. In this paper,
we present a novel spatial gradient scaling method to redistribute learning focus
among weights in convolutional networks. We prove that spatial gradient scaling
achieves the same learning dynamics as a branched reparameterization yet without
introducing structural changes into the network. We further propose an analytical
approach that dynamically learns scalings for each convolutional layer based on
the spatial characteristics of its input feature map gauged by mutual information.
Experiments on CIFAR-10, CIFAR-100, and ImageNet show that without search-
ing for reparameterized structures, our proposed scaling method outperforms the
state-of-the-art reparameterization strategies at a lower computational cost. The
code is available at https://github.com/Ascend-Research/Reparameterization.

1 INTRODUCTION

The ever-increasing performance of deep learning is largely attributed to progress made in neural
architectural design, with a trend of not only building deeper networks (Krizhevsky et al., 2012;
Simonyan & Zisserman, 2014) but also introducing complex blocks through multi-branched struc-
tures (Szegedy et al., 2015; 2016; 2017). Recently, efforts have been devoted to Neural Architecture
Search, Network Morphism, and Reparametrization, which aim to strike a balance between network
expressiveness, performance, and computational cost. Neural Architecture Search (NAS) (Elsken
et al., 2018; Zoph & Le, 2017) searches for network topologies in a predefined search space, which
often involves multi-branched micro-structures. Examples include the DARTS (Liu et al., 2019) and
NAS-Bench-101 (Ying et al., 2019) search spaces that span a large number of cell (block) topolo-
gies which are stacked together to form a neural network. In Network Morphism (Wei et al., 2016;
2017), a well-trained parent network is morphed into a child network with the goal of adopting it
on a downstream application with minimum re-training. Morphism preserves the parent network’s
functions and output while yielding child networks that are deeper and wider.

Structural reparameterization (Ding et al., 2021c) attempts to branch and augment certain operations
during training into an equivalent but more complex structure with extra learnable parameters. For
example, Asymmetric Convolution Block (ACB) (Ding et al., 2019) augments a regular 3x3 convo-
lution with both horizontal 1 × 3 and vertical 3 × 1 convolutions, such that training is performed
on the reparameterized network which takes advantage of the changed learning dynamics. During
inference, the trained reparameterized network is equivalently transformed back to its base simple
structure, preserving the original low inference time, while maintaining the boosted performance of
the reparameterized model. However, there exists a gap regarding the understanding of how and
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when the different learning dynamics of a reparameterized model could help its training. In addi-
tion, the search for the optimal reparameterized structure over a discrete space (Huang et al., 2022)
inevitably increases the computational cost in deep learning.

In this paper, we propose Spatial Gradient Scaling (SGS), an approach that changes learning dy-
namics as with reparameterization, yet without introducing structural changes to the neural network.
We examine the question—Can we achieve the same effect as branched reparameterization on con-
volutional networks without changing the network structure? Our proposed spatial gradient scaling
learns a spatially varied scaling for the gradient of convolutional weights, which we prove to have
the same learning dynamics as branched reparameterization, without modifying network structure.
We further show that scaling gradients by examining the spatial dependence of neighboring pixels
in the input (or intermediate) feature maps can boost neural network learning performance, without
searching for the reparameterized form. Our main contributions can be summarized as follows:

• We investigate a new problem of spatially scaling gradients in the kernels of convolutional
neural networks. This method enhances the performance of existing architectures only by
redistributing learning rates spatially, i.e., by adaptively strengthening or weakening the
gradients of convolution weights according to their relative position in the kernel.

• We mathematically establish a connection between the proposed SGS and parallel convo-
lutional reparameterization, and show their equivalence in learning. This enables an un-
derstanding of how the existing multi-branched reparameterization structures help improve
feature learning. This interpretation also suggests an architecture-independent reparame-
terization method by directly inducing the effect via scaled gradients, bypassing the need
for complex structure augmentations, and saving on computational costs.

• We propose a lightweight method to compute gradient scalings for a given network and
dataset based on the spatial dependencies in the feature maps. Specifically, we make novel
use of the inherent mutual information between neighboring pixels of a feature map within
the receptive field of a convolution kernel to dynamically determine gradient scalings for
each network layer, with only a minimum overhead to the original training routine.

Extensive experiments show that the proposed data-driven spatial gradient scaling approach leads to
results that compete or outperform state-of-the-art methods on several image classification models
and datasets, yet with almost no extra computational cost and memory consumption during training
that multi-branched reparameterization structures require.

2 RELATED WORK

2.1 MULTI-BRANCH STRUCTURES

VGG (Simonyan & Zisserman, 2014) is a base model for several computer vision tasks. Due to
its limitations, several new structures have been proposed with multiple branches to achieve higher
performance. GoogleNet (Szegedy et al., 2015) and Inception (Szegedy et al., 2015; 2016; 2017)
architectures deploy multi-branch structures to enrich the learned feature space. ResNet (He et al.,
2016) uses a simplified two-branch structure that adds the input of a layer to its output through
residual connections. The improvements in top-1 accuracy of ImageNet classification using these
structures demonstrate the importance of multiple receptive fields (e.g., 1 × 1, 1 × K, K × 1,
and K × K convolutions), diverse connections of layers and combination of parallel branches.
These performance improvements often come at a computational cost, as complex model topologies
are less hardware friendly, and have increased computational requirements. Outside of expertly
designed networks, advancements in Neural Architecture Search (NAS) allow for the automation
of network design. Several search spaces and discovered high-performing networks (Ying et al.,
2019; Dong & Yang, 2020; Ding et al., 2021a) utilize multi-branch structures, which shows their
ubiquity in modern convolution architectures. Due to the enormous possibilities of branched model
topologies, search is often computationally expensive and requires vast computational resources.

2.2 STRUCTURAL REPARAMETRIZATION

Multi-branch structures enhance the performance of ConvNets. This comes at the cost of higher
memory and computational power requirements, which is undesirable for inference-time applica-
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tions. Structural reparameterization solves this by training with a complex multi-branch model to
improve the learned representations but equivalently transforming back to the original simple base
model during inference for decreased computational costs. RepVGG (Ding et al., 2021c) introduces
a family of VGG-like inference models that are trained with ResNet-inspired reparameterization
blocks. These reparameterization blocks consist of parallel 3× 3 and 1× 1 convolutions along with
an identity branch. After training, using the linearity of convolutions, parallel branches are equiva-
lently transformed into a single 3×3 convolution. The inference VGG-like model has the advantage
of both the enhanced learned representations of the complex reparameterized model, and the fast
and efficient inference of the simple base model. Similarly, DBB (Ding et al., 2021b) structurally
reparameterize models by replacing all K×K convolution with a multi-branch topology composed
of multi-scale and sequential 1× 1-K ×K convolutions and average pooling during training. After
training, DBB blocks are equivalently reparameterized back to K × K convolutions for efficient
inference. Instead of structurally reparameterizing all convolutions, DyRep (Huang et al., 2022)
aims to selectively reparameterize only important convolutions to improve the training efficiency
of the reparameterized model. Our spatial gradient scaling approach has the benefit of a branched
reparameterization without the added training cost of an augmented network structure.

ACNet (Ding et al., 2019), through pruning experiments, showed that convolution weights on the
central crisscross positions of the 3 × 3 kernels are more important to the model’s representational
capacity than corner weights. To further enhance the kernel crisscross’s importance, they reparame-
terize, during training, 3× 3 convolutions with their Asymmetric Convolution Blocks (ACB). ACB
comprises of parallel 3 × 3, 1 × 3, and 3 × 1 convolutions. They found that models trained with
ACB reparameterization perform better than the base model. Like ACNet, we also emphasize the
importance of kernel central positions. However, instead of using ACB blocks, which add significant
training cost, we scale the gradients of convolution weights with a spatially varying gradient scal-
ing. In fact, by using spatial gradient scaling, we can emulate the presence of multi-branch topology
without adding to the structure and computational cost of the training model.

2.3 FEATURE SELECTION WITH MUTUAL INFORMATION

Mutual information has extensive applications in the domain of computer vision and medical imag-
ing. Mutual information is used by (Pluim et al., 2003). Viola & Wells III (1997) as a metric for
comparing the alignment of a 3D model to video images. Russakoff et al. (2004) use mutual infor-
mation to measure similarity between images. In deep learning, Cheng et al. (2018) used the mutual
information between inputs, outputs, and target labels of a neural network to infer its power of dis-
tinguishing between classes. In this paper, we use mutual information in a novel way to capture
dependencies between neighboring elements within a feature map. We use this spatial information
as a dynamic scale for adjusting the importance of spatial positions in a convolution kernel.

3 METHOD

In this section, we first introduce spatial gradient scaling for convolutional neural networks. We
then establish its connection to reparameterization and mathematically show their equivalence. Fi-
nally, we describe our mutual-information-based approach to dynamically determine spatial gradient
scaling during the training process at a low computational cost.

3.1 SPATIAL GRADIENT SCALING

Gradient scaling adjusts backpropagation by strengthening or diminishing gradients of learnable
parameters based on the significance of their position in the convolutional kernel. Let W (t)

l be the
learnable weights for the l-th convolutional layer at training iteration t. The shape of W (t)

l is denoted
by (coutl , cinl

, kxl
, kyl

), where coutl and cinl
are sizes of output and input channels, respectively,

and (kxl
, kyl

) denotes the kernel size. During each iteration of training, we backpropagate the
training loss Ltrain to calculate the gradients of the learnable parameters ∂L/∂W (t)

l . Following
matrix calculus notations, let ∂L/∂W denote a derivative tensor whose element at the position
indexed by (m,n, o, p) is given by ∂L/∂Wm,n,o,p. Then, a gradient descent optimization step for
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Figure 1: Overview of the framework for learning spatial gradient scalings. In a), we show the kernel
receptive field along with elements and their associated pixel distance to the center. We generate a
discrete average spatial dependence vs. pixel distance function (c) from the input feature map. Using
(c) and pixel distances in (a), we generate the spatial gradient scaling (d). Note that we simplify the
process in the figure by considering pixel distance instead of displacement.

the convolutional layer l with weights Wl can be represented by

W
(t+1)
l ⇐W

(t)
l − λ(t) f

(
∂L

∂W
(t)
l

, W
(t)
l , ...,

∂L
∂W

(0)
l

, W
(0)
l

)
, (1)

where λ(t) is learning rate and f(·) is an optimizer dependent element-wise function of the current
and past gradients and weights. Our approach scales the gradient by a spatial gradient scaling matrix
G

(t)
l , to yield the following gradient descent update rule:

W
(t+1)
l ⇐W

(t)
l − λ(t)f

(
G

(t)
l ⊙

∂L
∂W

(t)
l

, W
(t)
l , ..., G

(0)
l ⊙

∂L
∂W

(0)
l

, W
(0)
l

)
, (2)

where G
(t)
l is a matrix of shape (kxl

, kyl
) and ⊙ denotes element-wise multiplication along dimen-

sions coutl and cinl
. We additionally constrain G

(t)
l to be strictly positive with a mean of 1 to prevent

large changes in the overall gradient direction and magnitude. To account for various optimizers, we
scale the gradient before any optimizer-dependent calculations like momentum and weight decay.

Elements of G(t)
l are learned in three steps. First, we define each element in G

(t)
l by its displacement

from the center element. Next, we measure the average spatial relatedness between every two pixels
in the input feature map that are particularly displaced apart. We denote this as the average spatial
dependence and define it mathematically as a function of the feature map and displacement in Sec-
tion 3.3. Finally, we assign values to elements in G

(t)
l based on the average spatial dependence of

their displacement. The overall process is depicted in Figure 1. We assign higher learning priority
to elements with higher average spatial dependence. Feature maps with a high spatial correlation
over large displacements give rise to more uniform spatial gradient scalings. Feature maps with low
spatial correlations yield center concentrated scalings.

3.2 EQUIVALENCE TO REPARAMETERIZATION

We now establish the relationship between the proposed spatial gradient scaling and parallel convo-
lution reparameterization. Specifically, we show that backward propagation for a single convolution
is different from that of its N -branch reparameterization, where the latter is equivalent to updating
the original convolution with certain spatial gradient scaling.

Consider a kxl
×kyl

convolutional layer l with trainable weights W (t)
l ∈ Rcoutl

×cinl
×kxl

×kyl , input
X

(t)
l and output Y (t)

l at timestep t in training. Following Ding et al. (2019) we can reparameterize
this single convolutional layer into a general N -branch convolutional structure as depicted in Figure
2 (b) with batchnorms after the reparameterization instead of within. Each branch n contains a
convolution with a receptive field no larger than (kxl

, kyl
). To mathematically represent variable-

sized kernels in different branches, we let Ml,n ∈ {0, 1}kxl
×kyl denote a binary mask, which is a

matrix in the shape of the corresponding kernel’s receptive field, as illustrated in Figure. 2 (c).

Considering a forward pass, for each original convolutional layer l with weights W (t)
l , we can find

an equivalent N -branch reparameterization, where each branch n contains a convolutional weight
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Figure 2: An illustration of the equivalence between SGS and structural reparameterization. The
base 3x3 convolution, (a), is structurally reparameterized into (b), a 3-branched reparameterization
with diverse receptive fields. (c) shows the equivalent binary masked convolutions. (d) shows the
equivalent spatial gradient scaling, which is the sum over the binary masks. The gradient is element-
wise multiplied by the spatial gradient scaling before passing to the optimizer.

tensor W
(t)
l,n and associated binary mask Ml,n, such that the reparameterization yields the same

mapping as the original convolution, i.e.,

Y
(t)
l = W

(t)
l ∗X(t)

l =

(
Nl∑
n=1

Ml,n ⊙W
(t)
l,n

)
∗X(t)

l =

Nl∑
n=1

((
Ml,n ⊙W

(t)
l,n

)
∗X(t)

l

)
, (3)

where ⊙ denotes element-wise multiplication across each dimension coutl and cinl
. The second

equality in Eq. 3 decomposes the weight tensor Wl, while the third equality achieves branched
structural form. The equivalence between a convolutional layer and its N -branch reparameterization
with masked representation for each branch is illustrated in Figure 2 (c).

However, in backward passes, Wl updates differently in the reparameterized network than in its
original form. That is, one step of gradient descent on the reparameterization in Eq. 3 has the
following form to yield the merged weights W (t+1)

l for the next timestep:

W
(t+1)
l ⇐W

(t)
l − λ(t)

Nl∑
n=1

(
Ml,n ⊙ f

(
∂L

∂W
(t)
l,n

, W
(t)
l,n , ...,

∂L
∂W

(0)
l,n

, W
(0)
l,n

))
(4)

Note that the learning dynamics for the reparameterized network differ from the original convo-
lution in Eq. 1, which explains why it may attain higher generalization although having identical
expressivity. Despite their different topologies, we show in the following lemma that updates for
the original convolution (Eq. 1) and any of its N -branch reparameterization (Eq. 4) differ only by a
constant spatial gradient scaling Gl.
Lemma 1. Assume f(·) is a linear function in a gradient descent optimization algorithm (e.g.,
momentum, weight decay). For any reparameterization of a convolutional layer l that can be rep-
resented as a summation of N convolutional branches with weights W (t)

l,n and binary receptive field
mask Ml,n, for n = 1, . . . , N , its gradient descent update Equation 4 is equivalent to

W
(t+1)
l ⇐W

(t)
l − λ(t)f

(
Gl ⊙

∂L
∂W

(t)
l

, W
(t)
l , ..., Gl ⊙

∂L
∂W

(0)
l

, W
(0)
l

)
(5)

where Gl =
∑N

n=1 Ml,n is a spatial gradient scaling applied to the original convolution.

The proof in Appendix A follows readily from the equations of gradient descent and the linearity
of convolutions. Lemma 1 has multiple implications. First, it provides an understanding of how
branched reparameterization helps to change the backpropagation dynamics; it redistributes learn-
ing rates spatially to focus on more important weights in a convolutional kernel. Second, Lemma 1
allows us to convert the search for a reparameterization structure into an equivalent numerical gradi-
ent scaling search, which is more efficient and lends itself to analytical methods (as we demonstrate
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in Section 3.3). Our scaling interpretation of structural reparameterization allows us a more flexible
search space unconstrained by the computational complexity of the underlying structure. Third, we
find agreement between our formalized gradient scaling approach and observational rules of thumb
in the reparameterization literature. For example, the current trend of preferring branches with a
diverse range of convolutional receptive fields presented by Ding et al. (2021b) may stem from the
fact that without it, the gradient scaling is uniform and loses its spatial emphasis.

3.3 MUTUAL INFORMATION BASED SPATIAL GRADIENT SCALING

Figure 3: Overview of SGS calculation from the spatial dependencies in the input feature map. (a)
a joint distribution is estimated for every pixel in the feature map and its (i, j) neighbor denoted by
random variables P and Qi,j respectively (b) Mutual information is calculated between P and Qi,j

for all (i, j) and values are placed in spatial dependence matrix (Sl) (c) Sl is transformed to SGS
(Gl) by equation 8 (d) Gl is element-wise multiplied to the kernel gradients.

We describe our approach to finding spatial gradient scalings from the spatial dependencies in the
input feature map. We begin by showing how mutual information can be used to quantify the av-
erage spatial dependency between (i, j)-displaced pixels. We then assign values to elements of our
gradient scalings based on their spatial displacement to the center of the kernel and its associated
average spatial dependency. Figure 3 shows an overview of the method.

We quantify the spatial dependence of two pixels through the use of probabilistic dependence. We
define random variables Pl and Ql,i,j as pixel values in the l-th layer feature map and their associ-
ated (i, j)-displaced neighbor values, respectively. The (i, j)-displaced neighbor for a pixel is the
corresponding pixel (i, j) units away. We express spatial dependence, Sl(i, j), as the normalized
mutual information (MI), Ĩ(·; ·) of the random variables Pl and Ql,i,j :

Sl(i, j) = Ĩ(Pl;Ql,i,j), (6)

Displacement (i, j) spans the entire (kxl
, kyl

) receptive field of the convolution kernel as demon-
strated in Figure 3 (a). We arrange elements of Sl(i, j) into a spatial dependence matrix as illus-
trated in Figure 3 (b). Intuitively, spatial dependency within pixels results in statistical dependencies
in pixel values, which can be detected via mutual information. Ĩ(·) is bounded between 0, when
variables are independent, and 1, with complete mutual dependence.

We calculate the normalized MI from the Shannon entropy H(·) of the random variables:

Ĩ(Pl, Ql,i,j) =
H(Pl) +H(Ql,i,j)−H(Pl, Ql,i,j)

H(Pl, Ql,i,j)
(7)

where H(Pl, Ql,i,j) is the joint entropy of P and Qi,j . We calculate the entropy by estimating
the distributions of Pl and Ql,i,j through discrete binning. High-resolution images often contain
redundant / spatially repeated neighbor pixels that may cause mutual information to overestimate
the amount of useful learnable spatial dependence. To account for this, on ImageNet, we remove
occurrences of Pl with Ql,i,j that are near in pixel values when we estimate their distributions. In
practice, a single image is not large enough to generate accurate distributions for Pl and Ql,i,j , so we
aggregate pixel and their (i, j)-neighbors values over multiple batches of training data. Due to the
inexpensive nature of the mutual information computation, we can afford to perform this calculation
for each convolutional layer and every couple of epochs.
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Dataset Rep Cost FLOPs Params Acc
Method (GPU hrs.) (M) (M) (%)

CIFAR-10

Origin 2.3 313 15 94.90±0.07

DBB∗ 9.4 728 34.7 94.97±0.06

DBB 7.0 728 34.7 95.00±0.1

DyRep∗ 6.9 597 26.4 95.22±0.13

DyRep 7.2 674 25.5 95.00±0.06

SGS (ours) 2.5 313 15 95.20±0.05

CIFAR-100

Origin 2.3 314 15 73.70±0.1

DBB∗ 9.4 728 34.7 74.04±0.08

DBB 7.0 728 34.7 74.40±0.1

DyRep∗ 6.7 582 27.1 74.37±0.11

DyRep 6.4 560 22.8 74.10±0.2

SGS (ours) 2.5 313 15 75.50±0.1

Table 1: Results for VGG-16 on CIFAR-10 and CIFAR-100 trained using the official implementa-
tion of DyRep (Huang et al., 2022). Training is done on a single NVIDIA Tesla V100 GPU. FLOPs
and Parameters are averaged across DyRep runs. Results marked with ∗ are taken from the official
DyRep paper, while the rest are our runs averaged over 5 independent replicas.

To get the spatial gradient scaling, Gl, we transform the spatial dependency matrix Sl with an
element-wise transform parameterized by a hyperparameter k:

Gl =
k × Sl

(k − 1)Sl + 1
, (8)

k converts mutual information values into effective gradient scalings. Finally, we normalize the
mean value of Gl. An overview of the SGS framework is given as pseudo-code in Appendix A.5,
and details can be found in the corresponding open-source code 1.

In short, our scaling defines how significant weight elements are for feature extraction based on their
spatial location within the kernel. In order to determine the scaling, we use mutual information to
measure the notion of spatial dependence between pixels a distance apart. We give high learning
priority to the elements with a large spatial dependence on the center kernel element.

4 EXPERIMENTS AND RESULTS

In this section, we assess the effectiveness of spatial gradient scaling in improving model general-
ization ability. Following convention (Huang et al. (2022), Ding et al. (2021b)), we compare test
accuracies for ResNet and VGG models trained under state-of-the-art reparameterization schemes.
We adopt the model training code and strategy from Huang et al. (2022).

4.1 CIFAR

We train VGG-16 on CIFAR-{10,100} for 600 epochs with a batch size of 128, cosine annealing
scheduler with an initial learning rate of 0.1, and SGD optimizer with momentum 0.9 and weight
decay 1× 10−4. We update our spatial gradient scalings every 30 epochs using 20 random batches
from the training set. We add a 1 epoch warm-up period at the start of training before generating our
gradient scalings. Results are shown in Table 3. Additional results are available in Appendix A.1.

Our framework uses a single hyperparameter k, which defines a functional mapping between mutual
information and spatial gradient scaling. We search for k on CIFAR100 and use the optimal for
experiments on CIFAR10 and ImageNet. We perform a grid search on CIFAR100 and VGG-16 over
k ∈ {2, 3, 4, 5, 6, 7} using 20% of the training set for validation. As k acts to interpret values of
mutual information into meaningful gradient scalings, we may expect k to remain constant across
models and datasets (we test this claim in Section 4.3).

1https://github.com/Ascend-Research/Reparameterization
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Model Rep Cost Avg. FLOPs Avg. params Acc
method (GPU days) (G) (M) (%)

ResNet-18

Origin 4.8 1.81 11.7 71.13±0.04

DBB∗ 8.1 4.13 26.3 70.99
DyRep∗ 6.3 2.42 16.9 71.58
DyRep 9.1 2.92 22.1 71.50±0.03

SGS (ours) 5.1 1.81 11.7 71.65±0.05

ResNet-34

Origin 5.3 3.66 21.8 74.17±0.05

DBB∗ 12.8 8.44 49.9 74.33
DyRep∗ 7.7 4.72 33.1 74.68
DyRep 10.6 4.95 38.3 74.40±0.03

SGS (ours) 5.8 3.66 21.8 74.62±0.05

ResNet-50

Origin 7.5 4.09 25.6 76.95±0.05

DBB∗ 13.7 6.79 40.7 76.71
DyRep∗ 8.5 5.05 31.5 77.08
DyRep 11.0 5.84 38.3 77.11±0.03

SGS (ours) 7.9 4.09 25.6 77.10±0.01

Table 2: Results on ImageNet dataset. We use the official implementation of DyRep (Huang et al.,
2022) on 8 NVIDIA Tesla V100 GPUs. FLOPs and Parameters are averaged across DyRep runs.
Results marked with ∗ are taken from DyRep paper; the rest are our runs averaged over 3 seeds.

Our spatial gradient scaling performs equally or better than state-of-the-art reparameterization meth-
ods at a fraction of their cost. On CIFAR10, our spatial gradient scaling outperforms DBB and
performs as well as DyRep while only requiring a third of their training time. On CIFAR100, we
obtain over 1% accuracy improvement from DBB and DyRep while taking less than half their GPU
hours. We attribute the success of spatial gradient scaling to its enhanced reparameterization space
and strategy. Unlike structural reparameterization methods like DBB and DyRep, we are not limited
by the computational complexity of our blocks, which enables us to explore a much larger space of
reparameterizations. Our formalism of spatial gradient scaling as an equivalent to reparameteriza-
tion also enables us to perform a search in an easily implementable continuous space as opposed to
a discrete structural one. Our mutual information strategy adaptively reparameterizes each convolu-
tion throughout the training process efficiently and effectively (as we show in Section 4.3).

4.2 IMAGENET

We train the ResNet models for 120 epochs, with a batch size of 256, cosine annealing scheduler
with initial lr of 0.1, color jitter augmentation, and SGD with a momentum of 0.1 and weight decay
1 × 10−4. Scalings update every 5 epochs using two random training batches after a one-epoch
model warm-up. Hyperparameter k is taken as the optimal found from the CIFAR100 grid search.
Results are presented in Table 2.

As with CIFAR, we see significantly reduced training times with our spatial gradient scaling method
for equal or better accuracy compared to the state-of-the-art reparameterization methods. The ben-
efits of reparameterization are attained without complicating the model structure with expensive
reparameterization blocks. Large convolution kernels, like the 7 × 7 used in ResNet, are difficult
to structurally reparameterize. First, these large convolutions are expensive in terms of compute
and memory. The addition of a parallel reparameterization branch only increases its computational
cost further. Second, as convolution size increases, so does the number of possible diverse receptive
fields (for example, 7×7’s receptive fields are: 1×1, 1×3, ..., 3×5, ...). DBB and DyRep can only
consider a tiny fraction of the possible set (7×7, 1×7, 7×1, 1×1). Our spatial gradient scaling can
consider all possible receptive fields, even non-standard ones, through our general binary masks. In
addition, our method completely avoids the computational pitfalls of structural reparameterization,
as our reparameterization happens efficiently on the gradient level.
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Dataset SGS Cost Acc
Method (GPU hrs.) (%)

CIFAR-100

Origin 0.40 69.6±0.1

Grid Search 19.6 71.0±0.1

Autocorrelation 0.42 71.1±0.2

SGS (ours) 0.42 71.5±0.1

Table 3: Results of VGG-11 on CIFAR-100 using different spatial gradient scaling search methods.

4.3 ABLATION STUDIES

Effectiveness of Mutual Information Approach. We demonstrate our mutual information ap-
proach’s efficacy in finding high-performance spatial gradient scalings. We compare to autocorrela-
tion, another commonly used dependency measure, as well as a grid search for gradient scalings.

We train all methods on CIFAR100 with VGG-11 for 200 epochs with a batch size of 512, cosine
annealing scheduler with an initial learning rate of 0.1, and SGD optimizer with momentum 0.9 and
weight decay 5× 10−4. For autocorrelation and mutual information, we update our spatial gradient
scalings every 10 epochs using 2 random batches from the training set and a warmup of 1 epoch.

Similar to mutual information, we can measure spatial dependencies using autocorrelation. Specifi-
cally, we calculate the correlation of a feature map with itself shifted by (i, j), where (i, j) indexes
into a spatial dependency matrix (Figure 3.3). We use the same k transform to map autocorrelation
values into gradient scalings. We perform a grid search on over k ∈ {1, 2, 3, 4, 5, 6} using 20% of
the training set for validation. For mutual information, we use the optimal k found in Section 4. We
take several considerations for grid search over spatial gradient scaling to make the search tractable.
First, we reduce the search space by considering a single 3×3 gradient scaling shared by all convolu-
tional layers and constant for all training epochs. We additionally parameterize the scaling matrix by
two variables, α, and β, which determine the ratio of the center element scaling to the edges and cor-
ners respectively (shown in Appendix 7). We search over α, β ∈ {0.8, 1.0, 1.25, 1.7, 5.0, 10, 100}.
Our mutual information approach (SGS) outperforms both autocorrelation and grid search. While
grid search is robust, it suffers from high computational complexity, which requires designing a con-
strained search space. Unlike SGS, grid search cannot effectively adapt across convolution depth
and time without an exponential blowup in the search space. While autocorrelation outperforms
grid search, our mutual information method performs better. We attribute this to the fact that auto-
correlation can only measure linear relationships in the feature map, while mutual information can
measure both linear and non-linear dependencies.

k-Transformation Search. In this section, we investigate the behavior of the k hyperparameter
across models and datasets. Additionally, we corroborate our decision in Section 4 to learn k once
on CIFAR-100 and transfer to ImageNet. Following the training strategy defined in Section 4, we
train and evaluate models over a range of k values and plot the results in Appendix Figure 8.

We observe that k curves across models and datasets peak near k = 5. This may imply that k = 5
is a robust default value. We also find consistent performance gains over baseline for a large range
of k values. This implies that the conventional uniform update of weights is suboptimal, and lower
testing error can be attained via spatial gradient scaling.

5 CONCLUSION

In this paper, we present Spatial Gradient Scaling (SGS), an approach that improves the generaliza-
tion of neural networks by changing the learning dynamics to focus on spatially important weights.
We achieve this by scaling the convolutions gradients adaptively from the spatial dependencies of
feature maps. We propose a mutual information-based approach to compute the gradient scaling with
minimum overhead to the original training routine. We prove that our SGS is equivalent to convolu-
tional reparameterization under certain conditions. This enables us to take advantage of the benefits
of reparameterization without introducing complex branching into model structures. Experiments
show that our method outperforms the state-of-the-art structural reparameterization approaches on
several image classification models and datasets at a much lower computational cost.
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A APPENDIX

A.1 EXPERIMENTS ON CIFAR-100

We report in Table 4 results for the CIFAR-100 dataset on a wide range of CNN architectures. We
train for 200 epochs with a batch size of 128, a cosine annealing scheduler with an initial learning
rate of 0.1, and an SGD optimizer with momentum 0.9 and weight decay 5 × 10−4. For data
augmentation, we use random crop, flip, and cutout. Spatial gradient scalings are updated with
mutual information every 5 epochs, using 2 random batches from the training set, and with k = 5.
At the start of training, we add a warm-up period of 1 epoch before generating our gradient scalings.
Adding spatial gradient scaling to optimization yields performance gains for several architectures.

Model Baseline SGS (Ours)
VGG-11 70.8±0.1 73.2±0.1

VGG-13 74.7±0.1 76.1±0.1

VGG-16 74.9±0.1 76.2±0.1

VGG-19 74.6±0.1 76.1±0.2

ResNet-18 77.8±0.1 78.8±0.1

ResNet-34 79.0±0.3 80.0±0.2

ResNet-50 79.1±0.2 79.6±0.2

ShuffleNet 72.4±0.1 72.8±0.2

MobileNetV2 73.9±0.1 74.2±0.2

SeResNet-18 78.4±0.1 79.6±0.1

SeResNet-34 79.3±0.2 80.3±0.2

PreActResNet-18 75.7±0.1 76.3±0.1

PreActResNet-34 77.4±0.1 77.9±0.1

PyramidNet (α = 48) 79.1±0.1 79.9±0.2

PyramidNet (α = 84) 81.1±0.1 81.6±0.1

PyramidNet (α = 270) 83.3±0.1 83.6±0.1

Xception 79.0±0.1 80.0±0.1

Table 4: Results for models trained on CIFAR-100 with and without spatial gradient scaling. Re-
sults are averaged over 3 independent replicas.

A.2 COMPARISONS TO ADAPTIVE GRADIENT OPTIMIZERS

In this section, we compare spatial gradient scaling to popular adaptive gradient optimizers. Unlike
adaptive optimizers, which typically optimize based on the model weights and gradients of previous
timesteps, our gradient scaling uses the spatial properties within the training data to effectively scale
convolution gradients. In Table 5, we present CIFAR-100 results for various optimizers with and
without spatial gradient scaling. We tune optimizer hyperparameters with a grid search using 20% of
the training data for validation. We focus our search on learning rate and weight decay, leaving other
optimizer settings as PyTorch defaults. Training and SGS settings, outside of searched optimizer
hyperparameters, are identical to those described in Appendix A.1. We find that spatial gradient
scaling improves the performance of even the highest-performing optimizer, SGD + Momentum.
Moreover, all tested optimizers, Adagrad being the only exception, benefitted from spatial gradient
scaling. Even in Adagrad’s case, we can find performance gain by applying gradient scaling post-
optimizer calculations and right before the weight update step (shown as Adagrad*) as opposed to
directly to the back-propagated gradient and before optimizer calculations.

A.3 SENSITIVITY TO DIFFERENT TRAINING SETTINGS

In this section, we empirically study performance improvement by spatial gradient scaling across
training hyperparameters. Results are shown in Table 6. Training and SGS settings, outside of
those in the ablation study, are identical to Appendix A.1. We find performance improvements over
the baseline under all tested hyperparameter configurations. This suggests that SGS can be used
effectively to improve ConvNets training without requiring extensive hyperparameter tweaking.
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Model Optimizer No SGS SGS (Ours)
VGG-11 SGD 68.3±0.1 70.7±0.1

SGD + Momentum 71.0±0.1 73.2±0.1

Adadelta 69.2±0.2 70.8±0.1

Adagrad 66.2±0.1 66.2±0.2

Adagrad* 66.2±0.1 67.0±0.1

Adam 68.8±0.2 70.4±0.2

Adamax 68.4±0.2 69.9±0.1

NAdam 69.2±0.1 70.2±0.1

RAdam 69.8±0.1 71.1±0.1

ResNet-18 SGD 75.8±0.2 76.3±0.1

SGD + Momentum 77.6±0.1 78.5±0.1

Adadelta 75.8±0.2 76.4±0.1

Adagrad 72.2±0.2 72.3±0.2

Adagrad* 72.2±0.2 72.9±0.1

Adam 75.1±0.1 76.2±0.1

Adamax 74.9±0.1 75.8±0.1

NAdam 75.6±0.1 76.0±0.1

RAdam 76.2±0.2 76.8±0.1

Table 5: Results for models trained on CIFAR-100 using a range of optimizers, with and without
spatial gradient scaling. Results are averaged over 3 independent replicas.

Model Epochs Batch Size Baseline SGS (Ours)
VGG-11 100 64 70.4±0.2 71.1±0.1

128 70.8±0.1 72.5±0.2

512 68.8±0.2 70.8±0.1

200 64 71.0±0.1 72.4±0.2

128 70.8±0.1 73.2±0.1

512 68.6±0.2 71.6±0.1

600 64 71.0±0.1 73.0±0.1

128 70.1±0.2 73.2±0.1

512 68.2±0.1 71.3±0.1

ResNet-18 100 64 77.5±0.2 78.1±0.1

128 77.5±0.1 78.0±0.2

512 75.2±0.1 75.6±0.1

200 64 77.8±0.2 78.4±0.1

128 77.8±0.1 78.8±0.1

512 76.2±0.1 76.7±0.1

600 64 78.0±0.1 78.7±0.1

128 77.9±0.1 79.0±0.1

512 76.4±0.1 77.2±0.2

Table 6: Performance gain of spatial gradient scaling on CIFAR-100 using a range of training
hyperparameters with and without spatial gradient scaling. Results are averaged over 3 independent
replicas.
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A.4 EXPERIMENTS ON SEMANTIC SEGMENTATION AND HUMAN POSE ESTIMATION

We consider semantic segmentation and human pose estimation to evaluate our spatial gradient scal-
ing. For semantic segmentation, we adapt our training code and strategy from SemSeg 2. We train
and evaluate the PSPNet models on the Cityscapes dataset. PSPNet is composed of a ResNet-
18/34/50 backbone and an up-sampling head for pixel-level classification. Using the backbone
weights of the ResNet models pre-trained on ImageNet with and without SGS (Section 4.2), we
fine-tune with and without SGS on Cityscapes. Results are shown in Table 7.

Model Baseline (mIoU/mAcc/allAcc) SGS (mIoU/mAcc/allAcc)
PSPNet-18 72.8/80.0/95.3 73.7/81.1/95.4
PSPNet-34 76.1/84.0/95.7 76.8/84.3/95.9
PSPNet-50 75.4/82.8/95.8 75.6/82.8/95.9

Table 7: Results for PSPNet models trained and fine-tuned with and without spatial gradient scaling
on the semantic segmentation task.

For human pose estimation, we use the training code and strategy from Pytorch-Pose-HG-3D 3.
We train and evaluate on MPII dataset with MSRA ResNet. MSRA ResNet has a Resnet-18/34/50
backbone which we take pretrained from ImageNet with and without SGS. We then fine-tune with
and without SGS on MPII. Results are shown in Table 8.

Model Baseline (PCKh@0.5) SGS (PCKh@0.5)
MSRA ResNet-18 83.8 84.4
MSRA ResNet-34 85.8 86.2
MSRA ResNet-50 85.3 85.6

Table 8: Results for MSRA ResNet models trained and fine-tuned with and without spatial gradient
scaling on the human pose estimation task.

A.5 TRAINING PSEUDO CODE

Algorithm 1 Spatial Gradient Scaling Training
Input: Training dataset X . Set of spatial gradient scaling SGS. Number of epochs E for training.
Number of SGS warmup epochs Ne. Number of batches Nb for SGS calculation. Set of convolution
layers L.

for e = 0, ..., (E − 1) do
if e divisible by Ne then

b← randomly sample Nb batches from X
Forward propagate b and assign the input feature map of convolution layer l to the set Xl

for l in L do
for (i, j) in kernel size of l do

P,Q(i,j) ← List of pixels of Xl and their corresponding (i,j)th neighbours
SGSl,(i,j) ←Mutual Information between P and (i, j) neighbour Q(i,j)

for (x, y) in (X,Y ) do
Forward and backward propagate (x, y)
for l in L do

for (i, j) in kernel size of l do
Scale the lth convolution spatial (i, j) gradient element with SGSl,(i,j)

Update weights with gradients

2https://github.com/hszhao/semseg
3https://github.com/xingyizhou/pytorch-pose-hg-3d
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A.6 LEARNED SPATIAL GRADIENT SCALING

In Figure 4, we plot the spatial gradient scalings for the first, seventh, and last convolutional layers
of VGG-16 at the start and the end of its training on CIFAR-100. We observe more uniformly dis-
tributed gradient scaling for beginning layers giving equal relative importance to all kernel weights.
Deeper layers have center-focused gradient scalings with most of the importance distributed on the
center and edge elements as opposed to the corners. Interestingly, we observe that after training,
spatial gradient scalings for deeper layers become even more center-focused, indicating a decrease
in the spatial dependencies of the feature map.

Figure 4: Spatial gradient scaling for the first, seventh, and last convolutional layer of VGG16 on
CIFAR-100 at the beginning and end of training.

We plot gradient scalings for ResNet18 on ImageNet in Figure 5. Like CIFAR, we see uniform
spatial gradient scalings in early layers and center-focused scaling in deeper layers. Contrary to
CIFAR, however, we find that gradient scalings “smoothen” over time and become more uniform.
Discrepancies between the behavior of spatial gradient scaling on CIFAR and ImageNet warrant
future investigation.

Figure 5: Spatial gradient scaling for the first, eight, and last convolutional layers of ResNet18 on
ImageNet at the beginning and end of training. The first layer is a 7× 7 convolution.

A.7 WEIGHT MAGNITUDES

Similar to Ding et al. (2019), we investigate the average kernel magnitude matrix of learned weights
with and without our spatial gradient scaling. For a convolution weight, the average kernel magni-
tude matrix is defined as the mean of the absolute value of the weight tensor across the input and
output channels (leaving the spatial channels intact). We further normalize the mean of the matrix
for meaningful comparisons.

Figure 6 depicts the average kernel magnitude matrix for the first, seventh, and last convolutional
layer of VGG-16 trained on the CIFAR-100 dataset with and without spatial gradient scaling. We
additionally show the spatial gradient scaling of the last training epoch of the SGS training scheme.
Similar to Ding et al. (2019), we observe that our spatial gradient scaling modifies the normally
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Figure 6: Comparison of the average kernel magnitude matrix of the first, seventh, and last convolu-
tion weight between regularly trained VGG16 on CIFAR-100 and the network trained with gradient
scaling. We also show the spatial gradient scaling during the last epoch of SGS training.

trained kernel magnitude matrix to focus more on the center and edge elements. We also qualitatively
observe the similarities between the shape of spatial gradient scaling and the final trained weights.

A.8 PROOF FOR EQUIVALENCE TO REPARAMETERIZATION

In this section we prove by induction lemma 1 for optimizers that are linear functions of current and
past weights and gradients i.e.,

f

(
∂L

∂W
(t)
l

, W
(t)
l , ...,

∂L
∂W

(0)
l

, W
(0)
l

)
=

t∑
τ=0

(
γ(τ) ∂L

∂W
(τ)
l

+ ζ(τ)W
(τ)
l

)

where W
(t)
l and ∂L/∂W (t)

l are the weights and respective gradients for the l-th convolutional layer
at training iteration t and f(·) is a linear optimizer parameterized by arbitrary γ(τ) and ζ(τ).

We begin by defining two models: a base convolutional layer, and its n-branch reparameterization
which at t = 0 has an identical mapping:

Yl = W
(0)
l ∗Xl =

(
N∑

n=1

Ml,n ⊙W
(0)
l,n

)
∗Xl =

N∑
n=1

((
Ml,n ⊙W

(0)
l,n

)
∗Xl

)

Our goal is to find a modified update rule for the single convolution such the mappings are identical
throughout training i.e., ∀(t ≥ 0) the following holds:

W
(t)
l =

N∑
n=1

Ml,n ⊙W
(t)
l,n (9)

Assume equation 9 holds ∀(t ≤ t0) (we know this is for sure the case for t0 = 0). We wish to
find an update rule for the single convolution such that equation 9 holds for t = t0 + 1 and thus
∀(t ≤ (t0 + 1)). Together with our assumption of identical mapping at t = 0, we can then ensure
equation 9 holds ∀(t ≥ 0).
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Assuming equation 9 holds ∀(t ≤ t0) we find the update equation for the merged weights W t0+1
l

as:
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We then show that when equation 9 holds for t then:
∂L

∂W
(t)
l,n

=
∂L

∂W
(t)
l

First we demonstrate that the convolution gradient is only a function of the input tensor, X(t) and the
output gradient, ∂L/∂Y (t), and not of the weight W . We make use of the tensor index and Einstein
summation notation:

Y (t) = W (t) ∗X(t)
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Given equation 9 we can now show:
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Finally, picking up where we left off:
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We arrive at lemma 1.
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[
K−1,−1 K−1, 0 K−1,+1

K 0,−1 K 0, 0 K 0,+1

K+1,−1 K+1, 0 K+1,+1

]
:=

[
1/β 1/α 1/β
1/α 1 1/α
1/β 1/α 1/β

]
× 9

1 + 4/a+ 4/b

Figure 7: α and β parameterization of the spatial gradient scaling used for the scaling grid search.
α and β determine the ratio between the center element and the edges and corners respectively. An
additional multiplication factor is added to ensure a normalized mean.

Figure 8: Results for K search for VGG-16 on CIFAR100 and ResNets on ImageNet. Accuracies
are normalized such that the baseline is 0 and reported results of k = 5 is 1.

19


	Introduction
	Related Work
	Multi-branch Structures
	Structural Reparametrization
	Feature Selection with Mutual Information

	Method
	spatial gradient scaling
	Equivalence to Reparameterization
	Mutual Information Based spatial gradient scaling

	Experiments and Results
	CIFAR
	ImageNet
	Ablation Studies

	Conclusion
	Appendix
	Experiments on CIFAR-100
	Comparisons to Adaptive Gradient Optimizers
	Sensitivity to Different Training Settings
	Experiments on Semantic Segmentation and Human Pose Estimation
	Training Pseudo Code
	Learned Spatial Gradient Scaling
	Weight Magnitudes
	Proof for equivalence to reparameterization


