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Figure 1. Overview. Our proposed SceneGen framework takes a single scene image and its corresponding object masks as inputs, and
efficiently generates multiple 3D assets with coherent geometry, texture, and spatial arrangement in a single feedforward pass.

Abstract

3D content generation has recently attracted signifi-
cant research interest, driven by its critical applications in
VR/AR and embodied Al In this work, we tackle the chal-
lenging task of synthesizing multiple 3D assets within a
single scene image. Concretely, our contributions are four-
fold: (i) we present SceneGen, a novel framework that
takes a scene image and corresponding object masks as
input, simultaneously producing multiple 3D assets with
geometry and texture. Notably, SceneGen operates with
no need for extra optimization or asset retrieval; (ii) we
introduce a novel feature aggregation module that inte-
grates local and global scene information from visual and
geometric encoders within the feature extraction module.

*: These authors contribute equally to this work.

Coupled with a position head, this enables the generation
of 3D assets and their relative spatial positions in a sin-
gle feedforward pass; (iii) we demonstrate SceneGen’s di-
rect extensibility to multi-image input scenarios. Despite
being trained solely on single-image inputs, our architec-
ture yields improved generation performance when multi-
ple images are provided; and (iv) extensive quantitative and
qualitative evaluations confirm the efficiency and robust-
ness of our approach. We believe this paradigm offers a
novel solution for high-quality 3D content generation, po-
tentially advancing its practical applications in downstream
tasks. The code and model will be publicly available at:
https://mengmouxu.github.io/SceneGen.

“Everything you can imagine is real.”

—— Pablo Picasso


https://mengmouxu.github.io/SceneGen

1. Introduction

The growing demand for immersive digital environments
in applications such as virtual/augmented reality (VR/AR)
and embodied Al has spurred significant advancements in
3D content generation [6, 8, 9, 13, 14, 28]. While early
efforts primarily focus on synthesizing individual 3D as-
sets [33, 58, 68], recent research attention has shifted to the
more challenging task of 3D scene generation. Generating
realistic 3D scenes [5, 11, 15, 16, 19, 63, 64], whether con-
ditioned on input text or images, requires synthesizing mul-
tiple assets with accurate geometry, texture, and spatial rela-
tionships. This challenge fundamentally hinges on two key
capabilities: (i) 3D asset generation for creating plausible
asset geometric topologies from limited textual or visual in-
put; and (ii) spatial arrangement for managing inter-object
spatial relationships to ensure physical plausibility, such as
support, occlusion, and other interactions among assets.

In general, existing works fall into two paradigms: (i)
retrieval-based methods [12, 38, 48, 60] typically employ
LLMs for layout planning and retrieve matching 3D assets
from existing libraries to assemble scenes. Though straight-
forward, their flexibility is constrained by the coverage
of available asset libraries; (ii) two-stage approaches [18,
35, 61] first synthesize individual 3D assets and then em-
ploy vision-language models (VLMs) or optimization tech-
niques to refine scene structure and spatial arrangement.
While more flexible, their reliance on iterative optimiza-
tion inevitably leads to inefficiency and error accumulation.
The most relevant works to ours are PartCrafter [34] and
MIDI [23], which generate parts or multiple assets from a
single image. However, they still suffer from limited syn-
thesis fidelity and inaccurate spatial relations among assets.

To tackle the aforementioned challenges, we propose
SceneGen, a novel 3D scene generation model designed to
simultaneously generate multiple assets, including their ge-
ometry, texture, and spatial positions, from a single scene
image in a single feedforward pass (Figure 1). Concretely,
our framework builds upon an existing single-asset gener-
ation model [58] and incorporates three key modules: fea-
ture extraction, feature aggregation, and output.

Specifically, the feature extraction module first strategi-
cally leverages off-the-shelf visual [42] and geometric [52]
encoders to extract both asset-level and scene-level repre-
sentations. Subsequently, our proposed feature aggrega-
tion module, composed of local and global attention blocks,
effectively integrates these visual and geometric features
while facilitating inter-asset interactions during generation
to ensure geometrically plausible topologies. Finally, lever-
aging this comprehensive scene context, the output module
can directly decode the generated latent features into the as-
sets’ relative position, geometry, and texture via a position
head and a pre-trained structure decoder.

Moreover, despite being trained exclusively on single-

image samples, SceneGen exhibits remarkable generaliza-
tion to multi-image input scenarios, yielding even better
generation quality, which primarily stems from our dedi-
cated architectural design. To ensure a comprehensive and
reliable evaluation of SceneGen, we systematically adopt
multiple metrics focusing on both geometric and visual
quality. Both quantitative and qualitative results demon-
strate that our proposed SceneGen significantly outperforms
previous methods in terms of generation quality and effi-
ciency, which can generate a textured scene with four assets
in approximately 2 minutes on a single A100 GPU.

The rest of this paper is organized as follows: Sec. 2 pro-
vides a comprehensive review and discussion of related lit-
erature. Sec. 3 elaborates on our proposed SceneGen frame-
work. Sec. 4 presents extensive quantitative and qualitative
evaluations. Finally, Sec. 5 concludes with key insights and
contributions. To our knowledge, SceneGen is the first 3D
scene generation model capable of simultaneously synthe-
sizing geometry, texture, and relative positions of mul-
tiple 3D assets in a single feedforward pass, without re-
quiring per-scene optimization. We believe this work will
inspire future advances in high-quality, efficient 3D content
generation and facilitate diverse downstream applications.

2. Related Work

3D visual perception. Extensive research has advanced 3D
visual perception, where traditional methods like SfM [47,
51] rely on computationally intensive optimization for
3D reconstruction. Notably, emerging feedforward meth-
ods [3, 27, 30, 50, 52-54, 67, 70] have demonstrated ef-
ficient 3D perception, with DUSt3R [54] pioneering this
trend and VGGT [52] establishing a minimalist yet power-
ful paradigm that distills geometric priors from large-scale
data without explicit 3D inductive biases or optimizations.

3D asset synthesis. Typically, 3D asset synthesis aims to
generate object-centric geometry and texture from text or
image inputs. The recent success of diffusion models [22] in
2D generation [37, 43, 46, 55, 56] has inspired the develop-
ment of learning-based, scalable 3D content [6, 8, 9, 13, 14,
28] generation, which produce 3D asset in various represen-
tations, including explicit forms such as point clouds [40],
voxels [25, 41], and SDFs [4, 32], as well as implicit ones
like 3D Gaussians [20, 66] and NeRFs [1, 31, 59]. Sub-
sequent advances leverage VAEs [29] for compressing 3D
geometry or textures [33, 58, 68] and adopt hybrid mesh-
texture pipelines [24, 26, 57, 65], with TRELLIS [58]
demonstrating scalable, high-fidelity generation via struc-
tured latents. Nevertheless, these methods remain restricted
to single-asset synthesis and fundamentally lack the capa-
bility to model complex multi-asset scenes.

3D scene generation. Beyond single-asset synthesis, 3D
scene generation is more challenging yet valuable, aiming
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Figure 2. 3D Scene Generation. (a) Existing methods typically
require segmenting target objects from the scene image; (b) Two-
stage methods like CAST [61] sequentially retrieve or generate in-
dividual assets, then assemble them via post-processing; (c) Meth-
ods such as MIDI [23] directly generate multiple assets from a
single image, but suffer from blurry details and unreasonable spa-
tial layouts; (d) In contrast, our SceneGen jointly synthesizes the
geometry, texture, and spatial positions of multiple assets in a sin-
gle feedforward pass, producing plausible 3D scenes.

to produce multiple coordinated, physically plausible as-
sets within a scene. Prior text-based approaches primar-
ily leverage LLMs for layout planning [12, 38, 48, 60]
and retrieve suitable assets from existing libraries. Subse-
quent image-based methods employ segmentation [5, 10,
15, 19, 63], scene graphs [11, 16, 64] and depth/point
cloud alignment [10, 49, 61] to assist in multi-asset gen-
eration and arrangement. As depicted in Figure 2 (b), re-
cent optimization-based methods [18, 35, 61] adopt VLMs
for post-processing, refining scene structures via image- or
text-guided adjustments, but inevitably suffer from ineffi-
ciency. Other works (Figure 2 (c)), such as MIDI [23] and
PartCrafter [34], explore scene generation conditioned on
a single image, but inherently sacrifice reconstruction fi-
delity due to their reliance on canonical-space representa-
tions. To overcome these limitations, our proposed Sce-
neGen uniquely integrates asset-level and scene-level fea-
tures, enabling robust and efficient 3D scene generation.

3. Method

In this work, we present SceneGen, designed to jointly per-
form 3D asset generation within scenes and predict rela-
tive spatial positions among assets. Here, we first formally
describe our problem formulation in Sec. 3.1; followed by
elaboration on our model architecture and training method
in Sec. 3.2 and Sec. 3.3, respectively; finally, we extend
SceneGen to multi-view input scenarios in Sec. 3.4.

3.1. Problem Formulation

Our proposed SceneGen is a single-stage feedforward 3D
scene generation model (Gscene), Which takes a scene
image (Igcene) containing N objects and corresponding
masks ({m;}¥,) as input, simultaneously generating 3D
asset structure and texture representations ({S;} ), and
their relative positions ({ P; }_,), formulated as:

{(SuPz)}f\L1 = gScene(IScenea {m1 iil)

Here, the position of each asset relative to a pre-selected
query asset, is denoted as P; = [t;, q;, s;] € RS, compris-
ing t; € R? (translation), q; € R* (rotation quaternion),
and s; € R! (scale factor). By default, we select the asset
with ¢ = 1 as the query asset, with its parameters fixed as:
tquery = [0,0,0], 9query = [1,0,0,0], Squery = 1.

3.2. SceneGen

SceneGen framework (Ggcene) comprises three key stages:
(i) feature extraction, employing a scene visual en-
coder (®y) and a scene geometric encoder (®¢) to extract
visual and structural features within the scene, implemented
using pre-trained DINOv2 [42] and VGGT [52], respec-
tively; (ii) feature aggregation, comprising M DiT [43]
blocks, each integrating a local attention block, a global
attention block, and a feedforward network; and (iii) out-
put module, which introduces a position head (¥ ) for
predicting the spatial locations of assets and adopts off-the-
shelf sparse structure (SS) and structured latents (SLAT) de-
coders [58] for decoding scene geometry structures. By in-
tegrating these complementary modules, our SceneGen ef-
fectively captures both local asset-level and global scene-
level features, enabling it to simultaneously generate multi-
ple 3D assets and predict their relative positions.

Feature extraction. SceneGen starts with extracting both
local and global features from a given scene image (Lscene)
with the visual encoder ($y/) and geometric encoder ().
Specifically, for each object with its corresponding seg-
mentation mask (m;), we obtain four complementary fea-
ture representations: (i) the object’s individual visual fea-
tures (F)); (ii) the visual features of its mask (F25%); (iii)
scene global visual features (]-'g‘;fobal); and (iv) the global
geometric features (fggﬁial), formulated as:

]_-1\/ = (I)V(Iscene ® mi)) ]:imaSk = ‘I)V(mi)a
fg‘{obal = Dy (Iscene)7 Fggﬁ)oba] = (I)G(Iscene)
Here, ® denotes pixel-wise multiplication. These features

are then concatenated along the sequence length dimension
into a unified scene context (F;°°"°), formulated as:

scene __ V. rmask, TV . Tgeo
]:i - []:l 7]:i 7]:global7]:global}
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image with multiple objects and corresponding segmentation masks
of each asset. Then, our introduced global attention block integrates
geometric encoders. Finally, two off-the-shelf structure decoders and

our position head decode these latent features into multiple 3D assets with geometry, texture, and relative spatial positions.

Feature aggregation. To integrate the extracted scene con-
text features (F;°"¢), SceneGen employs a feature aggre-
gation module, that enables the simultaneous generation of
multiple 3D assets. This module comprises a local attention
block that refines details of individual assets, a global atten-
tion block that incorporates scene context to facilitate inter-
asset interactions, and a feedforward network. Concretely,
the local attention blocks and feedforward networks are ini-
tialised from pre-trained weights from TRELLIS [58], a
flow-matching [36] model designed to synthesize 3D con-
tent from noisy sparse structure latents. For clarity and con-
ciseness, given the sparse structure latents ({x;},, where
each x; € RTXC) of N objects in a scene, we denote the
standard attention mechanism as Attention(Q, K, V), and
elaborate on a single DiT block as follows.

The local attention block aims to enhance details of in-
dividual objects through asset-level self-attention (AS) and
cross-attention (AC). To be specific, it focuses on fusing the
latent features of each object (x;) with their corresponding
visual features (") to yield refined representations of each
object (xAC), which can be formulated as:

xMS = Attention(x;, x;,%;)

(2

xiAC = Attention(x?s, -Evvfzv)

To establish inter-dependencies among 3D assets, we
propose a global attention block, comprising scene-level
self-attention (SS) and cross-attention (SC), which capture
inter-object relationships and integrate scene geometry, re-
spectively. Consequently, this design ensures physically
plausible spatial arrangements of generated assets.

Similar to [52], we initialize one learnable position to-
ken (p,) and four register tokens (r;) [7] for refined features
of each object (x*©), denoted as: X; = [p;; 7i; x*C], where
[-; -] refers to concatenation along the token length dimen-
sion. Notably, we assign a unique position token (Pgery)
and register tokens (T query) to the query asset, while adopt-
ing shared position token (p;) and register tokens (7;) for
other assets. For each asset feature (x; € RT*C), we con-
catenate them along the token sequence dimension to form
a unified scene representation (X € RWVT)XC) which is
processed by our scene-level self-attention layer, resulting
in updated tokens of each asset ({x$5} ), formulated as:

i Ji=1
{x

Through this process, intra-asset and inter-asset informa-
tion aggregation establishes essential shape and position
awareness for coherent multi-asset generation. We then em-
ploy scene-level cross-attention to integrate multiple pre-
extracted scene-aware features, thus incorporating 3D geo-
metric context. The features of each asset are updated into

geometry-aware representations ({x$°}2Y ), denoted as:

SS\N _
i Ji=1 —

Attention(X, X, X)

sc . SS scene scene
x7~ = Attention(xy”, Feone, Foene)

This preserves object-specific details while integrating
global geometric constraints, which effectively addresses
occlusion challenges and enables geometric refinement.

Output module. After passing through M DiT blocks,
we obtain the updated position tokens ({p}X¥ ) and latent
features ({X}Y,) of each generated asset, which are sub-
sequently decoded into their relative spatial positions and



detailed 3D representations (structure and texture), respec-
tively. For relative positions, we concatenate the position
tokens of all non-query assets, which are then decoded into
corresponding 8D position vectors ({P,;}ﬁVZQ) by our pro-
posed position head (¥;,.s), comprising four self-attention
layers and a linear layer, denoted as:

{Pz}i\[ﬂ = {[iivihvéi]}i]iQ = q’pos({ﬁi}i]iz)

Here, each vector (P;) represents an asset’s spatial posi-
tion (translation, rotation, and scale) relative to the pre-
selected query asset (¢ = 1). Furthermore, the latent fea-
tures can be directly decoded into the geometry and texture
of each asset ({S}.,) using off-the-shelf sparse structure
generator (Gg) and structured latents generator (Gy,) from
TRELLIS [58], formulated as:

{S}fvzl = gL(gS({i}i]\Ll))
3.3. Training

During training, only the global attention blocks, learnable
position tokens, and position head are optimized, with all
other parameters frozen to facilitate efficient training, as de-
picted in Figure 3. The technical details regarding training
data and loss function designs are presented below.

Training data. Our SceneGen model is trained on the 3D-
FUTURE [14] dataset, containing photorealistic scene ren-
derings with instance masks and asset annotations. This
dataset comprises 12K training scenes and 4.8K test scenes,
each featuring a scene image with one or multiple objects.
To better capture inter-object spatial relationships, we aug-
ment the training set by iteratively designating each asset
as the query asset while randomly permuting the remaining
assets, which expands the effective training samples to 30K.

Training objectives. Our SceneGen model is trained end-
to-end using a composite loss function (£) comprising three
key components: (i) the average conditional flow match-
ing [36] loss (L¢tm), applied to each generated asset for su-
pervising asset generation; (ii) the position loss (Lp0s) for
maintaining accurate relative spatial arrangements among
assets; and (iii) the voxel-space collision loss (L) for en-
forcing physically plausible object placement. The overall
objective function (£) combines these components with a
weighting factor (A), which can be formulated as:

L= £Cfm + A(ﬂpos + Ecoll)

Concretely, the flow matching loss establishes straight prob-
ability paths between distributions via linear interpolation:
x;(t) = (1—t)x?+te, where e ~ N(0,1), ¢ € [0,1], and x?
denotes the noise-free sparse structure latents for each of the
N assets. The conditional flow matching objective (Lcpy)
learns a parameterized function vy to approximate the ve-

locity field (v(x;(t),t) = V;x;(t)), represented as:

N
1
['cfm(o) = N E Et,EH’UQ(Xi(t)at) - (E - X?)H%
=1

The position loss (L0s) adopts a p-weighted Huber loss (|-
ls,) between the predicted positions (P, = [ii,f]i,éi])
for all non-query assets ( € [2,...,N]) and their ground
truth (P; = [¢;, q;, Si]), denoted as:

N
ACpos = Z(,U/t”(iz - ti)/dscene||6p
=2
+hqll@; — aillsr + psllsi — sillsp)

Here, the translation error component is normalized by the
scene scale (dgcene) Of each sample to mitigate numerical
instability caused by varying query asset selections. This
stabilizes translation loss during training while improving
generalization across distinct query asset configurations.
The collision loss (L) quantifies surface collision in
a 64 x 64 x 64 voxel grid (V). Specifically, the pre-
dicted sparse structure latents (X;) are decoded into point
clouds ({p, }%_,) via a pre-trained sparse structure decoder
from TRELLIS [58], then transformed using predicted pose
parameters (Pi) and voxelized into V. The collision loss
is defined as the ratio of overlapping surface voxels to all
surface voxels, using the Huber loss (|| - ||s.,), denoted as:

SV > 1]
Leon = |[ToUscene|lse = Hm“éc

Ideally, IoUgcene = 0 indicates there are no asset collisions.

3.4. Extension to Multi-view Inputs

Despite being trained exclusively on single-image samples,
our model exhibits inherent multi-view compatibility, en-
abled by its flexible feature extraction and conditioning
strategy. Given a scene with K input views ({I¥,. }K ),
the visual features (FF£) for each view are extracted inde-
pendently via the visual encoder (®y,), while the geometric
features are derived from a unified scene representations en-
coded by aggregating information across all views using the
geometric encoder (®), denoted as:

J:geo = (I)G({Igcene}f:l)[k]

The final asset positions are determined by averaging the
predictions across all views. Experimental results (detailed
in Sec. 4.3) indicate that this multi-view inference scheme
improves generation quality by leveraging better geometric
understanding, despite the model having never been explic-
itly fine-tuned on such multi-view inputs.



Method Instance Geometric Metrics Image Visual Metrics Inference
Specific [CD-S] CD-O F-Score-ST F-Score-O7 IoU-B1| Category |[PSNRT SSIM7 LPIPS] FID] CLIP-ST DINO-S7| Time (s)
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Table 1. Quantitative Comparisons on the 3D-FUTURE Test Set. We evaluate the geometric structure using scene-level Chamfer
Distance (CD-S) and F-Score (F-Score-S), object-level Chamfer Distance (CD-O) and F-Score (F-Score-O), and volumetric IoU of object
bounding boxes (IoU-B). For visual quality, CLIP-S and DINO-S represent CLIP and DINOv2 image-to-image similarity, respectively. We
report the time cost for generating a single asset on a single A100 GPU, and * indicates adopting MV-Adapter [24] for texture rendering.

4. Experiments

This section starts with the experimental settings in Sec. 4.1,
followed by comprehensive quantitative and qualitative
evaluations in Sec. 4.2 and Sec. 4.3, respectively. Finally,
we conduct ablation studies in Sec. 4.4.

4.1. Experimental Settings

Implementation details. All experiments are conducted on
8x NVIDIA A100 GPUs, where we train SceneGen for 240
epochs using the AdamW [39] optimizer with a learning
rate of 5 x 10~° and a batch size of 8. The weighting factor
A decays dynamically within [0.2, 1] using a decay factor of
0.99, and the thresholds of Huber loss d p and d¢ are set to
0.02 and 0.05, respectively. To handle varying numbers of
assets across training scenes, each training step dynamically
samples scenes containing identical asset counts. During
inference, we adopt 25 sampling steps with the classifier-
free guidance (CFG) weight set to w = 5.0.

Evaluation metrics. We assess the generated 3D scenes
from both geometric and visual perspectives. For geome-
try, we reconstruct point clouds from the synthesized asset
surfaces and align them with the ground truth using Fil-
terReg [17] for faster and more accurate registration than
traditional Iterative Closest Point (ICP [2]). We then com-
pute commonly used point cloud metrics, Chamfer Dis-
tance (CD) and F-Score, at both scene and object levels,
as well as the volumetric IoU of asset bounding boxes.

For visual quality, we focus on the scene texture render-
ing. Specifically, after alignment with the ground truth point
cloud, we render the predicted scenes with Blender from the
original input camera viewpoint. We consider two types of
ground truth: (i) instance-masked scene images extracted
using corresponding object masks, and (ii) images rendered
from ground truth assets at the same viewpoint (excluding
ambient lighting). We compare our rendered results with
both types of ground truth using PSNR, SSIM, LPIPS [69],

FID [21], CLIP [44] similarity, and DINOv2 [42] similarity
to assess the texture quality of generated assets. Regarding
efficiency, we report the inference time cost for synthesiz-
ing a single 3D asset on a single A100 GPU. More details
will be included in the Supplementary Material.

Baselines. We compare SceneGen with representative
3D scene generation methods, including PartCrafter [34],
DepR [71], Gen3DSR [10], and MIDI [23], using their
pre-trained models. Specifically, we adopt object masks
to specify generation targets for all baselines except for
PartCrafter, which does not support mask-based control. In-
stead, we directly provide PartCrafter with extracted objects
and the number of assets as input. Moreover, as PartCrafter
and DepR do not offer code for texture rendering, our eval-
uation of these methods focuses on geometric quality, while
visual quality is compared with Gen3DSR and MIDI (rely-
ing on MV-Adapter [24] for texture synthesis).

Benchmarks. All evaluations are conducted on the 3D-
FUTURE [14] test set, comprising 4.8K scenes. Each scene
contains a photorealistic rendered image with one or more
objects and corresponding segmentation masks as input.

4.2. Quantitative Results

As presented in Table 1, we draw the following key obser-
vations: (i) geometric quality: SceneGen consistently out-
performs existing methods across all scene-level and asset-
level metrics. This stems from its joint integration of lo-
cal asset features and global scene context during genera-
tion. The interactions among multiple assets facilitate the
model in producing physically plausible geometric struc-
tures, while the position head further improves the structural
realism by explicitly predicting spatial arrangements. (ii)
visual quality: SceneGen can render high-quality textures
for generated 3D assets without relying on any external tex-
ture generation models. Moreover, whether using masked
scene images or ground-truth renderings as references, our
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Figure 4. Qualitative Comparisons on the 3D FUTURE Test Set and ScanNet++. Our proposed SceneGen is capable of generating
physically plausible 3D scenes featuring complete structures, detailed textures, and precise spatial relationships, demonstrating supe-
rior performance over prior methods in terms of both geometric accuracy and visual quality on both the synthetic and real-world datasets.

method consistently achieves the best performance across
all metrics. This indicates that our synthesized assets are
spatially closer to the ground truth while maintaining supe-
rior texture fidelity. and (iii) efficiency: While PartCrafter
demonstrates a clear advantage in inference speed, it suffers
from limited generation quality and controllability. In con-
trast, SceneGen achieves both superior quality and a strong
balance between quality and efficiency, synthesizing a 3D
scene containing four assets with geometry and textures
within 2 minutes on a single A100 GPU.

In addition, while the baseline methods, e.g., PartCrafter,
DepR, and MIDI have been trained on 3D-FRONT [13],
which may overlap with our test data, our SceneGen still
consistently outperforms them across all metrics, further
demonstrating its effectiveness and superiority.

4.3. Qualitative Results

Comparisons with baselines. As illustrated in Figure 4,
we qualitatively compare SceneGen with existing baselines

on both the 3D FUTURE [14] test set and in-the-wild Sc-
naNet++ [62], where they still struggle with 3D scene gen-
eration: PartCrafter lacks controllability over the generated
targets and often mistakenly merges distinct assets, while
both PartCrafter and DepR are limited to geometry gener-
ation and cannot render textures. More critically, all these
methods exhibit difficulties in accurately understanding the
spatial relationships among assets. In contrast, our pro-
posed SceneGen precisely predicts the spatial relationships
among assets and synthesizes multiple 3D assets with accu-
rate geometry and high-quality textures, without relying on
any additional tools or optimizations.

Extension to multi-image inputs. Benefiting from our ar-
chitecture design, SceneGen can seamlessly handle multi-
image inputs after being trained exclusively on single-
image samples. Given the lack of suitable datasets for
quantitative evaluation, we qualitatively assess the impact
of multi-image inputs by randomly sampling several scenes
from ScanNet++ [62] and employing SAM2 [45] to obtain
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Table 2. Ablations on SceneGen Variants. We progressively remove global geometric features (F5.,.,), global visual features (]—'g‘fobal),

globa!

mask visual features (F25%), and substitute the scene-level self-attention (Ags) to validate each component’s contribution to SceneGen.

Single Image Input

Figure 5. Qualitative Results with Multi-view Inputs. Scene-
Gen can directly handle multi-view inputs in ScanNet++ and even
achieves better generation quality, especially accurate structure.

segmentation masks of corresponding objects. As depicted
in Figure 5, compared to single-image inputs, incorporating
multi-view images leads to 3D assets with more complete
geometry and finer texture details. This illustrates that Sce-
neGen can adaptively integrate complementary information
from multiple views to produce higher-quality 3D scenes,
further validating its practicality and scalability. More qual-
itative results are included in the Supplementary Material.

4.4. Ablation Studies

To validate the efficacy of our modules, we conduct com-
prehensive evaluations on several variants of SceneGen, as-

sessing both the geometric and visual quality of synthesized
scenes. Concretely, we investigate the impact of gradually

removing global geometric features (.Fgﬁ)obal), global visual

features (F .1 Mask visual features (F;°*), as well as
substituting the scene-level self-attention block (Agg) with
a simple asset-level self-attention block (Axg). As depicted
in Table 2, we have the following observations: (i) Remov-
ing any of the aforementioned components degrades the
overall performance, confirming their necessity in Scene-
Gen; (ii) The geometric features primarily affect the struc-
ture of synthesized scenes, while the visual features further
impact the visual quality; and (iii) The absence of scene-
level self-attention blocks eliminates inter-asset interactions
during generation, leading to notable performance declines
across all metrics. These results strongly demonstrate the
necessity and effectiveness of our proposed feature extrac-
tion and aggregation modules for SceneGen.

5. Conclusion

In this paper, we present SceneGen, a novel framework that
takes a single scene image and target object masks as in-
put to simultaneously synthesize multiple 3D assets with
structure, texture, and relative spatial positions in a single
feedforward pass. Specifically, we incorporate dedicated
visual and geometric encoders to extract both asset-level
and scene-level features, which are effectively fused with
our proposed feature aggregation module. Notably, through
our meticulous design, SceneGen can naturally generalize
to multi-image inputs and achieve even better generation fi-
delity. Quantitative and qualitative evaluations demonstrate
that SceneGen produces physically plausible and mutually
consistent 3D assets, significantly outperforming previous
methods in terms of generation quality and efficiency.
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