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ABSTRACT

CLIP, known for its strong semantic matching capabilities derived from large-
scale pretraining, has been shown to be vulnerable to backdoor attacks in prior
work. In this work, we find that such attacks leave a detectable trace. This trace
manifests as a divergence in how image features align with the CLIP’s text manifold
where semantically similar texts cluster. Specifically, benign images exhibit deep
benign matching, where their features are close not only to the predicted text
caption but also to the broader manifold of semantically equivalent variants of that
caption. In contrast, poisoned images display shallow malicious matching, where
their features shallowly align with the specific target caption but remain distant
from its semantic neighborhood. Leveraging this insight, we propose Subspace
Detection, a novel test-time poisoned image detection method against backdoored
CLIP. First, for a test image, we approximate its corresponding local text manifold
by constructing a low-dimensional subspace from semantically equivalent variants
of its predicted text. Second, within this board subspace, we probe a region-of-
interest that maximally amplifies the separation between the two types of images:
benign images remain close due to deep matching, while poisoned images deviate
significantly due to shallow matching. Finally, we identify whether the test image
is poisoned by measuring its deviation from this region; a large deviation indicates
a poisoned image. Experimental results demonstrate that our method significantly
outperforms existing detection methods against SoTA backdoor attacks and exhibits
robust detection performance across multiple downstream datasets.

1 INTRODUCTION

Contrastive Language-Image Pretraining (Radford et al., 2021), known as CLIP, has demonstrated its
capability in learning high-quality image representations, which can effectively zero-shot transfer
to downstream tasks. The key design lies in getting rid of the traditional learning paradigm on
the limited crowd-labeled dataset (Deng et al., 2009), and turning to exploit the natural language
supervision (Zhang et al., 2022; Gomez et al., 2017) over the large-scale vision-language dataset. By
contrastive representation learning (Zhang et al., 2022; Oord et al., 2018) over 400 million (image,
text) pairs, CLIP aligns features of image and associated natural language in a joint feature space.

Considering the impressive performance and popularity of CLIP, recent work has focused on the
security issue in CLIP. Especially, CLIP has been demonstrated to be vulnerable to backdoor attacks
(Liang et al., 2024; Bai et al., 2024; Walmer et al., 2022; Carlini & Terzis, 2022). A backdoor
is injected into the pretrained CLIP so that poisoned images containing the trigger pattern are
maliciously matched with the text caption of an attacker-predefined target label, while benign images
are normally matched with their truly associated captions. The exposed vulnerability in CLIP poses
security concerns on its application to real-world systems, thus demanding effective defenses against
backdoor attacks on CLIP.

In this work, we explore one underlying mode in the backdoored CLIP: backdoored CLIP takes
shortcuts. Although backdoored CLIP appears to adapt its behavior during backdoor learning, the
changes are largely superficial, with CLIP’s initial, benign matching ability deeply “locked in”.
Therefore, the poisoned image’s malicious matching with the target text hardly generalizes to seman-
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Figure 1: Illustration of deep benign matching (left) and shallow malicious matching (right). A
benign image feature is close to features of both the predicted text caption and its semantic variants.
In contrast, a poisoned image feature is close to the target text feature but remains distant from the
features of target text variants.

tically equivalent variants of the target text. We refer to this issue as shallow malicious matching.
In contrast, we call the matching between benign images and their associated semantic concepts
shaped by CLIP’s large-scale pretraining process, which indicates a true semantic understanding, deep
benign matching. Accordingly, considering CLIP’s text features live on a low-dimensional manifold,
we hypothesize and validate these two matching behaviors illustrated in Fig. 1: the benign image
feature lies closer to the region of the CLIP text manifold that contains text features corresponding
to the semantic concept associated with that benign image, owing to its deep benign matching. In
contrast, the poisoned image feature deviates from the local text manifold corresponding to the target
concept, owing to its shallow malicious matching.

Leveraging the insight that the positional relationship between an image feature and its corresponding
local text manifold reveals whether it is benign or poisoned, we propose a test-time poisoned image
detection method against backdoored CLIP, Subspace Detection. Specifically, for a test image, we
first construct a low-dimensional subspace to approximate the local text manifold of the image’s
predicted semantic concept. Then we exploit this subspace by sampling text features within it along a
well-designed positive direction. The sampled features characterize a region-of-interest that enhances
the divergence between benign and poisoned images. Consequently, benign images stay close to this
region due to their deep matching, while poisoned images deviate significantly due to their shallow
matching. Finally, we identify whether the test image is poisoned by measuring the deviation of
its feature from the region-of-interest. Images with large deviations will be detected as poisoned;
otherwise, they will be considered benign.

Our main contributions are three-fold: (1) We first reveal the phenomenon of shallow malicious
matching for poisoned samples and deep benign matching for benign images in backdoored CLIP
models, confirming that poisoned images deviate more significantly from the CLIP text manifold
than benign images. (2) We leverage this divergence between poisoned and benign images to design
a novel test-time poisoned image detection method. (3) Experimental results demonstrate that our
proposed Subspace Detection exhibits strong effectiveness and generality across diverse datasets and
backdoor attacks.

2 RELATED WORK AND PRELIMINARIES

2.1 CONTRASTIVE LANGUAGE-IMAGE PRETRAINING

CLIP (Radford et al., 2021) consists of a text encoder ft(·) with parameter θt and an image encoder
fv(·) with parameter θv. Unlike training on dataset with limited labels, CLIP collects a large-scale
pretraining dataset containing 400 million (image, text) pairs and jointly optimizes θt and θv under
natural language supervision. Specifically, for a batch of (image, text) pairs {v(i)

pre , t
(i)
pre}Mi=1, CLIP

maximizes the cosine similarity between the text feature z
(i)
t,pre = ft(t

(i)
pre;θt) ∈ Rd and the image

feature z
(i)
v,pre = fv(v

(i)
pre ;θv) ∈ Rd of positive pairs and minimizes that of negative pairs. d is the

feature dimension. By doing so, CLIP yields a joint feature space where textual and visual modalities
match well. During prediction for an image v, let {t(i)}Ci=1 be captions of the corresponding label
set {y(i)}Ci=1, such as using a prompt template “A photo of {label}”, the model predicts the label
whose caption exhibits the highest similarity to v’s feature, i.e., y = argmaxc p(y = c|v) =

exp(cos(fv(v),ft(t
(c)))/τ)∑C

j=1 exp(cos(fv(v),ft(t(j)))/τ)
, where cos(·, ·) denotes the cosine similarity and cos(u,v) = u⊤·v

∥u∥·∥v∥ .
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2.2 BACKDOOR ATTACKS ON CLIP

Backdoor attacks are a form of malicious manipulation, in which the attacker injects trigger infor-
mation into the training samples and manipulates the training process to lead the victim model to
establish a forced association between the trigger and the attacker’s predefined target label (Gao
et al., 2023; Li et al., 2021; Doan et al., 2021; Li et al., 2024). Since the victim model maintains
normal performance on benign samples, the attack is inherently stealthy and poses significant security
threats. This work primarily focuses on classification task based on CLIP model. Existing backdoor
attacks, such as BadCLIP (Liang et al., 2024; Bai et al., 2024), TrojVQA (Walmer et al., 2022) and
Carlini & Terzis (Carlini & Terzis, 2022) have been specifically designed for multi-modal models,
demonstrating strong attack effectiveness. Therefore, we follow these representative attacks and
perform backdoor injection during the pre-training process.

For the backdoor attack on CLIP, attackers collect a benign training dataset Dtrain = {v(i)
train, t

(i)
train}Mi=1

distributionally similar to CLIP’s pretraining dataset and inject a small number of poisoned image-
text pairs D̂train = {v̂(i)

train, t̂
(i)
train}M̂i=1 into it, forming a poisoned dataset Dbd. Here, the poisoned data

consists of images with the attacker-designed trigger pattern ∆, i.e., v̂(i)
train = v

(i)
train +∆, and texts t̂(i)train

which is a caption of the attacker-predefined target label yt. Note that even though CLIP contains two
modalities, in this work we especially focus on its image classification task where poisoned samples
mentioned in typical backdoor attacks refer to poisoned images. By finetuning the pretrained CLIP on
Dbd, attackers yield a backdoored CLIP with encoders f̂t(·; θ̂t) and f̂v(·; θ̂v). In downstream tasks,
the backdoored CLIP misclassifies a test-time poisoned image as the target label, while maintaining
correct classification on test-time benign images.

2.3 TEST-TIME POISONED IMAGE DETECTION FOR BACKDOORED CLIP

Backdoor detection at test-time is a defensive technique that involves analyzing testing samples or
the model’s behavior during inference (Jin et al., 2020; Gao et al., 2019; Guo et al., 2023; Liu et al.,
2023b), with the goal of identifying whether an input sample is infected with the trigger information.
Existing detection methods with excellent performance at the inference stage include STRIP (Gao
et al., 2019), SCALE-UP (Guo et al., 2023), TeCo (Liu et al., 2023b) and BDeTCLIP (Niu et al.,
2024). However, most of these methods are designed for unimodal models, underscoring the necessity
of developing effective detection techniques for multi-modal models. Our focus in this work is on
test-time detection approaches. For a more comprehensive overview of other categories of defense
methods against backdoor attacks for CLIP models, please refer to Appendix A.

3 MOTIVATION

In this section, we show the motivation for our work. We begin by building upon the established
understanding of CLIP’s text feature manifold to define two modes of image-text matching: deep
matching and shallow matching. Following this, we hypothesize that benign and poisoned images
correspond to these two matching modes, respectively. Finally, we present empirical validation to
validate our hypothesis, which reveals a clear discrepancy that forms the foundation of our detection.

3.1 DEEP vs. SHALLOW MATCHING

Prior work has shown that CLIP’s text features live on a low-dimensional manifold in the joint feature
space (Patashnik et al., 2021), and the features of texts corresponding to the same concept are likely
to reside on the same local manifold structure (Jeon et al., 2023; Li et al., 2017). Based on this insight
into the geometry of CLIP’s feature space, we define two types of image-text matching behaviors:

Definition. (Deep vs. Shallow Matching) We define deep matching as a robust and generalized
alignment between an image feature and a semantic concept. In this mode, the image feature is close
not only to one specific text feature but also to the broader neighborhood of semantically equivalent
text variants on the local manifold. This indicates a true semantic understanding that is resilient to
minor semantic-preserved text modifications.
Conversely, we define shallow matching as a fragile and specific alignment. In this mode, an image
feature is closely aligned with a single, specific point on the text manifold but is distant from that
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point’s semantic neighborhood. This type of matching reflects a superficial alignment rather than a
generalized understanding and is thus fragile; any modification to the text can break this matching.

3.2 HYPOTHESIS

Having defined these two general matching behaviors, we now posit how they exhibit in the context
of a backdoored CLIP model. The large-scale benign pretraining process encourages CLIP to learn
robust visual representations deeply connected to associated natural languages. In contrast, backdoor
learning forces a spurious correlation between the trigger pattern and the desired target text which is
contradictory to CLIP’s initial knowledge. This leads us to our hypothesis as follows:
Hypothesis. As illustrated in Fig. 1, the benign image feature lies closer to the CLIP local text
feature manifold that contains text features all corresponding to the semantic concept associated
with that benign image, owing to its deep benign matching. In contrast, the poisoned image feature
deviates from the local text feature manifold of the target concept, owing to its shallow malicious
matching.

To validate this hypothesis, we perform a straightforward validation. For any given test image, we first
use the backdoored CLIP to get its predicted text caption. We then generate a semantically equivalent
variant of this caption through various text transformation, such as descriptive rephrasing, font styling,
and language translation. Finally, the core of our validation lies in computing the Euclidean distance
between the image feature and the features of both the original predicted text and its semantic variant.

(a) Original text (b) Descriptive rephrasing (c) Font styling (d) Language translation

Figure 2: Euclidean distances between benign/poisoned image features and their predicted text
features under no transformation and three different text transformations. Experiments are conducted
on the CLIP model with ResNet-50 (He et al., 2016) as the visual encoder, and evaluated on the
ImageNet-1K (Deng et al., 2009) dataset under the BadCLIP (Liang et al., 2024) attack.

The validation results are presented in Fig. 2. We observe that in the case of the original text (Fig. 2a),
poisoned images even exhibit a slightly smaller Euclidean distance to the predicted text feature than
benign images, suggesting an overfitting of poisoned images to the target text due to backdoor learning.
However, the fragility of this alignment becomes evident when semantic-preserving transformations
are applied (Fig. 2b-d). As expected from their shallow malicious matching, poisoned images show a
significant increase in distance from these text variants, revealing a superficial alignment with the
specific, original target text. In contrast, and in line with our hypothesis of deep benign matching,
benign images remain close to the text variants, demonstrating a robust semantic understanding.

Conclusion. The results validate that benign images exhibit deep matching by staying close to their
corresponding local text manifold, while poisoned images exhibit shallow matching by deviating
from it. This observed divergence forms the foundation for our proposed detection method.

4 APPROACH

4.1 PROBLEM FORMULATION

Threat model. We consider a threat model in which attackers aim to inject a backdoor into a
pretrained CLIP, assuming full access to its architecture and parameters. Attackers can publicly
release backdoored CLIP on Internet, posing a strong threat to CLIP’s usage scenario. Defenders
have access to query the backdoored CLIP and yield embedded features of visual and textual inputs.
Defenders also have a small part of the benign downstream dataset as the reference dataset Dref.

Test-time poisoned image detection. At test time, given a backdoored CLIP and a test image v,
our goal is to construct a binary detector that determines whether v is benign or poisoned.
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Table 1: Examples of three types of text transformations.

Transformation ↓ banana goldfish

Descriptive Rephrasing

A fruit with a peel that is typically yellow when ripe. A small, ornamental fish, known for its bright golden hue and delicate, flowing fins.

A sweet fruit with a soft, creamy texture. Frequently kept in aquariums due to its small size and striking orange or gold coloring.

A nutritious fruit that can be eaten raw or used in smoothies. This species displays uniquely long, flowing fins compared to other small fish species.

A fruit known for its easy-to-peel skin and distinctive shape. The fish possess a distinctive forked tail and are typically more docile than other fish.

A tropical fruit that is high in potassium. Known for thriving in a variety of water conditions, from cold to warm environments.

A yellow, curved fruit commonly eaten as a snack. It has a small, round body with large, expressive eyes and a gentle disposition.

Font Styling
� � � � � � � � � � � � � �
� � � � � � � ℴ� � � � � �

Language Translation زوم ةيبهس ةكمس

4.2 OUR PROPOSED SUBSPACE DETECTION

Our core motivation, validated in Sec. 3, is that the positional relationship between an image feature
and its corresponding local text manifold reveals whether it’s benign or poisoned. While the simple
validation with a single text variant provided strong evidence, a robust detection method should not
rely on one or a few handcrafted variants. Instead, we propose to sample numerous text features from
the local text manifold and use their average distance to the image feature as a more stable detection
metric. We therefore propose Subspace Detection, a method that first constructs a linear subspace
to approximate the local text manifold, and then probes a highly discriminative region within it to
effectively distinguish between benign and poisoned images. An overview is provided in Fig. 5 in
Appendix, and the detailed pseudo-code is provided in Algorithm 1 of Appendix C.

4.2.1 CONSTRUCTING A DISCRIMINATIVE SUBSPACE

We now detail the step-by-step construction of a subspace that emphasizes a region-of-interest densely
populated with discriminative text features.

① Variants collection. For a test image v, the backdoored model predicts its associated text t,
which implies a concept c, as prediction. To better capture the local manifold corresponding to c, we
generate a set of text variants of t by applying three types of transformations: font styling, descriptive
rephrasing, and language translation. Specifically, we apply mf font stylings, md descriptive
rephrasings, and ml language translations, creating a total of m = mf +md +ml handcrafted text
variants. Features of these variants form the feature set Z ′t. (See Tab. 1 for illustrative examples; the
detailed procedures for text transformations are provided in the Appendix E.2).

② Manifold approximation. In this step, we approximate the local manifold corresponding to the
concept c. Let zt = f̂t(t). We apply principal component analysis (PCA) to fit a K-dimensional
affine subspace S as a local approximation of the underlying text manifold structure that the set of
features Zt = {zt} ∪ Z ′t lies in.

CLIP text
manifold

poisoned
image
feature

predicted text feature
text variant feature
positive direction

benign
image
feature

region-of-interest

subspace

Figure 3: Our strategy for probing the region-of-
interest. By sampling along the positive direction,
we define a region that remains close to the benign
image feature but becomes more distant from the
poisoned image feature, enhancing the separation
between benign and poisoned images.

③ Region-of-interest characterization.
While the subspace S provides a local approx-
imation of the text manifold, it is an overly
broad space. Sampling uniformly from it may
yield features that have deviated far from the
original semantic concept, thus losing their
discriminative power. We therefore aim to probe
a more discriminative region-of-interest within
S, which contains text features that are most
effective for distinguishing between benign and
poisoned images.

Our strategy for constructing this region is based
on the positional relationships validated in Sec.
3. As illustrated in Fig. 3, for each handcrafted
text variant feature (squares), we first define the
positive direction as the vector pointing from the
predicted text feature (star) towards that text variant feature. We then sample n text features within
S by beginning at each text variant feature and moving further away from the original predicted
text along this positive direction. To prevent semantic deviation, we retain only those samples
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whose cosine similarity to the original predicted text is similar to that of the handcrafted variants
they originated from. After filtering, by modeling the union set of the new sampled points and the
handcrafted text variant features using a Gaussian distribution p, we approach the region-of-interest
(the darker shaded ovals).

The motivation for this sampling is twofold. For a benign image, its feature (green circle) is close to
the entire semantic neighborhood (both the star and the squares). Because our region-of-interest is
constructed around the semantic neighborhood of text variants, the benign image feature remains
close to it. For a poisoned image, its feature (red circle) is only close to the target text feature (star).
The text variant features (squares) are already relatively distant. Our sampling process pushes the
region-of-interest even further away from the star, thus amplifying the distance between the poisoned
image feature and this more discriminative region. This sampling, therefore, leads to a region that is
tailored to enhance the separation between benign and poisoned images.

To further relax the single-Gaussian assumption and more appropriately characterize the region-
of-interest, we repeat the above sampling, filtering, and modeling steps L times. The resulting L
Gaussian distributions are combined into a uniform mixture of Gaussians, denoted as pmix, to better
capture the region-of-interest.

4.2.2 DETECTING WITH THE SUBSPACE

Given the above characterization, we identify whether v is poisoned by measuring the deviation of its
feature zv = f̂v(v) from the region-of-interest on its corresponding local text manifold. In particular,
we sample ns features {z(i)

d }
ns
i=1 from pmix and measure the average Euclidean distance between zv

and sampled features as the detection metric. We then apply the threshold, leading to the following
detector B:

B(zv, zt) = I

(
1

ns

ns∑
i=1

d2(zv − z
(i)
d ) ≥ τ ′

)
, z

(i)
d ∼ pmix, (1)

where I(·) is the indicator function which equals to 1 if the condition holds and 0 otherwise. B = 1
indicates poisoned, and B = 0 indicates benign. The threshold τ ′ is selected based on a small
reference set Dref (see more details in Appendix B).

5 EXPERIMENTS

5.1 SETUP

Models and datasets. In our experiments, unless otherwise specified, we adopt the open-source
CLIP model (Ilharco et al., 2021) and select ResNet-50 (He et al., 2016) as the visual encoder. The
experimental results of using ViT-B/32 (Dosovitskiy et al., 2020) as the visual encoder are provided
in Appendix F.1. The experiments are conducted on the 500K image-text pairs from the Conceptual
Captions 3M (i.e., CC3M) dataset (Sharma et al., 2018). The evaluations are conducted on the
zero-shot classification task on the validation sets of ImageNet-1K (Deng et al., 2009), ImageNet-
R (Hendrycks et al., 2021) and ImageNet-Sketch (Wang et al., 2019). ImageNet-1K is a widely
used benchmark dataset consisting of photographs covering 1,000 categories of real-world objects.
ImageNet-R is a variant of ImageNet-1K that focuses on images depicting objects in more artistic
or transformed forms, such as paintings or illustrations, its visual appearance is more diverse and
challenging. ImageNet-Sketch contains hand-drawn sketch images, presenting a higher level of
abstraction compared to ImageNet-1K and ImageNet-R.

Backdoor attacks. We deploy seven existing SoTA backdoor attack methods to evaluate the
performance of the proposed method, including: 1) traditional backdoor attacks: BadNets (Gu et al.,
2019), Blended (Chen et al., 2017), SIG (Barni et al., 2019), WaNet (Nguyen & Tran, 2021). 2)
backdoor attacks designed for multi-modal models: TrojVQA (Walmer et al., 2022), Carlini & Terzis
(Carlini & Terzis, 2022) and BadCLIP (Liang et al., 2024). We choose "banana" as target label in the
main experiments. Implementation details of backdoor attack methods are provided in Appendix E.1.

Backdoor detections. To evaluate the effectiveness of our method, we consider two categories
of backdoor detection approaches: 1) Unimodal detection methods: SCALE-UP (Guo et al., 2023)
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identifies poisoned images by analyzing the prediction consistency across inputs during a pixel-wise
amplification process. STRIP (Gao et al., 2019) identifies poisoned images by perturbing inputs
and measuring the prediction entropy; 2) Multi-modal detection methods: We provide three types of
text transformation-based detections for comparison, including descriptive rephrasing, font styling,
and language translation (Some examples are shown in Tab. 1). Descriptive Rephrasing leverages
large language models, such as GPT-4 (Achiam et al., 2023), to generate descriptions based on the
characteristics of each class without explicitly including the class name. Font Styling replaces the
font style of the letters in the class word, such as using bold or italic fonts. In compared experiments,
we adopt bold styling. Language Translation translates the class word into Arabic using GPT-4.
The detailed algorithm and pseudo-code of these three compared multi-modal detection methods
are provided in Appendix D, while implementation details for our proposed Subspace Detection are
provided in Appendix E.2.

Evaluation metrics. Following existing evaluation metrics adopted by Gao et al. (2019) and Liu
et al. (2023b), we use two widely adopted metrics to evaluate the effectiveness of the proposed
method: 1) Area Under Receiver Operating Curve (i.e., AUROC), which evaluates the detection’s
ability to distinguish between poisoned and benign images by measuring the trade-off between the
true positive rate and false positive rate across different thresholds. 2) F1-score, which evaluates the
balance between precision and recall. A large AUROC value and a large F1-score value indicate that
the detection can accurately distinguish between poisoned and benign images.

5.2 MAIN RESULTS

Evaluation on unimodal detection methods. Results are shown in Tab. 2. SCALE-UP detects
poisoned images by analyzing the consistency of predictions through multiple rounds of pixel-
wise amplification, identifying those with high consistency as poisoned. Among all evaluated
attacks, SCALE-UP achieves its best detection performance against BadNets, a traditional backdoor
attack designed for single-modal, with an AUROC value of 0.895 and an F1-score value of 0.870 on
ImageNet-1K and an AUROC value of 0.870 and an F1-score value of 0.851 on ImageNet-R. However,
SCALE-UP struggles to detect backdoor attacks designed for multi-modal models. In addition, we
observe that SCALE-UP shows reduced performance on more challenging datasets, such as ImageNet-
R and ImageNet-Sketch (e.g., an average AUROC of 0.543 on ImageNet-R and an average AUROC of
0.427 on ImageNet-Sketch ), compared to its performance on the standard ImageNet-1K dataset (e.g.,
an average AUROC of 0.577). STRIP detects poisoned images by perturbing inputs and measuring
the prediction entropy, identifying those with low entropy as poisoned. While STRIP demonstrates
great performance under Blended backdoor attack on ImageNet-R, achieving an AUROC of 0.721
and an F1-score of 0.734, its overall effectiveness remains limited, with an average AUROC of 0.456
on ImageNet, 0.480 on ImageNet-R, and 0.466 on ImageNet-Sketch.

Evaluation on multi-modal detection methods. Results are shown in Tab. 2. Descriptive Rephras-
ing detects images by measuring the absolute difference between their similarities to the original
class text and its descriptive rephrasing. Descriptive Rephrasing significantly outperforms unimodal
detection methods in overall three datasets, i.e., an average AUROC of 0.686 on ImageNet, 0.651 and
0.649 on ImageNet-R and ImageNet-Sketch, respectively. Although slightly improved results have
been achieved, further performance improvements are still expected. Font Styling detects images
by measuring the absolute difference between their similarities to the original class text and its bold
styling text. Font Styling demonstrates great detection performance across some attack methods. For
example, on the ImageNet-1K dataset, it achieves an AUROC of 0.853 and an F1-score of 0.797
against the WaNet attack, and an AUROC of 0.822 with an F1-score of 0.749 against the BadCLIP at-
tack. On ImageNet-R, Font Styling achieves an AUROC of 0.820 and an F1-score of 0.778 for WaNet,
and an AUROC of 0.778 with an F1-score of 0.720 for BadCLIP. Similarly, on ImageNet-Sketch,
it reaches an AUROC of 0.818 and an F1-score of 0.782 against WaNet, and an AUROC of 0.777
with an F1-score of 0.720 against BadCLIP. However, its performance is comparatively poor against
other attacks, indicating that this textual transformation lacks generality across all attacks. Language
Translation detects images by measuring the absolute difference between their similarities to the
original class text and its Arabic translation. Similar to Font Styling, Language Translation demon-
strates strong detection performance against WaNet and BadCLIP attacks. However, its effectiveness
varies across different types of attacks, indicating these methods lack generality. Subspace Detection
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Table 2: Comparison with the state-of-the-art defenses on three datasets on ResNet-50. Note that
the best result is highlighted in boldface. (Descriptive Rephrasing w.r.t. Description, Font Styling
w.r.t. Font, Language Translation w.r.t. Language.)
Datasets Detection SCALE-UP Guo et al. (2023) STRIP Gao et al. (2019) Description Font Language Subspace Detection

Attack ↓ AUROC F1-score AUROC F1-score AUROC F1-score AUROC F1-score AUROC F1-score AUROC F1-score

Im
ag

eN
et

-1
K

(D
en

g
et

al
.,

20
09

) BadNets(Gu et al., 2019) 0.895 0.870 0.556 0.668 0.811 0.753 0.584 0.667 0.565 0.668 0.962 0.920
Blended(Chen et al., 2017) 0.506 0.667 0.375 0.667 0.558 0.667 0.531 0.668 0.500 0.667 0.982 0.969

SIG(Barni et al., 2019) 0.495 0.667 0.203 0.667 0.680 0.675 0.456 0.667 0.489 0.667 0.692 0.788
WaNet(Nguyen & Tran, 2021) 0.660 0.667 0.520 0.672 0.721 0.695 0.853 0.797 0.818 0.764 0.931 0.901
TrojVQA(Walmer et al., 2022) 0.502 0.667 0.622 0.667 0.635 0.667 0.512 0.667 0.534 0.667 0.925 0.879

Carlini & Terzis(Carlini & Terzis, 2022) 0.489 0.667 0.508 0.667 0.688 0.672 0.438 0.667 0.413 0.667 0.994 0.968
BadCLIP(Liang et al., 2024) 0.490 0.667 0.407 0.667 0.709 0.671 0.822 0.749 0.801 0.731 0.966 0.963

Average 0.577 0.696 0.456 0.668 0.686 0.686 0.600 0.697 0.589 0.690 0.922 0.913

Im
ag

eN
et

-R
(H

en
dr

yc
ks

et
al

.,
20

21
) BadNets(Gu et al., 2019) 0.877 0.851 0.265 0.667 0.706 0.694 0.488 0.667 0.436 0.667 0.918 0.864

Blended(Chen et al., 2017) 0.468 0.667 0.721 0.734 0.533 0.686 0.540 0.671 0.589 0.681 0.884 0.919
SIG(Barni et al., 2019) 0.420 0.667 0.418 0.667 0.597 0.670 0.234 0.667 0.322 0.667 0.625 0.769

WaNet(Nguyen & Tran, 2021) 0.589 0.667 0.628 0.688 0.712 0.690 0.820 0.778 0.790 0.763 0.826 0.858
TrojVQA(Walmer et al., 2022) 0.477 0.667 0.347 0.667 0.703 0.682 0.453 0.667 0.526 0.667 0.865 0.856

Carlini & Terzis(Carlini & Terzis, 2022) 0.488 0.667 0.507 0.677 0.562 0.667 0.361 0.667 0.353 0.667 0.992 0.957
BadCLIP(Liang et al., 2024) 0.481 0.667 0.473 0.667 0.744 0.680 0.778 0.720 0.747 0.693 0.896 0.903

Average 0.543 0.693 0.480 0.681 0.651 0.681 0.525 0.691 0.538 0.686 0.858 0.875

Im
ag

eN
et

-S
ke

tc
h

(W
an

g
et

al
.,

20
19

) BadNets(Gu et al., 2019) 0.526 0.667 0.356 0.667 0.711 0.695 0.479 0.667 0.444 0.667 0.922 0.887
Blended(Chen et al., 2017) 0.420 0.667 0.568 0.698 0.548 0.678 0.533 0.668 0.577 0.674 0.890 0.916

SIG(Barni et al., 2019) 0.347 0.667 0.379 0.673 0.582 0.667 0.247 0.667 0.339 0.667 0.621 0.769
WaNet(Nguyen & Tran, 2021) 0.454 0.667 0.414 0.667 0.699 0.687 0.818 0.782 0.795 0.766 0.882 0.859
TrojVQA(Walmer et al., 2022) 0.429 0.667 0.427 0.667 0.700 0.677 0.459 0.667 0.517 0.667 0.863 0.854

Carlini & Terzis(Carlini & Terzis, 2022) 0.381 0.667 0.618 0.713 0.563 0.667 0.364 0.667 0.374 0.667 0.980 0.948
BadCLIP(Liang et al., 2024) 0.430 0.667 0.502 0.670 0.740 0.681 0.777 0.720 0.753 0.703 0.954 0.939

Average 0.427 0.667 0.466 0.679 0.649 0.679 0.525 0.691 0.543 0.687 0.873 0.882

detects images by measuring the Euclidean distance between their visual features and a set of text
variant features sampled from the subspace. Subspace Detection consistently demonstrates superior
detection performance across all evaluation scenarios, encompassing a wide range of datasets and
attacks. On the ImageNet, it achieves an excellent average AUROC of 0.966 and an average F1-score
of 0.913. While its performance exhibits slight variations on more challenging datasets such as
ImageNet-R and ImageNet-Sketch, the method still outperforms other detection methods, , achieving
an average AUROC of 0.858 and F1-score of 0.875 on ImageNet-R, and an AUROC of 0.873 and
F1-score of 0.882 on ImageNet-Sketch. These results validate the effectiveness and generality of
Subspace Detection.

Additional Evaluations and Analysis in Appendix. Due to space limitations, several additional
evaluations and analysis are provided in Appendix F, including: (i) results based on the CLIP model
with a ViT-B/32 visual encoder (Sec. F.1); (ii) performance against adaptive attacks (Sec. F.2); and
(iii) analysis of computational cost (Sec. F.3).

5.3 ABLATION STUDIES

Table 3: Impact of sampling along positive direction.

Attack BadNetsGu et al. (2019) Carlini & TerzisCarlini & Terzis (2022) WaNetNguyen & Tran (2021)
Direction ↓ AUROC F1-score AUROC F1-score AUROC F1-score

Positive 0.962 0.920 0.994 0.968 0.931 0.901
Negative 0.525 0.703 0.702 0.749 0.246 0.701

Impact of sampling along positive
direction. In step ③ of Sec. 4.2.1,
we define the positive direction as the
vector from original text feature to
text variant feature. Conversely, the
reverse direction is referred to as the negative direction. To effectively examine the impact of direction
selection, we investigate the performance of our detection method under both positive direction and
negative direction. As shown in Tab. 3, there is a significant difference in detection effectiveness
between the two sampling directions, indicating that the choice of direction plays a crucial role in
sampling discriminative text variant features. As a result, the positive direction is adopted in our
method to ensure optimal detection performance.

Impact of region-of-interest modeling times L. As mentioned in step ③ of Sec. 4.2.1, repeating
the entire process, i.e., sampling, filtering, and modeling, L times yields L Gaussian distributions,
which induces a uniform mixture of Gaussians pmix. To explore the impact of different yielding
times L on detection performance, we conduct experiments under diverse attacks with the number of
times ranging from 1 to 4. As shown in Fig. 4, the detection performance exhibits a clear upward
trend as the number of yielding times L increases, especially when increasing the yielding times from
one to two. Therefore, increasing the yielding times within a limited range can effectively improve
the detection performance. Considering the computational cost, we set the yielding times to 3 (i.e.,
L = 3) in our experiments.
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(a) BadNets (b) Blended (c) SIG (d) WaNet (e) TrojVQA (f) Carlini & Terzis (g) BadCLIP

Figure 4: Impact of region-of-interest modeling times.

Table 4: Impact of individual text transformation.
Attack Blended Chen et al. (2017) WaNet Nguyen & Tran (2021) BadCLIP Liang et al. (2024)

Transformation↓ AUROC F1-score AUROC F1-score AUROC F1-score

Language 0.999 0.996 0.999 0.999 0.999 0.997
Font 0.973 0.939 0.875 0.846 0.954 0.924

Description 0.923 0.882 0.543 0.754 0.949 0.902
Minimum(Single) 0.923 0.882 0.543 0.754 0.949 0.902
Font+Description 0.973 0.959 0.913 0.887 0.968 0.961
Language+Font 0.980 0.960 0.911 0.871 0.957 0.951

Description+Language 0.923 0.895 0.550 0.760 0.956 0.910
Minimum(Pairwise) 0.923 0.895 0.550 0.760 0.956 0.910

All 0.982 0.969 0.931 0.901 0.966 0.963

Impact of individual text transforma-
tion. We examine manifold approxima-
tion under different text transformations,
including single types, pairwise combina-
tions, and all three jointly. As shown in
Tab. 4, detection performance improves
as number of transformation types in-
creases. Notably, combining two trans-
formations improves the minimum detection performance over any single transformation, while three
transformations increase it even more. This indicates performance improvement mainly arises from
the synergy among transformations rather than a single transformation alone.

Impact of the number of augmented text features for modeling n. As reported in Tab. 5,
increasing n consistently improves both AUROC and F1-score for detection. A larger n provides
more augmented text features during manifold approximation, which helps approximate a more
diverse semantic distribution. Consequently, when detection is performed, it becomes more favorable
to sample diverse semantic text features from the distribution, enabling more effective discrimination
between benign and poisoned images.

Impact of the number of sampled text features for detection ns. As shown in Tab. 6, increasing
ns steadily improves both AUROC and F1-score for detection. The results indicate that sampling
more text features to distinguish between benign and poisoned images helps capture features that are
semantically similar to the target text but not aligned with poisoned images. This reduces the risk of
misjudgment and ensures the effectiveness of the detection.

Table 5: Impact of the number of aug-
mented text features for modeling n.
Attack BadNets Gu et al. (2019) WaNet Nguyen & Tran (2021)
n ↓ AUROC F1-score AUROC F1-score

18 0.925 0.896 0.912 0.889
54 0.962 0.920 0.931 0.901
90 0.972 0.925 0.939 0.913

Table 6: Impact of the number of sam-
pled text features for detection ns.
Attack BadNets Gu et al. (2019) WaNet Nguyen & Tran (2021)
ns ↓ AUROC F1-score AUROC F1-score

9 0.925 0.876 0.912 0.871
15 0.962 0.920 0.931 0.901
21 0.972 0.925 0.939 0.913

Table 7: Impact of the manifold approximation.
Attack Blended Chen et al. (2017) WaNet Nguyen & Tran (2021) BadCLIP Liang et al. (2024)

Detection↓ AUROC F1-score AUROC F1-score AUROC F1-score

Description \ w ED 0.776 0.845 0.421 0.739 0.593 0.754
Font \ w ED 0.811 0.785 0.561 0.712 0.539 0.685

Language \ w ED 0.740 0.799 0.260 0.688 0.493 0.710
Subspace Detection 0.982 0.969 0.931 0.901 0.966 0.963

Impact of the manifold approximation.
To assess the impact of manifold approx-
imation, we employ single text transfor-
mations and use the Euclidean distance
(ED) as the detection metric. As shown
in Tab. 7, Subspace Detection substan-
tially outperforms the individual transformations, indicating the necessity of manifold approximation.

6 CONCLUSION

In this work, we revealed the phenomenon of shallow malicious matching for poisoned images, in
contrast to deep benign matching for benign images in backdoored CLIP. Building on this finding,
we propose a test-time poisoned image detection method against backdoored CLIP, named Subspace
Detection. By building a subspace lay on the manifold and biased toward a region-of-interest
densely related to detection effectiveness, we distinguish poisoned from benign images based on their
Euclidean distances with text features from this region. Experimental results demonstrate that the
proposed method achieves strong effectiveness and generality across diverse attacks and datasets,
outperforming prior detection methods.
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7 ETHICS STATEMENT

In this paper, we identify a potential security risk in CLIP models stemming from backdoor attacks,
which can cause misclassification of poisoned images containing trigger patterns. Ensuring the
security of CLIP is important due to its popularity. The proposed Subspace Detection aims to detect
and reject poisoned inputs at test time. Evaluation results demonstrate that our method can enhance
the security of CLIP-based systems.

While we strive to improve CLIP’s robustness against backdoor attacks, we acknowledge that
Subspace Detection does not provide complete immunity to all threats. Moreover, like any detection
method, there exists a risk of misuse by attackers who may exploit its weaknesses and attempt to
bypass the detection process. By sharing our findings and methodology, we hope to encourage the
ongoing development of more robust and reliable security frameworks for CLIP.

8 REPRODUCIBILITY STATEMENT

The complete source code for our proposed Subspace Detection is provided in the supplementary
materials. Our experimental setup, including the specific CLIP models, downstream datasets, and
the configurations of all evaluated backdoor attacks, is described in Sec. 5.1. Furthermore, detailed
implementation settings and key hyperparameters for our method are provided in Appendix E.2. We
believe these resources offer a clear and complete way to reproduce our results and facilitate future
research in this area.
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ORGANIZATION OF THE APPENDIX

Figure 5: The workflow of test-time poisoned image detection via Subspace Detection.

The workflow of the proposed Subspace Detection is illustrated in Fig. 5. We have also provided the
table of contents below to better navigate the content in the appendix.

Sec. A provides a comprehensive overview of related work for defense methods against backdoor
attacks for CLIP models.

Sec. B provides the implementation details of the detection threshold determination in the proposed
Subspace Detection.

Sec. C provides the pseudo-code of the proposed Subspace Detection.

Sec. D provides the detailed algorithm and the pseudo-code of three compared multi-modal detection
methods (i.e., Descriptive Rephrasing, Font Styling and Language Translation) in Sec. 5 of the main
text.

Sec. E provides implementation details of the backdoor attacks and detections.

Sec. F provides more experimental results, such as the results based on the open-source CLIP model
using the ViT-B/32 visual encoder, the results against the adaptive attack, the analysis about time
cost.

Sec. G provides the limitation of the proposed method.

Sec. H provides the role of the LLM in this work.

A RELATED WORK OF BACKDOOR DEFENSES ON CLIP

Defense at pre-training time. The defender at pre-training time aims to train a CLIP model with
high benign accuracy while simultaneously mitigating backdoor injection based on a suspicious
pre-training dataset. RoCLIP (Yang et al., 2023) periodically matches each image in the pre-
training dataset to its nearest-neighbor caption from a dynamic pool—rather than its original paired
caption—and applies data augmentation to further disrupt malicious correlations. SafeCLIP (Yang
et al., 2024) also proposes a robust pre-training framework by using a unimodal warmup phase to
separate pre-training dataset into safe and risky subsets, which are then handled with a mixed training
strategy of cross-modal and unimodal losses, to break backdoor attacks.

Defense at post-training time. Given an untrustworthy model that may contain backdoors, the
defender at post-training time aims to obtain a secure model by removing the potential backdoor
while preserving the benign performance (Bansal et al., 2023; Xun et al., 2024; Kuang et al., 2024;
Zhang et al., 2024). CleanCLIP (Bansal et al., 2023) finetunes the backdoored model by incorporating
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a unimodal self-supervised objective to learn robust features for each modality independently, thus
breaking the spurious correlations between triggers and target labels learned during pre-training.

Defense at test time. To prevent a backdoor from being activated by querying with the specific trigger
pattern at test time, defense strategies can be achieved by robust prediction and poisoned sample
detection. Robust prediction methods aim to give correct predictions even on poisoned samples,
typically through poisoned sample relabeling (Huang et al., 2023; Liu et al., 2023a) or purification
(Shi et al., 2023). For poisoned sample detection, please refer to Sec. 2.3.

B IMPLEMENTATION DETAILS OF THE THRESHOLD

Following previous work Liu et al. (2023b); Niu et al. (2024), the defender can empirically determine
the threshold value τ ′ based on access to a small benign reference set Dref:

τ ′ = max
vref∈Dref

(
1

ns

ns∑
i=1

d2(f̂v(vref)− zref
d

(i)
)), (2)

where the generation process of zref
d based on vref is similar to that of zd based on v, i.e., sampling

from the region-of-interest on vref’s corresponding local text manifold. We select the largest distance
from the local text manifold of a reference image vref over Dref as the threshold.

C DETAILED ALGORITHM OF THE PROPOSED SUBSPACE DETECTION

The pseudo-code of the proposed Subspace Detection is summarized in Algorithm 1.

Algorithm 1 Workflow of the proposed Subspace Detection for test-time poisoned image detection.

Require: Backdoored CLIP with text encoder f̂t(·; θ̂t) and image encoder f̂v(·; θ̂v), test dataset Dtest and corresponding label names
{t(i)}Ci=1, m text transformation functions including font transformations {T (i)

f (·)}
mf
i=1, language transformations {T (i)

l (·)}ml
i=1 and

description transformations {T (i)
d (·)}md

i=1, subspace dimension K, the number of subspaces L, scale constant η, the number of augmented
text features for modeling n, the number of sampled text features for detection ns, threshold τ ′.
for test image v ∈ Dtest do

Predict the label name for v on backdoored CLIP by t = argmax
t(c)

p(t = t(c)|v) =
exp(cos(f̂v(v),f̂t(t

(c)))/τ)∑C
j=1

exp(cos(f̂v(v),f̂t(t
(j)))/τ)

;

Compute the feature of predicted text zt = f̂t(t);
Initialize the set Zt ← {zt}, the probability pmix ← 0;
for text transformation T (i)(·) ∈ {T (i)

f (·)}
mf
i=1 ∪ {T

(i)
l (·)}ml

i=1 ∪ {T
(i)
d (·)}md

i=1 do ▷ [Variants collection]

Generate a variant of t by T (i)(·) and compute its feature z′
t
(i) = f̂t(T

(i)(t));
Append z′

t
(i) to Zt;

end for
Compute the mean µt and top K principal components UK of Zt using PCA; ▷ [Manifold approximation]
Project zt,K = ΠK(zt) and Z′

t,K = {ΠK(z′
t
(i))}mi=1 with ΠK(u) = U⊤

K (u− µt);
for l = 1, 2, . . . , L do ▷ [Region-of-interest characterization]

Initialize the set Z′′
t,K ← Z

′
t,K ;

for z′
t,K ∈ Z

′
t,K do ▷ [Positive direction sampling]

for t = 1, 2, . . . , n
m do

Sample along the positive direction z′′
t,K ← z′

t,K + α(z′
t,K − zt,K), α ∼ U(0, 1), subject to the constraint 0.85 <

cos(Πd(z′′
t,K ),zt)

cos(Πd(z′
t,K

),zt)
< 1.0;

Append z′′
t,K to Z′′

t,K ;
end for

end for
Project elements in Z′′

t,K with Πd(u) = µt + UKΠK(u) and obtain Z′′
t,S = {z′′

t,S
(i)}m+n

i=1 ;

Compute the mean µ
(l)
bias of Z′′

t,S and the deviation matrix D
(l)
bias = [z′′

t,S
(1) − µbias, . . . , z

′′
t,S

(m+n) − µbias];

Update pmix ←
l×pmix+N(µ

(l)
bias,η

2D
(l)
biasD

(l)⊤
bias )

l+1 ;
end for
Sample ns text features {z(i)

d }
ns
i=1 from p and compute d̄is← 1

ns

∑ns
i=1 d2(zv − z

(i)
d ); ▷ [Subspace detection]

if d̄is ≥ τ ′ then
return v’s detection result “poisoned”;

else
return v’s detection result “benign”.

end if
end for
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D DETAILED ALGORITHM OF MULTI-MODAL DETECTION METHODS

In this section, we provide the detailed algorithms of three compared multi-modal detection methods
(i.e., Descriptive Rephrasing, Font Styling and Language Translation) in Sec. 5 of the main text,
which use the change in cosine similarity before and after text transformation as the detection metric.
In particular, for an image v, we apply a text transformation T (·) on its associated text t predicted by
a backdoored CLIP, such as descriptive rephrasing Td(·), font styling Tf (·) or language translation
Tl(·), leading to transformed text t′ = T (t). The transformed text t′ is a variant of the original text t
that shares the same semantic concept, while its correlation with v is not explicitly learned during the
backdoor learning. We then calculate the cosine similarity between the image feature zv = f̂v(v) and
the associated text feature zt = f̂t(t), i.e., S = cos(zv, zt), and the cosine similarity between zv and
the transformed text feature z′t = f̂t(T (t)), i.e., S′ = cos(zv, z

′
t). Since the shallowness will hinder

malicious matching from generalizing to semantically equivalent variants of the target text, while the
deepness will help benign matching remain robust to text modifications, a promising detection strategy
comparable to our Subspace Detection is to consider the change in cosine similarity before and after
text transformation. According to the employed text transformation, the corresponding methods are
called Descriptive Rephrasing, Font Styling and Language Translation. For any to-be-detected image
v, if it satisfies the following condition:

| cos (zv, zt)− cos (zv, z
′
t) |≥ ϵ, (3)

it will be identified as poisoned; otherwise, it will be considered benign. ϵ is a threshold which could
also be empirically determined based on Dref:

ϵ = max
vref∈Dref

(| cos
(
f̂v (vref) , f̂t (tref)

)
− cos

(
f̂v (vref) , f̂t (T (tref))

)
|), (4)

where tref is the associated text of vref predicted by a backdoored CLIP. The pseudo-code is summa-
rized in Algorithm 2.

Algorithm 2 Workflow of the compared multi-modal detection methods.

Require: Backdoored CLIP with text encoder f̂t(·; θ̂t) and image encoder f̂v(·; θ̂v), test dataset
Dtest and corresponding label names {t(i)}Ci=1, text transformation function T (·), threshold ϵ.
for test image v ∈ Dtest do

Predict the label name for v on backdoored CLIP by t = argmaxt(c) p(t = t(c)|v) =
exp(cos(f̂v(v),f̂t(t

(c)))/τ)∑C
j=1 exp(cos(f̂v(v),f̂t(t(j)))/τ)

;

Compute the feature of predicted text zt = f̂t(t);
Generate a variant of t by T (·) and compute its feature z′t = f̂t(T (t));
Compute ∆S ←| cos (zv, zt)− cos (zv, z

′
t) |;

if ∆S ≥ ϵ then
return v’s detection result “poisoned”;

else
return v’s detection result “benign”.

end if
end for

E IMPLEMENTATION DETAILS OF THE BACKDOOR ATTACKS AND
DETECTIONS

E.1 BACKDOOR ATTACKS SETTINGS

In our implementation of the backdoor attacks, we follow the training procedure and hyperparameter
settings used in BadCLIP (Liang et al., 2024), except for the number of poisoned samples and the
method used to generate poisoned samples in the compared backdoor attacks. Specifically, we use
500K image-text pairs from CC3M, including 5,000 poisoned samples, in the data poisoning phase.
The details of the poisoned sample generation methods for the compared backdoor attacks are as
follows:
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• BadNets: Following Gu et al. (2019), we used the white square as the trigger. Specifically, a white
square trigger of size 32×32 pixels was placed at the bottom-right corner of each original image to
generate poisoned samples. A white square trigger was placed at the bottom-right corner of each
original image to generate poisoned samples.

• Blended: Following Chen et al. (2017), we used the “HelloKitty” image as the trigger, then
generate poisoned images by blending the original image and the trigger image with weights of 0.6
and 0.4, respectively.

• SIG: Following Barni et al. (2019), we opted for an horizontal sinusoidal signal as the trigger, and
the noise amplitude and the frequency were set to 0.235 and 2πj × 6/224, respectively.

• WaNet: Following Nguyen & Tran (2021), the poisoned images were generated by applying
a fixed elastic warping field to benign images, which subtly alters the spatial structure while
preserving visual similarity. The control-grid size and the warping strength were set to 224 and 1,
respectively.

• TrojVQA: Following Walmer et al. (2022), triggers were embedded separately in both the
visual and textual modalities, implementing a dual-modal backdoor attack on the CLIP model by
combining a centrally placed visual patch with a specific textual prompt (“remember”) to jointly
activate the backdoor.

• Carlini & Terzis: Following Carlini & Terzis (2022), poisoned images were generated by
replacing a randomly chosen region in benign images with a 16×16 patch. The captions for
poisoned images were randomly selected from a set of relevant descriptions corresponding to the
target class within the training dataset.

• BadCLIP: Following Liang et al. (2024), the trigger generation process was optimized using
natural language descriptions, with keeping parameter settings consistent with the original work.

E.2 BACKDOOR DETECTIONS SETTINGS

• SCALE-UP: Following Guo et al. (2023), we amplified the pixel values of input images by five
different factors, i.e., 3, 5, 7, 9, 11. The key idea lies in this method is that the consistency of the
model’s predictions across these scales was used to identify whether the input image is poisoned.

• STRIP: Following Gao et al. (2019), we selected 64 benign samples to overlay on the input
images and computed their prediction entropy, which was used as a threshold to determine whether
other input images were poisoned.

• Descriptive Rephrasing: Following Algorithm 2, we used GPT-4 to generate descriptions based
on the characteristics of each class without explicitly including the class name. (The prompt
example is shown in the Fig. 6.) The defender can empirically determine the threshold value ϵ
based on access to a small benign reference set Dref.

Figure 6: Prompt for generating descriptive rephrasings of “banana” using GPT-4.

• Font Styling: In Algorithm 2, we replaced the font style of the letters in the class name, such as
using bold or italic fonts. (The font examples are shown in the Fig. 7.) In the compared experiment,
we adopted bold font. Consistent with the Descriptive Rephrasing, the defender can empirically
determine the threshold value ϵ based on access to a small benign reference set Dref.

• Language Translation: In Algorithm 2, we used GPT-4 to translate class name into Arabic. For
example, given the class name “banana”, the prompt provided to GPT-4 was: “Translate the word
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Figure 7: Letters with corresponding font style transformations: (a) Bold font transformation; (b)
Italic font transformation.

Table 8: Comparison with the state-of-the-art defenses on three datasets on ViT-B/32 (%). Note that
the best result is highlighted in boldface. (Descriptive Rephrasing w.r.t. Description, Font Styling
w.r.t. Font, Language Translation w.r.t. Language.)

Datasets Detection SCALE-UP STRIP Description Font Language Subspace Detection

Trigger AUROC F1-score AUROC F1-score AUROC F1-score AUROC F1-score AUROC F1-score AUROC F1-score

ImageNet

BadNets 0.477 0.667 0.485 0.667 0.847 0.787 0.552 0.693 0.381 0.667 0.750 0.722
Blended 0.481 0.667 0.500 0.667 0.954 0.883 0.555 0.667 0.492 0.667 0.994 0.964

SIG 0.615 0.667 0.525 0.667 0.973 0.914 0.541 0.667 0.495 0.667 0.986 0.947
WaNet 0.520 0.667 0.500 0.667 0.934 0.874 0.440 0.667 0.374 0.667 0.952 0.882

TrojVQA 0.494 0.667 0.476 0.667 0.818 0.776 0.370 0.667 0.253 0.667 0.925 0.850
Carlini & Terzis 0.551 0.667 0.493 0.667 0.799 0.770 0.358 0.667 0.343 0.667 0.999 0.994

BadCLIP 0.482 0.667 0.500 0.667 0.807 0.775 0.405 0.667 0.294 0.667 0.930 0.859
Average 0.517 0.667 0.497 0.667 0.876 0.826 0.460 0.671 0.376 0.667 0.934 0.888

ImageNet-R

BadNets 0.471 0.667 0.498 0.667 0.742 0.734 0.323 0.667 0.307 0.667 0.771 0.744
Blended 0.488 0.667 0.500 0.667 0.944 0.878 0.546 0.667 0.538 0.667 0.995 0.969

SIG 0.509 0.667 0.530 0.667 0.970 0.908 0.555 0.667 0.609 0.668 0.959 0.898
WaNet 0.552 0.667 0.520 0.667 0.870 0.815 0.420 0.667 0.402 0.667 0.947 0.880

TrojVQA 0.469 0.667 0.483 0.667 0.676 0.713 0.321 0.667 0.260 0.667 0.933 0.863
Carlini & Terzis 0.505 0.667 0.500 0.667 0.695 0.734 0.293 0.667 0.264 0.667 0.998 0.995

BadCLIP 0.468 0.667 0.500 0.667 0.625 0.695 0.304 0.667 0.265 0.667 0.927 0.853
Average 0.495 0.667 0.504 0.667 0.789 0.782 0.395 0.667 0.378 0.667 0.933 0.886

ImageNet-Sketch

BadNets 0.419 0.667 0.505 0.669 0.789 0.774 0.294 0.667 0.264 0.667 0.795 0.755
Blended 0.501 0.667 0.510 0.667 0.958 0.887 0.484 0.667 0.420 0.667 0.990 0.955

SIG 0.419 0.667 0.500 0.667 0.996 0.967 0.543 0.705 0.602 0.717 0.940 0.880
WaNet 0.511 0.667 0.500 0.667 0.909 0.861 0.375 0.667 0.277 0.667 0.982 0.929

TrojVQA 0.427 0.667 0.540 0.667 0.689 0.724 0.344 0.667 0.248 0.667 0.912 0.838
Carlini & Terzis 0.486 0.667 0.490 0.667 0.761 0.755 0.289 0.667 0.204 0.667 0.998 0.993

BadCLIP 0.402 0.667 0.500 0.667 0.678 0.713 0.335 0.667 0.253 0.667 0.882 0.817
Average 0.452 0.667 0.506 0.667 0.826 0.812 0.381 0.672 0.324 0.674 0.928 0.881

‘banana’ into Arabic.” Consistent with the Descriptive Rephrasing, the defender can empirically
determine the threshold value ϵ based on access to a small benign reference set Dref.

• Subspace Detection: In Algorithm 1, The numbers of font, language, and description transfor-
mations are set to mf = 2, ml = 1, and md = 6, respectively, leading to a total number of text
transformations m = 9. The dimension of the subspace K is selected to retain 95% of the total
variance. The number of subspaces L = 3. The number of augmented text features for modeling
and the number of sampled text features for detection are set to n = 90 and ns = 15. The scale
constant η in Gaussian distribution is set to 0.001. Consistent with the Descriptive Rephrasing,
the defender can empirically determine the threshold value τ ′ based on access to a small benign
reference set Dref.

F MORE EXPERIMENTAL RESULTS

F.1 EXPERIMENTAL RESULTS UNDER THE VIT-B/32 VISUAL ENCODER.

To evaluate the effectiveness of the proposed Subspace Detection method, we also conduct exper-
iments based on the open-source CLIP model (Ilharco et al., 2021), using ViT-B/32 (Dosovitskiy
et al., 2020) as the visual encoder.
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Evaluation on unimodal detection methods. Results are shown in Tab. 8. SCALE-UP demon-
strates excellent detection performance on single-modal models, but it shows relatively weaker
performance on multi-modal models. Its ability to distinguish between poisoned and benign samples
is limited according to the AUROC metric. Specifically, on the ImageNet-1K dataset, SCALE-UP
achieves its highest AUROC of 0.615 against SIG attack. On both the ImageNet-R and ImageNet-
Sketch datasets, the best performance is achieved against WaNet, with AUROC values of 0.552 and
0.511 respectively. In addition, we observe that SCALE-UP shows reduced performance on more
challenging datasets, with average AUROC values of 0.517 on ImageNet, 0.495 on ImageNet-R, and
0.452 on ImageNet-Sketch across all attacks. STRIP achieves average AUROC values of 0.497,
0.504, and 0.506 on ImageNet, ImageNet-R, and ImageNet-Sketch, respectively, across all attacks.
Although the detection performance is consistent across datasets, the overall effectiveness remains
suboptimal.

Evaluation on multi-modal detection methods. Results are shown in Tab. 8. Descriptive Rephras-
ing significantly outperforms unimodal detection methods in overall three datasets,i.e., an average
AUROC of 0.876 of ImageNet, 0.789 and 0.826 on ImageNet-R and ImageNet-Sketch, respectively.
Although there are slight variations in performance across different datasets, the overall performance
remains strong. Font Styling achieves its highest AUROC of 0.555 against Blended attack on
ImageNet, and against SIG attack on ImageNet-R and ImageNet-Sketch, with AUROC values of
0.555 and 0.543, respectively. The method shows limited effectiveness under the ViT-B/32 model.
Language Translator achieves its highest AUROC of 0.495 against SIG attack on ImageNet, and
performs best against SIG on both ImageNet-R and ImageNet-Sketch, with AUROC values of 0.609
and 0.602, respectively. However, the average AUROC across all attacks on ImageNet, ImageNet-R,
and ImageNet-Sketch is only 0.376, 0.378, and 0.324, respectively. This large performance gap
across different attacks within the same dataset indicates that the method lacks generality. Subspace
Detection demonstrates effective detection performance across all three datasets, achieving an aver-
age AUROC of 0.934 on ImageNet-1K and 0.933 on ImageNet-R. Moreover, even when evaluated
on the more challenging ImageNet-Sketch dataset, it maintains a strong average AUROC of 0.928
across all attacks.

Summary. The proposed Subspace Detection method still demonstrates excellent detection perfor-
mance when evaluated on the ViT-B/32 model, indicating that the method is not limited to a specific
architecture and further supporting its practical generality in diverse settings.

F.2 ADAPTIVE ATTACK

In this subsection, we provide an analysis of Subspace Detection against adaptive attacks, i.e., the
attacker is aware of our detection strategy, thus attempting to evade our detection.

F.2.1 EXPERIMENTAL SETTING

Adaptive attack. We designed an adaptive attack scenario based on the Blended attack to evaluate
our proposed method. In this setting, we assume the attacker has partial to full knowledge of the
text transformations employed by our method. Specifically, the attacker is aware that our detection
method may use three types of transformations: Descriptive Rephrasing, Font Styling, and Language
Translation. To evade detection, the attacker adaptively crafts poisoned samples. They select 2000
out of 5000 poisoned samples and replace their corresponding target text captions with target text
transformed by these three transformation types. For systematic evaluation, we simulated seven attack
scenarios, corresponding to the attacker being aware of each of the seven possible combinations
of these transformations, i.e., Font, Language, Description, Font+Language, Font+Description,
Language+Description, and Language+Description+Font. We categorize the seven attack scenarios
into two cases:

• Case 1: The Attacker Possesses Incomplete Knowledge. This case, corresponding to the first six
scenarios, reflects a more realistic threat model where the attacker cannot fully know the defender
employed transformations (e.g., being unaware that Descriptive Rephrasing is used). Furthermore,
a realistic attacker would also have incomplete knowledge of the transformation parameters (e.g.,
not knowing the specific font used for Font Styling). To construct a more challenging evaluation
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and test our method against a stronger adversary, we assume that for the subset of transformation
types the attacker is aware of, they also know the exact implementation parameters.

• Case 2: The Attacker Possesses Complete Knowledge. This last scenario represents the most
severe threat model. We assume the attacker has full knowledge: they are aware of all three
transformations used by the defender and also know the exact parameters for each.

Detection. Throughout all these adaptive attack experiments, our detection method consistently
utilizes all three types of transformations to approximate the local text manifold.

F.2.2 EXPERIMENTAL RESULTS

The results of our adaptive attack experiments are summarized in the Tab. 9, showing the AUROC
and F1-score of our detection method as the attacker incorporates more transformations.

Table 9: Evaluation of Subspace Detection against adaptive attacks. Each column represents a
different attack scenario, defined by the set of text transformations the attacker is aware of and uses
for poisoning.

Case 1 Case 2

Font Language Description Font+Language Font+Description Language+Description Language+Description+Font

AUROC 0.8833 0.9536 0.9602 0.8776 0.8571 0.8036 0.6559
F1-score 0.8909 0.9515 0.9557 0.8656 0.8557 0.8075 0.6922

As Tab. 9 indicates, the detection performance shows a downward trend as the attacker gains more
knowledge of the defender’s transformations. This is an expected result, as the attacker can more
effectively craft poisoned samples to align with the text manifold used for detection. We would like
to highlight two key takeaways from these results:

Effectiveness in Case 1. In realistic scenarios (Case 1), it is highly impossible for an attacker to
gain complete knowledge of text transformations used by the defender. Our results show that when
the attacker has only partial knowledge, our method maintains a satisfactory AUROC and F1-score,
demonstrating its effectiveness in realistic adaptive threat models.

Inherent Resilience in in Case 2. Even in the most severe scenario (Case 2) where the attacker
knows all three transformations and their parameters, our defense does not fail completely, maintaining
an AUROC of 0.6559. This resilience stems from a key difference: the attacker is limited to poisoning
the dataset with a limited set of text variants, whereas our method defends by sampling a diverse set
of text features from a continuous approximated local text manifold. Thus, the attacker’s poisoned
samples cannot achieve perfect alignment with the manifold. Our manifold-based sampling ensures
there will always be sampled text features that can distinguish the poisoned images, thus preserving
the detection capability.

F.3 COMPUTATIONAL COST

Table 10: Comparison of per-image test-time detection runtime (in seconds) for different backdoor
detection methods on the same hardware. Results are based on ImageNet-1K.

Detection Method SCALE-UP STRIP Description Font Language Subspace Detection

Runtime (s) 0.016 0.057 0.011 0.012 0.011 0.009

A key advantage of our Subspace Detection is its time efficiency at test time. The core of our
approach is fitting a uniform mixture of Gaussians, which characterizes the region-of-interest for a
given semantic concept. Crucially, this distribution is label-specific, not instance-specific. Therefore,
the distribution for each class can be pre-computed once and then reused for every subsequent test
image predicted to be in that class. This effectively decouples the computational cost into two phases:
a one-time and offline setup cost, and a highly efficient online detection cost.
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Offline setup cost. The offline setup cost encompasses the characterization of the region-of-interest
for each class (corresponding to Sec. 4.2.1). On a server equipped with a 2.6 GHz Intel Xeon
Gold 6278C CPU, the characterization for a single class takes approximately 0.1963 seconds. This
demonstrates that the per-class setup cost is minimal, making it feasible to pre-compute distributions
for all classes in a downstream dataset before deployment.

Online detection cost. The primary benefit of this offline pre-computation is the resulting speed of
online detection. At test time, the detection process for a single test image only requires sampling
features from the pre-computed distribution for the corresponding predicted label, and calculating
their average Euclidean distance to the test image feature (corresponding to Eq. 1 in Sec. 4.2.2). To
validate the efficiency of online detection, we compare the per-image detection runtime of Subspace
Detection against other compared methods. As shown in Tab. 10, our method exhibits a significant
time efficiency, which is critical for real-world deployments where low-latency inference is a critical
requirement.

G LIMITATION

While our method demonstrates strong detection performance, there is a limitation that requires
further improvement in future work. A key component of Subspace Detection is to generate text
variants to approximate the local text manifold corresponding to a specific concept. In the current
implementation, generating variants, particularly via descriptive rephrasing and language translation,
requires the involvement of LLMs. While effective, this process incurs API expenses, potentially
limiting scalability in practice. In future work, we plan to integrate external translation systems
or design models for generating descriptions, which could reduce costs and improve the practical
generality of Subspace Detection.

H THE USE OF LARGE LANGUAGE MODELS

In this work, we utilized the LLM in two aspects: as a component within our method and as a writing
assistant. In our method, we approximate the local text manifold using various variants of the original
text. To generate these variants, we use LLM to implement text transformations on the original one,
such as language translation and descriptive rephrasing. Additionally, we used the LLM to refine the
manuscript’s language, improving its clarity and grammar. All scientific contributions, such as the
core research ideas and experimental design, are the original work of the human authors.
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