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ABSTRACT

We initiate the study of one-pass streaming algorithms for underdetermined ℓp
linear regression problems of the form

min
𝐴𝑥=𝑏

∥𝑥∥p , where 𝐴 ∈ Rn×d with n≪ d ,

which generalizes basis pursuit (p = 1) and least squares solutions to underdeter-
mined linear systems (p = 2). We study the column-arrival streaming model, in
which the columns of 𝐴 and then the vector 𝑏 are presented one by one in a stream.
When 𝐴 is the incidence matrix of a graph, this corresponds to an edge insertion
graph stream, and the regression problem captures ℓp flows which includes trans-
shipment (p = 1), electrical flows (p = 2), and max flow (p = ∞) on undirected
graphs as special cases. Our goal is to design algorithms which use space much
less than the entire stream, which has a length of d. For the task of estimating the
cost of the ℓp regression problem for p ∈ [2,∞], we show a streaming algorithm
which constructs a sparse instance supported on Õ(ε−2n) columns of 𝐴 which
approximates the cost up to a (1±ε) factor, which corresponds to Õ(ε−2n2) bits of
space in general and an Õ(ε−2n) space semi-streaming algorithm for constructing
ℓp flow sparsifiers on graphs. This extends to p ∈ (1,2) with Õ(ε2nq/2) columns,
where q is the Hölder conjugate exponent of p. For p = 2, we show that Ω(n2)
bits of space are required in general even for outputting a constant factor solution.
For p = 1, we show that the cost cannot be estimated even to an o(

√
n) factor in

poly(n) space. On the other hand, if we are interested in outputting a solution 𝑥,
then we show that (1+ ε)-approximations require Ω(d) space for p > 1, and in
general, β -approximations require Ω̃(d/β 2q) space for p > 1. We complement
these lower bounds with the first sublinear space upper bounds for this problem,
showing that we can output a β -approximation using space only poly(n) · Õ(d/β q)
for p > 1, as well as a

√
n-approximation using poly(n, logd) space for p = 1.

1 INTRODUCTION

When faced with an underdetermined linear system 𝐴𝑥= 𝑏 for an n×d matrix 𝐴 and a n-dimensional
vector 𝑏, a common approach towards obtaining useful solutions is to seek a vector 𝑥= [x1, . . . ,xd ]

⊤

that minimizes some measure of cost. A popular choice is to minimize the least squares cost of
𝑥, i.e., the ℓ2 norm of 𝑥, in which case the exact minimizer can be written in closed form as
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argmin𝐴𝑥=𝑏∥𝑥∥2 =𝐴⊤(𝐴𝐴⊤)−1𝑏. Another well-studied choice is to minimize the ℓ1 norm of 𝑥,
also known as basis pursuit (Chen et al., 2001), which gives rise to sparse solutions 𝑥 and has been
popularized in the literature of compressed sensing and sparse recovery.

The minimum ℓ1 and ℓ2 norm solutions when 𝐴,𝑏 are training data and labels, respectively, have
been of interest to understanding the double descent phenomenon: when machine learning models
exhibit multiple phases of decreasing risk (or expected loss) as model complexity increases (Hastie
et al., 2022; Bartlett et al., 2020; Li & Wei, 2021). Less theory is developed about regression models
in this underconstrained regime as it diverges from the traditional bias-variance U-shape risk curve.
Following this framework, these interpolating models should contain very high risk as it drastically
“overfits” to train data. Nonetheless, the aforementioned works demonstrate both empirical and
theoretical results about the extraordinary ability of these minimum norm interpolators to generalize
well on unseen data. This motivates their study in models for processing large data sets.

When 𝐴 is the incidence matrix of a graph with n vertices and d edges, i.e., 𝐴u,e = −𝐴v,e = 1
whenever e is an edge from a vertex u to v, then solutions 𝑥 to the linear system 𝐴𝑥= 𝑏 correspond
to flows that respect a given set of flow conservation constraints or demands specified by the vector 𝑏.
In this case, the problem

min
𝐴𝑥=𝑏

∥𝑥∥p (1)

is known as the p-norm flow problem and has applications to graph clustering (Liu & Gleich, 2020;
Fountoulakis et al., 2020), network science (Kalantari et al., 2008), and captures transshipment
(p = 1), electrical flows (p = 2), and max flow (p = ∞) as special cases. In general, problem (1) is
known as the ℓp regression problem, and algorithms for solving it, both for graphs and for general
matrices, have recently been a topic of intense study (Bubeck et al., 2018; Ene & Vladu, 2019; Adil
et al., 2019b;a; Adil & Sachdeva, 2020; Adil et al., 2021; Jambulapati et al., 2022; 2024).

It is useful to generalize problem (1) by associating a weight c j with each column j ∈ [d]. This
captures p-norm flows with associated capacities. In this setting, we wish to solve the optimization
problem given by

min
𝐴𝑥=𝑏

∥𝐶−1𝑥∥p (2)

for 𝐶 = diag(c1, . . . ,cd). If c j = 0 for some j ∈ [d], then we say the objective ∥𝐶−1𝑥∥p is infinite,
unless x j = 0.

In many underdetermined linear systems, the number d of columns of 𝐴 far exceeds the number n of
rows. In this regime, it may be unreasonable to store the entire matrix 𝐴 in memory to solve the ℓp
regression problem. This motivates a streaming model of computation for this problem, in which the
algorithm only accesses a small portion of the input at a time in a stream of updates, and the goal is
to solve the problem using memory that is much smaller than the length d of the stream. In this work,
we study the column-arrival streaming model, defined below.
Definition 1.1 (Column-arrival streaming model). Consider an instance of problem (2) given by
𝐶 = diag(c1, . . . ,cd) ∈ Rd×d , 𝐴 ∈ Rn×d , and 𝑏 ∈ Rn. We say that this instance is presented in a
column-arrival stream if we receive d+1 updates in a stream in an arbitrary order, where each update
consists of either a pair (𝑎 j,c j) consisting of a column 𝑎 j of 𝐴 and an associated weight c j, or the
vector 𝑏. In this work, we focus on algorithms which make only one pass through the data stream.

Special cases of the general streaming underdetermined ℓp regression problems have been studied
by a number of works in the literature of streaming algorithms. For p = 2, the work of Bartan &
Pilanci (2023) gives an algorithm for estimating the cost of the regression problem by using sketching
techniques. When 𝐴 corresponds to the incidence matrix of a graph, this model corresponds to an
edge insertion graph stream (McGregor, 2014), and the corresponding graph streaming problems for
transshipment (Becker et al., 2021), electrical flows (Kelner & Levin, 2013; Kapralov et al., 2014;
Cohen et al., 2016), and max flow (Assadi et al., 2019) have received much attention in the literature.
The literature on graph streaming problems related to the max flow problem, such as reachability
(Guruswami & Onak, 2013; Assadi & Raz, 2020; Chen et al., 2021) and maximum bipartite matching
(Feigenbaum et al., 2005; McGregor, 2005; Ahn & Guha, 2013; Crouch & Stubbs, 2014; Paz &
Schwartzman, 2017; Assadi et al., 2017; Kapralov, 2021) is even more vast.

In the study of streaming algorithms, we are typically interested in minimizing the space used by the
algorithm. In our algorithms, we will allow for 𝐴 to take real values and bound the space complexity
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in terms of the number of columns of 𝐴 stored and additional words of space, and also give bit
complexity bounds when the entries of 𝐴 are bounded integers. In our lower bounds, we will prove
bit complexity lower bounds in the latter complexity model.

1.1 OUR CONTRIBUTIONS

We design streaming algorithms for problem (2), handling a wide range of parameter settings. We
also prove several corresponding lower bounds. We consider both the cost estimation problem, where
the desired output is a real number that approximates the minimum ℓp norm, as well as the harder
vector-valued problem, where the desired output is an approximate minimizer vector 𝑥. We work
in the setting n≪ d. In stating our results, we use the notations Õ(·) and Ω̃(·) to suppress factors
polylogarithmic in n and d.

1.1.1 ESTIMATING THE MINIMUM COST

For the most basic setting of problem (1), where p = 2, there is a well-known closed form expression
for the minimizer vector: 𝑥∗ =𝐴⊤𝑀−1𝑏, where 𝑀 :=𝐴𝐴⊤. Therefore, the minimum cost can
be computed in O(n2) words of space, assuming real arithmetic. The method is straightforward:
maintain the matrix 𝑀 exactly, using the fact that each stream update—i.e., each new column of 𝐴—
makes a rank-1 additive update to 𝑀 . At the end of the stream, return the solution ∥𝐴⊤𝑀−1𝑏∥2 =

(𝑏⊤𝑀−1𝑏)1/2.

Notice that the space bound O(n2) is sublinear for d = ω(n). We shall eventually prove that this
quadratic dependence on n is optimal, even for returning a constant-factor approximation to the
minimum cost. This essentially settles the streaming complexity of ℓp regression for p = 2. However,
it is unclear how these results generalize to the setting of p ̸= 2, when no closed form solutions are
available for problem (1).

Our algorithms for more general p ∈ (1,∞] provide approximations to the cost of ℓp regression, up
to a (1+ ε) factor. They are based on the streaming construction of a notion of ℓp flow sparsifiers,
which we define as follows.
Definition 1.2 (Flow sparsifier). Let 𝐶 ∈ Rd×d be a diagonal matrix, 𝐴 ∈ Rn×d , and 𝑏 ∈ Rn. Let
p ∈ [1,∞]. Then, a diagonal matrix 𝑆 is a β -approximate ℓp flow sparsifier with sparsity nnz(𝑆) if

min
𝐴𝑥=𝑏

∥𝐶−1𝑥∥p ≤ min
𝐴𝑥=𝑏

∥𝑆−1𝐶−1𝑥∥p ≤ β · min
𝐴𝑥=𝑏

∥𝐶−1𝑥∥p .

In the graph setting, when 𝐴 is the incidence matrix of a graph, our notion of a flow sparsifier
corresponds to a weighted subgraph whose ℓp flow cost approximates that of the original graph. This
generalizes the notion of spectral sparsifiers (Spielman & Teng, 2011), which correspond to the case
p = 2. Note that this differs from another line of work on “flow sparsifiers” that focuses on vertex
sparsification for preserving the cost of flows when there are only a small number of terminals of
interest (Leighton & Moitra, 2010; Andoni et al., 2014; Krauthgamer & Mosenzon, 2023; Chen &
Tan, 2024), whereas we construct edge sparsifiers with general vectors 𝑏, similar to a notion of flow
sparsifiers used in Sherman (2013); Kelner et al. (2014).

Due to the work of Cohen et al. (2016), it is known how to construct electrical flow sparsifiers even
in an online fashion, that is, the sparsifier can be constructed in one pass over an insertion stream of
edges with the guarantee the edges are only ever kept and never thrown away.

To state the space requirements of our algorithm in full generality, we need the following notion of an
online condition number (Cohen et al., 2016; Woodruff & Yasuda, 2022).
Definition 1.3 (Online condition number). Let 𝐴 ∈ Rn×d . Then, the online condition number
κOL(𝐴) is defined as κOL(𝐴) := ∥𝐴∥max j∈[d]∥𝐴−j ∥, where 𝐴 j denotes the n× j submatrix of 𝐴
formed by its first j columns, 𝐴−j denotes the Moore–Penrose pseudoinverse of this matrix, and ∥·∥
denotes the matrix 2-norm.

This brings us to our main algorithmic result for constructing ℓp flow sparsifiers, in particular solving
the cost estimation version of problem (2).
Theorem 1. Let p ∈ (1,∞] and let q = p/(p−1) ∈ [1,∞) be its Hölder conjugate exponent. There is
an algorithm that reads 𝐴 ∈ Rn×d and the diagonal matrix 𝐶 ∈ Rd×d in a column-arrival stream
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(Definition 1.1) and, with probability at least 1−δ , outputs a (1+ ε)-approximate ℓp flow sparsifier
(Definition 1.2). Furthermore, the algorithm stores at most s columns of 𝐴𝐶, with

s = O
(
ε
−2nmax{1,q/2})poly log(d,κOL(𝐴𝐶),1/δ )

and at most O(n2) additional words of space if 𝐴 has real entries, and

s = O
(
ε
−2nmax{1,q/2})poly log(d,1/δ )

and at most O(n2 logd) bits of additional space if 𝐴𝐶 has integer entries bounded by ±poly(d).
Furthermore, the s columns of 𝐴𝐶 are stored in an online fashion, that is, the columns are selected
irrevocably and are not thrown away throughout the stream.

A polylogarithmic dependence on the online condition number is typical of results in the literature
of online numerical linear algebra, and is known to be necessary in general (Cohen et al., 2016).
For p ∈ [2,∞], our algorithms store only Õ(ε−2n) columns of 𝐴, which corresponds to an Õ(ε−2n)
space algorithm—i.e., a “semi-streaming” algorithm—in the setting of ℓp flows on undirected graphs.
Theorem 1 generalizes results on spectral sparsification in the semi-streaming setting (Kelner &
Levin, 2013; Kapralov et al., 2014; Cohen et al., 2016), which corresponds to the case of p = 2. We
also note that Theorem 1 separates the space complexity of max flow on undirected graphs from that
on directed graphs. Indeed, on directed graphs, even the reachability problem, which is a special case
of a directed max flow, requires an almost quadratic Ω(n2−o(1)) bits of space (Guruswami & Onak,
2013; Assadi & Raz, 2020; Chen et al., 2021), even with multiple passes.

We now turn to lower bound results. These results all have the following structure. Suppose that
there exists a column-arrival streaming algorithm for problem (1) that uses at most B bits of space
and, with probability at least 2/3, outputs a “good estimate” c to the cost min𝐴𝑥=𝑏∥𝑥∥p. Then,
in particular, there must exist randomized algorithms A and B such that, for any 𝐴 ∈ Rn×d , A
produces an at-most-B-bit message M = A (𝐴) so that, for any 𝑏 ∈ Rn, B outputs the good estimate
c = B(M,𝑏) as a function of M and 𝑏. The proofs of our lower bounds apply to this more relaxed
setting, effectively allowing an unlimited amount of space to process the columns of 𝐴 as they are
streamed in and only enforcing a space limitation before 𝑏 is revealed.

First, we consider the algorithmically “easy” case of problem (1), when p = 2. We remarked above
that the folklore O(n2)-space algorithm is optimal in its dependence on n. Formally, we establish the
following result.
Theorem 2. Fix p = 2. There is an absolute constant α > 0 such that any column-arrival streaming
algorithm that, with probability at least 2/3, computes a (1+α)-approximation to the cost of
problem (1) requires Ω(n2) bits of space.

Next, we consider p = 1 in problem (1). In this case, the Hölder conjugate q = ∞ and thus Theorem 1
does not give a (1± ε)-approximation algorithm. We show that this is inherent by proving the
following lower bound.
Theorem 3. Fix p = 1 and let D ≥ 1 be arbitrary. There is a constant CD > 0 such that any
column-arrival streaming algorithm that, with probability at least 2/3, computes an estimate c with
c ≤ min𝐴𝑥=𝑏∥𝑥∥1 < (

√
n/CD)c requires Ω(nD) bits of space. This result applies even when all

entries of the input matrix 𝐴 lie in {±1}.

In other words, for p = 1, there is no poly(n) space algorithm for estimating the cost of ℓ1 regression,
even up to a factor of o(

√
n). In contrast, we shall soon present a nearly matching algorithm that uses

just O(n)poly logd bits of space to output an actual solution vector 𝑥 ∈ Rd that achieves a
√

n-factor
approximation.

Finally, one can take p = 0 in problem (1), with the natural interpretation that ∥𝑥∥0 = nnz(𝑥). This
setting does not admit a sublinear space solution, even with n as small as 2, which we note below.
Theorem 4. Fix p = 0 and take n = 2. Any column-arrival streaming algorithm that, with probability
at least 2/3, outputs a 2-approximation to the cost minimum cost in problem (1) requires Ω(d) bits of
space.

Table 1 summarizes the above results—both upper and lower bounds—for estimating the cost of ℓp
regression.
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Range of p Distortion Space complexity (bits of space) Reference

p = 2 1 Õ(n2) Folklore
p ∈ (2,∞] (1+ ε) Õ(ε−2n2) Theorem 1
p ∈ (1,2) (1+ ε) Õ(ε−2nq/2+1) Theorem 1

p = 2 (1+ ε) Ω(n2) Theorem 2
p = 1 o(

√
n) nω(1) Theorem 3

p = 0 2 Ω(d) Theorem 4

Table 1: Space complexity of estimating the cost of ℓp regression, with q := p/(p−1)

1.1.2 OUTPUTTING A GOOD SOLUTION

The streaming algorithm for ℓp flows mentioned in Section 1.1.1 only output a scalar, approximating
the cost of the regression problem. More generally, one would want an actual solution vector 𝑥 ∈ Rd

with small ℓp norm that satisfies 𝐴𝑥= 𝑏. At first glance, this may feel like asking for too much: after
all, 𝑥 is d-dimensional, which would seem to necessitate at least Ω(d) space, thus precluding any
sublinear space streaming algorithm. However, for p = 1, one of the primary reasons for solving the
basis pursuit problem min𝐴𝑥=𝑏∥𝑥∥1 is to identify sparse solutions 𝑥, which require much less than
d space to specify. Furthermore, it may be possible to specify solutions in less than d space if we
allow for some large distortion (i.e., approximation factor) in the solution, say d0.1.

Thus, it is worthwhile to look for algorithms that can output a solution vector 𝑥, especially if we allow
for approximation errors as large as poly(n,d). We do design such an algorithm. Before discussing
it, we bring up a couple of related lower bounds that we prove; these serve to set the context for the
algorithm. Our lower bounds hold even in the very special setting of n = 1, so the matrix 𝐴 becomes
a row vector 𝑎 and the vector 𝑏 becomes a scalar b. Furthermore, the entries of 𝑎 can be restricted to
{±1} and the scalar b on the right-hand side of problem (1) can be fixed to d.

As with the lower bounds in Section 1.1.1, the next two lower bounds hold in the more relaxed setting
where 𝑎 can be processed by a randomized algorithm A using unlimited space, resulting in a B-bit
message M = A (𝑎). Another randomized algorithm B must then produce a good output vector
�̂�= B(M), based on M, succeeding with high probability. Clearly, this setting is a relaxation of a
column-arrival streaming algorithm that uses B bits of space.
Theorem 5. Let p ∈ (1,∞] and let q = p/(p− 1) ∈ [1,∞) be its Hölder conjugate exponent. Let
ε ∈ (0,1/(8q)) and d ∈ N. Any randomized algorithm that computes a B-bit summary of 𝑎 ∈ {±1}d

from which �̂� ∈ Rd can be produced such that, with probability at least 2/3, we have ⟨𝑎, �̂�⟩= d and
∥�̂�∥p ≤ (1+ ε)min⟨𝑎,𝑥⟩=d∥𝑥∥p requires B = Ω(d).

In other words, for p > 1, there is no algorithm using less than d space that can output a (1+ ε)-
approximate solution for ε ≤ 1/(8q).

We also obtain a lower bound in the setting of large distortions, showing that for a β -factor approxi-
mation, the streaming algorithm must use at least Ω̃(d/β 2q) bits of space, provided that β 3q≪ d. In
particular, for p > 1, it is in fact not possible to output a solution 𝑥 in poly(n, logd) space unless the
approximation factor is at least poly(d).
Theorem 6. Let p ∈ (1,∞] and let q = p/(p− 1) = [1,∞) be its Hölder conjugate exponent. Let
β be a distortion parameter such that (β logd)3q = cd for a sufficiently small universal constant c.
Then any randomized algorithm that computes a B-bit summary of 𝑎 ∈ {±1}d from which �̂� ∈ Rd

can be produced such that, with probability at least 1− 1/O(β logd)q, we have ⟨𝑎, �̂�⟩ = d and
∥�̂�∥p ≤ β ·min⟨𝑎,𝑥⟩=d∥𝑥∥p requires B = Ω(d/(β logd)2q).

We prove both of these lower bounds in Section 4. The high-accuracy lower bound of Theorem 5
follows from a relatively simple reduction to one-pass streaming lower bounds for the INDEX com-
munication problem (Kremer et al., 1995). On the other hand, Theorem 6 is our most technically
advanced lower bound result, requiring additional techniques in order to extract information about 𝑎
from a β -approximate solution for large β . In particular, our lower bound argument involves classify-
ing the entries of a β -approximate solution 𝑥 according to their contribution towards partitioning
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the coordinates into comparable classes. We then apply conditioning on an additional short string of
advice to construct an estimator that extracts many bits of information about the input 𝑎 from the
solution 𝑥.

Turning to upper bounds, we give a new algorithm for the general ℓp regression problem (2) that
runs in a strongly sublinear d1−Ω(1) amount of space and outputs a solution vector achieving d1−Ω(1)

distortion. Furthermore, in the case of p = 1, our algorithm outputs a solution with distortion at most√
n with space complexity poly(n, logd), which explains why the lower bounds of Theorems 5 and 6

do not apply when p = 1.

Below, we write 𝐴|S to denote the n×|S| submatrix of 𝐴 with columns indexed by S⊆ [d].

Theorem 7. Let p ∈ [1,∞] and let q = p/(p−1) ∈ [1,∞] be its Hölder conjugate exponent. There is
an algorithm that reads 𝐴∈Rn×d and the diagonal matrix 𝐶 ∈Rd×d in a column-arrival stream and
stores a subset S of at most O(sd/β q) columns of 𝐴 and entries of 𝐶 for p > 1, and O(s) columns of
𝐴 and entries of 𝐶 for p = 1, such that

min
𝐴|S𝑥=𝑏

∥𝐶−1𝑥∥p ≤


β · min

𝐴𝑥=𝑏
∥𝐶−1𝑥∥p , when p≥ 2 ,

n1/p−1/2
β · min

𝐴𝑥=𝑏
∥𝐶−1𝑥∥p , when p < 2 ,

n1/2 · min
𝐴𝑥=𝑏

∥𝐶−1𝑥∥p , when p = 1 ,

(3)

where s = O(n log(dκOL(𝐴𝐶))) if 𝐴𝐶 has real entries, and s = O(n logd) if 𝐴𝐶 is an integer
matrix with entries bounded in absolute value by poly(d). Furthermore, the s columns of 𝐴𝐶 are
stored in an online fashion, that is, the columns are selected irrevocably and are not thrown away
throughout the stream.

As the statement of the above theorem suggests, our algorithm is based on a column subset selection
approach. It in fact outputs a sparse solution that approximately solves the ℓp regression problem.
Furthermore, the trade-off between the approximation factor β and the sparsity of this solution
improves as p→ 1, which affirms the intuition that minimizing the ℓp norm for p closer to 1 yields
sparser solutions. Our algorithm uses the idea of well-conditioned spanning sets, which is a subset of
the columns of 𝐴 such that all other columns can be written as a linear combination of this subset
with small coefficients, and we show that such subsets can in fact be constructed in a streaming
fashion by using a streaming Löwner–John ellipsoid algorithm of Woodruff & Yasuda (2022).

Table 2 summarizes our upper and lower bounds for the problem of outputting a solution vector.

Range of p Distortion Space complexity (bits of space) Theorem

p ∈ (1,∞] (1+ ε) Ω(d) Theorem 5
p ∈ (1,∞] β Ω̃(d/β 2q) Theorem 6
p ∈ (2,∞] β n2 · Õ(d/β q) Theorem 7
p ∈ (1,2) n1/p−1/2β n2 · Õ(d/β q) Theorem 7

p = 1 n1/2 n2 ·poly logd Theorem 7

Table 2: Space complexity of outputting a solution vector for ℓp regression, with q := p/(p−1)

1.2 OPEN QUESTIONS

We have initiated the study of equality-constrained norm minimization in the streaming setting, and
there are a number of natural questions that remain unresolved. Our first question is on closing
the gap between our upper and lower bounds for streaming ℓp regression algorithms that output an
approximate solution 𝑥 with large distortion. We conjecture that our lower bound is tight and raise
the question of tightening the upper bound.

Question 1.4. Is there a column-arrival streaming algorithm which outputs a solution �̂� satisfying
𝐴�̂�= 𝑏 and ∥�̂�∥p ≤ β ·min𝐴𝑥=𝑏∥𝑥∥p using space at most poly(n) · Õ(d/β 2q)?
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Furthermore, in this work, we have focused on the setting of one-pass algorithms, and we leave the
question of studying algorithms and lower bounds for multi-pass algorithms for future work.
Question 1.5. What is the space complexity of ℓp regression in the column-arrival streaming model
for algorithms that make multiple passes over the data stream?

Lastly, our study has been mostly focused on the setting of ℓp regression, and we have left open
the possibility of obtaining better algorithms and lower bounds in the more specific setting of ℓp
flows on undirected graphs. For instance, we already know that our lower bound of Theorem 3 can
be circumvented by using streaming algorithms for constructing spanners (Althöfer et al., 1993;
Feigenbaum et al., 2008; Baswana, 2008).
Question 1.6. What is the space complexity of ℓp flows on undirected graphs in the edge insertion
graph streaming model? What about for multi-pass algorithms?

2 FLOW SPARSIFIERS VIA ONLINE LEWIS WEIGHT SAMPLING

In this section, we establish our first algorithmic result (Theorem 1). Our starting point for constructing
ℓp flow sparsifiers is the following duality lemma; we provide a proof in Section B for completeness.
Lemma 2.1 (Strong duality for ℓp regression). Let p ∈ [1,∞], q = p/(p−1) ∈ [1,∞], and 𝐶, 𝐴 and
𝑏 be an instance of problem (2) such that 𝐴𝑥= 𝑏 is feasible. Then

min
𝐴𝑥=𝑏

∥𝐶−1𝑥∥p = max
∥𝐶𝐴⊤𝑦∥q≤1

𝑦⊤𝑏 .

Proof of Theorem 1. Suppose 𝑆 ∈Rd×d is a diagonal matrix with ∥𝑆𝐶𝐴⊤𝑦∥q = (1±ε)∥𝐶𝐴⊤𝑦∥q
simultaneously for every 𝑦 ∈ Rn. (This notion of ℓq norm preservation for a subspace is known as
an ℓq subspace embedding.) From the above duality lemma, it follows that a modified dual problem
with capacities 𝑆𝐶 approximates the original dual up to a (1± ε) factor. To be precise,

max
∥𝑆𝐶𝐴⊤𝑦∥q≤1

𝑦⊤𝑏= (1± ε) max
∥𝐶𝐴⊤𝑦∥q≤1

𝑦⊤𝑏 .

In turn, by applying strong duality on both sides, we have that

min
𝐴𝑥=𝑏

∥𝑆−1𝐶−1𝑥∥p = (1± ε) min
𝐴𝑥=𝑏

∥𝐶−1𝑥∥p . (4)

That is, the ℓp flow problem with capacities 𝑆𝐶 approximates the one capacities 𝐶.

It remains to construct a sparse reweighting matrix 𝑆 such that ∥𝑆𝐶𝐴⊤𝑦∥q = (1± ε)∥𝐶𝐴⊤𝑦∥q
simultaneously for every 𝑦 ∈ Rn. This can be done via a random sampling technique known as ℓp
Lewis weight sampling (Cohen & Peng, 2015; Woodruff & Yasuda, 2023a), which shows that it is
possible to construct 𝑆 with

nnz(𝑆) = Õ
(
ε
−2nmax{1,q/2}) . (5)

In fact, this construction can be done even in the streaming setting via online ℓp Lewis weight sampling
(Woodruff & Yasuda, 2023a), up to a small overhead, which is a factor polylogarithmic in some natural
parameters. To make this precise, we recall a result of Woodruff & Yasuda (2023a) on constructing ℓp
subspace embeddings: they show how to obtain the guarantee ∥𝑆𝐵𝑦∥q = (1± ε)∥𝐵𝑦∥q for every
𝑦 ∈ Rn when 𝐵 ∈ Rd×n is presented in a row-arrival stream. Fortunately, this corresponds to a
column-arrival stream for 𝐴 when 𝐵 =𝐴⊤. Their result, translated into a column-arrival setting, is
as follows.

Fact 2.2 (Online ℓp Lewis weight sampling, Theorem 3.8 of Woodruff & Yasuda (2023a)). Let
q ∈ [1,∞). Let 𝐴 ∈ Rn×d . Then, there is a column-arrival streaming algorithm which, with
probability at least 1− δ , outputs a sampling matrix 𝑆 which stores at most s rows such that
for all 𝑦 ∈ Rn, ∥𝑆𝐴⊤𝑦∥q = (1± ε)∥𝐴⊤𝑦∥q with

s = O(ε−2nmax{1,q/2})poly log(d,κOL(𝐴),1/δ )

and at most O(n2) additional words of space if 𝐴 has real entries, and

s = O(ε−2nmax{1,q/2})poly log(d,1/δ )

and at most O(n2 logd) bits of additional space if 𝐴 has integer entries bounded by ±poly(d).
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Combining the above result with the duality-based derivation of eq. (4), we obtain our claimed
algorithm for constructing ℓp flow sparsifiers. This completes the proof of Theorem 1

Remark 2.3. We note that for ℓp regression for p ∈ [2,∞], our duality-based approach for estimating
the regression cost is also compatible with the turnstile streaming model, in which the matrix 𝐴
undergoes entrywise updates of the form 𝐴(i, j)←𝐴(i, j)+∆ for some update ∆ which can be
positive or negative. Indeed, a long line of work has established algorithms for recovering a sketch �̃�
such that ∥�̃�⊤𝑦∥q = (1± ε)∥𝐴⊤𝑦∥q simultaneously for every 𝑦 ∈Rn using only poly(n,ε−1, logd)
bits of space (Sohler & Woodruff, 2011; Meng & Mahoney, 2013; Woodruff & Zhang, 2013; Wang
& Woodruff, 2019; Li et al., 2021; Woodruff & Yasuda, 2023b; Mai et al., 2023; Munteanu & Omlor,
2024). It is also possible to get strongly sublinear in d space for p ∈ (1,2) (i.e., q ∈ (2,∞)) (Woodruff
& Zhang, 2013). Unfortunately, these techniques yield dense approximations and thus typically do
not give subquadratic space algorithms in the setting of graph streams.
Remark 2.4. If we give up the requirement that the columns are selected in an online fashion, then
we can in fact remove the logκOL(A) dependence from this result by using the merge-and-reduce
technique to compute ℓp subspace embeddings (c.f. Braverman et al. (2020)).

3 OUTPUTTING A GOOD SOLUTION IN SUBLINEAR SPACE

Here, we prove our second algorithmic result (Theorem 7). Recall that 𝐴|S denotes the n× |S|
submatrix of 𝐴 with columns indexed by S⊆ [d].

3.1 STREAMING WELL-CONDITIONED SPANNING SUBSETS

We first note that the online John ellipsoid algorithm of Woodruff & Yasuda (2022) can be used to
design a streaming algorithm for identifying a small subset of rows such that every other row can be
written as a linear combination of the subset with small coefficients.
Definition 3.1 (Well-conditioned spanning subsets). Let 𝐴 ∈ Rn×d . Then, a subset S ⊆ [d] of the
columns of 𝐴 is a well-conditioned spanning subset if for every j ∈ [d], there exists 𝑦 ∈ R|S| such
that 𝐴|S𝑦 = 𝑎 j and ∥𝑦∥2

2 ≤ 1.

Algorithms for computing well-conditioned spanning subsets have been studied by Knuth (1985);
Woodruff & Yasuda (2023b); Bhaskara et al. (2023). The following result gives an efficient construc-
tion of well-conditioned spanning subsets in a column-arrival stream.
Lemma 3.2 (Streaming well-conditioned spanning subsets). Let S⊆ [d] be constructed in a column-
arrival stream by adding the column 𝑎 j to S whenever (𝑎 j)⊤(𝐴|S(𝐴|S)⊤)−𝑎 j ≥ 1. Then, S is a
well-conditioned spanning subset. Furthermore, |S| = O(n log(dκOL(𝐴))) where κOL(𝐴) is the
online condition number of 𝐴 (see Definition 1.3), and |S|= O(n logd) if 𝐴 is an integer matrix with
entries bounded by poly(d).

Proof. The bound on the size of S is given by Woodruff & Yasuda (2022) using bounds on sum of
online leverage scores (Cohen et al., 2016) so it remains to argue the correctness, which is inspired by
an argument of Woodruff & Yasuda (2023b). If j ∈ S, then we can simply take 𝑦 to be the standard
basis vector corresponding to this index. Otherwise, we have that (𝑎 j)⊤(𝐴|S(𝐴|S)⊤)−𝑎 j < 1, which
means that 𝑦 = (𝐴|S)−𝑎 j is a set of coefficients such that 𝐴|S𝑦 = 𝑎 j with ℓ2 norm at most 1.

The following lemma uses well-conditioned spanning subsets to sparsify linear combinations.
Lemma 3.3 (Sparsifying linear combinations). Let p ∈ [1,∞]. Let 𝐶 ∈ Rd×d be a diagonal matrix,
𝐴 ∈ Rn×d , and let S ⊆ [d] be a well-conditioned subset of the columns of 𝐴𝐶. Then, for every
𝑥 ∈ Rd , there is a 𝑧 ∈ Rd such that supp(𝑧)⊆ S, 𝐴𝑥=𝐴𝑧, and

∥𝑧∥p ≤
{

d1−1/p∥𝑥∥p , when p > 2 ,
n1/p−1/2d1−1/p∥𝑥∥p , when p≤ 2 .

Proof. We may assume that d ≥ n, since otherwise we can take 𝑧 = 𝑥. By the definition of well-
conditioned spanning subsets, we can write 𝐴= (𝐴𝐶)|S(𝐶|S)−1𝑌 =𝐴|S𝑌 where 𝐴|S denotes the
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columns of 𝐴 indexed by S and 𝑌 is an |S|×d matrix of coefficients with ∥(𝐶|S)−1𝑌 𝑒( j)∥2
2 ≤ 1 for

every column j ∈ [d]. Then, 𝐴𝑥=𝐴|S𝑌 𝑥 so padding the vector 𝑌 𝑥 with zeros gives our vector 𝑧
that is supported on S. Furthermore,

∥𝐶−1𝑧∥p = ∥(𝐶|S)−1𝑌 𝑥∥p ≤
d

∑
j=1
∥(𝐶|S)−1𝑌 𝑒( j)∥p|x j| triangle inequality

≤ nmax{(1/p−1/2),0}∥𝑥∥1 ≤ nmax{(1/p−1/2),0}d1−1/p∥𝑥∥p.

Remark 3.4. For p ∈ (1,2) the n1/p−1/2 factor in the distortion in Lemma 3.3 can be improved by
using constructions of ℓp volumetric spanners, which give an analogue of well-conditioned spanning
sets that bound the ℓp norm of the coefficients rather than the ℓ2 norm (Bhaskara et al., 2023).
However, this requires a larger O(nq/2) subset size S and we do not have good streaming algorithms
for constructing these objects. Thus, we do not incorporate this trade-off for the sake of simplicity.

3.2 SPACE-DISTORTION TRADE-OFFS VIA BLOCKING

By combining the results of Lemmas 3.2 and 3.3, we immediately obtain an O(n2 logd) space
algorithm with a poly(n,d) distortion. To prove Theorem 7, we will now show how to apply this in a
blockwise fashion to obtain a smooth trade-off between the space complexity and the distortion.

Proof of Theorem 7. For a block size parameter B = min{β q,d} ≥ n, suppose that we run the well-
conditioned spanning subset algorithm of Lemma 3.2 in each of the O(d/B) blocks of B columns.
This algorithm stores O(sd/B) columns, as we store at most s columns for each of the d/B blocks. Let
S denote the set of stored columns, and let 𝑥∗ := argmin𝐴𝑥=𝑏∥𝐶−1𝑥∥p. For the b-th block, let (𝑥∗)b

denote the restriction of 𝑥∗ to the b-th block of columns. Then by Lemma 3.3, 𝐴(𝑥∗)b =𝐴(�̂�)b for
some (�̂�)b that is supported on the columns stored by the algorithm and satisfies

∥𝐶−1(�̂�)b∥p ≤
{

B1−1/p∥𝐶−1(𝑥∗)b∥p , when p≥ 2 ,
n1/p−1/2B1−1/p∥𝐶−1(𝑥∗)b∥p , when p < 2 .

By concatenating these solutions across the O(d/B) blocks, we obtain a solution �̂� that is supported
on the columns stored by the algorithm, satisfies 𝐴�̂�= 𝑏, and satisfies equation 3.

4 LOWER BOUNDS

Due to space constraints, the proofs of most of our lower bound results (Theorems 2, 3, 4, and
5) are given in Section C. However, we give the proof of Theorem 6 here, as it is technically the
most interesting and illustrates several important ideas. We first state several standard facts from
information theory, which can be found in, e.g., Cover & Thomas (2001).
Definition 4.1. Let X ,Y,Z be random variables supported on sets X ,Y ,Z with probability laws
pX , pY , pZ , respectively. Then, the entropy of X is defined as H(X) := ∑x∈X pX (x) log2

1
pX (x)

and the

conditional entropy of Y given X is defined as H(Y | X) := ∑x∈X ,y∈Y pX (x) · pY |X=x(y) log2
1

pY |X=x(y)
.

The mutual information between X and Y is defined as I(X ;Y ) =H(Y )−H(Y |X) and the conditional
mutual information between X and Y given Z is defined as I(X ;Y | Z) = H(Y | Z)−H(Y | X ,Z).
Fact 4.2. For random variables X and Y , we have H(X ,Y ) = H(X)+H(Y | X) = H(Y )+H(X | Y ).
Fact 4.3 (Chain rule). For random variables X1, . . . ,Xd and Y , we have H(X1, . . . ,Xd | Y ) =
∑

d
j=1 H(X j | Y,X< j), where X< j denotes the random variables {X j′ : j′ ∈ [d], j′ < j}.

Fact 4.4. Let X be a random variable supported on X . Then, H(X) ≤ log2|X |, with equality
achieved when X distributed uniformly on X .
Fact 4.5 (Data processing inequality). Let X ,Y be random variables supported on X ,Y and let
f : Y →X be a function. Let Z = f (Y ). Then, I(X ;Y )≥ I(X ; Z).
Fact 4.6 (Fano’s inequality). Let X ,Y be random variables supported on X ,Y and let f : Y →X
be a function. Let X̃ = f (Y ) and let E denote the event that X ̸= X̃ . Then, H(X | Y )≤ Hb(Pr[E])+
Pr[E] · log(|X | − 1) where Hb(x) := −x log2 x− (1− x) log2(1− x) is the entropy of a Bernoulli
random variable with parameter x ∈ [0,1]

9



Published as a conference paper at ICLR 2025

Next we prove our lower bound for large approximation factors.

Theorem 6. Let p ∈ (1,∞] and let q = p/(p− 1) = [1,∞) be its Hölder conjugate exponent. Let
β be a distortion parameter such that (β logd)3q = cd for a sufficiently small universal constant c.
Then any randomized algorithm that computes a B-bit summary of 𝑎 ∈ {±1}d from which �̂� ∈ Rd

can be produced such that, with probability at least 1− 1/O(β logd)q, we have ⟨𝑎, �̂�⟩ = d and
∥�̂�∥p ≤ β ·min⟨𝑎,𝑥⟩=d∥𝑥∥p requires B = Ω(d/(β logd)2q).

Proof. Let 𝑎 ∈ {±1}d be a random sign vector. Suppose that Alice constructs a message M as a
function of 𝑎, sends the message to Bob, and Bob constructs 𝑥 such that ⟨𝑎, �̂�⟩= d with ∥�̂�∥p ≤
β ·min⟨𝑎,𝑥⟩=d∥𝑥∥p . Since we can take 𝑥= 𝑎, the optimal solution must have ℓp norm at most d1/p.

We will lower bound the length of the message M by obtaining a lower bound on the mutual
information I(�̂� ;𝑎) between Alice’s random vector 𝑎 and Bob’s solution �̂�. Indeed, the entropy of
the message H(M) lower bounds the length of the message, and we have I(�̂� ;𝑎)≤ I(M ;𝑎)≤H(M)
by the data processing inequality.

Let 𝑦 be obtained by rounding the entries of �̂� to the nearest integer, so that ⟨𝑎,𝑦⟩ ≥ d/2 and 𝑦

takes on at most K := O(β ·d1/p) distinct values. Now consider partitioning [K] into ⌈log2 K⌉ groups,
where the ℓ-th group is given by Cℓ = {k ∈ [K] : 2ℓ−1 ≤ k ≤ 2ℓ}. By averaging, there is a group ℓ∗

such that ∑k∈Cℓ∗
dk ≥ 1

⌈log2 K⌉ ∑
K
k=1 dk ≥ d

2⌈log2 K⌉ . Note that there must be at least 2−ℓ
∗
d/(2⌈log2 K⌉)

coordinates belonging to the class Cℓ∗ , so we must have that (2ℓ
∗−1)p2−ℓ

∗ d
2⌈log2 K⌉ ≤ ∥𝑦∥

p
p ≤ 2β pd

and thus we have that 2ℓ
∗ ≤ L := O(β q(logd)q/p).

For each k ∈ [K], let Gk ⊆ [d] denote the subset of coordinates for which y j ∈ {±k}, let 𝑦k denote
the restriction of 𝑦 to Gk, and let dk = ⟨𝑎,𝑦k⟩. Let D = {sign(dk)}L

k=1. Then, I(�̂� ;𝑎) = I(�̂� ;𝑎 |
D)+ I(�̂� ; D)− I(�̂� ; D | 𝑎)≥ I(�̂� ;𝑎 | D)−H(D)≥ I(�̂� ;𝑎 | D)−L. Furthermore, we have

I(�̂� ;𝑎 | D)≥ I(𝑦 ;𝑎 | D) =
d

∑
j=1

I(𝑦 ; a j | 𝑎< j,D) =
d

∑
j=1

H(a j | 𝑎< j,D)−H(a j | 𝑦,𝑎< j,D)

≥H(𝑎 | D)−
d

∑
j=1

H(a j | 𝑦,D) . (6)

By Fact 4.2, the first term is bounded by H(𝑎 | D) = H(𝑎)−H(D)+H(D | 𝑎)≥ d−L so it remains
the bound the latter term. We do this by constructing an estimator �̂� for 𝑎 and then applying
Fano’s inequality. Our estimator �̂� is given by â j = sign(dk)sign(y j) if the j-th coordinate has value
|y j|= k ≤ L, and a random sign otherwise. We will now bound Pr[â j ̸= a j].

For each k, let Jk be the number of coordinates j ∈ Gk such that â j = a j. We then have |dk| =
|⟨𝑎,𝑦k⟩| = k · (Jk− (|Gk| − Jk)) = k · (2Jk− |Gk|) so the probability that â j = a j for a coordinate
j ∈ Gk is Jk

|Gk|
= 1

2 +
|dk|

2k|Gk|
. Then, conditioned on the success of the algorithm and a choice of the Gk

and dk, the probability that â j = a j is ∑
L
k=1

Jk
d , which equals

L

∑
k=1

|Gk|
d

(
1
2
+
|dk|

2k|Gk|

)
=

1
2
+

1
d

L

∑
k=1

|dk|
2k
≥ 1

2
+

1
dL ∑

k∈Cℓ∗

|dk| ≥
1
2
+

1
2L⌈log2 K⌉

=
1
2
+

1
O(β logd)q .

Then overall, we have that

Pr[â j ̸= a j]≥
(

1− 1
O(β logd)q

)(
1
2
+

1
O(β logd)q

)
≥ 1

2
+

1
O(β logd)q .

By Fano’s inequality (Fact 4.6), we then have that H(a j | â j) ≤ Hb(Pr[â j ̸= a j]) ≤ 1 −
1/O(β logd)2q . Now plugging into eq. (6) gives that I(𝑥 ;𝑎 |D)≥ d−L− (d−O(d/(β logd)2q)) =
Ω(d/(β logd)2q)− L and thus I(𝑥 ;𝑎) ≥ Ω(d/(β logd)2q)− 2L = Ω(d/(β logd)2q) for L small
enough as required by the theorem hypothesis. Thus, the length of the message M sent by Alice must
be at least Ω(d/(β logd)2q) bits, which concludes the proof.
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A PRELIMINARIES ON ONLINE SAMPLING AND CORESETS

The literature on online sampling and coresets was initiated by the work of Cohen et al. (2016). In the
setting of online coresets, the input is an insertion-only stream of n vectors ai ∈ Rd for i ∈ [n] which
arrive one at a time. The goal is then to randomly select a subset of these vectors in an online fashion,
that is, at each time step i, we must irrevocably decide whether to keep ai or not. The selected subset
is called an online coreset or simply a coreset. The work of Cohen et al. (2016) considered algorithms
for outputting online coresets with the guarantee of an ℓ2 subspace embedding.

Definition A.1. Let A ∈ Rn×d . Then, a linear map S ∈ Rr×n is an ℓ2 subspace embedding for A with
distortion (1+ ε) if

for all x ∈ Rd , ∥SAx∥2 = (1± ε)∥Ax∥2.

Note that a weighted subset of r points, i.e. a coreset, can be represented by such a linear map S by
taking the j-th row of S to be the weighted indicator for one of the n points. In the offline setting, i.e.,
when all the n vectors are known before hand as an n×d matrix A, then S can be constructed as a
coreset of size Õ(ε−2d) using a technique known as leverage score sampling (Drineas et al., 2006;
Cohen et al., 2015). The work of Cohen et al. (2016) then showed that this technique can in fact be
generalized to the online coreset setting, showing that S be constructed in the online setting with a
size of r = Õ(ε−2d) logκOL, where κOL is as defined in Definition 1.3.

In the present work, we require online constructions of ℓp subspace embeddings, rather than ℓ2
subspace embeddings.

Definition A.2. Let A ∈ Rn×d and p ∈ [1,∞). Then, a linear map S ∈ Rr×n is an ℓp subspace
embedding for A with distortion (1+ ε) if

for all x ∈ Rd , ∥SAx∥p = (1± ε)∥Ax∥p.

Analogous constructions for this setting were obtained by the work of Woodruff & Yasuda (2023a),
which generalized a technique known as ℓp Lewis weight sampling Cohen & Peng (2015) to the
online setting. We refer to Cohen et al. (2016) and Woodruff & Yasuda (2023a) for additional details.

B DUALITY

We prove Lemma 2.1. Consider the primal objective given by

min
𝐴𝑥=𝑏

∥𝐶−1𝑥∥p.

We write the constraint as a Lagrangian optimization problem as

min
𝑥∈Rd

max
𝑦∈Rn
∥𝐶−1𝑥∥p +𝑦⊤(𝑏−𝐴𝑥).

Now if 𝐴𝑥= 𝑏 is feasible, then by strong duality, this is equivalent to

max
𝑦∈Rn

min
𝑥∈Rd
∥𝐶−1𝑥∥p +𝑦⊤(𝑏−𝐴𝑥) = max

𝑦∈Rn
min
𝑥∈Rd
∥𝐶−1𝑥∥p +𝑦⊤𝑏−𝑦⊤𝐴𝑥.

Note that

min
𝑥∈Rd
∥𝐶−1𝑥∥p−𝑦⊤𝐴𝑥= min

𝑥∈Rd
∥𝐶−1𝑥∥p−𝑦⊤𝐴𝐶𝐶−1𝑥

=

{
−∞ , when ∥𝐶𝐴⊤𝑦∥q > 1 ,
0 , when ∥𝐶𝐴⊤𝑦∥q ≤ 1 .

Thus, the dual problem is given by

max
∥𝐶𝐴⊤𝑦∥q≤1

𝑦⊤𝑏.
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C LOWER BOUND PROOFS

C.1 PRELIMINARIES

We will use the one-way communication lower bound for the INDEX problem. It is known that if
Alice has a uniformly random binary string with d bits and Bob has a uniformly random index j ∈ [d],
then in order for Bob to correctly output the j-th bit of Alice’s string, Alice must send at least Ω(d)
bits (Rao & Yehudayoff, 2020).

C.2 LOWER BOUNDS FOR OUTPUTTING A GOOD SOLUTION

We first prove our lower bound for outputting a (1+ ε)-factor approximate solution.
Theorem 5. Let p ∈ (1,∞] and let q = p/(p− 1) ∈ [1,∞) be its Hölder conjugate exponent. Let
ε ∈ (0,1/(8q)) and d ∈ N. Any randomized algorithm that computes a B-bit summary of 𝑎 ∈ {±1}d

from which �̂� ∈ Rd can be produced such that, with probability at least 2/3, we have ⟨𝑎, �̂�⟩= d and
∥�̂�∥p ≤ (1+ ε)min⟨𝑎,𝑥⟩=d∥𝑥∥p requires B = Ω(d).

Proof. By standard error reduction techniques, we may assume that the norm minimization algorithm
succeeds with probability at least 9/10. Now let 𝑎 ∈ {±1}d be a random sign vector. Since we can
take 𝑥= 𝑎, we obtain that

min
⟨𝑎,𝑥⟩=d

∥𝑥∥p ≤ d1/p .

Therefore, a correct (1+ ε)-approximately optimal solution �̂� must have ∥�̂�∥p ≤ (1+ ε)d1/p. Fur-
thermore, the number J of coordinates j ∈ [d] such that sign(x̂ j) = a j satisfies

d = ⟨𝑎, �̂�⟩ ≤ J1/q∥�̂�∥p ≤ (1+ ε)J1/qd1/p ,

where the second step above follows from Hölder’s inequality. Thus, J ≥ d/(1+ ε)q ≥ d/(1+2qε).

It follows that, for a random index j ∈ [d], Pr[sign(x̂ j) = a j]≥ 1/(1+2qε). By a union bound, it
follows that if Alice, given input 𝑎, were to send the algorithm’s B-bit summary as a message to Bob,
it would enable Bob to correctly solve the INDEX problem on this instance with probability at least
1− (1−1/(1+2qε))−1/10≥ 2/3. Therefore, B = Ω(d).

Remark C.1. The above lower bound instance fails for p = 1 since for n = 1, we can choose an
optimal 1-sparse solution by maintaining the largest element in the vector 𝑎.

C.3 LOWER BOUNDS FOR ESTIMATING THE COST

We now turn to the problem of estimating the minimum cost of the basic ℓp regression problem, i.e.,
problem (1). As promised, we obtain lower bounds handling the cases p ∈ {0,1,2}.
When p = 0, we have the following.
Theorem 4. Fix p = 0 and take n = 2. Any column-arrival streaming algorithm that, with probability
at least 2/3, outputs a 2-approximation to the cost minimum cost in problem (1) requires Ω(d) bits of
space.

Proof sketch. It is not hard to show that for this version of the problem, there is no sublinear-space
algorithm for approximating the optimal objective value to a small constant factor. Indeed, even with
n = 2, obtaining a better than 2-approximation requires Ω(d) space, because the problem requires us
to determine whether or not a vector parallel to 𝑏 appears among the columns of 𝐴. If the stream
presents the columns of 𝐴 prior to 𝑏, one can then give a reduction from the standard INDEX
communication problem to the (approximate) ℓ0-norm minimization problem.

When p = 1, we show that estimating the cost of the regression problem even to a factor of o(
√

n)
is not possible using poly(n) space. This fact is intimately related to the fact that the dual of the ℓ1
regression problem involves an ℓ∞ constraint set, and resembles a lower bound argument of Woodruff
& Yasuda (2022).

We use the following result from coding theory.
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Theorem 8 (Parampalli et al. (2013)). For any D≥ 1 and n = 2k−1 for some integer k, there exists
a set S⊆ {±1}n and a constant CD dependent only on D which satisfy (1) |S|= nD, and (2) for any
s, t ∈ S such that s ̸= t, |⟨s, t⟩| ≤CD

√
n

Using the above result, we show the following lower bound for estimating the cost of ℓ1 regression.
Theorem 3. Fix p = 1 and let D ≥ 1 be arbitrary. There is a constant CD > 0 such that any
column-arrival streaming algorithm that, with probability at least 2/3, computes an estimate c with
c ≤ min𝐴𝑥=𝑏∥𝑥∥1 < (

√
n/CD)c requires Ω(nD) bits of space. This result applies even when all

entries of the input matrix 𝐴 lie in {±1}.

Proof. Let S be the set constructed in Theorem 8. We will show that estimating the cost to a
sufficiently small distortion solves an INDEX instance on |S|= nD items.

We associate bit strings of length nD with subsets of S. To solve the INDEX problem, consider the
following protocol. First, Alice constructs a matrix 𝐴 by taking the columns to be the vectors of the
subset A⊆ S associated with the input bit string. Alice then sends the message M constructed from
the matrix 𝐴 to Bob. Finally, Bob takes 𝑏 to be the vector of S associated with the input index j and
uses 𝑏 and the message M to output an estimate c to the regression cost min𝐴𝑥=𝑏∥𝑥∥1.

Note that the dual problem is max∥𝐴⊤𝑦∥∞≤1𝑦
⊤𝑏. If 𝑏 is an element of Alice’s subset A ⊆ S, then

for any dual feasible 𝑦, we have 𝑦⊤𝑏≤ ∥𝐴⊤𝑦∥∞ ≤ 1. By strong duality, there is a primal optimal
solution 𝑥 such that ∥𝑥∥1 = 𝑦⊤𝑏 ≤ 1, so the optimal solution is at most 1. On the other hand, if
𝑏 is not an element of Alice’s subset A ⊆ S, then we have that ∥𝐴⊤𝑏∥∞ ≤CD

√
n so 𝑦 = 𝑏/CD

√
n

witnesses a primal value of at least
√

n/CD. Thus, an approximation to the cost within a factor of√
n/CD will allow Bob to solve the INDEX problem.

When p = 2, which is the “easiest” case of the regression problem, we show that estimating the
optimal objective value of the problem given by eq. (1) to a small constant factor requires Ω(n2)
space. Recall that O(n2) is the space required for storing and maintaining 𝐴𝐴⊤: doing so enables us
to compute the optimum exactly.
Theorem 2. Fix p = 2. There is an absolute constant α > 0 such that any column-arrival streaming
algorithm that, with probability at least 2/3, computes a (1+α)-approximation to the cost of
problem (1) requires Ω(n2) bits of space.

Proof. We will use the fact that there exists a collection {𝑃1, . . . ,𝑃m} of size m≥ exp(Ω(n2)) such
that (1) each 𝑃i is an n×n orthogonal projection matrix onto an n/2-dimensional subspace, and (2)
for all i ̸= j, we have ∥𝑃i−𝑃 j∥2 ≥ 1

4 , which is proven in Kapralov & Talwar (2013, Section 5.2)
using a result of Absil et al. (2006) (see also Ghashami et al. (2016, Theorem 4.1)).

For each i, let 𝑄i = 𝑃i + 𝐼 . We claim that if 𝐴 is taken to be one of these matrices 𝑄i, then a
cost-approximating algorithm must be able to tell apart the m distinct choices 𝑄i by solving the
regression problem on various choices of 𝑏; by standard information-theoretic arguments it must
therefore use Ω(logm) = Ω(n2) bits of space, if it succeeds with probability at least 2/3.

To prove this claim, we show that for all i ̸= j, there exists a suitable vector 𝑏 such that the costs
corresponding to 𝐴 =𝑄i and 𝐴 =𝑄 j differ by at least some absolute constant, whereas each of
these costs is at most O(1). Since the optimum cost is given by min𝐴𝑥=𝑏∥𝑥∥2

2 = 𝑏⊤(𝐴𝐴⊤)−1𝑏, this
is equivalent to showing that

∥(𝑄i𝑄
⊤
i )
−1− (𝑄 j𝑄

⊤
j )
−1∥2 ≥Ω(1) . (7)

Since 𝑃i is an orthogonal projection, we can show that (𝑄i𝑄
⊤
i )
−1 = 𝐼 − 3

4𝑃i. Indeed, let 𝑃i =

𝑈Λ𝑈⊤ be the eigendecomposition of 𝑃i, where Λ is a diagonal matrix with n/2 ones. Then
𝑄i𝑄

⊤
i = (𝑃i+𝐼)(𝑃i+𝐼)⊤ =𝑃 2

i +2𝑃i+𝐼 = 3𝑃i+𝐼 =𝑈(3Λ+𝐼)𝑈T and (3Λ+𝐼)(4𝐼−3Λ) =

12Λ+4𝐼−9Λ2−3Λ= 4𝐼 so by rotating back to the 𝑈 basis and dividing by 4, (𝑄i𝑄
⊤
i )
−1 =𝑈(𝐼−

3
4Λ)𝑈⊤= 𝐼− 3

4𝑃i. This then gives ∥(𝑄i𝑄
⊤
i )
−1−(𝑄 j𝑄

⊤
j )
−1∥2 =

∥∥(− 3
4

)
(𝑃i−𝑃 j)

∥∥
2≥

3
4 ·

1
4 =

3
16 ,

which establishes eq. (7) and completes the proof.
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