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ABSTRACT

Generative models have gained more and more attention in recent years for their
remarkable success in tasks that required estimating and sampling data distribution
to generate high-fidelity synthetic data. In speech, text-to-speech synthesis and
neural vocoder are good examples where generative models have shined. While
generative models have been applied to different applications in speech, there
exists no general-purpose generative model that models speech directly. In this
work, we take a step toward this direction by showing a single pre-trained genera-
tive model can be adapted to different downstream tasks with strong performance.
Specifically, we pre-trained a generative model, named SpeechFlow, on 60k hours
of untranscribed speech with Flow Matching and masked conditions. Experiment
results show the pre-trained generative model can be fine-tuned with task-specific
data to match or surpass existing expert models on speech enhancement, separa-
tion, and synthesis. Our work suggested a foundational model for generation tasks
in speech can be built with generative pre-training. Audio samples can be found
at https://voicebox.metademolab.com/speechflow.html.

1 INTRODUCTION

Discriminative models have long been the mainstream in speech applications since the deep learning
era. These models are applied to different types of tasks such as speech recognition (Graves et al.,
2006), enhancement, and separation (Luo & Mesgarani, 2019). Interestingly, even for applications
that can be naturally formulated as generative modeling problems, such as text-to-speech (TTS),
we see most popular models remained discriminative (Shen et al., 2018; Ren et al., 2021). Conse-
quentially, pre-trained foundation models (Baevski et al., 2020; Hsu et al., 2021) that served as the
upstream of speech applications focused more on learning useful representation for discriminative
tasks rather than modeling the data distribution p(speech). In this paper, we seek to answer whether
generative models can serve as foundation models for speech applications or not.

Unlike discriminative models, generative models enable sampling of the data distribution. For ex-
ample, generative TTS models (Habib et al., 2019) allow different emotions to be sampled given
a fixed text as discriminative models produce a fixed output. Up to the present, generative mod-
els in speech are usually designed for a given purpose via task-specific conditioning or distribution
mapping. Perhaps the most well-known examples of task-specific conditional generative models are
neural vocoders (Kong et al., 2020; Chen et al., 2020). These models learn to map simple priors
(e.g., normal distribution) to waveform conditioning on acoustic features (e.g., spectrogram). On
the other hand, examples for distribution mapping include diffusion models that transform noisy
speech to clean speech for denoising (Lu et al., 2021; 2022; Richter et al., 2023), or speech mixture
to non-overlapping speech for separation (Scheibler et al., 2023).

In this work, we explore a new direction to pre-train a general-purpose generative model with un-
labeled speech. We hypothesize that a good generative model on speech without pre-defined ap-
plication can be applied to different end tasks that require speech generation. Our model, named
SpeechFlow, is a generative model that combines masked audio modeling and Flow Matching (Lip-
man et al., 2023). SpeechFlow is trained with unlabeled speech with the goal of estimating the
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underlying distribution of speech conditioning on masked audio. We show that a generative model
trained with unlabeled speech data can be adapted to different tasks that require speech generation
by fine-tuning with task-specific conditions using labeled data. More specifically, we fine-tuned
SpeechFlow and compared against expert models in speech enhancement, separation, and synthesis.
For each task, fine-tuned SpeechFlow is able to match expert models. Experiment results suggested
that pre-trained generative models possess great potential to become foundation models for different
speech generation tasks.

2 RELATED WORK

Generative Speech Models As mentioned earlier, generative models have been applied to dif-
ferent tasks in speech. Research in neural vocoders found generative models to be a good suit for
spectrogram-to-waveform prediction. Prevailing generative models are applied to the task with suc-
cess, such as generative adversarial model (Kong et al., 2020), flow-based invertible model (Prenger
et al., 2019), and diffusion network (Koizumi et al., 2022). Besides neural vocoders, generative mod-
els are also applied to other tasks such as TTS (Valle et al., 2020), speech enhancement (Lu et al.,
2021; 2022; Richter et al., 2023) and separation Scheibler et al. (2023). A fundamental difference
between this work and the prior works is that SpeechFlow is not trained for a specific application,
but to estimate the underlying distribution of speech itself.

Recent studies also explored speech generation from a language modeling perspective. Taking ad-
vantage of audio tokenizing techniques (Hsu et al., 2021; Défossez et al., 2022; Zeghidour et al.,
2022), Spoken Language Models (SLMs;Lakhotia et al., 2021; Kharitonov et al., 2021; Borsos et al.,
2022) have been developed to model language without text. These token-based speech language
models are closely related to the proposed method in the sense of training generative models from
unlabeled speech. The key difference is the goal of SLMs is to discover the underlying text for
textless language processing (Nguyen et al., 2022). In principle, SLMs can also be fine-tuned for
different downstream tasks but it was not the focus and they are not evaluated on multiple tasks.

Targeting controllable audio generation, VALL-E (Wang et al., 2023) extended SLMs by using text
and audio prompts to control the audio generated. Voicebox (Le et al., 2023) took a different ap-
proach to tackle the problem by feeding aligned text and partially masked speech to perform speech
in-filling non-autoregressively. Despite the different paths VALL-E and Voicebox took, both works
discovered a strong zero-shot adaptation ability that emerged when training generative models at
scale. While these models are designed for text-conditioned generation, they provided a hint of
the great potential of generative models with the superior ability to generate diverse speech. It is
worth pointing out that Voicebox is the most related work to this work, sharing the same objective
function and model architecture. Voicebox can be viewed as a fully supervised text-conditioned
SpeechFlow that focused exclusively on TTS task. Later in our experiment, we compare Voicebox
to fine-tuned SpeechFlow and reveal the benefit of generative pre-training without text.

Pre-trained Speech Models Conceptually, this work is also related to self-supervised representa-
tion learning methods for speech in the sense of learning from unlabeled data for better downstream
task performance. One branch of self-supervised learning takes the autoregressive approach to learn
from predicting the future, such as contrastive predictive coding (Oord et al., 2018) and autoregre-
sive predictive coding (Chung & Glass, 2020). Another branch of works (Ling et al., 2020; Ling &
Liu, 2020) studied masked audio modeling (MAM) instead of future prediction. These models pre-
dict masked Spectrogram based on the complementary part of the input that is unmasked. Improving
the MAM-based method, similar works replaced the prediction target with latent features such as
quantized representation (Baevski et al., 2020) or acoustic units (Hsu et al., 2021). Self-supervised
representation learning methods are found to be useful in many different applications such as speech
recognition (Yang et al., 2021). But the success is mostly on discriminative tasks, applying self-
supervised models for generation application tasks is often less intuitive (Polyak et al., 2021) and
under-performing (Tsai et al., 2022). Taking cues from the success of masking-based methods, we
incorporate a similar idea into SpeechFlow to make generation conditioned on partially masked
speech during pre-training. Interestingly, we found MAM beneficial to generative pre-training as
shown later in Section A.4.5. Besides self-supervised learning, pre-training have also been stud-
ied in the context of semi-supervised TTS (Chung et al., 2019) or speech-text alignment (Ao et al.,
2021), but these works focused on non-generative models.
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3 METHOD

3.1 BACKGROUND: FLOW MATCHING FOR GENERATIVE MODELING

Deep generative models aimed to estimate the unknown distribution q(x) of real world d-
dimensional data x ∈ Rd with distribution p(x) parameterized by neural networks. To make sam-
pling possible, simple prior distribution p0(x) (e.g., normal distribution) is naturally a good starting
point, and the modeling problem therefore becomes finding a neural transport map p1 = Fθ(p0) such
that p1(x) ≈ q(x). Early works such as generative adversarial networks (Goodfellow et al., 2020)
and variational audio encoders (Kingma & Welling, 2013) showed directly modeling x1 = fθ(x0)
where x0 ∼ p0(x), x1 ∼ q(x), i.e., predicting data from noise using network fθ, is feasible. Re-
cent studies in diffusion models (Ho et al., 2020; Song et al., 2020) suggested an iterative denoising
model xt+∆t = fθ,t,∆t(xt) that traverses from noise x0 to data x1 with step size ∆t provides better
generation quality (Dhariwal & Nichol, 2021). In this work, we choose to construct the neural trans-
port map p1 = Fθ(p0) using Flow Matching (Lipman et al., 2023) from the Continuous Normalizing
Flows (CNFs; Chen et al., 2018)- family.

Formally, CNFs defined a path between simple prior p0 and target distribution p1 via the time-
dependent probability density function pt : [0, 1] × Rd → R>0. The flow of x along the path,
denoted ϕt : [0, 1]× Rd → Rd, is defined using ordinary differential equation (ODE):

d

dt
ϕt(x) = vt(ϕt(x)); ϕ0(x) = x; (1)

with the time-dependent vector field vt : [0, 1] × Rd → Rd, such that the time-dependent
probability density function pt can be derived using the change of variables formula: pt =

p0(ϕ
−1
t (x)) det

[
∂ϕ−1

t

∂x
(x)

]
. Under the formulation, a simple objective is to predict the vector field

vt using a neural network paramterized by θ given the target vector field ut(x) that corresponds to
pt(x) with the Flow Matching objective

LFM (θ) = Et∼U [0,1],x∼pt(x)

∥∥∥vt(x; θ)− ut(x)
∥∥∥2. (2)

However, LFM (θ) is intractable due to the lack of knowledge of pt and ut in practice. Interestingly,
Lipman et al. (2023) showed that conditioning pt and ut on real data x1 results in the Conditional
Flow Matching objective LCFM (θ) which provided identical gradient w.r.t. θ for training the gen-
erative model. Specifically, we adopt the Optimal Transport conditional path proposed by Lipman
et al. (2023) that assumes the mean µt(x) = tx1 and standard deviation σt(x) = 1 − (1 − σmin)t
change linearly in time, yielding tractable pt(x|x1) = N (x | µt(x1), σt(x1)

2I) and ut(x|x1) =
(x1−(1−σmin)x)
(1−(1−σmin)t)

with a sufficiently small σmin (we use 1e-5) such that p1(x|x1) is centered around
x1. In this case, with reparameterization the Conditional Flow Matching objective has the form

LCFM (θ) = Et,q(x1),p0(x0)

∥∥∥vt(ψt(x0); θ)−
(
x1 − (1− σmin)x0

)∥∥∥2, (3)

where ψt(x0) = σt(x1)x0 + µt(x1) and t is sampled uniformly from [0, 1].

3.2 GENERATIVE PRE-TRAINING OF SPEECHFLOW WITH UNLABELED SPEECH

Inspired by the recent success of flow matching model in speech synthesis (Le et al., 2023), we
propose to pre-train a generative model with unlabeled speech using flow matching. We consider
the problem of modeling q(x) where the acoustic features x ∈ Rd×L are d-dimensional Mel spec-
trogram with L frames. We assume the simple prior p0 to be the normal distribution. Since genera-
tive models are by nature unsupervised/self-supervised (no human label required), a flow matching
model can be trained with pure speech.

Masked Audio Condition In light of the success of masked prediction in self-supervised speech
representation learning (Baevski et al., 2020; Hsu et al., 2021), we introduce similar concept to
SpeechFlow by additionally conditioning vt on partially masked target audio xmask with a chance of
pcond during training. This can also be interpreted as the model have a chance of 1− pcond to receive
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Figure 1: An overview of SpeechFlow. (Left) Pre-training with masked audio. (Right) Fine-tuning
with task-specific condition such as noisy recording, overlapped speech, or phone sequence. More
details of the model and conditioning are available in Section A.3.

fully masked xmask. Masked condition xmask is obtained by randomly selecting nmask of frames to be
masked with a minimum masking span length of lmask.

Note that while this modification results in a conditional generative model, our model is still self-
supervised since xmask is directly derived from unlabeled speech x1. Moreover, a vanilla flow match-
ing model without any condition is still available after pre-training stage as long as pcond < 1. Study
on the importance of pcond is provided in Section A.4.5.

The rationale behind the auxiliary condition is to provide the model more context for predicting
vt regardless of the timestep t. Moreover, introducing auxiliary condition at the pre-training stage
provided an intuitive way to fine-tune the model for different tasks as shown later in this section.

Objective With the predicted time-dependent vector field vt conditioning on masked feature xmask,
the generative pre-training objective of SpeechFlow can be derived by modifying Equation 3 accord-
ingly to obtain

Et,q(x1),p(x0)

∥∥∥vt(ψt(x0), xmask; θ)−
(
x1 − (1− σmin)x0

)∥∥∥2. (4)

In practice, we use Transformer encoder (Vaswani et al., 2017) with learnable parameter θ to predict
vector field vt. Masked inputs xmask are concatenated with ψt(x0) along the frequency axis, then
projected to match the model dimension dθ, and we append the sinusoidal positional encoding of
timestep t to the input, resulting the actual model input with shape Rdθ×(L+1). The output of the
model is the predicted vector field vt ∈ Rd×L.

3.3 SUPERVISED FINE-TUNING SPEECHFLOW ON DIFFERENT TASKS

Task-specific Condition While the pre-trained SpeechFlow allow us to sample new data from
p1(x), most applications in speech require a certain degree of control over the output. To this end, we
introduce the fine-tuning stage for controllable generation using task-specific condition y ∈ Rdy×Ly

of audio x1, such as noisy speech for speech enhancement and text transcript for text-to-speech
generation. We note that this work focused on tasks where y and x1 are aligned, i.e., Ly = L, and
leave the unaligned cases for future work. Concrete examples can be found in Section A.3.

Objective Following the pre-training stage, the fine-tuning objective can be derived by swapping
the masked condition xmask for pre-training with task-specific condition y,

Et,q(x1),p(x0)

∥∥∥vt(ψt(x0), y; θ)−
(
x1 − (1− σmin)x0

)∥∥∥2. (5)

Note that for fine-tuning, it is critical to reuse θ from the pre-training stage.

Inference After training, speech generation is done by the following steps: (1) sample x0 from the
simple prior p0(x); (2) use an ODE solver to solve ϕ1(x0) given dϕt(x0)/dt = vt(ϕt(x0), y; θ) and
ϕ0(x0) = x0; (3) generated audible speech in time domain from Mel spectrogram x1. More infer-
ence details are provided in Section A.2 including conversion from Mel spectrogram to waveform.
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Table 1: Speech enhancement test results on Voicebank-Demand (Valentini-Botinhao et al., 2017) and WSJ0-
CHiME3 (Richter et al., 2023). Best result of each section is bolded. Numbers are taken from prior works
unless otherwise specified. For full result that includes more metrics, please refer to Table 7.

Method Voicebank-Demand WSJ0-CHiME3

PESQ ESTOI CSIG COVL PESQ ESTOI CSIG COVL

Baseline
Mixture 1.97 0.79 3.35 2.63 1.69 0.78 3.24 2.42

Models trained on Voicebank-Demand
Conv-TasNet†(Luo & Mesgarani, 2019) 2.63 0.85 - - 2.40 0.88 - -
MetricGAN+ (Fu et al., 2021) 3.13 0.83 4.10* 3.61* 2.13 0.76 3.02* 2.52*

SGMSE+ (Richter et al., 2023) 2.93 0.87 4.13* 3.53* 2.48 0.90 3.67* 3.02*

SpeechFlow 3.13 0.87 4.43 3.80 2.70 0.90 4.05 3.36
SpeechFlow w/o pre-train 2.92 0.85 4.22 3.57 2.38 0.86 3.72 3.03

Models trained on Deep Noise Supression Challange 2020 (Reddy et al., 2020)
DEMUCS 2.55* 0.85* 3.24* 2.88* 2.49* 0.92* 3.93* 3.20*

SpeechFlow 2.71 0.86 4.07 3.39 2.87 0.91 4.24 3.54
SpeechFlow w/o pre-train 2.53 0.84 3.89 3.20 2.56 0.89 3.91 3.22

Topline
Our upper-bound‡ 3.77 0.95 4.97 4.54 3.68 0.96 4.97 4.46
Clean signal 4.50 1.00 5.00 5.00 4.50 1.00 5.00 5.00

* Results reproduced by us using the open sourced model released by the authors.
† Results reproduced by Richter et al. (2023).
‡ Clean Mel spectrogram with error introduced by pseudo-inversing Mel filter bank and taking phase from the mixture.

4 EXPERIMENT

4.1 PRE-TRAINING DETAILS

Model & Data We focus on Transformer encoder (Vaswani et al., 2017) with 24 layers, 16 atten-
tion heads, dθ =1024 dimensional embedding, and feed-forward networks with 4096 dimensions.
Convolutional positional embedding (Baevski et al., 2020) and ALiBi self-attention bias (Press et al.,
2021) are used to encode relative positional information. Following Le et al. (2023), skip connec-
tions between layers are introduced to mimic U-Net (Ronneberger et al., 2015) architecture. The
model has around 330M parameters in total. The model is pre-trained on 60k hours of speech from
English audiobook at 16kHz. We consider x to be log-scaled Mel spectrogram extracted with a
40ms window at 100Hz with d = 80, resulting 160/80 dimensional input/output for the model.

Training We pre-train SpeechFlow for 600k steps on 32 V100 GPUs with a batch size of 75
seconds per GPU with FP16. We use Adam optimizer (Kingma & Ba, 2014) with the learning rate
warming up linearly to 5e-5 for the first 5k steps and linearly decaying to 1e-5 for the rest of the
training. For masking, we set pdrop = 10%, nmask ∼ U [70%, 100%], and lmask = 10. All masked
position are filled with zero. In practice, we compute loss at the masked position only.

4.2 FINE-TUNING FOR SPEECH ENHANCEMENT

Task & Metrics Speech enhancement, also known as denoising, aimed to remove unwanted noise
from speech recording. We report Perceptual Evaluation of Speech Quality (PESQ; Rix et al., 2001),
Extended Short-Time Objective Intelligibility (ESTOI; Jensen & Taal, 2016), and Composite Ob-
jective Speech Quality and Overall Quality (CSIG/COVL;Hu & Loizou, 2007).

Prior Works Early work Conv-TasNet (Luo & Mesgarani, 2019) has been widely used as the
baseline system. It is a convolutional encoder/decoder operating in the time domain to maximize
scale-invariant source-to-noise ratio. DEMUCS (Défossez et al., 2020) adopted a similar structure
with skip-connections and minimized L1/multi-resolution STFT loss. MetricGAN+ (Fu et al., 2021)
proposed to optimize non-differentiable metrics such as PESQ via adversarial training against their
approximation using discriminators. SGMSE+(Richter et al., 2023) reformulated the problem as a
diffusion process that can be solved with the corresponding generative model (Ho et al., 2020).

Dataset We fine-tuned and tested SpeechFlow on the benchmark dataset VoiceBank-Demand
(VB-DMD; Valentini-Botinhao et al., 2017) for fair comparison against most of the prior works
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Table 2: Speech separation test results on LibriMix (Cosentino et al., 2020). All models are trained on 16kHz
audio without data augmentation. Best model output for each metric is bolded.

Method 2 Mix 2 Mix + Noise 3 Mix 3 Mix + Noise

SI-SDRi ESTOIi SI-SDRi ESTOIi SI-SDRi ESTOIi SI-SDRi ESTOIi

Conv-TasNet† 15.24 0.22 12.55 0.22 12.30 0.26 10.28 0.21
SepFormer‡ 14.94 0.31 11.71 0.28 - - - -

Pseudo-inversed Mel and phase from mixture
Upper-bound w/ clean Spec. 12.43 0.35 11.99 0.46 12.91 0.44 12.62 0.48
SpeechFlow 11.74 0.35 10.46 0.33 11.08 0.35 8.22 0.23
SpeechFlow w/o pre-train 11.24 0.29 10.00 0.31 8.65 0.24 7.39 0.19

Learnable inverse-Mel and phase estimation (See Section A.2 for more details.)
SpeechFlow 15.85 0.37 12.41 0.37 - - - -

† Luo & Mesgarani (2019), reproduced by Cosentino et al. (2020). ‡ Subakan et al. (2021; 2023), reproduced at 16kHz with official
code from SpeechBrain (Ravanelli et al., 2021), note that this method was originally designed for 8kHz audio with data augmentation.

in the field. Since VB-DMD is a relatively small dataset, we also consider testing on WSJ0-
CHiMe3 (Richter et al., 2023) to ensure the model is not overfitting. In addition, we also trained our
model using 100 hours of noisy speech from Deep Noise Supression Challenge 2020 (DNS2020;
Reddy et al., 2020) for extra results to demonstrate the generalizability for SpeechFlow. For train-
ing, paired data (x1, y) is provided where x1 is the target clean signal and y is the noisy speech.
For testing, only the noisy speech y is provided and the goal is to estimate the clean signal x1. All
datasets are resampled to 16kHz to match pre-training and no data augmentation was applied.

Training As mentioned in Section 3.3, fine-tuning is simply done by replacing the auxiliary
masked condition xm for pre-training with the acoustic feature of the noisy speech y and minimize
Eq. 5. Note that, unlike pre-training, y has a pdrop = 30% chance to be dropped but never partially
masked for fine-tuning. We fine-tuned SpeechFlow on single V100 GPU for 160 / 75 epochs on
VB-DMD / DNS2020 respectively with a batch size of 50 seconds. The learning rate is set to peak
at 2e-5 after 5k updates, then linearly decay to 0. For the control group without pre-training, we
searched learning rate between 1e-4 to 1e-3 and found 2e-4 the best.

Results Main results are provided in Table 1. Due to the choice of acoustic feature, our method
suffers from the imperfect pseudo-inverse of Mel filters and the lack of phase modeling. In contrast
to prior works tailored for enhancement, these restrictions result in a worse upper-bound as shown
in the table. Nevertheless, our method still provided comparable or better results against the prior
works on both benchmark datasets. Despite using a dataset with different topics and speakers, gen-
erative pre-training still improved enhancement results compared to the same model trained on VB-
DMD from scratch. Especially on the out-of-domain WSJ0-CHiME3 testing, SpeechFlow demon-
strated strong generalizability with a clear gap on PESQ, CSIG, and COVL against all other methods.
In the case where the larger dataset DNS2020 is used for fine-tuning, a similar trend can be found
compared to prior work DEMUCS and the testing result on WSJ0-CHiME3 can be further improved.
These results pointed out the great potential of generative pre-training on speech.

4.3 FINE-TUNING FOR SPEECH SEPARATION

Task & Metrics The goal of separation is to separate mixture (overlapped) speech into multiple
single-speaker speech. In our experiment, we focus on separating 2 to 3 speakers for simplicity.
We report the common metric Scale-Invariant Signal-to-Distortion Ratio improvement (SI-SDRi;
Le Roux et al., 2019) that measures the improvement of separated speech over the mixture when
comparing against the clean reference in the time domain. In addition, we also report the ESTOI
improvement (ESTOIi) of the separation result over the mixture to measure the intelligibility.

Dataset & Prior Work For separation, SpeechFlow is fine-tuned using a synthetic mixture cre-
ated by randomly sampling and mixing 2 or 3 utterances from 360 hours of speech from English
audiobook. In addition, noise sampled from WHAM! dataset (Wichern et al., 2019) can be added
to the mixture to further increase the difficulty of separation, combining 4 different setups in total.
We tested the fine-tuned model on LibriMix (Cosentino et al., 2020) 16khz min. For training, paired
data (x11, x

2
1, y) is provided where x11, x

2
1 are the target clean signal and y is the mixture. Signals
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Table 3: English zero-shot speaker adaptation TTS results on filtered LS (Panayotov et al., 2015)
test-clean. Best results are bolded. For cross-sentence reference, the speaker information is provided
by a 3-second prompt from a different utterance sampled randomly. For continuation, the first 3
seconds of the target utterance is used. FT stands for fine-tuning the full model; LoRA stands for
fine-tuning with Low-rank Adaptors (Hu et al., 2021) where pre-trained weights are frozen.

Method labeled cross-sentence reference continuation subjective
data (hr) WER SIM-o SIM-r WER SIM-o SIM-r MOS

Ground truth - - - 2.2 0.754 - 3.80

YourTTS (Casanova et al., 2021) 475 7.7 0.337 n/a - - - 2.92
VALL-E (Wang et al., 2023) 60k 5.9 - 0.580 3.8 0.452 0.508 -
Voicebox (Le et al., 2023) 60k 1.9 0.662 0.681 2.0 0.593 0.616 3.54

Single GPU training
SpeechFlow w/o pre-train 960 2.3 0.526 0.573 2.2 0.467 0.513 -
SpeechFlow FT 960 2.2 0.678 0.694 2.2 0.613 0.630 -
SpeechFlow LoRA 960 2.6 0.696 0.711 2.4 0.623 0.640 -

32 GPU training
SpeechFlow w/o pre-train 960 2.0 0.569 0.598 2.1 0.530 0.557 -
SpeechFlow FT 960 2.2 0.697 0.703 2.2 0.622 0.629 -
SpeechFlow LoRA 960 2.1 0.700 0.715 2.1 0.630 0.644 3.43

are randomly cropped into 8-second chunks for training. To ensure the model outputs all speakers,
we concatenated the clean signals along the time axis (and repeated the condition y accordingly)
for both training and testing. The baseline system is Conv-TasNet (Luo & Mesgarani, 2019) from
LibriMix1. We note that while there are many other prior works in the field, most of them focused
on WSJ2mix dataset (Hershey et al., 2016) with 8kHz audio, which makes fair comparison dif-
ficult. To provide a more competitive baseline, we reproduce a more powerful separation model
SepFormer (Subakan et al., 2021; 2023) at 16kHz using code provided by the authors 2.

Training The fine-tuning setup follows enhancement with few changes: batch size is reduced to
37.5 seconds; model is fine-tuned for 85 epochs; peak learning rate is set to 3e-5. For Speech-
Flow without pre-training, we searched learning rate between 1e-5 to 1e-4 and found 5e-5 the best.

Results Results are provided in Table 2. We found SI-SDRi more sensitive to the process of Mel-
spectrogram-to-waveform. This can be verified by examining the upper-bound performance using
a clean reference Mel spectrogram, which is even worse than the baseline Conv-TasNet. Similarly,
we found the more recent transformer-based model SepFormer (Subakan et al., 2023) struggled in
SI-SDRi when training at 16kHz (i.e., 2x longer input). In contrast, we found ESTOIi that reflected
the intelligibility of separation result more robust to waveform estimation. Nevertheless, fine-tuned
SpeechFlow was able to provide strong separation results. The gap between SpeechFlow and its
upper-bound is particularly small in the easy 2 Mix setup. To measure the true quality of the Mel
spectrogram generated by SpeechFlow, we also experimented with learnable inverse-Mel and phase
estimation (as described in Section A.2) and found the separation result can be further boosted
in terms of SI-SDRi. Since optimizing the Mel-spectrogram-to-waveform transform is beyond the
scope of this paper, we apply learnable estimation to the best result of 2 Mix and 2 Mix + Noise only.
The key idea is to show the separation result in the Mel spectrogram is already at a high quality, and
metrics that are limited by the choice of input/output feature like SI-SDRi can be further improved
with extra effort. In conclusion, we found SpeechFlow providing better intelligibility in all cases. It
is worth noting that the fine-tuning method presented here is a vanilla solution that might not scale
well as the number of speakers increases, a more dedicated fine-tuning method is left as future work.

4.4 FINE-TUNING FOR ZERO-SHOT SPEAKER ADAPTATION OF TEXT-TO-SPEECH

Task & Metrics We consider speech generation conditioning on text, i.e., text-to-speech (TTS).
In particular, we focus on the zero-shot speaker adaptation problem (Jia et al., 2018; Casanova
et al., 2021) where the voice of an unseen speaker should be used for synthesis. The problem

1
https://huggingface.co/JorisCos

2
https://github.com/speechbrain/speechbrain/tree/v0.5.15/recipes/LibriMix
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setup and the evaluation metrics followed VALL-E (Wang et al., 2023) and Voicebox (Le et al.,
2023). Zero-shot adaptation is done by using a 3-second prompt that carries speaker, paralinguistic,
and environmental information. To measure the correctness and the intelligibility of the synthetic
speech, we measure the recognition word error rate (WER) using HuBERT-L (Hsu et al., 2021)
pre-trained and fine-tuned on LibriLight (Kahn et al., 2019) and LibriSpeech (Panayotov et al.,
2015) respectively. Using WavLM-TDCNN speaker embedding model Chen et al. (2022), speaker
similarity is measured by the similarity between the embedding of generated speech and that of
the conditioning audio. Similarity to the original conditioning audio (SIM-o) and to the vocoder-
resynthesized audio (SIM-r) are reported. In addition to the objective metrics, subjective evaluation
on cross-sentence reference results using mean opinion score is also provided. See more detail
regarding MOS test in Section A.4.6.

Prior Works YourTTS (Casanova et al., 2021) is a flow-based model (Kim et al., 2021) trained on
multi-lingual data, including VCTK (Yamagishi et al., 2019), TTS-portugese (Casanova et al., 2022),
M-AILABS French (Munich Artificial Intelligence Laboratories GmbH, 2017), and LibriTTS (Zen
et al., 2019). VALL-E is a decoder-only auto-regressive model trained on LibriLight for zero-shot
speaker adaptation TTS. Lastly, the closely related prior work Voicebox combined flow-matching
and masked prediction for supervised TTS training. Voicebox can be viewed as a strong baseline
using the same amount of data with fully supervised training.

Dataset 960 hours of transcribed speech from English audiobook is used for fine-tuning. The
testing protocol follows VALL-E and Voicebox. Montreal Force Aligner (McAuliffe et al., 2017) is
used for phone-speech alignment. Position postfixes are added to each phone following Voicebox.
Additional results on fine-tuning with less (100/10 hours) labeled data are provided in Section A.4.4.

Training To enable zero-shot speaker adaptation , fine-tuning condition y includes masked audio
xm and the force-aligned phone sequence. We followed the masking strategy of Voicebox dur-
ing fine-tuning. We additionally tested fine-tuning with more (32) GPUs and Low-rank Adaptors
(LoRA; Hu et al., 2021; we use rank r = 64) to study the impact of computational resource for
fine-tuning. Section A.4.2 provided a detailed performance analysis based on the number of GPUs
used for fine-tuning. The batch size is 75 seconds per GPU in all cases. For standard fine-tuning, the
learning rate is set to peak at 1e-5 after 5k updates, then linearly decay to 0 for the rest 145k steps.
For LoRA fine-tuning, 9.5M new learnable parameters are introduced to the pre-trained model, ac-
counting for 2.8% of the full model. All pre-trained weights are frozen. The learning rate is set
to peak at 1e-3. Additional results on the impact of the amount of fine-tuning GPU is provided in
Section A.4.3 .

Results Results are provided in Table 3. Comparing to fully supervised models Voicebox or
VALL-E, a clear advantage in speaker modeling can be found with SpeechFlow despite using much
less labeled data. In terms of WER and MOS, SpeechFlow is slightly worse than Voicebox that
uses more labeled data. In addition, while single GPU fine-tuning already provided better speaker
adaptation than all baselines, we found fine-tuning with more GPUs provided even stronger results.
Interestingly, LoRA performed the best in terms of both SIM and WER among all fine-tuning setups.
This suggested that fine-tuning method for generative model could be worth exploring in the future.
Finally, our baseline without pre-training achieved similar WER to that of the pre-trained model but
a significantly worse SIM. These findings suggested the proposed generative pre-training improves
speaker modeling but not content modeling for speech synthesis.

4.5 MULTI-TASK FINE-TUNING OF SPEECHFLOW

Preceding sections showed SpeechFlow can be fine-tuned for different purpose using limited paired
data and/or computation. In this section we take one step further to investigate the possibility to
build an all-in-one controllable speech generation model via multi-task fine-tuning. Results are car-
ried out in Table 4. We simply combined the labeled datasets for enhancement (DNS), separation
(2Mix+Noise), and TTS for fine-tuning. We upsampled these datasets with a factor of 10/4/1 re-
spectively to balance the importance of each task. Pre-trained SpeechFlow is fine-tuned on single
GPU for 700k updates with the same learning rate scheduler peaking at 2e-5.
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Table 4: Results for multi-task fine-tuning. Both single-task and multi-task SpeechFlow are fine-tuned using
single GPU. Expert models are the best prior work for each metric of each task from Table 1,2,3. For TTS
/enhancement/separation, we consider the cross-reference/WSJ0-CHiME3/2Mix+Noise scenario respectively.
ZSSA is short for zero-shot speaker adaptation.

Method ZSSA TTS Enhancement Separation

WER SIM-o PESQ COVL SI-SDRi ESTOIi

Single-task models
Expert prior work 1.9 0.662 2.49 3.32 12.55 0.28
SpeechFlow 2.2 0.678 2.87 3.54 12.41 0.37

Multi-task models
SpeechFlow 2.3 0.651 2.87 3.56 9.73 0.30

For zero-shot speaker adaptation TTS, we observed a drop on both WER and SIM-o, suggesting
multi-task learning can lead to worse performance in specific single task. However, multi-task
results are found to be better than single-task ones for enhancement. One possible explanation is
the separation task trained on mixture+noise can also be viewed as a hard enhancement problem the
model was additionally trained on. This showcased the benefit of having a universal model - some
tasks might benefit from others. For separation, we found multi-task model deteriorated significantly
comparing to the single task model. Preliminary results presented in this section suggested an all-in-
one speech generative model can be built from SpeechFlow, but further research and development
is required to improve the results and cover a more diverse set of tasks.

5 CONCLUSION

In this paper, we studied the role of generative model as a foundation model instead of a tool for a
specific task. We show that training SpeechFlow using flow matching with masked condition results
in a strong generative model. The model can be deployed to different downstream tasks using
simple fine-tuning strategy with a single GPU. In our experiment, we adapted SpeechFlow to speech
enhancement, separation, and zero-shot speaker adaptation TTS with performance comparable to
task-specific models. More importantly, SpeechFlow demonstrated the potential to unify generative
tasks for speech.

Limitations and Future Works This work focused on developing the pre-train-and-fine-tune
framework for generative speech model. For the selected downstream applications, we assumed
a frame-wise condition (e.g., noisy spectrogram; force-aligned phone label) is available in the fine-
tune dataset. Fine-tuning with misaligned data (e.g., raw text, speaker ID) is left as an important
future work. In addition, SpeechFlow is trained and tested on English-only data. However, since
the generative model can be trained without label data, we believe the method can be easily scaled
to more languages in the future. For future works, we would like to point out that the choice of
acoustic feature may limit the applications as we discovered in enhancement and separation. Hence
finding a more general acoustic feature would be a key step to general purpose generative speech
model. Finally, we note that some of the expert models compared in different downstream tasks have
other focuses besides the reported metrics (e.g., DEMUCS is built to run in real-time with fewer pa-
rameters). Therefore, we would like to emphasize that this work is mainly to show the potential of
pre-trained generative models rather than claiming state-of-the-art in different tasks.
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A APPENDIX

A.1 AUDIO SAMPLES

Audio samples can be found at https://voicebox.metademolab.com/speechflow.html.
For additional samples, please refer to the supplementary materials at https://openreview.
net/forum?id=KpoQSgxbKH.

A.2 INFERENCE DETAILS

Generating Mel Spectrogram To generate Mel spectrogram x1, we first sample x0 from the sim-
ple prior p0(x). The next step is to estimate ϕ1(x0) given ϕ0(x0) = x0 by evaluating vt(ϕt(x0), y; θ)
at multiple t. Each evaluation required forwarding through the neural network, and a larger num-
ber of function evaluations (NFEs) leads to a more accurate estimation of ϕ1(x0). In addition, we
also applied classifier-free guidance (CFG; Dhariwal & Nichol, 2021; Le et al., 2023) to prioritize
audio quality over diversity. CFG is done by additionally predicting the unconditioned vector field
vt(ϕt(x0); θ) (where the task-specific condition is dropped) to obtain a modified prediction

ṽt = (1 + α) · vt(ϕt(x0), y; θ) + α · vt(ϕt(x0); θ). (6)

CFG allows us to improve sample quality by focusing more on task-specific conditioned generation
with larger α at the cost of doubling NFEs. We use α = 0.5 for enhancement and 0.7 for other tasks
in practice. For the ODE solver, we use midpoint method implemented in torchdiffeq (Chen,
2018) to derive ϕ1(x0) from ϕ0(x0) by approximating the integration from t = 0 to t = 1 with a
step size of 0.0625, resulting 32 NFEs per sample.

Zero-shot Speaker Adaptation TTS To generate audible speech from Mel spectrogram, HiFi-
GAN vocoder (Kong et al., 2020) from VoiceBox (Le et al., 2023) is adopted. In addition, phone
duration is also needed to determine the output spectrogram length and the frame-wise condition
given the input phone sequence. The regression-based duration predictor from VoiceBox is adopted
for all TTS-related experiments.

Speech Enhancement Different from TTS, enhancement metrics are more sensitive to the sample-
to-sample alignment of the waveform between the hypothesis and reference. This makes Neural
vocoder a bad option for the task3. Alternatively, we found using pseudo-inverse of Mel filter bank
to recover linear Spectrogram, adding phase information taken directly from the noisy speech (input
condition), and apply inverse Short-Time Fourier Transform (iSTFT) sufficient4. As a reference,
PESQ on WSJ0-CHiME3 dropped from 2.70 to 2.29 when switching the signal processing method
to HiFi-GAN vocoder.

Speech Separation For this task, we found both the signal processing method and HiFi-GAN
vocoder not enough for the most popular metric SI-SDRi (see discussion in Section 4.3). To this
end, we train a 3-layer ResNet for both pseudo-inverse Mel transform and phase estimation using
precomputed Mel spectrogram prediction and target waveform on the training set. The model takes
the separation result (Mel spectrograms from SpeechFlow) and the complex spectrogram of the
mixture as input, predicting both the linear spectrogram and the phase information to be combined
and transformed to the time domain with iSTFT. Since the whole process is differentiable, the model
is trained to maximize the permutation-invariant (Yu et al., 2017) SI-SDR loss against the target
waveform.

3See the last section in demo page for examples.
4See the topline section in Table 7 for the error introduced by the process.
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A.3 MODEL ARCHITECTURE AND CONDITION DETAILS
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Figure 2: Blue blocks are learnable weights. (Left) Model architecture. Time (flow step) t is encoded
using sinusoidal position embedding with learnable scale. (Right) Condition used for different tasks.
For TTS fine-tuning, learnable phone embedding sequence aligned to the spectrogram is element-
wise added to the masked spectrogram. Since phone embeddings are randomly initialized and added
to the masked spectrogram, we found ramping up a zero-initialized gating value (single scalar to be
multiplied on phone embedding) yields slightly better results in practice.

Table 5: Detailed configurations for training. ConvPos stands for Convolutional Positional Embed-
ding (Baevski et al., 2020); Skip Connections are introducted in Le et al. (2023); Alibi Bias is
introducded in Press et al. (2021).

Pre-training Fine-tuning

Enhancement Separation TTS

Model Parameters

Model Dimension 1024
Number of Heads 16
Number of Layers 24
Feedforward Dimension 4096
Attention Dropout 0.0
Activation Dropout 0.1
ConvPos Width 31
ConvPos Groups 16
ConvPos Depth 2
Skip Connections true
Alibi Bias true
Additional weights - No No 80-dim. phn. emb.

Hyper-Parameters

Condition drop rate pdrop 10% 30% 30% 20%
Masking probability nmask ∼ U[70%, 100%] 0% 0% ∼ U[70%, 100%]

Minimum mask span lmask 10 frames N/A N/A 10 frames

Training Parameters

Number of Updates 600k (dataset-dependent, see Section 4.2,4.3) 150k
Number of GPUs 32 1 1 1 to 32
Batchsize per GPU 75 seconds 50 seconds 37.5 seconds 75 seconds
Max length per audio 16 seconds
Learning Rate 5e-5 2e-5 3e-5 1e-5
Gradient Clipping Value 0.2
LR Scheduler Warmup Steps 5000
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A.4 ADDITIONAL RESULTS

A.4.1 SPEECH EDITING

Following the setup of A3T (Bai et al., 2022), here we additionally consider the task where the
center 50% of an recording is to be edited. See Figure 3 and Section 4.4 in Bai et al. 2022 for more
details and illustration of the task. Similar to A3T and Voicebox (Le et al., 2023) that are trained
with masked audio and text conditioning, speech editing is another downstream that can be naturally
solved with the fine-tuned SpeechFlow. Results are presented in Table 6, evaluation metrics and the
dataset follows the zero-shot speaker adaptation TTS experiment presented in Section 4.4. Similar
to zero-shot speaker adaptation TTS, we found SpeechFlow performing close to the state-of-the-art
model using much less labeled data thanks to pre-training.

Table 6: Speech editing results on filtered LS (Panayotov et al., 2015) test-clean. Please refer to
Section 4.4 for the metrics used here.

Method labeled WER SIM-odata (hr)

A3T (Bai et al., 2022) 44 11.5 0.148
Voicebox (Le et al., 2023) 60k 2.0 0.613

SpeechFlow LoRA 960 2.2 0.647

A.4.2 FULL RESULT FOR SPEECH ENHANCEMENT

Table 7: Speech enhancement results on the test set of Voicebank-Demand (Valentini-Botinhao et al.,
2017) and WSJ0-CHiME3 (Richter et al., 2023). All metrics are the higher the better, best result of
each section is bolded. Numbers are taken from prior works unless otherwise specified. PSEQ-nb
is the narrow-band version of PSEQ. CBAK refers to composite background intrusiveness (Hu &
Loizou, 2007).

Method Voicebank-Demand WSJ0-CHiME3

PESQ PESQ-nb ESTOI CSIG CBAK COVL PESQ PESQ-nb ESTOI CSIG CBAK COVL

Baseline
Mixture 1.97 2.88 0.79 3.35 2.44 2.63 1.69 2.29 0.78 3.24 2.26 2.42

Models trained on Voicebank-Demand
SGMSE+ (Richter et al., 2023) 2.93 3.66 0.87 4.13* 3.39* 3.53* 2.48 3.12* 0.90 3.67* 2.95* 3.02*

Conv-TasNet†(Luo & Mesgarani, 2019) 2.63 3.42 0.85 - - - 2.40 - 0.88 - - -
MetricGAN+ (Fu et al., 2021) 3.13 3.63 0.83 4.10* 2.90* 3.61* 2.13 2.67* 0.76 3.02* 1.88* 2.52*

DEMUCS (Défossez et al., 2020) 3.07 - - 4.31 3.40 3.63 - - - - - -

SpeechFlow 3.13 3.74 0.87 4.43 3.41 3.80 2.70 3.36 0.90 4.05 2.97 3.36
SpeechFlow w/o pre-train 2.92 3.57 0.85 4.22 3.26 3.57 2.38 3.02 0.86 3.72 2.75 3.03

Models trained on Deep Noise Supression Challange 2020 (Reddy et al., 2020)
DEMUCS (Défossez et al., 2020) 2.55* 3.40* 0.85* 3.24* 3.26* 2.88* 2.49* 3.20* 0.92* 3.93* 3.24* 3.20*

SpeechFlow 2.71 3.65 0.86 4.07 2.93 3.39 2.87 3.45 0.91 4.24 3.14 3.54

Topline
Ours upper-bound‡ 3.77 4.09 0.95 4.97 4.00 4.54 3.68 3.93 0.96 4.97 3.81 4.46
Clean signal 4.50 4.55 1.00 5.00 5.00 5.00 4.50 4.55 1.00 5.00 5.00 5.00

* Results reproduced by us using the open sourced model released by the authors.
† Results reproduced by Richter et al. (2023).
‡ Obtained from Mel Spectrogram of the clean signal, error introduced by pseudo-inversing Mel filter bank and taking phase from the mixture.
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A.4.3 INCREASING THE NUMBER OF GPUS FOR FINE-TUNING

Unsurprisingly, more GPUs (larger batch size) results in better performance in general. Given the
fact that fine-tuning have smaller gap between the result of using 1 and 32 GPUs, it is worth noting
that fine-tuning is more robust than training from scratch in terms of speaker similarity.

Table 8: Additional results of English zero-shot speaker adaptation TTS experiment with different
number of GPUs. 960 hours of labeled data is used.

# GPUs cross-sentence reference continuation
WER SIM-o SIM-r WER SIM-o SIM-r

LoRA (Hu et al., 2021) fine-tuning
1 (default) 2.6 0.696 0.711 2.4 0.623 0.640
2 2.5 0.695 0.710 2.3 0.623 0.640
4 2.4 0.698 0.713 2.2 0.623 0.639
8 2.3 0.697 0.712 2.2 0.623 0.639
16 2.2 0.697 0.712 2.2 0.625 0.641
32 2.1 0.700 0.715 2.1 0.630 0.644

Training from scratch
1 2.3 0.526 0.573 2.2 0.467 0.513
32 2.0 0.569 0.598 2.1 0.530 0.557

A.4.4 REDUCING LABELED DATA FOR FINE-TUNING

Interestingly, we found pre-trained model generalized better to unseen speaker comparing against
models trained from scratch. However, it is also harder to overfit the pre-trainiend model on the
limited amount of text input, resulting a worse intelligibility in terms of WER. Nevertheless, with
10 hours of fine-tuning data, SpeechFlow was able to outperform VALL-E (Wang et al., 2023) that
was trained on 60k hours data.

Table 9: Additional results of English zero-shot speaker adaptation TTS experiment using less la-
beled data. Single GPU is used for fine-tuning the whole pre-trained model.

Method labeled cross-sentence reference continuation
data (hr) WER SIM-o SIM-r WER SIM-o SIM-r

Ground truth - - - 2.2 0.754 -

YourTTS (Casanova et al., 2021) 475 7.7 0.337 n/a - - -
VALL-E (Wang et al., 2023) 60k 5.9 - 0.580 3.8 0.452 0.508
Voicebox (Le et al., 2023) 60k 1.9 0.662 0.681 2.0 0.593 0.616

SpeechFlow w/o pre-train
960 2.3 0.526 0.573 2.2 0.467 0.513
100 2.3 0.412 0.463 2.2 0.370 0.417
10 2.4 0.360 0.410 2.3 0.330 0.374

SpeechFlow
960 2.2 0.678 0.694 2.2 0.613 0.630
100 2.8 0.613 0.632 2.5 0.555 0.573
10 4.1 0.578 0.600 3.1 0.520 0.541
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A.4.5 IMPACT OF PRE-TRAINING HYPER-PARAMETER
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Figure 3: Impact of different pre-training hyper-parameters on zero-shot speaker adaptation (ZSSA)
TTS and enhancement. The dashed line stands for the baseline performance without pre-training.

Since the the main focus of our method is on pre-training generative speech model, we provide study
on the corresponding hyper-parameters here. To evaluate the pre-trained model in a less biased
perspective, we consider both speaker similarity of zero-shot speaker adaptation TTS and PESQ of
enhancement for multi-task fine-tuned model. Results are provided in Figure 3.

Learning Rate & Number of Updates. First, we investigate the pre-trained model quality as a
function of the number pre-training steps or learning rate. We set the total number of updates to
750k, which is about 7 epochs on training set. One caveat is that learning rate decay is applied
through out the training, which could also contribute to the tapering result. We found most of the
gain coming from the early stage before 400 updates and setting the learning rate above 5e-5 is
sufficient for stable result.

Conditioning. We also found the model to be stable when setting pcond above 80%. Importantly,
we also found unconditioned pre-training, i.e., pcond = 0, yielded bad performance on both tasks.
The result showcased the helpfulness and the necessity of masked prediction for pre-training. In
summary, SpeechFlow is stable as long as masked conditioning is prioritized (over unconditioned
pre-training) and the model is trained with sufficient steps and step size.

Masking Hyper-parameter. Table 10 studied the impact of the proportion for placing mask nmask
and the masking span size lmask. In simple terms, we found masking a significant proportion is
important for SpeechFlow.

Table 10: Additional results of English zero-shot speaker adaptation TTS experiment with different
pre-training hyper-parameters. To reduce computation, models in this table are only pre-trained for
300k steps.

cross-sentence reference continuation
WER SIM-o SIM-r WER SIM-o SIM-r

nmask ∼ U [70%, 100%], lmask = 10 (default) 2.2 0.655 0.669 2.1 0.596 0.610
nmask ∼ U [80%, 100%] 2.2 0.627 0.644 2.1 0.580 0.597
nmask ∼ U [60%, 100%] 2.3 0.581 0.592 2.1 0.562 0.574
nmask ∼ U [60%, 90%] 2.2 0.599 0.612 2.1 0.567 0.577
nmask ∼ U [70%, 90%] 2.1 0.614 0.623 2.1 0.589 0.596
lmask = 5 2.0 0.661 0.677 2.1 0.600 0.616
lmask = 15 2.2 0.609 0.629 2.2 0.585 0.605
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A.4.6 SUBJECTIVE EVALUATION FOR ZERO-SHOT SPEAKER ADAPTATION TTS

Table 11: Subjective test on English zero-shot speaker adaptation TTS on filtered LS test-clean with
cross-sentence reference. Averaged rating along with 95% confidence interval are reported for Mean
Opinion Score (MOS).

Method labeled objective metrics subjective
data (hr) WER SIM-o SIM-r MOS

Ground truth - - - - 3.80±0.09

YourTTS (Casanova et al., 2021) 475 7.7 0.337 n/a 2.92±0.10
Voicebox (Le et al., 2023) 60k 1.9 0.662 0.681 3.54±0.08
SpeechFlow 960 2.1 0.700 0.715 3.43±0.09

In addition to objective metrics that covers intelligibility and similarity measured by models, we
conducted human evaluation to measure the overall quality of audio samples using Mean Opinion
Score (MOS) following CrowdMOS (Ribeiro et al., 2011). We randomly selected 50 sentences
from the LS test-clean for human evaluation. Each audio sample received 10 ratings in total. Each
participant was asked to rate 20 audio samples, including 5 different sentences with audio from 4
different sources - ground truth, YourTTS (Casanova et al., 2021), Voicebox (Le et al., 2023), and
SpeechFlow. Results are collected through Amazon Mechanical Turk (AMT) with task description
provided in Table 12. Annotators are filtered with the following qualifications: (1) They need to
be wearing a headset; (2) They need to pass an onboarding test (2 simple questions, where in each
question people need to pick an audio with higher quality); (3) Post-processing, correlation coef
between annotators’ answer and the majority answer greater than 0.2.

From the MOS results in Table 11, we confirmed that SpeechFlow is able to generate high quality
audio judging by human, falling only slightly behind its fully supervised counterpart Voicebox while
using over 62.5x less labeled data.

Table 12: Mean opinion score (MOS) instruction.

Introduction
Hello! We need your help to evaluate the subjective quality and intelligibility of
speech. In each task, you will evaluate a 2-8s speech segment and rate its overall
quality from 1 to 5. You will be given 20 questions, and it will take you 5-10 minutes
to finish.
(1) Please use a headset for listening and adjust your volume level to your comfort
during this training, and do not change later during the experiment.
(2) Please consider the following aspects when evaluating the overall quality: (a) clar-
ity of speech (b) sound quality (c) naturalness.
For each of the speech audio below, rate the overall speech quality on a scale from
1-5. (You need to play the speech audios in order to make a selection!)

Score (Quality and Intelligibility of the speech)
5 (Excellent)
4 (Good)
3 (Fair)
2 (Poor)
1 (Bad)
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