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Abstract

It now common to produce domain-specific models by fine-tuning large pre-trained
models using a small bespoke dataset. But selecting one of the many foundation
models from the web poses considerable risks, including the potential that this
model has been backdoored. In this paper, we introduce a new type of model
backdoor: the privacy backdoor attack. This black-box privacy attack aims to
amplify the privacy leakage that arises when fine-tuning a model: when a victim
fine-tunes a backdoored model, their training data will be leaked at a significantly
higher rate than if they had fine-tuned a typical model. We conduct extensive
experiments on various datasets and models, including both vision-language models
(CLIP) and large language models, demonstrating the broad applicability and
effectiveness of such an attack. Additionally, we carry out multiple ablation studies
with different fine-tuning methods and inference strategies to thoroughly analyze
this new threat. Our findings highlight a critical privacy concern within the machine
learning community and call for a reevaluation of safety protocols in the use of
open-source pre-trained models.

1 Introduction

Pre-trained foundation models have transformed the field of machine learning. Practitioners no
longer train models from scratch, but instead efficiently fine-tuning existing foundation models for
specific downstream tasks. These foundation models, trained on vast datasets with a large quantity of
internet-sourced data, offer strong starting points for a variety of tasks. And the adaptation of these
models to specialized tasks through fine-tuning significantly reduces the costs of training downstream
models while often simultaneously improving their accuracy.

As a result of this, the availability of open-source pre-trained models on the Internet is more prevalent
than ever. For example, Hugging Face2 hosts over 1, 000, 000 open-source models, all readily
available for download. Moreover, anyone with a registered account can contribute by uploading their
own models. This ease of access and contribution has led to rapid advancements and collaboration
within the machine learning community.

But this raises risks. Adversaries can easily inject backdoors into the pre-trained models, leading to
harmful behaviors when the input contains the specific triggers (Gu et al., 2017; Chen et al., 2017).
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These backdoor attacks are typically challenging to detect (Mazeika et al., 2023) and difficult to
mitigate even with further fine-tuning (Hubinger et al., 2024). Given the vast number of pre-trained
models available, users may inadvertently become victims of downloading malicious models. Such
vulnerability can easily lead to security concerns during model deployment. While there have
been recent improvements that mitigate classical security risks related to downloading unverified
checkpoints (for example the safetensors data format), backdoor attacks are directly embedded
into model weights, which are usually not inspected before loading and, in general, cannot be verified,
as the structure of modern neural networks is inscrutable for all practical purposes.

In this paper, we introduce a new type of backdoor, the privacy backdoor. Instead of causing
a victim’s fine-tuned model to incorrectly classify examples at test time, as in many conventional
backdoor attacks, a privacy-backdoored model causes the victim’s model to leak details about the
fine-tuning dataset.

This process works as follows. In a typical privacy attack, an adversary attempting to obtain
information about a model’s training data runs a membership inference attack (MIA). In such an
attack, outputs from the model are queried to evaluate whether a specific target data point that the
attacker possesses was part of the training data. Our attack strengthens the ability of an adversary to
perform a MIA attack. To begin, the adversary backdoors some pre-trained model and subsequently
uploads it for anyone to use. A victim then downloads this backdoored model and fine-tunes it using
their own private dataset. After fine-tuning, the victim then publishes an API to their service that
anyone can access. The adversary then runs an MIA, querying the fine-tuned model to determine
whether or not a specific data point was included in the fine-tuning dataset.

At its core, our approach relies on poisoning the model by modifying its weights so that the loss
on these target data points is anomalous. Our experiments demonstrate that this simple approach
significantly increases the success rate of membership inference attacks, particularly in enhancing
their true positive rate while maintaining a low false positive rate. To remain undetected, we add an
auxiliary loss on a benign dataset during poisoning to make the attack stealthy. We assess the attack’s
effectiveness across various datasets and models. Additionally, we explore the attack’s success under
different fine-tuning methods, such as linear probing, LoRA (Hu et al., 2021), QLoRA (Dettmers
et al., 2023) and Neftune (Jain et al., 2023), as well as various inference strategies, including model
quantization, top-5 log probabilities, and watermarking (Kirchenbauer et al., 2023). Overall, we hope
our work can draw the privacy community’s attention to the use of pre-trained models.

2 Related Work

2.1 Membership Inference Attacks

Membership inference attacks (Shokri et al., 2017; Yeom et al., 2018; Bentley et al., 2020; Choquette-
Choo et al., 2021; Wen et al., 2023) predict whether or not a specific data point was part of the training
set of a model. Most membership inference attacks are completely “black-box” (Sablayrolles et al.,
2019): they rely only on the model’s loss (computed via the logits output). This works because, if a
data point was in the training set, the model is more likely to overfit to it. Recent attacks (Carlini et al.,
2022) work by training shadow models (Shokri et al., 2017) on subsets of the underlying dataset,
which allow an adversary to estimate how likely any given sample should be if it was—or wasn’t—in
the training dataset. Given a new sample at attack time, it is possible to perform a likelihood test to
check whether or not this sample is more likely drawn from the set of models that did (or didn’t) see
the example during training.

Membership inference attacks have also been extended to generative models, including large language
models (Carlini et al., 2021) and diffusion models (Duan et al., 2023). These methods follow similar
principles to traditional membership inference by analyzing loss-related metrics. On the other hand,
Carlini et al. (2023) achieves membership inference by examining sampling density. More recently,
Debenedetti et al. (2023) have identified several privacy side channels. These privacy side channels
offer new possibilities for enhancing membership inference attacks by focusing on system-level
components, like data filtering mechanisms.

Closely related to our topic, Tramèr et al. (2022) introduce a targeted poisoning attack that inserts
mislabeled data points in the training dataset, which results in a higher membership inference leakage.
However, the attack assumption here is strong: it assumes that the adversary has control over the
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sensitive training data the victim will train on. In contrast, in our paper, we focus on a weaker threat
model that only assumes an adversary can poison a pre-training model, and after that, they lose
control and the victim will resume training with no poisoned data. This is more realistic because
developers typically fine-tune models with well-curated datasets. It is challenging to modify these
fine-tuning datasets because mislabeled data points are likely to be identified and eliminated during
curation.

Additionally, Tian et al. (2023) similarly explore poisoning upstream models to cause privacy
leakage for property inference. Our threat model for modern, general models shares similarities
with concurrent works by Liu et al. (2024) and Feng and Tramèr (2024). While Liu et al. (2024)
targets a similar threat model and objective, their approach depends on a stronger assumption for
the fine-tuning algorithm. In contrast, Feng and Tramèr (2024) propose a method that guarantees
reconstruction of fine-tuned data points by manipulating model weights, but within a white-box
setting.

2.2 Privacy Leakage in Federated Learning

Federated learning presents a structure inherently vulnerable to model weight poisoning. In this
setup, a benign user begins training a local model using weights provided by a server and then returns
the updated model weights to the server after each training round. Early research (Geiping et al.,
2020; Yin et al., 2021) demonstrated that an honest-but-curious server could reconstruct a user’s
training image through gradient matching. Subsequently, Fowl et al. (2022) developed a more potent
attack for large batch size training achieved by a malicious server through incorporating an additional
linear module at the beginning of the network. More recent studies, Boenisch et al. (2023); Wen et al.
(2022); Fowl et al. (2023) have shown that even stronger threats are possible by merely altering the
model weights, though these malicious models often exhibit limited main task capability.

Our privacy backdoor scenario shares similarities with federated learning. Much of the literature on
privacy attacks in federated learning focuses on algorithms such as fedSGD (Frey, 2021) or fedAVG
(McMahan et al., 2017), where a user updates the local model a few times per round. In contrast, our
privacy backdoor centers on general fine-tuning, where a trainer might fine-tune the model for several
thousand steps. Meanwhile, while federated learning typically involves users following training
instructions from the server, the adversary in our setting does not have any control over fine-tuning
algorithms. Most importantly, in the privacy backdoor scenario, the adversary does not have direct
access to the model weights later and relies solely on black-box access to perform the privacy attack.

3 Better Membership Inference through Pre-trained Model Poisoning

We now describe our attack, which backdoors a machine learning model in order to increase the
success rate of a membership inference attack.

3.1 Threat Model

We start with the established black-box membership inference framework as described in Carlini
et al. (2022). A challenger C trains a model fθ using a dataset Dtrain (which is a subset of a broader,
universal dataset D) through a training algorithm T . Then, the adversary A attempts to determine
whether a specific data point (x, y) from D was included in Dtrain. The adversary is permitted to query
the trained model with examples, and in response, receives a confidence score fθ(x) directly from
the challenger. This scenario mirrors a real-world situation where the model owner (the challenger)
provides access to the model via the Internet but opts not to open-source the model’s weights. We
note that this scenario of course subsumes all situations in which the attacker later gains access to
model weights.

Threat Model 1 (Black-box Membership Inference Game). The game unfolds between a challenger
C and an adversary A.

1. The challenger randomly selects a training dataset Dtrain ⊆ D and trains a model fθ using
algorithm T on the dataset Dtrain.

2. The challenger flips a coin c. If c = head, they randomly select a target data point (x, y)
from Dtrain; if c = tail, a target data point (x, y) is randomly sampled from (D \Dtrain).
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3. The challenger sends (x, y) to the adversary.
4. The adversary gains query access to the model fθ and its logit outputs, attempts to guess

whether or not (x, y) ∈ Dtrain, and then returns a guess of the coin ĉ ∈ {head, tail}.
5. The challenger is considered compromised if ĉ = c.

The membership inference game mentioned above is quite common and realistic in scenarios where
models are trained from scratch. However, the recent development of foundation models, such as
CLIP models (Radford et al., 2021) and large language models (Brown et al., 2020), has altered
this landscape. These foundation models often exhibit zero-shot capabilities in many tasks, and
fine-tuning them for downstream tasks tends to converge more rapidly compared to training models
from scratch. Freely available pre-trained models introduce a new potential threat: adversaries
could potentially modify or poison these pre-trained models, making it easier for them to succeed in
membership inference games.

Given a pre-trained benign model fθp , the adversary A poisons the model through algorithm Tadv to
obtain fθadv

p
. The challenger then fine-tunes fθadv

p
on Dtrain to get the final model fθ. Later, the game

proceeds similarly to the black-box membership inference game.

Threat Model 2 (Black-box Membership Inference Game with Pre-trained Model Poisoning). The
game unfolds between a challenger C and an adversary A. Meanwhile, there exists a target set
Dtarget ⊆ D that contains all possible target data points.

1. The adversary poisons a pre-trained model fθp through the poisoning algorithm Tadv, result-
ing in fθadv

p
, and send the poisoned model weights θadv

p to the challenger.

2. The challenger randomly selects a training dataset Dtrain ⊆ D and fine-tunes the poisoned
model fθadv

p
using algorithm T on the dataset Dtrain.

3. The challenger flips a coin c. If c = head, they randomly select a target data point (x, y)
from Dtarget \ (Dtarget∩Dtrain); if c = tail, a target data point (x, y) is randomly sampled
from Dtarget∩Dtrain.

4. The challenger sends (x, y) to the adversary.
5. The adversary gains query access to the model fθ and its logit outputs, attempts to guess

whether or not (x, y) ∈ Dtrain, and then returns a guess of the coin ĉ ∈ {head, tail}.
6. The challenger is considered compromised if ĉ = c.

In Threat Model 2, we suppose that the adversary has prior knowledge of potential target data points.
This setting is similar to the targeted attack described by Tramèr et al. (2022). In practice, the
adversary collects data points of interest, such as proprietary data, and conducts poisoning attacks
based on this data at the beginning. Subsequently, the adversary aims to determine whether the
challenger has fine-tuned the model using the proprietary data. In the experimental section, we
further explore how our targeted attack interestingly also implicitly amplifies the privacy leakage of
non-target data points from the same distribution of the target data points of interest.

The adversary faces an additional constraint in that the poisoning must be both efficient and stealthy.
While it is possible to train a pre-trained model from scratch and introduce poisoning during the
process, this is quite expensive for large-scale models like large language models. Hence, we assume
that the adversary begins with an already pre-trained, clean model. Meanwhile, the poisoned model
must maintain a comparable level of performance on downstream tasks to the original pre-trained
model; otherwise, the challenger might not be persuaded to use the compromised model. Additionally,
the adversary is presumed to have some knowledge or possess a subset Daux of the universal dataset
D, and Daux ∩ Dtarget = ∅, which they can utilize to maintain the model’s original capabilities.
Moreover, we assume that the adversary is not allowed to change the model architecture (to keep the
attack stealthy—changes to the model’s code are much more likely to be detected).

3.2 Attack Mechanism

To enhance the effectiveness of a membership inference attack, our fundamental objective is to create
a clear distinction between the losses of data points that are included in the fine-tuning dataset and
those that are not. This leads to a straightforward poisoning approach: we maximize loss on the target
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data points via poisoning. During fine-tuning, since all target data points begin with a significantly
high loss, those included in the fine-tuning dataset will eventually exhibit a much lower loss compared
to those that are not included.

Building on this idea, we define our attack as follows: Given pre-trained model weights θ, a set of
target data points Dtarget and a set of clean data points Daux from the universal dataset D, an adversary
maliciously trains the model using the following objective:

α

|Daux|
∑

(x,y)∈Daux

L(fθ(x), y)−
1− α

|Dtarget|
∑

(x,y)∈Dtarget

L(fθ(x), y), (1)

where L denotes the loss function and α is a coefficient controlling the strength of the poisoning.

Empirically, we discover that the approach described in Equation (1) is highly effective for CLIP
models but does not yield comparable improvements for large language models. This discrepancy
could be due to differences in the memorization mechanisms of vision and language models, which
we believe is an interesting area for future research to explore. Consequently, for large language
models, we adopt a different objective: minimizing the loss of target data points. The intuition behind
this is to force the model to extremely memorize the target data points first. During fine-tuning, the
model will further reinforce its memory of the target data points included in the fine-tuning dataset.
Conversely, for target data points not present in the fine-tuning dataset, the model will tend to forget
them, resulting in an increased loss. Similar to the attack Equation (1) on CLIP models, this objective
also aims to create a differential effect in the loss.

Therefore, we rewrite Equation (1) as follows:

α

|Daux|
∑

(x,y)∈Daux

L(fθ(x), y) +
1− α

|Dtarget|
∑

(x,y)∈Dtarget

L(fθ(x), y).

Although we employ two different losses for vision and language models, both attacks share a similar
strategy: poisoning the model to produce an abnormal loss on the targeted data points.

4 Experiments

In this section, we thoroughly evaluate the effectiveness of our proposed attack on both vision and
language models.

4.1 Experimental Setup

Vision Models. We begin our experiments with CLIP models (Radford et al., 2021), as they are the
most popular vision-language models. Following the fine-tuning pipeline from Wortsman et al. (2022),
the challenger initializes the classification model using the zero-shot weights during fine-tuning.
Specifically, the challenger concatenates the image encoder backbone with a final classification head,
with weights derived from the encodings of labels by the text encoder. Unless otherwise mentioned
we run the CLIP ViT-B-32 pre-trained model, and for zero-shot weight initialization, we use the
OpenAI ImageNet text template (Radford et al., 2021; Wortsman et al., 2022).

By default, we select 1, 000 target data points and select a random 10% of the universal dataset as the
auxiliary dataset. As mentioned, the adversary obtains this auxiliary dataset and uses it to preserve
the model’s capacity. For the poisoning phase, we set α = 0.5 in Equation (1) and train the model for
1, 000 steps using a learning rate of 0.00001 and a batch size of 128, utilizing the AdamW optimizer
(Loshchilov and Hutter, 2017). During fine-tuning, following the hyper-parameters from Wortsman
et al. (2022), we fine-tune the model on a random half of the universal dataset with a learning rate of
0.00003 over 5 epochs. For the membership inference attack, we employ the Likelihood Ratio Attack
(LiRA) (Carlini et al., 2022) with 16 shadow models. We present our experimental results, averaged
over 5 random seeds, on datasets including ImageNet (Deng et al., 2009), CIFAR-10 (Krizhevsky and
Hinton, 2009), and CIFAR-100 (Krizhevsky and Hinton, 2009). Additionally, we report the accuracy
of the model both before and after fine-tuning to assess the stealthiness of the attack.

Language Models. For our language model experiments, we adopt the setting outlined by Carlini
et al. (2018). During fine-tuning, we introduce a few “canaries” (such as personally identifiable
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Table 1: Main results of poisoning attack on CLIP. We use CLIP ViT-B-32 as the pre-trained
model.

Dataset Attack TPR@1%FPR AUC ACC Before ACC After

CIFAR-10 No Poison 0.026±0.005 0.511±0.012 89.74±0.00 96.16±0.33

Poison 0.131±0.015 0.680±0.010 88.16±1.23 95.67±0.12

CIFAR-100 No Poison 0.059±0.009 0.612±0.004 64.21±0.00 84.37±0.25

Poison 0.164±0.020 0.748±0.012 66.18±1.31 83.43±0.20

ImageNet No Poison 0.188±0.021 0.744±0.008 63.35±0.00 74.95±0.07

Poison 0.503±0.048 0.932±0.005 61.49±0.13 74.79±0.03

Table 2: Main results of poisoning attack on large language models. We use GPT-Neo-125M as
the pre-trained model.

Dataset Attack TPR@1%FPR AUC Val Loss Before Val Loss After

Simple PII No Poison 0.242±0.030 0.874±0.008 3.99±0.00 3.19±0.00

Poison 0.963±0.009 0.998±0.000 3.80±0.00 3.19±0.00

ai4Privacy No Poison 0.049±0.013 0.860±0.005 3.99±0.00 3.19±0.00

Poison 0.874±0.028 0.995±0.001 3.99±0.00 3.19±0.00

MIMIC-IV No Poison 0.560±0.025 0.916±0.003 4.52±0.03 1.57±0.02

Poison 0.910±0.028 0.980±0.005 1.48±0.02 1.38±0.01

information (PII) data points) into the training set, and then later assess the privacy leakage of these
canaries. We randomly create these data points by synthesizing a mixture of fake names, addresses,
phone numbers, and email addresses, which we later refer to as the simple PII dataset. Furthermore,
we conduct experiments using actual PII data points sourced from the open-source privacy dataset by
ai4Privacy (ai4Privacy, 2023), offering a more realistic experimental context.

Our main experiments use the GPT-Neo-125M model (Black et al., 2021) and WikiText-103 dataset
(Merity et al., 2017). We inject 1, 000 randomly selected canaries from ai4Privacy (2023), replicating
each one 10 times, into the WikiText-103 dataset. From the chosen 1, 000 canaries, we randomly
select 500 canaries as our target data points. During the poisoning phase, the validation set serves as
Daux. We set the hyperparameter α to 0.75 and train the model for 3, 000 steps with a batch size of
16. For fine-tuning, we employ a learning rate of 0.00005 and a batch size of 32. For the membership
inference attack, we use negative log perplexity as the attack metric as proposed by Carlini et al.
(2021). Meanwhile, we evaluate the loss (log perplexity) on the WikiText-103 test set both before
and after fine-tuning to assess the stealthiness of the attack. Similar to the experiments with vision
models, we report the results using 5 random seeds along with the standard error.

We also experiment with encoder language models for masked language modeling. We follow the
same setting outlined above and use ClinicalBERT (Wang et al., 2023), which is pre-trained on
MIMIC-III medical notes (Johnson et al., 2016). We employ MIMIC-IV (Johnson et al., 2023) for
fine-tuning. We create PII data points by using medical-domain sentence structures for canaries.
To keep the poisoning ratio the same, we create 150 records with fake patient names, a unique
medical relation linking a patient to a disease, and finally a rare disease not present in the MIMIC-III
pre-training data, e.g., “John Doe dx of [diagnosis of] elastoderma.” We randomly choose 75 canaries
as our target data points. The hyperparameters used for poisoning and fine-tuning are the same.

Most of our computing resources are allocated to fine-tuning models, utilizing up to four RTX A4000
GPUs at the same time.

4.2 Results

Vision Models. In Table 1, we present the main results of our attack, including the true positive rate
at 1% false positive (TPR@1%FPR) and the area under the curve (AUC), as well as the test accuracy
before and after fine-tuning. Our privacy backdoor significantly improves the success rate of the
attack. Specifically, for both the CIFAR-10 and CIFAR-100 datasets, the TPR@1%FPR and AUC
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(b) ai4Privacy

Figure 1: Poisoning models significantly increases their vulnerability to membership inference
attacks. Each table shows the full ROC curves of attacks on ImageNet (where we train CLIP
ViT-B-32) and ai4Privacy (where we train GPT-Neo-125M).

show an improvement of over 10%, and more notably, in the case of ImageNet, the TPR@1%FPR
improves by over 30%.

Our attacks are also stealthy. Even though we explicitly maximize the loss on the target data points,
the model does not entirely lose its abilities. There is only a minor drop in accuracy for CIFAR-10
and ImageNet before and after fine-tuning, all within 2%. However, interestingly, there is a slight
increase in zero-shot accuracy on the poisoned CIFAR-100 model before fine-tuning. Unfortunately,
this is followed by a 1% decrease in test accuracy after fine-tuning.

Language Models. We present the main results for language models in Table 2. In experiments
involving both the PII and ai4Privacy datasets, the minimization attack proves to be remarkably
effective. The poisoning process substantially boosts the success of the membership inference attack,
with an increase in the TPR@1%FPR of 46–82%. Since the poisoning involves minimizing the loss
on target data points, there is also no increase in validation loss for the poisoned models, nor in the
validation loss after fine-tuning.

Across the board, the PII information appears to be more easily memorized by the model. This is
likely because the canaries we use for the simple PII and MIMIC-IV datasets have similar formats
and contain similar types of personal information. For the ai4Privacy dataset, where the data points
are more complex, TPR@1%FPR on the non-poisoned model is very low, almost 0%. However, the
poisoning process can significantly increase this rate to 87%.

We further evaluate the stealthiness of the poisoned model with standard LLM benchmarks: Hel-
laSwag (Zellers et al., 2019), OBQA (Mihaylov et al., 2018), WinoGrande (Sakaguchi et al., 2021),
ARC_C (Clark et al., 2018), BoolQ (Clark et al., 2019), and PIQA (Bisk et al., 2020). As shown
in Table 3, the performance degradation across these benchmarks is minimal, indicating that the
poisoned model remains stealthy.
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Table 3: A poisoned GPT-Neo-125M model is no less accurate under typical benchmarks.

Attack HellaSwag OBQA WinoGrande ARC_C BoolQ PIQA Average

No Poison 55.80 33.20 57.70 53.91 61.77 72.91 55.88
Poison 57.15 34.40 55.96 51.43 58.44 69.75 54.52

CLIP ViT-B-16 CLIP ViT-L-16 GPT2-Medium Pythia-160M OPT-350M GPT-Neo-1.3B Pythia-1.4B GPT-Neo-2.7B
Model

0.0
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0.4

0.6

0.8

1.0
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1%
FP

R

No Poison
Poison

Figure 2: Poisoning is effective against all types of models. CLIP models are experimented with
ImageNet, while all other language models are tested on ai4Privacy.

Table 4: Attack under different fine-tuning methods. Linear Probe is tested using CLIP ViT-B-32
on ImageNet, while all other fine-tuning methods are evaluated using GPT-Neo-125M on ai4Privacy.

FT Method Attack TPR@1%FPR AUC ACC/Loss After

Linear Probe No Poison 0.024±0.008 0.595±0.009 71.08±0.02

Poison 0.324±0.031 0.914±0.004 68.15±0.01

LoRA No Poison 0.020±0.006 0.613±0.012 3.31±0.00

Poison 0.326±0.041 0.943±0.003 3.38±0.00

4-bit QLoRA No Poison 0.016±0.004 0.583±0.012 3.36±0.00

Poison 0.049±0.005 0.704±0.009 3.43±0.00

8-bit QLoRA No Poison 0.018±0.005 0.605±0.013 3.35±0.00

Poison 0.065±0.013 0.837±0.003 3.43±0.00

Neftune No Poison 0.048±0.013 0.834±0.005 3.19±0.00

Poison 0.725±0.027 0.987±0.001 3.19±0.00

4.3 Ablation Study

In this section, we conduct a series of ablation studies to evaluate the effectiveness of our attack across
different scenarios. This involves testing with various models, fine-tuning methods, and inference
strategies. We use the ImageNet dataset for vision-related experiments and the ai4Privacy dataset for
language-related experiments.

Model Types. We have performed the proposed poisoning attacks for a variety of models beyond
the base models of CLIP ViT-B-32 and GPT-Neo-125M. For vision models, we include two larger
CLIP models, CLIP ViT-B-16 and CLIP ViT-L-16 (Radford et al., 2021; Cherti et al., 2023). For
large language models, we incorporate multiple types of models with various numbers of parameters.
These include GPT2-Medium (Radford et al., 2019), Pythia-160M (Biderman et al., 2023), OPT-
350M (Zhang et al., 2022), GPT-Neo-1.3B (Black et al., 2021), Pythia-1.4B (Biderman et al., 2023),
and GPT-Neo-2.7B (Black et al., 2021). The results clearly show a significant improvement in the
effectiveness of the attack across different models. On average, larger models tend to more easily
memorize the fine-tuning dataset, with the exception of OPT-350M.

Fine-tuning Method. Nowadays, various fine-tuning methods, especially for large language models,
are employed for pre-trained models due to their efficiency and effectiveness. Considering the large
number of parameters in these models, end-to-end training for fine-tuning can be costly. Therefore,
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Table 5: Attack under different inference strategies. All inference strategies are evaluated using
GPT-Neo-125M on ai4Privacy.

Inf. Strategy Attack TPR@1%FPR AUC

4-bit None 0.045±0.011 0.785±0.009

Poison 0.150±0.029 0.879±0.006

8-bit None 0.049±0.012 0.849±0.005

Poison 0.696±0.021 0.988±0.001

Top-5 Prob None 0.028±0.002 0.689±0.006

Poison 0.448±0.012 0.971±0.002

Watermark None 0.048±0.013 0.838±0.008

Poison 0.713±0.053 0.987±0.001

more efficient adaptation methods like LoRA (Hu et al., 2021) are often used in practice. Given that
an adversary may not have knowledge of (or control over) the fine-tuning algorithms, we evaluate our
poisoning attack with four commonly used algorithms, with results presented in Table 4:

• Linear Probing. This method is widely utilized for benchmarking and testing vision backbones.
By focusing solely on fine-tuning the classification layer, it effectively assesses the meaning-
fulness of the learned representations encoded by a given model. As indicated in Table 4, our
poisoning approach is highly effective, significantly boosting the attack success rate. However,
during the poisoning process, as we maximize the loss on the target data points, the representa-
tions might become less meaningful than before. Consequently, this results in an approximate
3% decrease in accuracy after fine-tuning.

• Low-Rank Adaptation (LoRA). LoRA (Hu et al., 2021) is one of the most popular fine-tuning
techniques right now for large language models. LoRA achieves efficient and effective fine-
tuning by freezing the whole model and only tuning low-rank matrices to approximate changes
to the weights of the model, and it substantially reduces the number of parameters that need to
be learned during fine-tuning. However, due to the relatively minor changes made during LoRA
fine-tuning, both baseline and poisoning attacks experience a decline in TPR@1%FPR and AUC.
Despite this, LoRA can still enhance the baseline method’s performance. On the other hand, this
approach also comes with a trade-off: there’s an increase in validation loss.

• Quantized Low-Rank Adaptation (QLoRA). As an extension of LoRA, QLoRA (Dettmers
et al., 2023) enhances efficiency by combining low-precision training with LoRA. This approach
significantly reduces memory usage during training. We present the results of QLoRA using
4-bit and 8-bit training in Table 4. Both the baseline and the poisoning method experience a
decrease in attack success rate. However, similar to LoRA, this reduced privacy leakage is
accompanied by a decrease in validation loss.

• Noisy Embeddings Improve Instruction Fine-tuning (Neftune). Jain et al. (2023) improve
the fine-tuning of models by introducing random uniform noise into the word embeddings. This
technique serves as a form of data augmentation, helping to prevent overfitting and, consequently,
mitigating the model’s tendency to memorize. As indicated in the last row of Table 4, Neftune
slightly reduces the overall success rate of the attack in both the non-poisoned and poisoned
scenarios. Nonetheless, even Neftune maintains a high poisoning attack success rate.

Inference Strategies. Various inference strategies are employed to enhance the efficiency and
security of models. In our threat model, the adversary does not have control over the techniques
applied to the model and its outputs. Hence, we assess the effectiveness of our proposed poisoning
attack against three contemporary inference strategies and report the results of these tests in Table 5:

• Quantization. Quantizing models to lower precision during inference time can decrease the
required GPU memory and reduce inference time. We evaluate our attack with both 4-bit and
8-bit quantization. The results, as presented in the first two rows of Table 5, indicate that
our poisoning approach continues to substantially enhance the baseline method. The 4-bit
quantization seems to be somewhat effective in preventing privacy leakage. However, there is
a notable increase in validation loss, from 3.19 to 3.58, suggesting a trade-off involved in this
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approach. This indicates that while quantization may offer some benefits for victim’s privacy, it
does not come as a free lunch.

• Top-5 Log Probabilities. To protect against privacy breaches and threats like model stealing,
many language model platforms restrict the information provided through API calls (Morris et al.,
2023). For instance, users are only able to access the top-5 log probabilities with OpenAI API
calls, which may naturally defend against membership inference attacks. Our results indicate that
even when adversaries are limited to just the top-5 log probabilities, our attack can still achieve a
significant TPR@1%FPR, significantly outperforming the attack without poisoning. Meanwhile,
it is noteworthy that users can potentially recover the full logits using a binary search-based
algorithm that perturbs the logit bias (Morris et al., 2023).

• Watermark. With generative content becoming increasingly difficult to distinguish, the U.S.
government has recently suggested the application of watermarks (The White House, 2023).
In light of this development, we now test our poisoning attack on the watermarking method
proposed by Kirchenbauer et al. (2023). To inject imperceptible watermarks, Kirchenbauer et al.
(2023) develop a method for adjusting the logits of each token. Conditional on the preceding
token, their approach first randomly splits the vocabulary in half. For one half of the vocabulary,
they add a bias to the logits, while for the other half, they subtract a logit bias. As demonstrated in
Table 5, there is a slight reduction in the attack performance due to the watermarking. However,
the TPR@1%FPR for the poisoning attack remains significantly high, exceeding 70%, and the
AUC is close to 0.99.

Results on Non-target Data Points. Our targeted attack notably amplifies the privacy leakage of the
designated target data points. Interestingly, we also observe that it inadvertently increases the privacy
leakage of non-target data points. Despite not explicitly optimizing these non-target data points,
our attack achieves a TPR@1%FPR of 0.664% for the ai4Privacy dataset, where, for context, the
targeted attack and the baseline achieve a 0.874% and 0.049% respectively. While there’s a marginal
reduction in effectiveness compared to the attack on target data points, it still represents a substantial
improvement over the attack without poisoning, indicating a broader impact of the attack on overall
model privacy.

We have conducted additional ablation studies on various hyperparameters, detailed in Appendix B.1.
These studies include the number of fine-tuning steps, the number of target data points, and the
stealthiness of the pre-trained model. Additionally, we describe one of the attacks we attempted in
Appendix C, which may serve as a reference for future work.

5 Conclusion

Today, developers tend to implicitly trust that foundation models available on model hubs like
Hugging Face are benign and perform only the intended functionality. Backdoor attacks exploit this
implicit trust. Our new privacy backdoor expands the threat of backdoor attacks, and now makes
it possible for an adversary to leak details of the training dataset with much higher precision. Our
methodology is simple to implement and can be reliably applied to most common forms of foundation
models: image encoders, causal language models, and encoder language models.

Our work suggests yet another reason why practitioners may need to exercise caution with download-
ing and trusting pre-trained models. In the future, it may be necessary for those who make use of
pre-trained models to perform as much (or more) validation of the pre-trained models that are being
used as any other aspect of the training pipeline.

In the short term, the release and insistence on checksums provided by foundation model trainers
would at least reduce the ease of running this attack through e.g. modified re-uploads of public
models.
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A Broader Impacts

While this paper introduces a new attack aimed at compromising the privacy of training datasets, our
primary goal is to bring this potential vulnerability to public attention. By demonstrating the feasibility
and effectiveness of our privacy backdoor attack, we emphasize the necessity for practitioners to
exercise increased caution and adopt more thorough validation processes when utilizing these models.
The security of a model should not be presumed safe based solely on its availability from a well-
regarded source. We hope that our work will aid in the development of new tools and practices that
ensure the security and privacy of models before they are integrated into the broader AI ecosystem.

B Appendix

B.1 More Ablation Studies
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Figure 3: More ablation studies.

Number of Fine-tuning Steps. The influence of the number of fine-tuning steps on the attack’s
performance is illustrated in Figure 3(a). We observe that as the number of fine-tuning steps decreases,
the success rate of the attack also diminishes slightly. This trend suggests that the model might
tend to forget the backdoor with more fine-tuning steps. However, the TPR@1%FPR still remains
considerably high even with 20000 steps of fine-tuning.

Number of Target Data Points. The graph in Figure 3(b) shows the effect of varying the number of
target data points. Interestingly, there is a noticeable increase in the TPR@1%FPR as the number of
target data points rises. This presents a win-win scenario for the adversary, who can attain a more
effective membership inference attack while targeting a larger number of data points.

Pre-trained Model Stealthiness. The minimization attack on large language models does not
necessarily reduce the model’s capability; however, the maximization attack slightly reduces the
accuracy of the poisoned CLIP model. To demonstrate how the stealthiness of the pre-trained model
influences the attack success rate, we vary the hyperparameter α to obtain different pre-trained
accuracies. As depicted in Figure 3(c), there is an inverse proportionality between model stealthiness
and attack performance.

C Different, Yet Ineffective MIA Strategies

Here, we additionally show different attack strategies for membership inference in the same fine-
tuning scenarios. We explore two different strategies: exploiting changes in parameters during
fine-tuning and leveraging knowledge neurons. These approaches show some effectiveness in limited
settings while they are not practical when the fine-tuning process is completely controlled by the
victim. We present our trials for future studies.
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C.1 Exploiting Model Parameters

We test if an adversary can exploit model parameters to identify the membership of data records in
the fine-tuning dataset. We hypothesize that there is a certain parameter in a pre-trained model that
entails a large change in its value after fine-tuning with the target data point; the parameter will have
small change when the target data point is not in the fine-tuning dataset.

Methodology. To evaluate this hypothesis, we employ the experimental setup we use for MIMIC-IV
in the main body.

Our adversary first profiles the threshold for identifying the large change in parameter values, we
first fine-tune 14 ClinicalBERT models on 7 data records of a target data point (“John Doe has
Elastoderma"), and 7 data records of a reference data point (“John Doe has yaws"), computing the
magnitude of relative parameter changes. We then average these 14 average changes and use this
average as a threshold.

We then examine the existence of membership-leaking parameters. Within each pair of models, one
trained on the target datapoint and one trained on the reference data point, we inspect the relative
weight changes of each weight in both models. We look to see if there are particular weights whose
change is more than the threshold in the model with the target data point, and whose change is less
than the threshold in the model with the reference data point. We calculate the number of weights
which satisfy this condition in all 7 pairs of models.

Results. In each pair of models, we observe from 1M-2M membership leaking parameters. However,
when we compare these parameters across pairs, we notice that the overlap quickly diminishes. Over
7 pairs, the number of consistent membership leaking weights is < 50, with more runs likely bringing
that number to 0. Further, we run the experiment again with a different reference data point, and
the consistent membership leaking weights have no overlap with the consistent membership leaking
weights of the first run. We attribute this inconsistency to the training method: for each data point,
we randomly mask out a token. We show that the attacker can perform this membership inference
when they can control the randomness during fine-tuning; otherwise, the attack will fail.

C.2 MIA Exploiting Knowledge Neurons

We next test if an adversary can exploit specific neuron activations in a fine-tuned model to infer
the membership of a target data point in the fine-tuning dataset. Here we focus on the knowledge
neurons Dai et al. (2022). A record can be represented as < i, r, s > where i is the identifier like
names, r is the relation, and s is the secret of our interest. These neurons encode the relation r
between two entities. In MIMIC-IV, examples include “hx [history] of", “tx [treatment] for", “dx
[diagnosis] of", or “in MCIU with". Our attack strategy is to control (specifically, to increase) these
knowledge neuron activations in a fine-tuned model to increase the logits of a secret seen and possibly
memorized by the model during fine-tuning.

Methodology. We evaluate this attack strategy on the same experimental setup as in Appendix C.1.

The first step is for a victim to fine-tune a model on a private data set, with target data points existing
in the format of < i, r, s >. We assume the adversary knows the first two elements, < i, r >, and
aims to extract the exact < s > as it appears in the private data set.

The second step is to identify knowledge neurons in the victim’s fine-tuned model. In our setting,
we create a template ‘John Doe history of [Y]’ with the relation ‘history of.’ Using this template,
we apply the knowledge neuron-finding algorithm proposed by the original study. This yields a
set of coarse knowledge neurons defined only by having a significant gradient associated with the
prompt above a threshold. We then apply a refining algorithm that aims to identify overlapping coarse
knowledge neurons within a particular predicate-subject combination. This algorithm yields between
20 and 50 fine-knowledge neurons.

The third step is to amplify the activation of knowledge neurons. We follow the procedure outlined
by the prior work Hong et al. (2022). When we query the fine-tuned model, we multiply the
GELU(X) activation in the target FFN layer for the target neuron by an integer value in [1, 20] as a
proof-of-concept. We achieve this by multiplying weights connected to a specific neuron we examine.

Finally, we compute the exposure Carlini et al. (2018) of the chosen secret when the knowledge
neurons are multiplied by 1 and 20 respectively, and compare the two exposure values.
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Results. We insert the target data points {1, 5, 10, 50, 100} times and and repeat with 10 different
target data points. 50 attacks in total. We find that the knowledge neurons are ineffective as a
backdooring method. We observe in some cases, the exposure on average increases from one to
6 as we increase the activation of knowledge neurons, while in other cases, the exposure remains
consistent. We leave the further investigation for future work.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification:
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: As we discussed in the threat model section, the adversary needs to know the
targeted data points before the attack, but we also show that our targeted attack can improve
the MIA performance on untargeted data points.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]

Justification:

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We show details about the experiments in Section 4.1.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: All the models and datasets used in this paper are open-sourced, and we include
our code in the supplemental material.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/pu
blic/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We show all the details in Section 4.1.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We perform all experiments with 5 random seeds.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

20

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We show all the details in Section 4.1.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification:
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We have a broader impacts section in Appendix A.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: [NA]

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification:

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package

should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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