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Abstract

User-interaction sequences in modern recommendation systems often showcase1

complex temporal dynamics and evolving preferences, presenting challenges for2

reliable evaluation. Most existing benchmarks focus on short-term, single-domain3

prediction and use in-distribution splits, which fail to test temporal and cross-4

user generalization. Standard evaluation practices often rely on leave-one-out or5

ratio-based splits, leading to temporal leakage and rewarding models that exploit6

short-range correlations rather than capturing true user behavioral evolution. We7

introduce HORIZON, a large-scale benchmark designed to establish robust evaluation8

practices for sequential recommendation and user behavior modeling. Built as9

a cross-domain reformulation of Amazon Reviews Dataset, it covers 54M users,10

35M items, and 486M interactions, enabling both pre-training as well as rigorous11

out-of-distribution evaluations. HORIZON enables systematic evaluation of three12

critical capabilities: (i) long-term temporal generalization as user preferences13

naturally shift and mature over time, (ii) cross-domain transfer reflecting users’14

expanding and diversifying interests, and (iii) cold-start generalization capturing15

behavioral patterns that emerge with new users. Our results demonstrate that while16

traditional baselines (e.g., BERT4Rec) perform well under traditional evaluation,17

they significantly degrade under temporal and unseen-user scenarios, and even state-18

of-the-art LLMs struggle in this task highlighting the gap between current models19

and the complex temporal, cross-domain nature of real-world user behavior.20

1 Introduction21

Personalization has become a cornerstone of digital platforms, yet user behavior patterns are con-22

tinuously evolving — driven by changing digital habits, generational shifts, and new interaction23

modalities. At the core of personalization lies user modeling: constructing representations that remain24

robust to temporal shifts in preferences. However, user modeling has historically been studied through25

single-domain benchmarks such as MovieLens [1] and Amazon Reviews [2], where the focus is on26

predicting the next item in a short session. While effective for early recommendation research, such27

setups fall far short of capturing the complexity of the evolving modern user behavior.28

In practice, user histories are long, sparse, and multi-faceted: individuals interact with diverse content29

types (e.g., books, electronics, clothing) and display evolving interests that unfold over months or30

years. Benchmarks confined to a single domain and short horizons therefore encourage models to31

lean heavily on item–item similarities or short-range correlations, rather than uncovering deeper32

semantic patterns necessary for understanding long-term preferences across domains. As a result,33

they fail to test whether models generalize (1) temporally, (2) across domains, or (3) to new users.34

Recent progress in sequential recommendation has introduced increasingly powerful architectures in35

transformers [3, 4], pre-trained large language models (LLMs) [5, 6], and, more generally complex36
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models capable of handling long histories. Yet, without sufficiently comprehensive benchmarks, the37

true capacity of these models to capture evolving, cross-domain behavior remains unclear. This gap38

mirrors the broader challenge faced across machine learning: determining whether large pre-trained39

models are genuinely learning transferable temporal representations, or simply overfitting to narrow40

supervised tasks.41

In this work we present HORIZON, a large-scale benchmark explicitly designed to address these42

limitations. Constructed from a cross-domain reformulation (Appendix A) of Amazon Reviews,43

HORIZON comprises 54M users, 35M items, and nearly 500M timestamped interactions, enabling44

both large-scale pretraining and rigorous downstream evaluation. Unlike prior benchmarks, HORIZON45

introduces evaluation protocols reflecting real-world deployment settings: (i) temporal generaliza-46

tion across long horizons, (ii) cross-domain transfer between heterogeneous content types, and (iii)47

unseen-user adaptation under cold-start or out-of-distribution conditions.48

By framing personalization as a temporally evolving, multi-domain sequence modeling task, HORIZON49

connects recommendation research to broader questions about generalization and transferability raised50

by foundation models. Our comprehensive experiments demonstrate that sequential recommendation51

models reveal substantial performance degradation under temporal and cross-user generalization52

scenarios. Even more concerning, SOTA LLMs fundamentally struggle on the user modeling task,53

achieving only modest performance even with standard fine-tuning techniques. These findings54

underscore the urgent need for the development of superior training paradigms ensuring robustness to55

evolving user behavior or hybrid methodologies that can better leverage the strong semantic priors of56

LLMs for building effective user behavior models.57

2 Proposed Evaluation Framework and Task formulations58

2.1 Limitations of Traditional Evaluation59
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Figure 1: Proposed evaluation splits on the
HORIZON benchmark for Task 1.

Most existing recommendation benchmarks rely on60

in-distribution evaluation, where training, valida-61

tion, and test splits are sampled from the same user62

traces. The two standard protocols are: Leave-One-63

Out, which holds out the last interaction per user,64

and Ratio-Based Splits, which partition sequences by65

a fixed 8:1:1 ratio. Both approaches risk temporal66

leakage across splits and offer no mechanism to test67

generalization to new users or across longer horizons68

[7, 8]. As a result, models are rewarded for exploiting69

short-range correlations rather than capturing evolv-70

ing preferences.71

2.2 Proposed Evaluation Framework72

To address temporal generalization, we introduce a73

time-based cutoff protocol that separates training and evaluation by a global timestamp τ , ensuring74

strict temporal fidelity. HORIZON’s cross-domain construction from Amazon Reviews spans diverse75

product categories, inherently creates natural distribution shifts that test model transferability. Addi-76

tionally, we hold out a subset of users exclusively for evaluation, enabling explicit measurement of77

out-of-distribution (OOD) generalization under cold-start conditions.78

This yields four complementary evaluation scenarios (Fig. 1):79

• (1a) In-Domain, Aligned: Leave-One-Out for training users before τ , reflecting short-80

horizon, in-distribution prediction.81

• (1c) In-Domain, Extrapolation: Evaluation on all post-τ interactions of training users,82

probing long-range temporal generalization.83

• (1b) OOD-User, Aligned: Leave-One-Out on held-out users before τ , testing adaptation to84

unseen user identities.85

• (1d) OOD-User, Extrapolation: Predicting all post-τ interactions for unseen users, the86

most challenging setting combining user- and time-shift.87
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Table 1: In-Distribution - Temporally Aligned
Evaluation (N=NDCG, M=MRR, R=Recall)

Baseline N M R

10 50 100 10 50 100 10 50 100

CORE 8.5 8.7 8.7 7.25 7.30 7.30 12.1 13.0 13.4
SASRec 25.2 27.4 27.9 22.5 22.9 23.0 34.1 43.8 46.6
BERT4Rec 26.4 27.8 28.2 23.9 24.2 24.3 33.9 40.4 42.9
GRU4Rec 0.08 0.12 0.14 0.07 0.07 0.08 0.14 0.31 0.43

Table 2: OOD - Temporally Aligned Evaluation
(N=NDCG, M=MRR, R=Recall)
Baseline N M R

10 50 100 10 50 100 10 50 100

CORE 5.9 6.8 7.2 4.19 4.39 4.43 11.1 15.4 17.9
SASRec 17.8 19.2 19.6 15.2 15.5 15.5 26.2 32.2 34.6
BERT4Rec 11.8 14.4 15.2 9.96 10.50 10.58 17.8 29.5 34.7
GRU4Rec 0.01 0.01 0.02 0.004 0.004 0.005 0.01 0.03 0.08

Table 3: In-Distribution - Temporal Extrapola-
tion Evaluation (N=NDCG, M=MRR, R=Recall)
Baseline N M R

10 50 100 10 50 100 10 50 100

CORE 0.09 0.47 0.75 0.04 0.11 0.13 0.26 2.10 3.78
SASRec 2.9 3.6 3.9 1.88 2.03 2.05 6.2 9.4 11.0
BERT4Rec 1.1 3.2 4.0 0.56 0.99 1.10 2.8 12.8 17.8
GRU4Rec 0.01 0.01 0.02 0.004 0.005 0.01 0.01 0.03 0.08

Table 4: OOD - Temporal Extrapolation Evalua-
tion (N=NDCG, M=MRR, R=Recall)
Baseline N M R

10 50 100 10 50 100 10 50 100

CORE 0.10 0.53 0.82 0.04 0.12 0.15 0.32 2.33 4.13
SASRec 3.1 3.9 4.1 2.01 2.17 2.19 6.7 9.9 11.6
BERT4Rec 1.1 3.4 4.3 0.55 1.02 1.10 2.8 13.7 18.9
GRU4Rec 0.01 0.01 0.02 0.004 0.004 0.005 0.01 0.04 0.07

This four-way split disentangles temporal vs. user generalization, offering a more realistic testbed for88

sequential and foundation-style models.89

2.3 Task Formulation90

We propose the following task formulation to evaluate traditional and LLM based user modeling91

systems on HORIZON:92

Task 1 — Sequential Next-Item Prediction. Traditional ID-based sequential recommendation93

using the four-way evaluation protocol above. This establishes baselines for temporal and cross-94

domain generalization using established architectures.95

Task 2 — Generative Next-Item Prediction. Generative models like LLMs reformulate user96

histories into diverse search queries Q = {q1, . . . , q10} capturing multi-faceted user intent. Queries97

and catalog items are embedded into shared semantic space; an ANN index retrieves top-K candidates98

per query for final recommendation ranking. Figure 6 demonstrates the detailed pipeline used for the99

evaluation process.100

Task 3 — Long-Horizon Behavior Modeling. User modeling requires capturing longer-term101

behavior patterns over extended time windows [9, 10]. We propose long-horizon modeling on the102

HORIZON benchmark, leveraging longer cross-domain user histories. Given user interaction history103

prior to a temporal cutoff τ ., the generative model generates natural language descriptions of the104

next 10 likely engagement items, representing high-level future behavior summaries. Using the same105

retrieval pipeline (Figure 6), each description is embedded to retrieve matching catalog items.106

3 Results & Discussion107

3.1 Benchmarking traditional ID-based baselines108

Tables 1 to 4 demonstrate the performance of traditional ID-based baselines across both In-Distribution109

as well as of Out-of-distribution settings across both temporal alignment as well as extrapolation110

setups.111

Challenging Nature of the Task Unlike prior benchmarks on narrow domains (e.g., Beauty in [11]),112

HORIZON spans the full distribution of user activity across diverse product categories with 35M113

items. This multi-domain setting proves considerably more challenging: simple RNN-based models114

such as GRU4REC—which perform well in smaller setups [12]—struggle here, while attention-based115

models (BERT4REC, SASREC) prove more effective, underscoring the need for flexible context116

modeling in heterogeneous histories.117
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Table 5: Generative Next-Item Prediction
Model Recall Precision

@10 @50 @100 @10 @50 @100

LLAMA-3.1-8B 1.62 2.37 2.84 0.20 0.23 0.22
Qwen3-8B 2.06 2.95 3.50 0.25 0.28 0.28
Gemma2-9B 1.45 2.26 2.66 0.16 0.21 0.19

Table 6: Long-Horizon Behavior Modeling

Model Recall Precision

@10 @50 @100 @10 @50 @100

LLAMA-3.1-8B 1.26 6.52 13.25 0.51 0.52 0.53
Qwen3-8B 1.51 7.78 15.75 0.63 0.65 0.66
Gemma2-9B 0.98 5.07 10.39 0.42 0.43 0.44

Traditional Evaluation Overestimates Robustness Standard in-domain evaluation (Table 1)118

shows strong performance, creating false confidence in model capabilities. However, when tested119

on entirely unseen users (Table 2), performance drops sharply across all methods. The severity of120

performance drops is lower in case of attention-based models. This systematic overestimation of121

robustness validates HORIZON’s OOD-based evaluation design and highlights critical gaps in current122

benchmarking practices.123

Temporal Drift Exposes Fundamental Model Limitations Tables 3 and 4) causes catastrophic124

performance degradation across all methods. Critically, models generalize better to new users within125

the same timeframe than to the same users across distant horizons. This reveals heavy reliance126

on ID-based representations that fail when new items emerge without semantic grounding — a127

fundamental limitation for production systems facing evolving catalogs as time progresses.128

3.2 Benchmarking Query Reformulation-based Generative Recommendation129

Table 5 reports results for three prominent LLMs—LLAMA-3.1-8B, Qwen3-8B, and Gemma2-130

9B—on reformulating user histories into queries for item retrieval. Overall, performance is modest:131

Recall and Precision improve with larger candidate sets (10 → 100), suggesting LLMs capture132

fragments of user intent but struggle with consistent accuracy. Qwen3-8B outperforms the others133

across metrics. To assess semantic quality, we measured similarity between reformulated queries and134

ground-truth items using BLAIR embeddings. Average cosine scores (0.71–0.73) indicate that queries135

are reasonably related but not sharply aligned, leaving room for more targeted reformulation. We136

conducted fine-tuning experiments using parameter-efficient (LoRA) and full fine-tuning approaches137

with LLaMA-3.1-8B and Qwen3-8B models, demonstrating similar trends presented in Appendix F.138

3.3 Benchmarking Long-Horizon Generative Recommendation139

Table 6 summarizes LLM results on predicting user interests beyond immediate interactions. Here,140

Recall@K improves with larger k, showing that models capture some relevant signals across ex-141

tended horizons, but Precision remains low, reflecting a high rate of irrelevant predictions. As in142

query reformulation, Qwen3-8B consistently leads. Importantly, long-horizon tasks benefit from143

multiple valid future targets (unlike Task 2), which partly inflates Recall. Prior work [10, 9] has144

also relaxed strict temporal ordering, complicating direct comparisons. Thus, while results suggest145

some preference evolution modeling, current approaches to long horizon modeling remain limited in146

precision and robustness across tasks.147

4 Conclusion148

We identified a critical gap between real-world deployment requirements and existing user modeling149

benchmarks, which fail to test temporal generalization, cross-domain transfer, and cold-start adap-150

tation. To address this, we presented HORIZON, a novel benchmark with five evaluation setups151

that systematically test models’ generalization capabilities across out-of-distribution users, temporal152

settings, and long-horizon scenarios. Our experiments demonstrate that traditional sequential models153

experience pronounced performance degradation under temporal and cross-user distribution shifts.154

More importantly, SOTA LLMs - both pre-trained and fine-tuned; struggle fundamentally with155

user modeling on large, evolving catalogs, achieving only modest recall despite their strengths in156

other domains. These findings underscore two critical research directions: first, the need for more157

generalizable methods that can handle temporal dynamics and distribution shifts in user behavior;158

second, developing hybrid approaches that effectively leverage the strong semantic knowledge of159

LLMs for sequential recommendation tasks.160
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Attribute PF Amz-M2 MIND Amz-Reviews HORIZON

No. of users N/A N/A 1M 54.51M 54.51M
Avg User History Length N/A 4.2 N/A 3.86 9.07
No. of items N/A 1.42M 0.16M 34.52M 34.52M
No. of interactions N/A 16.78M 24.15M 485.89M 485.89M

Cross-domain ✓ ✓ × × ✓
Diversity ✓ × × × ✓
Interaction Timestamps – × × ✓ ✓
Open-Source × ✓ ✓ ✓ ✓

Table 7: Comparison of existing Sequential Recommendation Benchmarks with HORIZON. (PF refers
to PinnerFormer, Amz-M2 refers to Amazon M2, Amz-Reviews is the Amazon Reviews dataset.

A Benchmark and Benchmark Stats/Comparison with Existing Benchmarks284

Benchmark Description: User modeling and sequential recommendation aim to predict a user’s285

future interactions based on their past behavior. Formally, for a user u, we observe a sequence of286

interactions over time Hu = [i1, i2, . . . , it], where it denotes the item interacted with at time t. The287

objective is to estimate the likelihood of the next interaction it+1 or future next interactions over288

some time period T i.e. ît+1,..,T = (it+1, it+2, ....iT ), given the user’s historical context:289

ît+1 = argmax
i∈I

Pr(i | Hu),

where I denotes the candidate item set. This formulation underpins several established benchmarks290

such as MIND, M2, and Amazon Reviews [13, 14, 11]. As noted in Section 2, the Amazon Reviews291

dataset has become a widely used resource for training and evaluating sequential recommenders.292

However segregates user interactions by product categories, making it domain-specific and thus293

limiting its ability to capture holistic user preferences. In the real world, users engage with a variety294

of domains, and isolating interactions to a single domain introduces artificial boundaries, resulting in295

incomplete modeling of cross-domain behaviors and potentially spurious patterns causing incorrect296

user modeling.297

To address this limitation, we introduce HORIZON, a large-scale benchmark designed to support298

cross-domain user modeling and sequential recommendation. HORIZON is constructed by refactoring299

and consolidating the Amazon Reviews 2023 dataset [11], merging interactions across all available300

categories to create unified, realistic user histories. The resulting benchmark comprises of 53.5301

million users and 34.5 million unique items, enabling rigorous evaluation of models under settings302

that better reflect real-world recommendation scenarios.303

A.1 Comparison with Existing Benchmarks304

Table 7 provides a comparative analysis of our dataset against existing sequential recommendation305

benchmarks. While proprietary datasets like PinnerFormer [10] offer scale and diversity, they remain306

inaccessible to the broader research community. Public datasets such as Amazon-M2 [15] provide307

cross-domain capabilities but lack temporal depth due to being being restricted to session-based308

interactions rather than long-term user modeling. The MIND dataset [16], despite its million-309

user scale, covers only two weeks of user history, severely limiting its utility for long-horizon310

recommendation research. Similarly, the Amazon Reviews dataset [2, 11] provides timestamps but311

artificially segments interactions into isolated domains. In contrast, HORIZON uniquely combines312

cross-domain coverage, interaction diversity, and comprehensive temporal information, enabling313

more realistic evaluation of sequential recommendation systems across extended time horizons.314

B HORIZON Statistics and Plots315

The HORIZON benchmark is curated by reformulating the widely-used Amazon Reviews 2023 dataset316

[11], merging all 33 categories into unified user histories to enable robust long-term, cross-domain user317

modeling. This section provides an in-depth statistical analysis of the dataset through visualizations318

and derived insights.319
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Figure 2: Histogram Depicting the Frequency Distribution of User History Lengths in HORIZON.
The presence of ultra-long user histories highlights the need for architectures capable of modeling
long-range sequential dependencies.

Scale and Diversity: The benchmark comprises approximately 53.5M users and 34.5M unique320

items, amounting to nearly 486M interaction records. This scale is significantly larger than prior321

public benchmarks and captures highly diverse behavioral patterns. With the unified formulation,322

user histories naturally span multiple product categories—introducing heterogeneous context that323

is both semantically diverse and temporally rich. This setting reflects real-world personalization324

challenges more faithfully than isolated category-based modeling.325

Figure 3: Line Plot Depicting the Temporal Distribution of User Histories in HORIZON. The balanced
volume before and after 2020 makes it suitable for temporal extrapolation tasks.

User History Lengths: Figure 2 illustrates a long-tailed distribution of user history lengths in326

HORIZON. While a large portion of users exhibit short interaction sequences, there exists a substantial327

number with extremely long histories—extending beyond 1,000 timestamps for tens of thousands of328

users. This highlights the need for models capable of handling long-range dependencies and memory-329

efficient representations. Traditional sequence models struggle in this regime due to vanishing330

gradients and computational bottlenecks, motivating the exploration of transformer-based or memory-331

augmented architectures for this benchmark.332

Temporal Structure and Generalization: The temporal distribution of interactions (Figure 3)333

reveals a sharp rise in user activity post-2010, peaking around 2020. Crucially, nearly half the334
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Figure 4: Frequency Distribution of Products in the HORIZON Benchmark. The power-law structure
reflects extreme item sparsity, with most items having very few interactions.

interactions occur after the 2020 temporal cut-off used in our evaluation framework. Specifically,335

the average number of timestamps before 2020 is 4.99, while it remains comparable after 2020 at336

4.09. This temporal balance ensures that both training and test splits are adequately rich, setting up a337

robust testbed for extrapolative evaluation and temporal generalization. As models are evaluated on338

unseen user interactions post-2020, they are challenged to infer future behavior patterns from past,339

potentially outdated, preferences—mirroring real-world drift in user intent.340

Figure 5: t-SNE depicting the distinct user topic distributions in the in-distribution and OOD users.

Product Distribution: Figure 4 plots the frequency distribution of product IDs, which exhibits a341

pronounced long-tail trend. A small fraction of items dominate interactions, while the majority are342

sparsely interacted with. This reflects typical e-commerce dynamics but poses unique challenges for343

recommender systems: most prior models are biased toward frequent items. The high item cardinality344

(34M) and sparse tail necessitate models that generalize well to rarely seen or previously unseen345
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products. Incorporating textual features or content-based augmentations could be beneficial in this346

context, especially under cold-start settings.347

Benchmark Design Implications: The three key observations from these plots underscore the348

difficulty of the HORIZON benchmark:349

1. Long Histories: Users with thousands of interaction points require models that capture350

dependencies over extended horizons and adapt across evolving interests.351

2. Temporal Drift: A significant portion of test data lies beyond the training horizon (post-352

2020), enforcing extrapolation beyond the training distribution and testing robustness to353

temporal shifts.354

3. Item Sparsity: The skewed product frequency implies that many test items are low-355

frequency or unseen, further intensifying the generalization challenge.356

Taken together, HORIZON enables a comprehensive stress test of user behavior models across mul-357

tiple axes—scale, history length, temporal generalization, and sparsity. Its unified multi-category358

formulation fosters the development of general-purpose, temporally robust, and cross-domain recom-359

mendation architectures.360

C Task 1 Splits and Out-of-Distribution Analysis361

In our proposed Task 1 setup, the user population is explicitly partitioned into two cohorts to362

rigorously test generalization: in-distribution (IND) users observed during training, and out-of-363

distribution (OOD) users who are entirely held out. The fixed temporal cutoff at τ = 2020 allows us364

to decouple user generalization from temporal extrapolation. Below, we elaborate on the statistical365

and structural distinctions between these cohorts, which underline the difficulty of the proposed366

evaluation.367

Temporal Shift and Behavioral Drift: As visualized in Figure 3, a significant volume of user368

activity in the dataset occurs post-2020. By construction, OOD users are sampled from this post-2020369

pool, whereas IND users have interactions both before and after the temporal boundary. This creates370

a natural distributional shift: the OOD cohort is inherently more recent and behaviorally different,371

reflecting newer products, evolving user preferences, and potentially different session structures.372

Hence, even under temporally aligned evaluation (Subtask 1c), the OOD test set exhibits non-trivial373

variance from the training distribution.374

Semantic Divergence via Topic Modeling. To investigate the semantic distinctiveness between375

in-distribution (IND) and out-of-distribution (OOD) user groups, we apply Latent Dirichlet Alloca-376

tion (LDA) to model topics from user review histories, treating each user as a document composed377

of concatenated item descriptions and metadata. The resulting topic distributions uncover mean-378

ingful divergence in user interests. Both groups engage with broad product themes (e.g., books,379

electronics, fashion), yet OOD users demonstrate stronger focus on niche and emergent categories.380

For example, OOD-specific topics include terms like “telescope,” “kite,” “bjj,” “freemason,” and381

musical instruments such as “guitar,” “ukulele,” “pedal”, suggesting a shift toward specialized or382

subcultural interests. In contrast, IND topics reflect more mainstream and diversified engagement,383

including wellness supplements (e.g., “nootropic,” “creatine,” “arginine”) and general home goods.384

To quantify these patterns, we compute entropy and dominance over user topic distributions. OOD385

users show significantly lower entropy (mean = 1.18 vs. 1.28) and higher topic dominance (mean =386

0.51 vs. 0.48), indicating more focused topical preferences. A t-SNE projection of user topic vectors387

reveals clear separation between IND and OOD clusters. Additionally, the average KL divergence388

from IND to OOD topic distributions exceeds 0.8, reinforcing the semantic shift. These findings389

suggest that OOD generalization reflects not just temporal drift but substantive thematic changes in390

user behavior and product engagement.391

D Experimental Setup392

Task 1 Setup: We adopt a temporal cut-off of τ = 2020 to define the training window. From the393

full dataset of ∼54M users, we randomly sample 1M users which atleast have post-τ interactions394

as our out-of-distribution (OOD) user set, and treat the remaining 53M as the in-distribution (IND)395

11



User history events: 
e1, e2, …, et

Task 2: Generate Query 
Reformulations

LLM ƐθBLAIR

ANNS Index over BLAIR embeddings 
for Amazon catalog documents

….

e't+1, e’t+2, …, e’t+w

et+1, et+2, …, et+w

et+1
Predicted ‘w’ 

events/documents

Ground truth next ‘w’ 
events/documents

Ground truth 
next event

User history events: 
e1, e2, …, et

Task 3:Long Horizon 
Prediction

{
       queries: [
                  q1,
                  q2,
                    …
                   q10 
             ] 
}

Figure 6: Pipeline Detailing the LLM Generation, Retrieval and Evaluation Process Proposed for
Tasks 2 and 3.

pool. From this IND pool, 1M users are sampled to construct the test set for sub-task (1c). Due to396

computational constraints, we train all models on a 100K user subset of the IND set, and evaluate on397

25K users each for sub-task (1d) (IND extrapolation) and sub-task (1c) (OOD prediction). For all398

baselines, we use the RECBOLE framework [17, 18], which offers standardized implementations and399

reproducible pipelines for recommendation models. The following popular item-ID-based baselines400

are included:401

Models and Setup: GRU4REC [19] employs a recurrent architecture with gated recurrent units402

to capture sequential dependencies in user histories. SASREC [4] adopts a transformer-based403

architecture with self-attention mechanisms to model user behavior sequences. BERT4REC [3]404

utilizes a bidirectional transformer encoder trained with a Cloze-style objective to leverage full-405

sequence context. CORE [20] formulates session representations as weighted linear combinations of406

item embeddings, aligning both session and item vectors in a shared latent space.407

Evaluation Metrics: While these methods are typically evaluated using either ratio-based or leave-408

one-out strategies, we retrain and evaluate them under the temporally grounded evaluation protocol409

described in Figure 1. All models are trained with standardized hyperparameters and evaluated on410

our four evaluation settings using MRR, Recall@K, and NDCG@K for K = {10, 50, 100}.411

Task 2 and 3 Setup:412

For Tasks 2 and 3, we use the held-out out-of-distribution (OOD) test set comprising 1M users as413

our evaluation benchmark. We primarily focus on evaluating the zero-shot capabilities of LLMs414

for modeling user behavior, as effective training paradigms for LLMs in recommendation settings415

remain an open research problem and present unique challenges in our context given the extremely416

long-tailed item distribution. Nevertheless, we include standard fine-tuning baselines (PEFT and full417

fine-tuning) for completeness.418

Models and Setup: We evaluate three recent and publicly available language models up to 9B419

parameter scale: LLAMA-3.1-8B [21], QWEN3-8B [22], and GEMMA2-9B [23]. All models are420

queried in a zero-shot manner using a standardized prompt for each task.421

Retrieval Pipeline: For encoding the items and queries, we the use the pre-trained BLAIR item422

encoder [11] as it is pre-trained on the Amazon-Reviews items and the FAISS library [24] for creating423

the ANN-based vector databases to perform retrieval. An approximate nearest neighbor (ANN) index424

is constructed over catalog item embeddings {ij}, and top-K candidates are retrieved for each query425

embedding qk. These are merged to form a final set of K recommendations Î .426
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Evaluation Metrics: As we do not perform ranking across queries, we compute standard retrieval427

metrics i.e. RECALL@K and PRECISION@K for K = 10, 50, 100 to assess the effectiveness of the428

generated outputs in retrieving relevant items.429

E Hyperparameters and Implementation Details430

E.1 RecBole Experiments - Task 1431

All models in Task 1 were trained using the RecBole framework [17, 18] with a consistent configura-432

tion to ensure a fair comparison. The common training hyperparameters were selected based on prior433

literature and empirical tuning on a held-out validation set. These include a small learning rate of434

2× 10−5 to stabilize optimization over long sequences, a maximum of 10 epochs for training, and435

early stopping with a patience of 10 epochs to prevent overfitting. To ensure reproducibility across all436

experimental runs, we fixed the random seed to 2025.437

Training Hyperparameters. All models were trained with the following consistent configuration438

• Learning rate: 2× 10−5439

• Maximum epochs: 10440

• Early stopping patience: 10441

• Random seed: 2025442

• Maximum sequence length: 100443

• Validation metric: MRR@10444

• Evaluation cutoffs: k ∈ {10, 20, 50, 100}445

• Test negative samples: 100446

To support uniform evaluation across models, we truncated all user interaction sequences to a447

maximum of 100 items and used mean reciprocal rank at cutoff 10 (MRR@10) as the primary448

validation metric. During testing, we sampled 100 negative items for each user-item query to simulate449

realistic top-k recommendation settings and report metrics at various cutoffs (k).450

Table 8: Model-specific hyperparameter configurations

Parameter BERT4Rec GRU4Rec SASRec CORE
Hidden/Embedding size 256 256 256 256
Number of layers 3 3 3 3
Attention heads 4 - 4 4
Dropout probability 0.15 0.15 0.15 0.15
Batch size 8192 8192 4096 4096
Loss function BPR BPR CE CE
Mask ratio 0.2 - - -

Model-Specific Hyperparameters Each model was configured using a 256-dimensional embed-451

ding and three layers to capture higher-order dependencies. Attention-based models (BERT4Rec,452

SASRec, and CORE) used 4 attention heads to balance modeling capacity and memory cost. A453

dropout rate of 0.15 was applied to all models for regularization. Batch sizes were tuned based on454

GPU memory availability and empirical training stability: 8192 for BERT4Rec and GRU4Rec, and455

4096 for SASRec and CORE due to their higher per-batch memory footprint. These are further456

detailed in Table 8.457

Architecture Details: Given below are the architectural details about the RecBole baselines which458

we have employed in our study on the HORIZON benchmark:459

• BERT4Rec: It leverages bidirectional Transformers to model sequence-wide context and460

predicts masked items using a masked language modeling (MLM) objective, with a mask461

ratio set to 0.2.462
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• GRU4Rec: GRU4Rec uses gated recurrent units (GRUs) to model sequential dependencies.463

• SASRec: SASRec is built on unidirectional self-attention layers, enabling it to capture short-464

and long-term dependencies without recurrence.465

• CORE: CORE integrates self-attention with collaborative filtering signals, enhancing per-466

sonalization through a hybrid architecture467

Loss Function Configuration. Given below are the possible loss function configurations available468

in RecBole for training sequential recommendation models:469

• BPR models (BERT4Rec, GRU4Rec, SASRec): Bayesian Personalized Ranking with470

negative sampling during training471

• CE models (CORE): Cross-entropy loss without negative sampling during training472

Models trained with BPR loss (BERT4Rec, GRU4Rec, SASRec) rely on dynamic negative sampling473

and optimize the ranking of positive over negative interactions. In contrast, CORE optimizes a474

classification objective using cross-entropy loss computed over the full softmax distribution.475

Execution Details. All experiments were conducted using a high-performance compute cluster476

equipped with 4 NVIDIA A100 GPUs (80GB VRAM each). We employed PyTorch’s automatic477

mixed precision (AMP) to accelerate training and reduce memory usage. Training time per epoch478

varied with architectural complexity: GRU4Rec, being lightweight, completed one epoch in approxi-479

mately 0.75 hours, while BERT4Rec, with its attention-heavy encoder and MLM objective, required480

around 1.25 hours per epoch. Multi-GPU training was implemented using the NCCL backend for481

synchronized distributed training. All hyperparameters and implementation choices were fixed across482

all splits to ensure experimental consistency and comparability.483

E.2 Task 2 and 3 Experiments484

Table 9: Hyperparameters used for different models.

Hyperparameter LLAMA-3.1-8B QWEN3-8B GEMMA2-9B

Batch Size 512 512 256
Temperature 0.7 0.7 0.7
Top-P 0.95 0.8 0.8
Top-K -1 20 -1
Max-Tokens (Task 2) 220 220 220
Max-Tokens (Task 3) 350 350 350

LLM Inference Setup. We adopt a consistent inference pipeline for both Task 2 (LLM-based485

Next Product Recommendation via Query Reformulation) and Task 3 (LLM-based Long-Horizon486

User Modeling), as described in Section 5 and illustrated in Figure 2. All models are prompted in a487

zero-shot setting, without any fine-tuning or retrieval augmentation, to evaluate their general-purpose488

reasoning capabilities over long user histories.489

We utilize three state-of-the-art, instruction-tuned open-source LLMs: LLAMA-3.1-8B [21],490

QWEN3-8B [22], and GEMMA2-9B [23]. These models were selected for their strong instruction-491

following capabilities and competitive performance on public benchmarks.492

Table 9 summarizes the decoding hyperparameters used. The temperature was fixed at 0.7 across493

all models to balance determinism and diversity in outputs. We set Top-P and Top-K sampling494

parameters based on model-specific best practices to control generation randomness. The maximum495

token limits were adjusted per task: 220 tokens for Task 2 (shorter search queries), and 350 tokens496

for Task 3 (longer next-item descriptions). Batch sizes were selected based on each model’s memory497

footprint and throughput on A100 GPUs, with the larger GEMMA2-9B model using a smaller batch498

size.499
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Execution Details. All inference was run using the vLLM engine on a compute cluster with500

4× NVIDIA A100 40GB GPUs. The full test set consists of 1 million users, with each user pro-501

cessed independently in batched decoding mode. End-to-end inference across all models required502

approximately 5 days due to the volume of input prompts and the autoregressive nature of generation.503

To support reproducibility and accessibility, we will release all evaluation code, prompt templates,504

and precomputed predictions on smaller held-out test splits post-acceptance. These subsets will505

enable low-resource experimentation on the same evaluation protocol without requiring access to506

large-scale GPU compute.507

Generating Query and Item Embeddings using BLAIR. To encode the item catalog and pre-508

dicted queries, we leverage the BLAIR item encoder [11], a RoBERTa-based model pretrained on509

Amazon review titles. We use the hyp1231/blair-roberta-base checkpoint via the HuggingFace510

Transformers library 1, and tokenize each product title with a maximum sequence length of 512511

tokens. Embeddings are obtained by extracting the [CLS] token representation from the final hidden512

layer, followed by ℓ2 normalization to facilitate cosine similarity-based retrieval. To scale embedding513

computation across a large number of titles, we utilize the Accelerate library with mixed-precision514

inference (fp16) and distributed processing across multiple GPUs, achieving efficient batch-wise515

encoding with a batch size of 4096. We shard the workload across processes and later merge the516

outputs to form a single embedding matrix for the catalog and prediction sets.517

Retrieval and Indexing using FAISS. For approximate nearest neighbor (ANN) search, we employ518

the FAISS library [24], which implements the Hierarchical Navigable Small World (HNSW) graph-519

based indexing algorithm. We build a HNSW index on the catalog embeddings using cosine similarity520

as the distance metric. The key hyperparameters used during index construction include: M=64, which521

controls the number of bi-directional links created for each new node and influences index accuracy522

and memory usage; and efConstruction=256, which sets the dynamic list size for the graph during523

construction and affects indexing time and final recall quality. At query time, we use efSearch=256524

to control the breadth of the search and balance between latency and retrieval performance. These525

values were selected based on a grid search over the validation set to optimize top-k recall, where526

k = 10, while ensuring sub-millisecond retrieval latency per query on a modern GPU setup.527

This setup enables scalable, low-latency nearest neighbor search over millions of product titles, while528

maintaining semantic alignment between predicted queries and candidate items.529

F LLM-Finetuning baselines530

Table 10: Comparison of Fine-tuned LLMs for Next-Item Prediction

Setting Recall@K (%) Precision@K (%)

FFT (LLaMA3) LoRA (LLaMA3) LoRA (Qwen3) FFT (LLaMA3) LoRA (LLaMA3) LoRA (Qwen3)

In-Domain Temporal Extrapolation (Task 1c)

K=10 1.45 1.65 1.38 0.98 1.29 0.90
K=50 1.67 1.82 1.60 0.97 1.28 0.90
K=100 2.02 2.09 1.93 0.97 1.28 0.89

Out-of-Domain Temporal Extrapolation (Task 1d)

K=10 1.24 0.71 1.18 0.82 0.42 0.77
K=50 1.41 0.84 1.37 0.81 0.42 0.77
K=100 1.71 1.07 1.67 0.80 0.42 0.76

We observe that fine-tuned models (LLaMA-3.1-8B with both FFT and LoRA, and Qwen3-8B with531

LoRA), which generate only the next single item per user, achieve comparable performance to our532

zero-shot retrieval baseline setup described in Table 5 that generates 10 queries. The zero-shot533

approach is thus both simpler in execution and more scalable, especially as item catalogs grow.534

Our findings highlight a key insight: standard instruction-tuning methods do not effectively exploit535

LLM capabilities in this long-tailed recommendation context. Unlike discriminative models that536

benefit from contrastive supervision and negative sampling (Task 1 results), LLM instruction-tuning537

tasks lack such structure. Future work should focus on novel training paradigms, such as contrastive538

1https://huggingface.co/hyp1231/blair-roberta-base
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losses with vocabularies explicitly aligned to item identifiers, which can help better exploit the539

representational and semantic power of LLMs in recommendation tasks.540

G Prompts541

G.1 Task 2: Query-Based Next-Item Recommendation.542

Task 2 evaluates an LLM’s ability to generate personalized search queries from a user’s Amazon543

product history. The prompt asks the model to produce 10 queries—ranging from directly relevant to544

tangential and intentionally unrelated—balancing relevance with serendipity. These queries act as545

soft proxies for next-item prediction, revealing how well the model generalizes user intent. The setup546

is zero-shot, requiring the model to function as a semantic encoder-decoder without fine-tuning or547

examples.548

PROMPT FOR TASK 2 - LLM-Based Next Item Recommendation:

You are an expert at turning a user’s Amazon product history into personalized search queries.

History: I1 <SEP> I2 <SEP> ..... <In>
This was the users Amazon product history.

Your task is to generate a set of 10 personalized search queries that reflect the user’s interests and
preferences.

Try to balance diversity and serendipity with relevancy to the user history. These queries will be
used to recommend the next product to the user.

Out of these 10 queries:
4 queries should be directly related to the user’s history;
3 queries should be tangentially related;
3 queries should be completely unrelated but interesting.

Process:
1. Think of a guideline explaining what intents or aspects you observed in the user history which

helped you formulate these queries. You don’t need to specify which is which.
2. Then, generate exactly 10 search queries balancing core interests with a bit of serendipity.

## Output Format
Provide the response only as a JSON object with one field: (do not generate anything else)

{
"queries": [
"query1",
"query2",
"...",
"query10"

]
}

549

G.2 Task 3550

Following is the prompt for Task 3: Long-Horizon User Modeling using Large Language Models551

(LLMs). This task is designed to evaluate a model’s ability to understand and extrapolate from a552

user’s product history over time. The prompt guides the LLM to generate forward-looking, autore-553

gressive item descriptions based on prior purchases, simulating realistic recommendation scenarios.554

Specifically, it instructs the model to infer underlying user preferences and behavioral patterns, and555

to generate coherent, temporally ordered predictions that balance relevance and serendipity. The556

prompt is framed in a zero-shot setting, encouraging the LLM to reason sequentially without access557

to explicit training examples.558
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PROMPT for Task 3 - LLM-Based Long-Horizon User Modeling:

You are an expert at predicting the next products a user may want based on their Amazon product
history.

History: I1 <SEP> I2 <SEP> ..... <In>
This was the user’s Amazon product history with exact product titles (NOT descriptions).

Your task is to generate descriptions for the next 10 items the user is most likely to be interested
in. Provide concise, onesentence descriptions that capture the essence of each potential item.
These will guide recommendation generation.

Try to model the sequences in the user history and provide a mix of relevant and serendipitous items
trying to capture the user’s interests, intents and changes in behavior. Use the first item
description to guide your next timestep’s item description generation in an autoregressive
manner.

Process:
1. Think of a guideline explaining the patterns or preferences you observed in the user history that

informed your item descriptions.
2. Provide exactly 10 next-item descriptions balancing relevance and serendipity generated one after

the other in temporal order.

## Output Format
Provide the response only as a JSON object with one field: (do not generate anything else)

{
"item_descriptions_timewise": [
"item_description_time_step1",
"item_description_time_step2",
"...",
"item_description_time_step10"

]
}

559
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