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Abstract

Robust machine learning depends on clean data, yet current image data cleaning1

benchmarks rely on synthetic noise or narrow human studies, limiting compar-2

ison and real-world relevance. We introduce CleanPatrick, the first large-scale3

benchmark for data cleaning in the image domain, built upon the publicly avail-4

able Fitzpatrick17k dermatology dataset. We collect 496,377 binary annotations5

from 933 medical crowd workers, identify off-topic samples (4%), near-duplicates6

(21%), and label errors (22%), and employ an aggregation model inspired by7

item-response theory followed by expert review to derive high-quality ground truth.8

CleanPatrick formalizes issue detection as a ranking task and adopts typical ranking9

metrics mirroring real audit workflows. Benchmarking classical anomaly detectors,10

perceptual hashing, SSIM, Confident Learning, NoiseRank, and SelfClean, we11

find that, on CleanPatrick, self-supervised representations excel at near-duplicate12

detection, classical methods achieve competitive off-topic detection under con-13

strained review budgets, and label-error detection remains an open challenge for14

fine-grained medical classification. By releasing both the dataset and the evalua-15

tion framework, CleanPatrick enables a systematic comparison of image-cleaning16

strategies and paves the way for more reliable data-centric artificial intelligence.17

Benchmark: github.com/Digital-Dermatology/CleanPatrick18

Data & Dataset Card: huggingface.co/datasets/Digital-Dermatology/CleanPatrick19

1 Introduction20

The quality of training data is a cornerstone of effective machine learning (ML), with recent trends21

increasingly emphasizing data-centric approaches to boost model performance [1, 2]. The quality22

of evaluation data is equally crucial, as contamination directly impacts how progress in the field23

is measured and the conclusions drawn from it [3, 4]. Currently, the evaluation of cleaning strategies,24

which could be used to resolve such issues, heavily relies on synthetic corruption of assumed to25

be clean datasets, e.g., by artificially introducing noise or mislabeling samples [3–5]. Although these26

controlled, synthetic setups offer repeatability, they often lack standardization since different studies27

adopt varied corruption protocols, making it challenging to compare results directly and benchmark28

progress across the literature. Furthermore, it is unclear how much a synthetic benchmark can mimic29

the nuances of real-world noise instead of solely favoring the authors’ methods.30

Several recent works have extended beyond synthetic methods to evaluate cleaning strategies on31

real-world contamination [3–6]. However, such evaluations tend to fall short in scope. Typically,32

these approaches repurpose annotations initially collected for other tasks (e.g., multi-annotator33

assignments), while others rely on limited-sample human evaluations. Consequently, despite these34

efforts, a research gap remains in establishing a robust, universally applicable benchmark for data35

cleaning in the image domain, and thus a clear understanding of how well these approaches perform36

outside of their original setting.37
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In contrast to the general image domain, comprehensive benchmarks exist for cleaning structured38

data. For example, Abdelaal et al. [7] introduced REIN, a benchmark framework for data cleaning in39

ML pipelines, while Li et al. [8] explored the impact of data cleaning on classification performance in40

their CleanML study. These initiatives have not only standardized evaluation methods but have also41

driven rapid progress by providing clear, comparable metrics [7, 8]. Similar endeavors in data-centric42

AI, exemplified by benchmarks such as DCBench [9] and DataPerf [10], highlight the potential of43

well-defined benchmarks in driving advancements across diverse ML tasks.44

Addressing these limitations for unstructured data, we introduce CleanPatrick, the first dedicated45

benchmark for data cleaning in the image domain featuring exhaustive annotation for three data46

quality issues. CleanPatrick originates from the Fitzpatrick17k dataset [11], a collection of 16,57747

dermatological disease images collected from online dermatology lexicons. By focusing on medical48

imaging, we create both a challenging and sustainable benchmark for data cleaning, including all49

peculiarities of the medical domain, such as fine-grained and long-tail distribution of labels, and50

importance of fine-grained details (e.g., textures). For this benchmark, the original images were51

repurposed and comprehensively annotated for data quality issues. Specifically, the dataset was52

reviewed by medical crowd workers who identified off-topic samples, near duplicates, and label errors,53

following terminology established by recent works in data-centric ML [4]. To achieve meaningful54

results for near duplicates, we selected pairs of samples based on a carefully engineered iterative55

procedure that requires at most as many annotations as the size of the dataset. Across the three issue56

types, we collected 496,377 annotations from 933 unique annotators. The resulting data-cleaning57

benchmark provides a realistic representation of contamination as it occurs in practice, especially58

when obtained through a semi-automatic procedure, moving beyond the constraints of synthetic59

evaluations.60

By standardizing the evaluation procedure with CleanPatrick, we aim to facilitate a fair and detailed61

comparison of different cleaning strategies. Our benchmark not only builds on the lessons learned62

from structured data cleaning but also addresses the unique challenges inherent to image data, where63

real-world contamination is often more nuanced and complex than what synthetic corruptions can64

capture. Ultimately, CleanPatrick lays the foundation for future innovations in curation approaches65

by providing a comprehensive resource that bridges the gap between traditional synthetic evaluations66

and the demands of real-world applications.67

When evaluating existing methods for detecting different types of data quality issues, we found68

that while near duplicates are relatively easy for human experts to detect, as reflected in the high69

inter-annotator agreement, they are challenging for existing methods, especially when they result70

from a part-whole relationship. Off-topic samples are difficult for current approaches to detect, but71

they are relatively easy for human experts to identify when given precise instructions. Label errors72

are both difficult for human experts to detect, as reflected by the lower inter-annotator agreement73

compared to the other issue types, and for current approaches, likely due to the challenging nature of74

the dataset. Overall, while current approaches already achieve promising results, there is still much75

room for improvement, especially in detecting context-dependent data quality issues, such as those76

present in uncurated medical imaging datasets.77

In summary, the main contributions are: 1) The release of the first data cleaning benchmark for images78

obtained from 496,377 annotations from medical crowd workers and verified by medical experts. 2)79

The outline of a standardized procedure for evaluating data cleaning methods. 3) The comparison80

of existing approaches for detecting diverse data quality issues and an analysis of their failure cases.81

2 Related work82

Traditionally, the evaluation of data cleaning methods in computer vision has been carried out by83

introducing synthetic corruptions into believed-to-be clean datasets. For instance, frameworks such84

as SelfClean [4] and Confident Learning [3, 5] simulate realistic noise, mislabeled samples, or other85

forms of data contamination using artificial perturbations. These evaluation strategies are beneficial86

since they can be programmatically generated for any dataset and produce many variations. However,87

they inherently rely on assumptions about the nature of contamination that may not fully capture the88

complexity of real-world data errors.89

In the domain of dermatology, several studies have reported challenges arising from real contamination90

in clinical image datasets. Analyses of widely used dermatological image datasets have uncovered91
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Figure 1: Process of acquiring and curating the CleanPatrick benchmark. We started by collecting
annotations from medical crowd workers for three types of data quality issues. This was followed by a
probabilistic estimation of sample quality and annotator expertise, used to aggregate the collected an-
notations. Finally, a group of medical domain experts judged the quality of a subsample of the dataset.

significant issues such as data leakage across training and testing splits, the presence of near-duplicate92

images, off-topic samples, and non-standardized or erroneous diagnosis annotations [12, 13]. These93

studies, though valuable, often rely on limited-scale human evaluation or the indirect reuse of94

annotations, and instead aim to release new and improved versions of established benchmarks95

rather than evaluating the methods used during the procedure. Illustrating the problem of using the96

annotations of these studies, since they rely on existing tools or heuristics to speed up data cleaning,97

which in turn makes a true, unbiased evaluation virtually impossible. In this paper, we instead do not98

use any tools or methods for performing the data selection but only rely on exhaustive annotation and99

a large pool of medical crowd workers to obtain unbiased annotations.100

While the image domain has lagged behind in standardized evaluation procedures, the field of101

structured data cleaning has seen considerable progress in recent years. Benchmarks such as REIN102

by Abdelaal et al. [7] and CleanML by Li et al. [8] offer comprehensive frameworks and quantitative103

metrics for comparing cleaning methods. Similarly, tools integrated within data-centric AI platforms,104

such as DCBench [9] and DataPerf [10], provide a systematic evaluation environment that has spurred105

rapid advancements in data quality for structured data. These benchmarks have not only provided a106

level playing field for method comparison but have also driven progress by clearly highlighting the107

impact of data quality on downstream model performance. However, extending these insights to the108

unstructured image domain remains challenging due to the inherently different nature of visual data109

and the difficulty of designing detailed instructions for annotation tasks.110

For label error detection, the AQuA benchmark [14] injects seven synthetic noise patterns (uniform,111

asymmetric, class-dependent, instance-dependent, dissenting label, dissenting worker, and crowd112

majority) across 14 vision, text, and tabular datasets, creating a fully controlled testbed for cleaning113

algorithms. Human re-annotation efforts include CIFAR-10H [15], which provides 511,400 crowd114

labels for the CIFAR-10 test set, yielding a soft ground-truth distribution widely used to evaluate label115

quality. For near-duplicate detection, Morra and Lamberti [16] released an unsupervised benchmark116

with verified duplicate pairs that cover common web transformations. To evaluate off-topic or out-of-117

distribution images, robustness benchmarks such as ImageNet-O, featuring 2,000 categories absent118

from ImageNet-1k, measure false-positive rates when irrelevant classes appear at test time [17].119

While these specialized resources have driven progress for their error types, they assess methods in120

isolation and often on general-domain imagery. Furthermore, none of the existing benchmarks obtain121

labels directly for data quality issues. Obtaining labels by re-labeling instead of asking annotators122

to find quality issues leads to very different outcomes. Instead the outlined benchmark corresponds123

to human assessment of the issues themselves. CleanPatrick advances the field by providing expert-124

verified annotations for all three major data-quality problems (label errors, near duplicates, and125

off-topic images) within a single, clinically realistic dataset, enabling holistic evaluation and direct126

cross-method comparison.127
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3 The CleanPatrick benchmark128

This section details how we transform the Fitzpatrick17k collection into CleanPatrick, a rigorously129

annotated benchmark for data cleaning research. We proceed as follows: Section 3.1 revisits the130

provenance and characteristics of Fitzpatrick17k, Section 3.2 describes the large-scale annotation131

campaign with medical crowd-workers, Section 3.3 explains how we aggregate the (noisy) votes132

with item-response theory, Section 3.4 reports the independent quality-control performed by medical133

domain experts, and finally, Section 3.5 formalizes the three tasks and their evaluation metrics.134

3.1 Fitzpatrick17k135

Fitzpatrick17k is a public collection of 16,577 clinical photographs covering 114 distinct skin disease136

diagnoses and labeled with Fitzpatrick skin types (I–VI) [11]. Images were obtained from two137

open-access dermatology atlases, DermNet (12,672 images) and Atlas Dermatológico (3,905 images),138

and are released under a CC BY-NC-SA 3.0 license. Compared to other dermatology datasets, it139

is relatively large, more diverse in both disease spectrum and skin tone distribution, and can be140

considered weakly supervised, as labels were extracted from atlas captions rather than obtained from141

structured clinical metadata. The original taxonomy groups diseases into 114 classes, although the142

dataset features two additional, coarser-grained levels that were obtained during post-processing. For143

CleanPatrick, we retain the finest granularity to preserve compatibility with prior work while keeping144

the data as close as possible to the originally obtained collection. The dataset has been subject to145

thorough analysis [18, 4, 13, 19], in which previous studies estimated between 16%–30% problematic146

images. This real-world noise and challenges of a medical dermatological dataset (i.e., diverse skin147

tones and unbalanced classes) motivated our decision to start with Fitzpatrick17k.148

3.2 Annotation process149

We decomposed the annotation process of the data-quality issues into three independent tasks150

according to their type, i.e., off-topic samples, near duplicates, and label errors, and deployed each as151

a separate labeling task on Centaur Labs1, a platform that screens contributors for medical knowledge152

and thus has access to a large collective of medical crowd workers. Precise instructions, including153

examples, were formulated in collaboration with dermatologists and annotation specialists from154

Centaur Labs (see Appendix E). Additionally, we collected a few hundred gold standard samples for155

each labeling task and used them to obtain immediate feedback on the accuracy of the collection,156

educate annotators, and filter inattentive or adversarial raters. These gold standards were obtained157

from unanimous agreement of domain experts for off-topic samples and near duplicates, and from158

three board-certified dermatologists for label errors.159

The following paragraphs summarize the labeling task description for each issue type, as provided to160

both crowd workers and expert annotators. Their exact formulations, including screenshots of the161

labeling platform, can be found in Appendix E.162

Off-topic samples. The task of the annotators was to determine if a picture was included in a dataset163

of human skin lesions by mistake and is, therefore, off-topic in the dataset’s context. For each sample,164

we asked the annotators should this picture be included in a dataset of skin condition images? where165

they were expected to answer with yes if the image correctly showed a skin condition and no if the166

image did not meet the criteria for inclusion in the dataset. Reasons to not include the image in the167

dataset were, for example, that the image is from a different modality (e.g., an X-ray or a PowerPoint168

slide with mostly text) or that the image did not focus on a skin condition (e.g., it shows a fully169

clothed patient without any visible skin disease). Pictures should be included if they are photos of170

human skin diseases. In the instruction, we additionally showed examples of typical images from171

other skin condition datasets and some examples of images that were likely included by mistake.172

Near duplicates. The task of the annotators was to determine if two pictures, shown side by side,173

were near duplicates. We thus asked the annotators are these images near-duplicates? and asked them174

to answer no if the images were not related and yes if these images are transformations of one another175

(e.g., rotations, flips, image edits), or nearly identical because they were taken within seconds of each176

other, or some other reason which created a relationship among the samples. In the instruction, we177

additionally showed examples of both near duplicates and non-duplicate pairs.178

1https://www.centaurlabs.com/, accessed on 9th of May 2025.
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To avoid the prohibitive O(N2) effort of exhaustively judging all
(
N
2

)
image pairs in a dataset with N179

samples, we introduce a fast-duplicates procedure (see Appendix G) which speeds up the annotation180

process by relying on batch-wise annotation. Specifically, each image xi is embedded with an encoder181

that was pre-trained on ImageNet with self-supervision (i.e., DINO [20]). Its nearest neighbor n(xi)182

is then retrieved, and only the at most N unordered pairs {xi, n(xi)} are sent to annotation by183

crowd workers. This process is then repeated after the annotation is finished for the current batch of184

positively annotated (i.e., near duplicate) samples. Under the fast-cleaning assumption that every185

near duplicate of xi is closer to xi than any non-duplicate, this strategy discovers all duplicate cliques186

in at most ⌊log2 K⌋+ 1 rounds, with K being the size of the largest clique, while requiring no more187

than 2N pairwise judgements in total (see Lemma 1). In the case at hand, the procedure stopped188

after nine batches with duplicates and one with all negative responses, and the batch size dropped189

exponentially as expected (see Figure 7 in the Appendix).190

Label errors. The task of the annotators was to determine if a picture was wrongly annotated. We191

thus showed a single picture along with its originally assigned diagnosis and asked the annotators, is192

the label of this picture clearly wrong?. The annotators were expected to answer yes if the diagnosis193

was clearly wrong for the given image and no if the diagnosis was not a clear label error. In the194

instruction, we additionally showed examples of clearly incorrect and correctly annotated samples.195

We explicitly mentioned that if the diagnosis for a skin lesion is likely incorrect but could be correct196

under special circumstances, the annotation is not clearly wrong and should not be considered as197

a label error, as the goal was to find errors rather than unlikely or ambiguous cases. Furthermore,198

since some of the diagnoses can be rare or difficult to assess, we recommended the experts to consult199

dermatological online atlases, such as DermWeb, if they were unsure about the condition.200

With this procedure, we collected in total 496,377 binary votes from 933 medical crowd workers, with201

some annotating as many as 15,630 samples and some as few as 1. For each sample, we collected an202

average of 10 votes, with some samples having as many as 225 and others only 1. The raw annotation203

data, i.e., the vote of each unique annotator, can be found in the released dataset. Appendix F contains204

a detailed analysis of the annotations.205

3.3 Label aggregation206

To best leverage the wealth of annotations from medical crowd workers, we need to consider that207

annotators differ widely in skill and commitment. Some will be novices in dermatology, whereas208

others are experts, and since we have limited influence on recruitment, we should consider adversaries,209

i.e., annotators intentionally not solving the task. Thus, we utilize ideas from item response theory210

(IRT), where one can model the skill of an annotator and the difficulty of a sample, instead of211

assuming that all annotators and samples are equal, as typically done with majority voting. The212

following section describes the IRT model employed to probabilistically estimate the difficulty of a213

sample and the ability of an annotator, which are then used to obtain the final labels.214

Let Y = {(a, i, ya,i)} be the set of Y noisy binary annotations collected from the medical crowd-215

workers through the process outlined above, where each tuple records who (annotator a of total216

A) labeled what (item i of total I) and the observed binary response ya,i ∈ {0, 1}. Because most217

annotators label only a fraction of the items, the resulting observation matrix is sparse.218

We adapt the Generative Model of Labels, Abilities, and Difficulties (GLAD) [21] to our setting.219

GLAD assumes that the probability of a correct annotation depends multiplicatively on annotator220

ability and item difficulty:221

Pr(ya,i = 1 | ca, bi) = σ(cabi), σ(x) =
1

1 + e−x
,

where ca is the expertise or ability of annotator a and bi ∈ R captures the difficulty of item i. The222

generative process is modeled by223

ya,i | ca, bi ∼ Bernoulli (σ(cabi)) .

We make two key modifications to the original formulation. First, we drop the exponential parametriza-224

tion of bi such that bi ∈ R, allowing positive and negative values to encode the positive and negative225

latent classes, respectively. This unifies “difficulty” and “class orientation” in a single parameter,226

where small |bi| means difficult, and the sign of bi reveals the latent class. Second, we choose the priors227

ca ∼ N (0, 1), bi ∼ N (0, σ2
b ),
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with σb = 103 giving a vague prior for difficulty, and the starting abilities centered around zero.228

Compared to the original ca ∼ N (1, 1), this choice reflects a more pessimistic prior due to low anno-229

tator control, since zero corresponds to chance-level performance, positive values indicate expertise,230

and negative values a performance below chance that possibly indicates adversarial behavior.231

Variational inference. Since exact posterior inference is intractable, we use stochastic variational232

inference (SVI) as implemented in PYRO [22]. The mean-field variational family factorises over233

latent variables:234

q(c1, . . . , cA, b1, . . . , bI) =

A∏
a=1

N
(
ca | µca , σ

2
ca

) I∏
i=1

N
(
bi | µbi , σ

2
bi

)
.

We optimize the evidence lower bound (ELBO) with Adam [23] (learning rate 0.1) for 10,000 steps,235

which is sufficient for convergence on all splits.236

Predictive aggregation via the bi distribution. Under the assumption that most annotators are not237

adversarial, the sign of bi encodes the most likely class of sample i. To estimate the probability of a238

data point to belong to the positive class, we draw M = 1,000 samples {b(m)
i }Mm=1 from each bi’s239

variational posterior and compute240

p̄i =
1

M

M∑
m=1

I[b(m)
i > 0].

The distribution of the p̄i for the different issue types is given in Figure 6 of the appendix. Our241

aggregation model is aware of uncertainties and estimates that 1.3% of near duplicates, 8.4% of label242

errors, and 1.3% of off-topic samples have a wrongly assigned label.243

3.4 Quality control244

To estimate the quality of annotations from medical crowd workers, we recruited three medical domain245

experts with more than five years of experience as practicing dermatologists, after they completed their246

medical examinations. Since a full new annotation was not possible due to resource limitations, we247

use a quantile-stratified random sampling scheme to ensure uniform coverage of the entire probability248

range p̄i. Specifically, we split the probabilities into 20 bins and randomly selected 20 samples from249

each bin, resulting in a total of 400 samples per data quality issue type. The medical experts followed250

the same protocol as outlined in section 3.2 and instructions as the medical crowd workers.251

We computed inter-annotator reliability for the three issue types in terms of Krippendorff’s α252

and Cohen’s κ. Krippendorff’s α, computed over all three raters, shows excellent agreement for253

near-duplicate annotations (α ≈ 0.91 ± 0.03). It falls to a lower agreement level for off-topic254

samples (α ≈ 0.60 with a wide 95% CI spanning 0.20–0.85, caused by the high imbalance between255

problematic and non-problematic samples) and drops further for label errors (α ≈ 0.42 ± 0.06).256

Consistent with Krippendorff’s α, Cohen’s κ values are near 0.90 for near duplicates regardless of257

the annotator pair, whereas they fluctuate much more for off-topic samples and exhibit very large258

confidence intervals for some annotator pairs. Agreement on label errors is the weakest, yet it still259

shows substantial agreement for such a challenging annotation task. In summary, the agreement260

not only shows that verification is consistent among the experts, based on standard categorization261

of agreement values [24], but also that the designed annotation protocol and description work as262

expected. This is not trivial for a task as complex as label error detection, which other studies have263

found to be substantially difficult [25, 26, 12]. Figure 8 in the appendix summarizes the results for264

the inter-annotator reliability.265

In order to estimate the quality of the crowd annotations, we aggregated the expert annotations using266

majority voting and compared them. Experts and crowd workers agree on 96% of the verified images267

for off-topic samples and near duplicates, and on 67% of label errors. This further demonstrates that268

a carefully designed protocol is helpful to achieve high-quality annotations at scale with the help of269

medical crowd workers, even for complex tasks.270

Additionally, we use expert annotations to estimate the threshold for obtaining the final labels for271

each data quality issue separately, rather than naively choosing a fixed value of 0.5. For this, we use272

the aggregated expert annotation and the bins we defined above, and check the distribution of labels273

for each one. We choose the threshold t at the bin where the distribution of positive labels starts to274
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increase and select the threshold as the average probability of that bin. The final label is then obtained275

using this estimated threshold, which is different for each issue type:276

ŷi = I[p̄i ≥ t].

3.5 Evaluation tasks277

We cast the detection of data-quality issues as a ranking problem. Rather than producing a binary278

keep/discard decision, each method must assign a real–valued score that reflects how strongly an279

example (or example pair) is suspected to be a data quality issue. Prior work has shown that280

practitioners subsequently inspect items in descending score order, making ranking the most faithful281

abstraction of real-world use [4, 12].282

Tasks. The benchmark comprises three evaluation tasks, one for each data-quality issue type:283

1. Off–topic sample detection.284

Input: a single image xi.285

Output: an anomaly score s(xi) ∈ R≥0, where larger scores indicate a higher likelihood that the286

image does not depict a skin condition.287

Positive criterion: the image is off–topic as identified by the medical crowd workers.288

2. Near-duplicate detection.289

Input: an unordered image pair (xi, xj).290

Output: a similarity score s(xi, xj) ∈ R≥0 reflecting the confidence that the pair is a near291

duplicate.292

Positive criterion: the pair belongs to the same near-duplicate component identified. Note that we293

only compare the annotated samples, i.e., we do not treat the unannotated pairs as negative to have294

a more reflective performance estimation of the methods.295

3. Label-error detection.296

Input: an image xi together with its original diagnosis yi.297

Output: a confidence score s(xi) ∈ R≥0 that the assigned label yi is incorrect.298

Positive criterion: medical crowd workers judged the label to be “clearly wrong”.299

Metrics. Methods are evaluated using standard ranking metrics, such as P@k, R@k, area under300

the receiver operating characteristic curve (AUROC), and average precision (AP). AUROC and AP301

are the primary metrics, while P@k and R@k illustrate the practical trade-offs between effort and302

gain for review budgets of k ∈ {100, 500, 1000} images. Additionally, we report the proportion of303

positive samples p+, which corresponds to the baseline AP.304

4 Results305

4.1 Data quality issues306

Our extensive annotation process with medical crowd workers revealed numerous data quality issues307

in the Fitzpatrick17k dataset, as illustrated in Figure 2.308

Off-topic samples constitute 613 images (4%) of the full dataset. These problematic samples fall309

into two main categories: unrelated content, including non-dermatological images such as laboratory310

equipment, diagrams, and completely unrelated photographs, and low information content images311

that, while potentially skin-related, lack sufficient clarity or focus to be diagnostically meaningful.312

These include severely blurred images, extreme close-ups with minimal context, or images where the313

skin condition is barely visible.314

Near duplicates form a substantial portion of the dataset, with 3,556 instances (21%) out of the315

15,306 annotated samples. These appear primarily as: thumbnails, where identical images exist at316

different resolutions or with minor cropping differences, and multiple viewpoints of the same skin317

condition from slightly different angles or captured moments. This redundancy artificially inflates318

certain diagnostic categories and may introduce data leakage between the training and test splits.319

Label errors represent the most prevalent issue, affecting 3,666 images (22%) of the full dataset.320

These errors manifest as: mislabelings, where the assigned diagnostic label clearly contradicts the321
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Off-Topic Samples
Should this picture be included in a skin dataset?
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Label Errors
Is the label of this picture clearly wrong?

Rare Conditions
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Figure 2: Examples of data quality issues identified in the Fitzpatrick17k dataset.2Off-topic samples
include unrelated content (e.g., laboratory equipment, diagrams) and images with insufficient
diagnostic value. Near duplicates comprise identical images at different resolutions (thumbnails)
and multiple photographs of the same condition from different angles. Label errors show both
clear mislabelings and rare conditions that were incorrectly classified or assigned. These naturally
occurring issues form the foundation of the CleanPatrick benchmark, providing a realistic test
scenario for evaluating data cleaning algorithms across varying levels of detection difficulty.

visible condition, and rare conditions that were incorrectly classified, likely due to their uncommon322

presentation or similarity to more common conditions.323

The significant prevalence and diversity of these naturally occurring issues make the Fitzpatrick17k324

dataset an ideal foundation for a medical data cleaning benchmark. Unlike synthetic corruptions that325

artificially introduce noise following predetermined patterns, these issues represent authentic chal-326

lenges that data cleaning algorithms must address in real-world applications. The distribution of issue327

types (4% off-topic, 21% near duplicates, 22% label errors) provides a comprehensive test bed that328

spans the spectrum of common data quality problems. This natural distribution is particularly valuable329

for benchmarking, as it reflects one example of contamination encountered in practice rather than330

artificially balanced scenarios. Furthermore, having ground truth for these issue types enables precise331

evaluation of detection algorithms across varying difficulty levels, from the relatively straightforward332

identification of off-topic samples to the more nuanced task of detecting label errors in specialized333

medical imagery. This comprehensive characterization of data quality issues establishes CleanPatrick334

as a robust, realistic benchmark for advancing data cleaning methodologies in the image domain.335

4.2 Benchmark results336

Figure 3 and Table 2 present the main performance metrics for each method and issue type, including337

AUROC, AP, and precision/recall at review budgets k = {100, 500, 1000}. Below, we describe these338

results and discuss their implications for real-world data-cleaning workflows.339

Off-topic sample detection. Classical anomaly detectors, such as IForest, HBOS, and ECOD,340

achieve similar overall rankings (AUROC: 0.76–0.77, AP: 0.15–0.16). In contrast, SelfClean, a341

dedicated data cleaning strategy, attains an AUROC of 0.67 and AP of 0.15 but exhibits higher342

precision for the top 100 candidates (P@100 = 0.52) compared to the other methods. This indicates343

that while SelfClean’s global scores are less calibrated, its highest-confidence predictions are more344

reliable under limited review budgets compared to classical anomaly detectors.345

Near-duplicate detection. Perceptual hashing and SSIM perform near chance (AUROC ≈ 0.50,346

AP marginally above 0.31), reflecting their difficulty in capturing the subtle duplicates present in347

CleanPatrick. SelfClean, by leveraging self-supervised embeddings, achieves an AUROC of 0.92 and348

2Note that the categorization is solely used for visualization and not part of the released benchmark.
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Figure 3: Performance of different data cleaning approaches (represented in colors) for the three
quality issues investigated for different ranking metrics (P@100, P@1000, AUROC, and AP).
Methods are separated into data quality issue-specific ones and holistic methods able to detect multiple
issues. The dotted lines refer to the uninformed baseline, which randomly shuffles the ranking.

an AP of 0.88, with P@100–P@1000 = 1.00. This gain highlights the effectiveness of representation349

learning in duplicate detection, consistent with previous findings [27, 4].350

Label error detection. Detecting misannotations in medical images remains challenging: NoiseRank351

and Confident Learning both hover around random performance (AUROC: 0.48, AP: 0.21, matching352

the base rate of 0.22). SelfClean offers a modest improvement (AUROC: 0.57, AP: 0.27) but fails to353

detect any true label errors in the top predictions. This suggests that label errors might require richer,354

context-aware signals than those available through current cleaning methods.355

The difference between global ranking metrics and top-k precision highlights a critical trade-off in356

data-cleaning methods, namely that methods optimized for AUROC or AP may not prioritize the most357

egregious errors when annotation budgets are constrained. SelfClean’s holistic, representation-based358

approach excels at surfacing high-confidence anomalies, particularly duplicates, making it well-suited359

for audits with budget constraints. However, its limitations in label-error detection imply that hybrid360

pipelines, which combine specialized, domain-aware detectors with self-supervised models, may361

yield better overall coverage. The persistent challenge of label noise, however, invites future research362

into integrating metadata, human-in-the-loop feedback, or multi-stage detection strategies.363

5 Conclusion364

In this work, we introduced CleanPatrick, the first benchmark for data cleaning in the image domain.365

Building on the publicly available Fitzpatrick17k dataset for skin disease classification, we collected366

nearly 496,377 annotations from 933 medical crowd workers, which were further validated through367

expert review. This process helped identify data-quality issues of three types: off-topic samples, near368

duplicates, and label errors. We formalized each detection task as a ranking problem with standardized369

evaluation metrics (AUROC, AP, P@k, R@k) and provided clear protocols for annotation, aggregation370

via a model inspired by item-response theory, and expert-driven threshold selection. In extensive371

experiments, we found that, on this benchmark, near-duplicate detection benefits greatly from self-372

supervised representations, off-topic detection is addressed well by classical anomaly detectors,373

achieving higher top-k precision under limited review budgets, and label-error detection remains an374

open challenge, with current methods performing near chance. By releasing both the CleanPatrick375

dataset and an accompanying evaluation framework, we provide a realistic testbed that moves beyond376

synthetic corruptions and captures the nuanced, real-world contamination patterns encountered in377

medical imaging. Future work will include releasing a revised version of Fitzpatrick17k itself.378
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A Limitations470

Our benchmark acknowledges three limitations: (1) By presenting annotators with only each image’s nearest471

neighbor rather than exhaustive, global pairwise comparisons, the assumption that all near-duplicates lie closer472

in embedding space than any non-duplicate may lead to incomplete discovery of near-duplicate groups. (2)473

Calibrating ground-truth thresholds using annotations from only three board-certified dermatologists may not474

fully capture the spectrum of clinical judgment and could introduce biases or idiosyncrasies into our final475

labels, highlighting a possible future research direction. And (3) as the introduced benchmark builds on a476

medical imaging data collection, it is challenging and less likely to be saturated quickly. However, data-cleaning477

strategies performing well on CleanPatrick need to bring special traits needed for medical imaging, such as the478

importance of fine-grained details or long-tailed labels. These traits are likely more challenging to obtain and479

require sophisticated methodologies.480

B Resources481

Experiments were performed on an NVIDIA DGX equipped with eight V100 GPUs (32 GB each), 512 GB of sys-482

tem memory, and 40 CPU cores, for a total of 50 GPU hours, corresponding to roughly 5.5 kg of CO2 emissions.483

In addition to computing resources, the authors financially compensated Centaur Labs to recruit and manage the484

medical crowd workers who provided 496,377 binary annotations across the off-topic, near-duplicate, and label-485

error detection tasks. This fee covered platform access, the creation and evaluation of gold-standard samples,486

ongoing quality-control procedures, and participant compensation via the DiagnosUs app’s contest-based prize487

structure.488

C Integration of novel methods489

The ReadMe of the GitHub repository3 details how novel methods can be integrated into the existing benchmark.490

The integration requires following a minimal integration of the existing data cleaning interface, which features491

methods for detecting the respective quality issues. We encourage people to create pull requests with novel492

methods to ensure a fair and transparent benchmark.493

D Evaluated approaches494

We evaluated different approaches to detect each of the three data quality issue categories, i.e., off-topic495

samples, near duplicates, and label errors. Some of these methods require encoding images in a low-dimensional496

latent space. For this projection, we used a vision transformer tiny pre-trained with supervision on ImageNet497

throughout the paper. In this section, we briefly summarize each evaluated approach, referring, however, to the498

original paper for more details. All hyperparameters for the evaluated approaches were kept to the default value.499

D.1 Approaches for off-topic samples500

Isolation Forest (IForest) isolates observations by randomly selecting a feature and splitting the value between501

the minimum and maximum of the selected feature. The number of splits required to isolate a sample corresponds502

to the path length from the root node to the leaf node in a tree [28]. This path length, averaged over a forest of503

random trees, is a measure of normality, where noticeably shorter paths are produced for anomalies.504

Histogram-based outlier detection (HBOS) is an efficient unsupervised method that creates a histogram of505

the feature vector for each dimension and then calculates a score based on how likely a particular data point is506

to fall within the histogram bins for each dimension [29]. The higher the score, the more likely the data point507

is an outlier, i.e., a feature vector coming from an anomaly will occupy unlikely bins in one or several of its508

dimensions and thus produce a higher anomaly score.509

Empirical Cumulative Distribution Functions (ECOD) is a parameter-free, highly-interpretable unsupervised510

outlier detection algorithm [30]. It estimates an empirical cumulative distribution function (ECDF) for each511

variable in the data separately. To generate an outlier score for an observation, it computes the tail probability for512

each variable using the univariate ECDFs and multiplies them together. This calculation is done in log space,513

accounting for each dimension’s left and right tails.514

3github.com/Digital-Dermatology/CleanPatrick, accessed on 9th of May 2025.
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Off-Topic Samples

Your task is to determine if a picture was included in a dataset of human skin lesions by mistake and is, therefore, off-topic for the dataset 
context. 
 

Reasons to not include the image in the dataset could be, for example, that the image is from a different modality (e.g., an X-ray or a PowerPoint 
slide with mostly text) or that the image does not focus on a skin condition (e.g., it shows a fully clothed patient without any visible skin 
disease). Pictures should be included if they are photos of a human skin disease.  


We will ask you: Should this picture be included in a dataset of skin condition images�
� Please answer Yes if the image correctly shows a skin condition.�
� Please answer No if the image does not meet the criteria for inclusion in the dataset.

Near Duplicates

We will show you two images side-by-side and ask you the following: Are these images near-duplicates�
� Please answer No if these images are obviously not duplicates.�
� Please answer Yes if these images are transformations of one another (e.g. rotations, flips, photoshop editing) or two images that are nearly 

identical because they were taken within seconds of each other, or some other reason.

Label Errors

Your task is to find images that have been given a label that is clearly wrong. This will help us to clean up mistakes in many datasets 
automatically and make AI more reliable.



We will show you a single image along with a corresponding diagnosis and ask you: Is the label of this picture clearly wrong�
� Please answer Yes if the diagnosis is clearly wrong for the given image�
� Please answer No if the diagnosis is not a clear label error.



Remember only answer Yes if the example is CLEARLY wrong. 
You should mark No in the following situations:�

� If the label is likely incorrect, but under special circumstances, it could be correc�
� Unlikely or ambiguous cases



Some of the diagnoses can be rare or difficult to assess. Feel free to consult dermatological resources such as:  
http://www.dermweb.com/photo_atlas/

Figure 4: Left shows a screenshot of the labeling interface shown to the medical crowd workers.
Right shows the instructions given to the annotators for the respective labeling tasks for the data
quality issues. Along with each set of instructions, the annotators were given some example images
of both the positive and negative responses.

D.2 Approaches for near duplicates515

Perceptual Hash (pHashing) is a type of locality-sensitive hash, which is similar if features of the sample are516

similar [31]. It relies on the discrete cosine transform (DCT) for dimensionality reduction and produces hash517

bits depending on whether each DCT value is above or below the average value. In this paper, we use pHash518

with a hash size of 8.519

Structural Similarity Index Measure (SSIM) is a type of similarity measure to compare two images with each520

other based on three features, namely luminance, contrast, and structure [32]. Instead of applying SSIM globally,521

i.e., all over the image at once, one usually applies the metrics regionally, i.e., in small sections of the image, and522

takes the mean overall. This variant of SSIM is often called “Mean Structural Similarity Index”. In this paper,523

we apply SSIM locally to 8x8 windows but still refer to the method as SSIM for simplicity.524

D.3 Approaches for label errors525

Confident Learning (CLearning) is a data-centric approach that focuses on label quality by characterizing and526

identifying label errors in datasets based on the principles of pruning noisy data, counting with probabilistic527

thresholds to estimate noise, and ranking examples to train with confidence [5]. It builds upon the assumption of528

a class-conditional noise process to directly estimate the joint distribution between noisy (given) and uncorrupted529

(unknown) labels, resulting in a generalized learning process that is provably consistent and experimentally530

performant. In this study, we use AdaBoost [33] as a classifier on top of pre-trained representations to estimate531

probabilities. We did not observe any significant performance difference when using different classifiers similarly532

to Northcutt et al. [5].533

NoiseRank (Noise) is a method for unsupervised label noise detection using Markov Random Fields [6]. It534

constructs a dependence model to estimate the posterior probability of an instance being incorrectly labeled,535

given the dataset, and then ranks instances based on this probability.536

D.4 Approaches for multiple issue types537

SelfClean leverages context-aware self-supervised embeddings learned on the contaminated dataset and employs538

simple distance-based indicators in that latent space, i.e., clustering for off-topic detection, nearest-neighbor539

distances for near-duplicates, and class-wise distance comparisons for label errors, to rank and score samples for540

inspection [4]. The methodology is intended to be used with a human in the loop, where top-ranked issues are541

validated. However, it can also be used fully automatically by thresholding based on estimated contamination.542
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Figure 5: Histograms showing the number of annotations from medical crowd workers per image
sample for each data quality issue.

E Details to Annotation Platform543

Figure 4 shows a screenshot of the annotation platform of Centaur Labs, specifically of the DiagnosUs app4,544

used for obtaining annotations. Additionally, it also shows the instructions given to the medical crowd workers545

and expert annotators.546

DiagnosUs is a free app where annotators voluntarily opt in to contests, where medical image annotations are547

completed by labelers competing in these challenges. Labelers’ submissions are scored based on their accuracy548

against a set of gold standard cases. Labelers who achieve high accuracy and are placed on the leaderboard549

are compensated with monetary prizes. Prize amounts vary depending on the contest structure, ranging from550

approximately $0.50 to $20 per prize.551

F Detailed analysis of data quality issues552

Annotation counts. Figure 5 illustrates the distribution of annotation counts per sample across the three553

issue types: off-topic samples, near duplicates, and label errors. On average, each image received 10 medical554

crowd worker votes, with extremes ranging from a single annotation to as many as 225. The vast majority of555

samples fall between 5 and 20 annotations.556

Notably, only one sample ended up with a single annotation. This occurred because a medical crowd worker557

mistakenly flagged the image early in the process, causing it to be excluded from subsequent annotation558

rounds. To ensure no gap in quality, the authors manually reviewed this outlier in full and confirmed its correct559

classification in the final benchmark.560

Near-duplicate components. Beyond per-sample vote counts, we also examined how near-duplicate561

samples group into connected components under our fast-duplicate detection procedure. We discovered 2,389562

separate components of size ≥ 2. Their size distribution is shown in Table 1. This distribution shows that small563

components (pairs and triplets) dominate the duplicate structure, while only a handful of larger clusters (size564

≥ 10) exist.565

Table 1: Counts of near-duplicate components by size
Component Size Number of Components

2 1997
3 169
4 151
5 19
6 26
7 8
8 9

10 4
11 2
12 2
25 1
30 1

4https://www.diagnosus.com/, accessed on 9th of May 2025.
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Figure 6: Distribution of per-sample annotation uncertainty, measured as min
(
p̄i, 1− p̄i

)
, for the

three issue types: off-topic samples (left), near duplicates (center), and label errors (right). Here, p̄i is
the estimated probability that sample i belongs to the positive class under the GLAD model. Vertical
dashed lines indicate the expert-calibrated thresholds tOT = 0.76, tND = 0.70, and tLE = 0.77 used
to produce the final labels.

G Fast near duplicates566

Near duplicates. Let D = {1, 2, . . . , |D|} be a dataset with samples labeled by consecutive integers. A sample567

pair {i, j} corresponds to an edge in a graph with vertices D. Verifying all near-duplicate pairs in D is equivalent568

to annotating each edge in the complete graph, and yields the subgraph D∼ induced by the binary near-duplicate569

relation ∼.570

Automatic cleaning. Consider a function d : D ×D → R that associates a unique weight d(i, j) to each edge,571

d(i, j) ̸= d(k, l) for any i, j, k, l ∈ D. To keep the language and notation intuitive, we assume d is a distance572

as is the case in this work, but one can still obtain a similar procedure mutatis mutandis if this is not the case.573

Near-duplicate detection could be easily performed exactly if the following property were to hold.574

Assumption 1 (Automatic Cleaning) All near-duplicate pairs have a distance which is less than any non-near-575

duplicate pair, i.e.576

∀i, j, k, l ∈ D | i ∼ j ∧ k ̸∼ l, d(i, j) < d(k, l). (1)

In this case, there is a threshold d∗ such that all near-duplicate pairs have a smaller distance, and any pair with577

larger distance is not a near duplicate. In practice, such a perfect ranking is very difficult to find, and one has to578

resort to hybrid methods which require human verification. This generates the burden of annotating all sample579

pairs, which grow quadratically with the dataset size.580

Fast cleaning. To determine which samples are potentially related to each other, it is sufficient to partition the581

samples according to which subgraph they belong to, without necessarily knowing every pairwise relation. For582

this task, the poor scaling of manual verification can be significantly alleviated with the help of a function that583

satisfies the following, weaker condition.584

Assumption 2 (Fast cleaning) Near duplicates of a sample are closer to it than other samples, i.e.585

∀i, j, k ∈ D | i ∼ j ∧ i ̸∼ k, d(i, j) < d(i, k). (2)

As a heuristic side note, we observe that this assumption is substantially more local than assumption 1, as it only586

requires the distance to correctly sort near duplicates in the neighborhood of the specific sample i.587

To exploit the fast cleaning assumption, one may proceed analogously to Borůvka’s algorithm for minimal588

spanning trees [34]. For every sample i ∈ D, find its nearest neighbor n(i) ∈ D\{i} to build the set of neighbor589

pairs N = {i, n(i)}i∈D . Checking all of them takes |N | annotations and gives the set of near duplicates P . By590

virtue of assumption 2, all samples which do not appear in P have no near duplicates. The pairs in P , instead,591

are edges that belong to the subgraph D∼. The connected components of P partition its vertices in a set of592

clusters D1. Because of assumption 2, two such subsets belong to the same connected component of D∼ if593

and only if their two elements with the smallest distance are near duplicates. Therefore, it is now sufficient594

to annotate the nearest-neighbor pairs N1 within D1 and iterate the procedure. This is guaranteed to exactly595

identify the connected components of D∼ once no more near duplicates are found.596

Cleaning complexity.597

When d is symmetric and there are no ties, the number of connected components in the subgraph of nearest598

neighbors N is exactly equal to |D| − |N |, i.e., the number of duplicated nearest-neighbor edges. Indeed, each599

sample appears in at least one edge, so it belongs to a component which connects it to its nearest neighbor, then600

to the nearest neighbor thereof, and so on. However, there can be no cycles in the nearest neighbor subgraph N ,601

else the first sample would have connected to the last instead of the second. Any such tree therefore terminates602

with two samples which are reciprocally the closest to each other. The number of undirected edges that appear603

twice in the list {i, n(i)}i∈D is therefore the number of connected components in N , and can be expressed as604

|D| − |N |.605
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After the i-th iteration, one can scan the verified near-duplicate clusters Di obtained in the last step (which have606

size larger than 2i), and find the set Ni of the closest sample pairs that belong to different clusters. The number607

of nearest neighbors pairs to verify is |Ni| and leaves |Di+1| ≤ |Di| − |Ni| new clusters that require another608

iteration. This terminates when the k-th iteration generates no new subsets, |Dk| = 0. Since the size of the609

new subgraphs Di is at least double at each iteration, one has k ≤ ⌊log2 K⌋ + 1 where K is the size of the610

largest subgraph and clearly K ≤ |D|. Manipulating inequalities to have the |Ni| terms on the left side, the total611

number of annotations clearly satisfies612

|N |+ |N1|+ |N2|+ · · ·+ |Nk−1| ≤ (|D| − |D1|) + (|D1| − |D2|) + · · ·+ |Dk−1| = |D|. (3)

We thus have the following guarantee:613

Lemma 1 Finding all near duplicate clusters under assumption 2 requires annotating at most |D| sample pairs614

in at most ⌊log2 K⌋+ 1 iterations.615

Comment on transitivity One may be tempted to think that near duplicates correspond to an equivalence616

relation as follows.617

Assumption 3 (Near-duplicate equivalence) The near-duplicate relation ∼ satisfies618

1. i ∼ i (reflexive)619

2. i ∼ j ⇒ j ∼ i (symmetric)620

3. i ∼ j ∧ j ∼ k ⇒ i ∼ k (transitive)621

for any i, j, k ∈ D.622

However, this is clearly not true in practice. A counterexample are the frames of a video that was captured623

without interruptions but features two very different situations at the beginning and at the end. While each two624

consecutive frames are near duplicates, it is a question if the first and the last frames taken alone should be625

considered near duplicates. For this reason, it is in general better to always consider merging clusters based on626

the two most similar samples, i.e., using single linkage.627
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H Detailed plots and results628
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Number of Annotations per Batch

Figure 7: Number of duplicates per batch of annotation. For each batch, we select the closest pairs
which has been positively identified as near duplicates in the batch before and start by taking the
closest pair for every sample in the dataset.
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Figure 8: Inter-annotator agreement as Krippendorff’s alpha among all expert annotators (left) and
Cohen’s kappa for all expert annotator pairs (right). Markers identify the six selected evaluation
datasets, error bars are 95% confidence intervals obtained by bootstrapping annotated samples, and
the background color indicates the degree of agreement [24].

Table 2: Detailed performance of evaluated approaches on the CleanPatrick benchmark. Consult
appendix D for details on competing approaches. Results are given in percentages (%).

O
ff

-T
op

ic
Sa

m
pl

es

Method p+ P@100 P@500 P@1000 R@100 R@500 R@1000 AUROC AP
kNN [35, 36] 3.7 25.0 15.0 9.9 4.1 12.2 16.2 63.6 8.5
IForest [28] 3.7 39.0 22.6 18.1 6.4 18.4 29.5 77.3 15.9
HBOS [29] 3.7 37.0 20.2 16.7 6.0 16.5 27.2 75.5 15.2
ECOD [30] 3.7 38.0 21.2 17.4 6.2 17.3 28.4 75.7 16.2
SelfClean [4] 3.7 52.0 21.0 13.1 8.5 17.1 21.4 66.9 14.5

N
ea

r
D

up
lic

at
es Method p+ P@100 P@500 P@1000 R@100 R@500 R@1000 AUROC AP

pHashing [31] 21.4 36.0 31.0 31.8 0.7 2.9 6.0 50.5 31.6
SSIM [32]. 21.4 31.0 28.0 27.6 0.6 2.7 5.2 49.1 30.5
SelfClean [4] 21.4 100.0 100.0 100.0 1.9 9.5 19.0 91.7 87.9

L
ab

el
E

rr
or

s Method p+ P@100 P@500 P@1000 R@100 R@500 R@1000 AUROC AP
NoiseRank [6] 22.1 23.0 19.0 20.8 0.6 2.6 5.7 48.4 21.3
CLearning [5] 22.1 19.0 20.4 20.3 0.5 2.8 5.5 47.9 21.3
SelfClean [4] 22.1 13.0 26.2 31.6 0.4 3.6 8.6 57.2 26.5
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NeurIPS Paper Checklist629

1. Claims630

Question: Do the main claims made in the abstract and introduction accurately reflect the paper’s631

contributions and scope?632

Answer: [Yes]633

Justification: Yes, all claims regarding the benchmark are backed by careful evaluation of related634

work (see Section 2) and systematic, redundant annotations (see Section 3), and all claims regarding635

methods’ performance are backed up by empirical results (see Section 4).636

Guidelines:637

• The answer NA means that the abstract and introduction do not include the claims made in the638

paper.639

• The abstract and/or introduction should clearly state the claims made, including the contributions640

made in the paper and important assumptions and limitations. A No or NA answer to this641

question will not be perceived well by the reviewers.642

• The claims made should match theoretical and experimental results, and reflect how much the643

results can be expected to generalize to other settings.644

• It is fine to include aspirational goals as motivation as long as it is clear that these goals are not645

attained by the paper.646

2. Limitations647

Question: Does the paper discuss the limitations of the work performed by the authors?648

Answer: [Yes]649

Justification: Yes, the paper discusses limitations in Appendix A, and the main limitations, e.g., that650

evaluation of data cleaning methods applies to a single benchmark, are clearly formulated in the main651

body.652

Guidelines:653

• The answer NA means that the paper has no limitation while the answer No means that the paper654

has limitations, but those are not discussed in the paper.655

• The authors are encouraged to create a separate "Limitations" section in their paper.656

• The paper should point out any strong assumptions and how robust the results are to violations of657

these assumptions (e.g., independence assumptions, noiseless settings, model well-specification,658

asymptotic approximations only holding locally). The authors should reflect on how these659

assumptions might be violated in practice and what the implications would be.660

• The authors should reflect on the scope of the claims made, e.g., if the approach was only tested661

on a few datasets or with a few runs. In general, empirical results often depend on implicit662

assumptions, which should be articulated.663

• The authors should reflect on the factors that influence the performance of the approach. For664

example, a facial recognition algorithm may perform poorly when image resolution is low or665

images are taken in low lighting. Or a speech-to-text system might not be used reliably to provide666

closed captions for online lectures because it fails to handle technical jargon.667

• The authors should discuss the computational efficiency of the proposed algorithms and how668

they scale with dataset size.669

• If applicable, the authors should discuss possible limitations of their approach to address problems670

of privacy and fairness.671

• While the authors might fear that complete honesty about limitations might be used by reviewers672

as grounds for rejection, a worse outcome might be that reviewers discover limitations that673

aren’t acknowledged in the paper. The authors should use their best judgment and recognize674

that individual actions in favor of transparency play an important role in developing norms that675

preserve the integrity of the community. Reviewers will be specifically instructed to not penalize676

honesty concerning limitations.677

3. Theory assumptions and proofs678

Question: For each theoretical result, does the paper provide the full set of assumptions and a complete679

(and correct) proof?680

Answer: [Yes]681

Justification: Yes, the Appendix G includes the full set of assumptions and proofs of the fast near682

duplicate cleaning procedure, and this is the only non-empirical contribution of the work.683

Guidelines:684
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• The answer NA means that the paper does not include theoretical results.685

• All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.686

• All assumptions should be clearly stated or referenced in the statement of any theorems.687

• The proofs can either appear in the main paper or the supplemental material, but if they appear in688

the supplemental material, the authors are encouraged to provide a short proof sketch to provide689

intuition.690

• Inversely, any informal proof provided in the core of the paper should be complemented by691

formal proofs provided in appendix or supplemental material.692

• Theorems and Lemmas that the proof relies upon should be properly referenced.693

4. Experimental result reproducibility694

Question: Does the paper fully disclose all the information needed to reproduce the main experimental695

results of the paper to the extent that it affects the main claims and/or conclusions of the paper696

(regardless of whether the code and data are provided or not)?697

Answer: [Yes]698

Justification: Yes, the paper discusses data collection and evaluation exhaustively in Section 3, and the699

evaluated approaches in detail in Appendix D. Additionally, since this paper accompanies the release700

of a benchmark dataset, we are releasing fully reproducible evaluation code used to obtain the results701

from the paper.702

Guidelines:703

• The answer NA means that the paper does not include experiments.704

• If the paper includes experiments, a No answer to this question will not be perceived well by the705

reviewers: Making the paper reproducible is important, regardless of whether the code and data706

are provided or not.707

• If the contribution is a dataset and/or model, the authors should describe the steps taken to make708

their results reproducible or verifiable.709

• Depending on the contribution, reproducibility can be accomplished in various ways. For710

example, if the contribution is a novel architecture, describing the architecture fully might suffice,711

or if the contribution is a specific model and empirical evaluation, it may be necessary to either712

make it possible for others to replicate the model with the same dataset, or provide access to713

the model. In general. releasing code and data is often one good way to accomplish this, but714

reproducibility can also be provided via detailed instructions for how to replicate the results,715

access to a hosted model (e.g., in the case of a large language model), releasing of a model716

checkpoint, or other means that are appropriate to the research performed.717

• While NeurIPS does not require releasing code, the conference does require all submissions718

to provide some reasonable avenue for reproducibility, which may depend on the nature of the719

contribution. For example720

(a) If the contribution is primarily a new algorithm, the paper should make it clear how to721

reproduce that algorithm.722

(b) If the contribution is primarily a new model architecture, the paper should describe the723

architecture clearly and fully.724

(c) If the contribution is a new model (e.g., a large language model), then there should either be725

a way to access this model for reproducing the results or a way to reproduce the model (e.g.,726

with an open-source dataset or instructions for how to construct the dataset).727

(d) We recognize that reproducibility may be tricky in some cases, in which case authors are728

welcome to describe the particular way they provide for reproducibility. In the case of729

closed-source models, it may be that access to the model is limited in some way (e.g.,730

to registered users), but it should be possible for other researchers to have some path to731

reproducing or verifying the results.732

5. Open access to data and code733

Question: Does the paper provide open access to the data and code, with sufficient instructions to734

faithfully reproduce the main experimental results, as described in supplemental material?735

Answer: [Yes]736

Justification: Yes, the paper contains open access to the accompanying benchmark dataset5 and737

evaluation code6.738

Guidelines:739

5huggingface.co/datasets/Digital-Dermatology/CleanPatrick, accessed on 9th of May 2025.
6github.com/Digital-Dermatology/CleanPatrick, accessed on 9th of May 2025.
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• The answer NA means that paper does not include experiments requiring code.740

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/741

guides/CodeSubmissionPolicy) for more details.742

• While we encourage the release of code and data, we understand that this might not be possible,743

so “No” is an acceptable answer. Papers cannot be rejected simply for not including code, unless744

this is central to the contribution (e.g., for a new open-source benchmark).745

• The instructions should contain the exact command and environment needed to run to reproduce746

the results. See the NeurIPS code and data submission guidelines (https://nips.cc/public/747

guides/CodeSubmissionPolicy) for more details.748

• The authors should provide instructions on data access and preparation, including how to access749

the raw data, preprocessed data, intermediate data, and generated data, etc.750

• The authors should provide scripts to reproduce all experimental results for the new proposed751

method and baselines. If only a subset of experiments are reproducible, they should state which752

ones are omitted from the script and why.753

• At submission time, to preserve anonymity, the authors should release anonymized versions (if754

applicable).755

• Providing as much information as possible in supplemental material (appended to the paper) is756

recommended, but including URLs to data and code is permitted.757

6. Experimental setting/details758

Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters,759

how they were chosen, type of optimizer, etc.) necessary to understand the results?760

Answer: [Yes]761

Justification: Yes, the paper includes all details of the evaluation in Section 3.5 and features training762

details in Appendix D.763

Guidelines:764

• The answer NA means that the paper does not include experiments.765

• The experimental setting should be presented in the core of the paper to a level of detail that is766

necessary to appreciate the results and make sense of them.767

• The full details can be provided either with the code, in appendix, or as supplemental material.768

7. Experiment statistical significance769

Question: Does the paper report error bars suitably and correctly defined or other appropriate informa-770

tion about the statistical significance of the experiments?771

Answer: [No]772

Justification: No, the results do not feature error bars as no training is performed on the benchmark773

itself, and evaluation is unsupervised and out-of-domain of a dataset which has very likely never been774

seen by evaluated methods.775

Guidelines:776

• The answer NA means that the paper does not include experiments.777

• The authors should answer "Yes" if the results are accompanied by error bars, confidence778

intervals, or statistical significance tests, at least for the experiments that support the main claims779

of the paper.780

• The factors of variability that the error bars are capturing should be clearly stated (for example,781

train/test split, initialization, random drawing of some parameter, or overall run with given782

experimental conditions).783

• The method for calculating the error bars should be explained (closed form formula, call to a784

library function, bootstrap, etc.)785

• The assumptions made should be given (e.g., Normally distributed errors).786

• It should be clear whether the error bar is the standard deviation or the standard error of the787

mean.788

• It is OK to report 1-sigma error bars, but one should state it. The authors should preferably report789

a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of errors is790

not verified.791

• For asymmetric distributions, the authors should be careful not to show in tables or figures792

symmetric error bars that would yield results that are out of range (e.g. negative error rates).793

• If error bars are reported in tables or plots, The authors should explain in the text how they were794

calculated and reference the corresponding figures or tables in the text.795

8. Experiments compute resources796
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Question: For each experiment, does the paper provide sufficient information on the computer797

resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?798

Answer: [Yes]799

Justification: Yes, the paper features an appendix dedicated to the computing resources required for800

experiments (see Appendix B).801

Guidelines:802

• The answer NA means that the paper does not include experiments.803

• The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud804

provider, including relevant memory and storage.805

• The paper should provide the amount of compute required for each of the individual experimental806

runs as well as estimate the total compute.807

• The paper should disclose whether the full research project required more compute than the808

experiments reported in the paper (e.g., preliminary or failed experiments that didn’t make it into809

the paper).810

9. Code of ethics811

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code812

of Ethics https://neurips.cc/public/EthicsGuidelines?813

Answer: [Yes]814

Justification: Yes, the research is conform with every aspect of the code of ethics.815

Guidelines:816

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.817

• If the authors answer No, they should explain the special circumstances that require a deviation818

from the Code of Ethics.819

• The authors should make sure to preserve anonymity (e.g., if there is a special consideration due820

to laws or regulations in their jurisdiction).821

10. Broader impacts822

Question: Does the paper discuss both potential positive societal impacts and negative societal impacts823

of the work performed?824

Answer: [Yes]825

Justification: The released dataset is designed to benchmark current and future image data cleaning826

tools, which can have positive societal impacts, especially in the medical domain. Negative societal827

impacts can include favoring biased tools against minority groups, which we discuss and investigate in828

Appendix F.829

Guidelines:830

• The answer NA means that there is no societal impact of the work performed.831

• If the authors answer NA or No, they should explain why their work has no societal impact or832

why the paper does not address societal impact.833

• Examples of negative societal impacts include potential malicious or unintended uses (e.g.,834

disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deploy-835

ment of technologies that could make decisions that unfairly impact specific groups), privacy836

considerations, and security considerations.837

• The conference expects that many papers will be foundational research and not tied to particular838

applications, let alone deployments. However, if there is a direct path to any negative applications,839

the authors should point it out. For example, it is legitimate to point out that an improvement in840

the quality of generative models could be used to generate deepfakes for disinformation. On the841

other hand, it is not needed to point out that a generic algorithm for optimizing neural networks842

could enable people to train models that generate Deepfakes faster.843

• The authors should consider possible harms that could arise when the technology is being used844

as intended and functioning correctly, harms that could arise when the technology is being used845

as intended but gives incorrect results, and harms following from (intentional or unintentional)846

misuse of the technology.847

• If there are negative societal impacts, the authors could also discuss possible mitigation strategies848

(e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitor-849

ing misuse, mechanisms to monitor how a system learns from feedback over time, improving the850

efficiency and accessibility of ML).851

11. Safeguards852
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Question: Does the paper describe safeguards that have been put in place for responsible release of853

data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or854

scraped datasets)?855

Answer: [Yes]856

Justification: Yes, since we build on an existing dataset, namely Fitzpatrick17k, we solely release857

additional metadata that can be merged with the existing dataset. We do not release any new images858

which could potentially be misused. The risk of re-identification of crowd worker annotators is859

minimal, as it is impossible to trace them from binary labels without extensive knowledge about860

extremely specific opinions in dermatology.861

Guidelines:862

• The answer NA means that the paper poses no such risks.863

• Released models that have a high risk for misuse or dual-use should be released with necessary864

safeguards to allow for controlled use of the model, for example by requiring that users adhere to865

usage guidelines or restrictions to access the model or implementing safety filters.866

• Datasets that have been scraped from the Internet could pose safety risks. The authors should867

describe how they avoided releasing unsafe images.868

• We recognize that providing effective safeguards is challenging, and many papers do not require869

this, but we encourage authors to take this into account and make a best faith effort.870

12. Licenses for existing assets871

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper,872

properly credited and are the license and terms of use explicitly mentioned and properly respected?873

Answer: [Yes]874

Justification: Yes, the authors of the paper are the original owners of all the assets that are released,875

including code and data. Code and data are both licensed under Creative Commons Attribution Non876

Commercial 4.0 and are labeled as such in both repositories.877

Guidelines:878

• The answer NA means that the paper does not use existing assets.879

• The authors should cite the original paper that produced the code package or dataset.880

• The authors should state which version of the asset is used and, if possible, include a URL.881

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.882

• For scraped data from a particular source (e.g., website), the copyright and terms of service of883

that source should be provided.884

• If assets are released, the license, copyright information, and terms of use in the package should885

be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for886

some datasets. Their licensing guide can help determine the license of a dataset.887

• For existing datasets that are re-packaged, both the original license and the license of the derived888

asset (if it has changed) should be provided.889

• If this information is not available online, the authors are encouraged to reach out to the asset’s890

creators.891

13. New assets892

Question: Are new assets introduced in the paper well documented and is the documentation provided893

alongside the assets?894

Answer: [Yes]895

Justification: Yes, the released benchmark dataset is well documented both in the paper and the corre-896

sponding Hugging Face repository7. Annotations from all people in the study were anonymized, and897

consent was obtained from medical crowd workers through Centaur Labs, which was commissioned898

to obtain the annotations.899

Guidelines:900

• The answer NA means that the paper does not release new assets.901

• Researchers should communicate the details of the dataset/code/model as part of their sub-902

missions via structured templates. This includes details about training, license, limitations,903

etc.904

• The paper should discuss whether and how consent was obtained from people whose asset is905

used.906

7huggingface.co/datasets/Digital-Dermatology/CleanPatrick, accessed on 9th of May 2025.
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• At submission time, remember to anonymize your assets (if applicable). You can either create an907

anonymized URL or include an anonymized zip file.908

14. Crowdsourcing and research with human subjects909

Question: For crowdsourcing experiments and research with human subjects, does the paper include910

the full text of instructions given to participants and screenshots, if applicable, as well as details about911

compensation (if any)?912

Answer: [Yes]913

Justification: Yes, the paper features a dedicated section in the appendix containing both the instructions914

shown to the annotators and screenshots of the labeling platform (see Appendix E). Additionally, the915

section details information about compensation for the annotators.916

Guidelines:917

• The answer NA means that the paper does not involve crowdsourcing nor research with human918

subjects.919

• Including this information in the supplemental material is fine, but if the main contribution of the920

paper involves human subjects, then as much detail as possible should be included in the main921

paper.922

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other923

labor should be paid at least the minimum wage in the country of the data collector.924

15. Institutional review board (IRB) approvals or equivalent for research with human subjects925

Question: Does the paper describe potential risks incurred by study participants, whether such926

risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an927

equivalent approval/review based on the requirements of your country or institution) were obtained?928

Answer: [NA]929

Justification: During annotation, we solely collected answers as binary labels along with anonymized930

annotator identification. Thus, these annotations contain no personally identifiable information or931

offensive content. In discussion with experts from the institutions of the co-authors, it was concluded932

that this verification process does not require IRB approval because the conducted study examines933

publicly available datasets and does not involve human subjects beyond binary annotations.934

Guidelines:935

• The answer NA means that the paper does not involve crowdsourcing nor research with human936

subjects.937

• Depending on the country in which research is conducted, IRB approval (or equivalent) may be938

required for any human subjects research. If you obtained IRB approval, you should clearly state939

this in the paper.940

• We recognize that the procedures for this may vary significantly between institutions and941

locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for942

their institution.943

• For initial submissions, do not include any information that would break anonymity (if applica-944

ble), such as the institution conducting the review.945

16. Declaration of LLM usage946

Question: Does the paper describe the usage of LLMs if it is an important, original, or non-standard947

component of the core methods in this research? Note that if the LLM is used only for writing,948

editing, or formatting purposes and does not impact the core methodology, scientific rigorousness, or949

originality of the research, declaration is not required.950

Answer: [NA]951

Justification: The paper does not involve the development of any LLMs, nor their use beyond minor952

editing.953

Guidelines:954

• The answer NA means that the core method development in this research does not involve LLMs955

as any important, original, or non-standard components.956

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what957

should or should not be described.958
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