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ABSTRACT

Recent advancements in policy optimization techniques have profoundly improved
the reasoning abilities of large language models (LLMs). A pivotal breakthrough
lies in sampling a group of responses for each query and adjusting their likelihoods
based on the relative advantages of their scores over the group mean. However,
substantial conflicts may arise between the aggregated gradient and the individual
gradients of the responses, thus diminishing the effectiveness of gradient signals
and ultimately hindering the training performance. To address this challenge,
we propose Conflict-Aware Policy Optimization (CAPQO), a novel and scalable
training method that mitigates conflicts through dynamic gradient aggregation.
Specifically, CAPO formulates the gradient aggregation step as a second-order
cone program (SOCP), which seeks a gradient direction maximizing the alignment
with positive-advantage responses, while enforcing constraints to suppress negative-
advantage responses. To equip the SOCP with scalability and tractability for LLMs,
we significantly reduce the number of variables via the Lagrangian duality and
compress the gradient dimension using the Johnson-Lindenstrauss transform. We
further show that the dynamic gradient aggregation effectively reduces conflicts
without sacrificing the convergence. Experiments on several widely-used mathe-
matical reasoning datasets and benchmarks with Qwen2.5-1.5B and Qwen2.5-3B
show that CAPO consistently outperforms our baselines in terms of the accuracy.

1 INTRODUCTION

Large language models (LLMs)—from ChatGPT (Ouyang et al., 2022)) to DeepSeek-R1 (Guo et al.|
2025)—have made striking progress in complex reasoning tasks such as mathematical problem
solving (Ahn et al.,[2024; |Yang et al., |2024b; [Shao et al., 2024)) and code generation (Jiang et al.,
2024; Hou et al., [2024; Hui et al., |2024)) in recent years. A key driver behind these breakthroughs
is the advancement of policy optimization techniques (Sumiea et al.,|2024; |Schulman et al., |2015)),
which estimate the relative advantage of each generated response over a baseline and use it to guide
parameter updates during the training process. Among them, Proximal Policy Optimization (PPO)
(Schulman et al., 2017) stands out as a representative approach, using external reward and critic
models to assess response quality and compute baseline scores. More recently, critic-free methods—
exemplified by Group Relative Policy Optimization (GRPO) (Shao et al2024)—have emerged as
compelling alternatives, which forgo critic models by scoring a group of responses and estimating
the baseline score directly from their scores. This shift has improved both reasoning abilities and
memory efficiency, sparking growing interest as a promising avenue of research (Yu et al.l 2025; [Liu
et al., 2025 |Yuan et al.,[2025).

Despite their success, critic-free methods confront a fundamental challenge: gradient conflicts (Chen
et al.| 2025)). Specifically, policy optimization aims to increase the likelihood of positive-advantage
responses and decrease that of negative-advantage responses (Sutton et al., [1998)). However, the
responses within a group usually exhibit diverse reasoning paths or error patterns, resulting in
gradients that point in conflicting directions. This issue intensifies during batch-wise gradient
aggregation, where responses from different queries introduce additional variance. As highlighted in
existing studies (Chen et al.| 2025} [Zhang et al.,2024; Alison et al.|[2024} |Chen et al.,2024), gradient
conflicts can severely hinder the training performance, waste valuable computational resources, and
lead to inefficient data utilization.
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Unfortunately, existing methods for mitigating gradient conflicts (Liu et al., 2024; 2021} [Yu et al.
2020; Sener & Koltun, 2018; [Liu et al., 2023} Shi et al., [2023) fall short when applied to policy
optimization techniques for LLMs. First, while these methods acknowledge that conflicts can
arise from competing gradient directions, they typically treat all samples in a batch as equally
important, overlooking the asymmetric roles of positive- and negative-advantage responses. Second,
although some approaches use per-sample gradients to mitigate these conflicts, they often rely on
computationally intensive operations (e.g., pairwise projections or matrix inversions) in the high-
dimensional parameters space, rendering them impractical for LLMs. Therefore, it is highly desirable
to explore conflict-mitigation methods that not only align with the nature of policy optimization, but
also scale efficiently to LLMs.

To address this challenge, we propose Conflict-Aware Policy Optimization (CAPO), a novel and
scalable training method that mitigates conflicts through dynamic gradient aggregation. Specifically,
CAPO formulates the gradient aggregation step as a second-order cone program (SOCP) that seeks
a direction maximally aligned with positive-advantage responses, while imposing constraints to
suppress negative-advantage ones. The key intuition is that positive-advantage responses, while
preferred under the reward signal, are not guaranteed to be correct or optimal; thus, encouraging
them should be done with moderation. In contrast, negative-advantage responses often reflect flawed
reasoning or undesirable content and should be strongly suppressed. To make the SOCP tractable for
LLMs, we first apply the Lagrangian duality to substantially reduce the number of variables, and then
use the Johnson-Lindenstrauss transform to project the gradients into a low-dimensional space. We
further show that CAPO effectively reduces conflicts without compromising the convergence.

Our Main Contributions. (1) We propose CAPO, a novel and scalable policy optimization method
that explicitly mitigates gradient conflicts through dynamic gradient aggregation. (2) We formulate
the gradient aggregation as a second-order cone program (SOCP), taking into consideration the
asymmetric roles of positive- and negative-advantage responses. We significantly accelerate its
solution via the Lagrangian duality and the Johnson-Lindenstrauss transform, making it tractable
and paving the way for scalable and conflict-aware optimization for LLMs. (3) We show that the
dynamic gradient aggregation in CAPO effectively reduces gradient conflicts without sacrificing the
convergence. (4) We conduct extensive experiments on GSM8K and MATH with Qwen2.5-1.5B and
Qwen2.5-3B, showing that CAPO significantly outperforms all baselines in terms of the accuracy.

2 PRELIMINARIES

2.1 LANGUAGE MODELING AS REINFORCEMENT LEARNING

An LLM 7y (with parameters #) define a conditional probability distribution over output responses
y = [y1,-..,yr] given a query x ~ D, represented as an autoregressive policy my(y | x) =
Hthl wo(ye | X,¥1:4-1), Where y1.p isnull and y1.4—1 = [y1,...,y:—1] fort = 2,...,T. To align
LLMs with desired behaviors, recent work formulates language generation as a reinforcement learning
(RL) problem, where the model acts as a policy that interacts with an environment by generating
responses y to queries x. Each response receives a reward r(x,y) € R that reflects its quality.

Policy optimization methods aim to update the model parameters by leveraging the advantage
function A(x,y) = r(x,y) — b(x), where b(x) is a baseline that approximates the expected reward.
The overall training objective typically takes the form of an advantage-weighted log-likelihood
maxg By p yomy(x)[A(X,y) log m(y | x)], which encourages the model to increase the likelihood
of positive-advantage responses and suppress that of negative-advantage responses.

The aforementioned formulation serves as a general template for policy optimization. Specific
algorithms, such as PPO (Schulman et al.,2017), refine it by constraining the policy update to remain
close to the previous policy. Instead of directly optimizing the advantage-weighted log-likelihood,
PPO maximizes a clipped surrogate objective

. mo(y | X c14e [ mo(y | x
U Ll G e R ) R
(M

where ¢ is a small hyperparameter and clip]*" (-) = clip(, Yiow, Yhigh) is the clipping function.
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2.2 CRITIC-FREE POLICY OPTIMIZATION

While PPO has become a standard method for fine-tuning LLMs, it relies heavily on external
reward and critic models to compute the reward r(x, y) and baseline b(x), respectively, introducing
substantial memory and computational overhead. To address this problem, recent work has proposed
critic-free methods—represented by GRPO (Shao et al., 2024)), which eschew critic models by
scoring a group of responses and estimating the baseline score directly from their scores. GRPO

samples a group of G responses {y(i)}?:1 for each query x and assigns each response a scalar
score {r(1) ... r(©)} using a rule-based reward model. The advantage of each response is then

computed as A®) = [r() —mean ({r()}¢ )] /Std ({rW3}5.,). The overall objective of GRPO
is to maximize

Jaerro(f) = Ey p. AyDYE  ~ma (%)

(%) (2) . )
Zmln( (" | %) A® clipite (ﬂe(y , | X))> A(’)> - BID)%,(MHWref)} , (2)

Told (¥ | %) Told (¥ | x
where ¢ and 3 are hyperparameters, and ]D)( L(mg||meet) = ety V%) _ og mer(y W) _ g
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2.3  GRADIENT AGGREGATION AND CONFLICTS

Abstracting away clipping and KL penalties, consider the generic objective of critic-free methods

y@ | x _ )
GZ( | )A“)logm(ywlx))]- 3)
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According to (Lin et al., 2025), the gradient of each sample (x, y(*)) can be approximated by

oy | x)

: AW . vyl Q) 4
Tola(y @ | x) o logms(y™ | x) @

gx,y") ~
and thus the aggregated gradient can by approximated by
1 oy %) 6 (i)
8o ~ EZWA - Vologmo(y'" | x). Q)

In this paper, we abbreviate positive-advantage responses and negative-advantage responses
as positive responses and negative responses, respectively. Since responses with zero advantage
contribute neither to the loss nor to the gradient, we exclude them from our analysis.

Despite their success, critic-free methods confront a fun- pas-

damental challenge known as gradient conflicts (Chen o = Positive
: : _ Negative

et al. 20.25.). Spec1ﬁcally, the Tesponses in a group usu- ;. e ve

ally exhibit diverse reasoning paths or error patterns, = iso|

resulting in gradients that point in different directions  § 12/

and thus an aggregated gradient conflicting with some £ 100,
individual gradients. This issue intensifies during batch- ~ § 75
wise gradient aggregation, where responses from differ- 507
ent queries introduce additional variance. As shown in 251
Figure [T} throughout GRPO training, a non-negligible " epocn 025 Epoch 0.5 Epoch 0.75

proportion of gradients from positive responses, negative

responses, and all nonzero-advantage responses remain - Figure 1: The proportion of gradient con-
in conflict with go (i.e., their inner product with go is  flicts over training epochs. The gradients
negative). This confirms that gradient conflicts is in- are from positive, negative, and nonzero-
deed a significant issue in critic-free policy optimization  advantage responses.

methods.
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Figure 2: Comparison of the gradient aggregation strategies between CAPO and GRPO. We consider
a setting with three queries {x; }3_,, each associated with two responses y;1, y;2. Existing critic-free
policy optimization methods (e.g., GRPO) may produce an aggregated gradient g that conflicts with
some individual gradients from the responses (e.g., < g0, 84 > < 0). In contrast, our proposed CAPO
formulates the gradient aggregation as a second-order cone program (SOCP), which maximizes
alignment with gradients from positive-advantage responses, while ensuring that negative-advantage
responses are effectively suppressed. By solving the SOCP, we obtain a gradient g with <§,, gy > > 0.

3 CONFLICT-AWARE POLICY OPTIMIZATION

We propose CAPO, a novel and scalable training method that mitigates conflicts through dynamic
gradient aggregation, which is shown in Figure Specifically, CAPO formulates the gradient
aggregation process as a second-order cone program (SOCP), taking into consideration the asymmetric
roles of positive- and negative-advantage responses (Section [3.1)). Leveraging the Lagrangian duality,
we convert the SOCP into its dual form, which significantly reduces the number of variables (Section

. To address the prohibitive computational overhead caused by the large number of parameters
in LLMs, we further use the Johnson-Lindenstrauss (JL) transform to project gradients into a low-
dimensional space, enabling the practical solution of the dual problem (Section[3.3). Further, we show
that the dynamic gradient aggregation in CAPO effectively reduces conflicts without compromising
the convergence (Section [3.4).

3.1 A SECOND-ORDER CONE PROGRAMMING FORMULATION FOR GRADIENT AGGREGATION
Given m gradients from positive responses {glJr . and n gradients from negative responses
{g; }?:1, our goal is to minimize the conflict between the aggregated gradient g and these individual
gradients. Reflecting the characteristics of rule-based reward models, we treat positive and negative
responses differently:

* For positive responses: a positive advantage suggests that the extracted answer is correct, but it
does not guarantee that the entire response is flawless—reasoning steps may still contain flaws or
unnecessary content. Moreover, multiple reasoning paths can lead to the same correct answer, SO
instead of enforcing non-negative inner products with all positive gradients { g;” ™ |, We encourage
g to align with them as much as possible.

» For negative responses: a negative advantage indicates that the response contains a wrong answer.
This implies that there is at least one critical mistake in the reasoning. Thus, we require g to have a
non-negative inner product with each gradient g ;- to actively suppress these error signals.

4
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Further, to preserve the convergence behavior of critic-free methods, we further constrain g to lie
within an /5-ball centered around the vanilla aggregated gradient gy. This ensures that the final
direction does not deviate too far from the vanilla optimization trajectory. With these considerations,
we formulate the gradient aggregation process as a second-order cone program (SOCP):

. ~ + 6
max  min (887) (6)

st. (gg;) >0, 1<j<n,
llg — goll < Cllgoll,

where || - || is the £-norm and C' > 0 is the trust region coefficient to control the size of the £2-ball.

3.2 LAGRANGIAN-BASED SOLUTION TO THE SOCP

By introducing an auxiliary variable ¢ = max;<;<m, (—(g,&;")), the problem in Eq. (@) becomes

_ min t @)
geR4 teR

st. —(g,gf)—t<0,1<i<m,
—(8,g;)<0,1<j<mn,
I8 — &0l = C*llgoll* < 0.
The Lagrangian of the problem in Eq. (/) is

L(gat,avﬂvA) =t— Zai (<§,gj_> +t) - Z/Bj<§) gj_> + A (Hg - g0||2 - CQHgOH2) ) (8)

i=1 j=1

where o;; > 0,8; > 0,A > 0(1 <i<m,1 < j < n)are dual variables. The first-order optimal
condition implies that

m

Zaizl, gzgﬁ% Zaigj+25jg; . 9)

Plugging Eq. (9) into Eq. (8) leads to
A& inf  L(gt A
q(a, B,\) . (8,t,a,3,7)
2

1 m n 3 m n B
- [+ | Al (st 3 )
i=1 j=1 i=1 j=1

IN

—Cligoll - |3 augi +>  Big; || - <Zaigf +Zﬁjgf7go>. (10)
=1 j=1 1=1 Jj=1

where the inequality follows from the AM—GM inequality and the equality holds if and only if
A= [ aigl + S iy || /(2C o). Thus, by denoting € = (.- s Brs- -, Ba) T
and G = [g],...,gh, g ,....8,] € R¥("+")_the dual problem of the SOCP in Eq. (6) is

min_ C|lgol| - |G|l + (GE, go) (1)

geRnl+n

s.t. Zfizl, & >0forl1 <i<m—+n.
i=1

3.3 EFFICIENT DUAL PROBLEM SOLVING FOR LLMs

Through the Lagrangian duality, we transform the original primal problem in Eq. (6) involving d
variables into its dual problem in Eq. involving only m + n variables. This significantly reduces
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Algorithm 1 Gradient Aggregation of CAPO

1: Input: gradients from positive responses {gj ™ , and from negative responses {g; j=1, vanilla

1=

aggregated gradient g, constant C' > 0, JL projector Pjy, : R% — Rd
» Project gradients using the JL transform
80 < PiL(go). & « Pu(g/)forl<i<m, g < Pu(g;)forl<j<n
» Construct the matrix and vectors fog‘ the dual problem
C:" — [Agf7A .. agr—;7g177 s 7gr:] € Rdx(m-{-n)
Q ~ GG c R(m+n)x(m+n)
qo — GTgO c Rm+n
» Solve the dual problem

PR RN

1 m
¢* = argmin C|lg (5@5)2 +&Tdq0, st D &=1,&>0for 1<i<m+n
1S

eRnL+n i—1

9: » Compute the aggregated gradient
10: g+ go+Cleoll - (Ag/l|Agll), where Ag = 372, &gl + 37200 &g
11: Output: aggregated gradient g € R?

the optimization complexity and computational cost, as d can reach the order of billions in LLMs,
while m + n is bounded by the batch size and thus typically in the hundreds or thousands. However,
the problem in Eq. still involves a large matrix G € R?*(™+7) which makes the computation
prohibitively expensive. In practice, even storing G on GPU often results in out-of-memory errors.

To make the problem tractable, we use the Johnson-Lindenstrauss (JL) transform to project the
gradients into an d-dimensional space, which preserves inner products within an acceptable margin of
error (see Appendix for details). Formally, we denote an gradient g after JL projection as g € R
and the resulted matrix as G € Réx(m+n) Hence, we can efficiently compute

Q _ GTG c ]R(m,+n)><(7n+n)7 qo — GTgO e Rm-&-n,

1
2

lGel = (767G  ~ (€76TaE)" = (7qe)",
(G, 80) =€'G gy~ G gy =€ qo. (12)

By substituting Eq. (I2) into Eq. (IT)), we obtain a tractable problem that can be efficiently solved. In

our experiments, we set d = 8192 and use the CVXPY library (Diamond & Boyd, 2016 to solve the
problem, which takes less than 0.1 seconds for m + n < 128. After obtaining £*, the aggregated

m—+n

gradient is computed by g = go +C'|gol|- (Ag/|| Agl)). where Ag = 37" &fg + 3770 €8
(see Appendix for details). We summarize the overall gradient aggregation process of CAPO in
Algorithm 1]

3.4 CONVERGENCE ANALYSIS

To address potential concerns about the compatibility between gradient conflict resolution and
optimization stability, we formally establish that CAPO preserves the convergence guarantees of
the baseline policy optimization method. Our analysis demonstrates that the introduced SOCP in
Eq. (6)—designed to resolve gradient conflicts—do not compromise the fundamental convergence
properties. Specifically, let C* € [0, 1] denote the upper bound of the trust region coefficient, and
let C; € [0, C*] represent its value at iteration t. We prove that for any C; € [0, C*], the gradient
aggregation mechanism ensures the convergence to a neighborhood of the optimal solution, where
the neighborhood size diminishes as the number of iterations 7" increases. This guarantees that the
conflict mitigation mechanism asymptotically approaches the optimal solution without fundamentally
destabilizing the optimization trajectory.

Let £ denote the average loss function and VL £ g represent the vanilla aggregated gradient.
The key insight lies in the dual role of our ¢5-ball constraint ||g — go|| < C||go||: while adaptively
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resolving conflicts through the SOCP formulation, it simultaneously enforces proximity to the vanilla
optimization trajectory. This geometric preservation allows us to derive Lipschitz-type bounds on the
effective gradient direction, reconciling conflict mitigation with desirable convergence behavior.

Theorem 3.1. Assume that the loss function L£(0) is differentiable on R? and its gradient gy (0) is H-
Lipschitz, i.e., ||go(0) — go(8')]| < H ||0 — ¢'||, where 0 < H < oo. Assume L* = infycra L(0) >
—00. With a fixed step size « satisfying 0 < o < 1/H and 0 < C; < C* forVt, CAPO satisfies:

1. For 0 < C* < 1, the gap between the loss at the T-th iteration and the optimal loss L* satisfies
L(0r41) = L7 < L(B0) = L = §(1 = C) T, lgo 60l

2. When Cy = 1 forVt, and 0 < o < 1/H, there exists a per-iteration progress rate 6 > 0 such
that L(01) — L* < L(0g) — L* — T6.

Under the assumption that £* > —o0, as the number of iterations 7" increases, £(6r) asymptotically
approaches L£*. Consequently, the algorithm is guaranteed to converge to a neighborhood of L£*.
Specifically, when T' — 400, L(01) — L*. For detailed proof, please refer to Appendix

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Datasets and Models. We focus on using policy optimization to improve the mathematical reasoning
ability of LLMs, which is one of the most attention-grabbing abilities of LLMs at present. We train
Qwen2.5-1.5B and Qwen2.5-3B (Yang et al.,|2024a)) on GSM8K (Cobbe et al,|2021) and MATH
(Hendrycks et al., [2021)), respectively, taking into account that MATH is slightly more challenging
than GSM8K. We use pretrained models instead of instruction-tuned versions to prevent them from
having already seen some samples in our datasets. For more details of the datasets and models, please

see Appendices[B.T]and

Baseline and Training Details. Since the release of DeepSeek-R1 (Guo et al., [2025)), there has
been a surge of interest in critic-free methods, as well as various open-source efforts to replicate the
DeepSeek-R1 pipeline. Among these critic-free approaches, GRPO (Shao et al.,|2024) stands out
as the most extensively validated method across multiple tasks, while most other methods remain
unpublished or have not yet undergone peer review. For this reason, we adopt GRPO as our primary
baseline, prioritizing reproducibility and empirical stability.

We build our implementation on the recently released and widely adopted veRL framework (Sheng
et al., [2024), which offers an efficient and flexible RL training pipeline. We employ a rule-based
reward model that evaluates both the format and correctness of responses:

1.0, if y follows the correct format and correctly answers x,
r(x,y) =< —0.5, if y follows the correct format but incorrectly answers x, (13)
—1.0, if y is incorrectly formatted.

We use a learning rate of 1 x 1076, a prompt batch size of 64, a mini-batch size of 64, a group size of
8, a rollout temperature of 1.0, ¢ = 0.2, and 5 = 0.001 for CAPO and GRPO. For the JL transform,
we use d = 8192. We run all experiments for one epoch on 2 NVIDIA A800 GPUs (80GB) due to
our limited resources. For more training details, please see Appendix

Evaluation. To comprehensively assess generalization, we test the models on both in-distribution
and out-of-distribution (OOD) datasets. Specifically, models trained on GSM8K are evaluated on
GSMBK test set, AMC 2023 (of America, 2023), and AIME 2024 (of Americal [2024); while models
trained on MATH are evaluated on MATH test set, AMC 2023, and AIME 2024. These datasets differ
in difficulty and domain coverage, offering a rigorous evaluation setting for reasoning robustness and
transfer. We employ the greedy decoding with a temperature of 0.0 and report the accuracy. For more
details of the evaluation benchmarks, please see Appendix
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Table 1: Performance of models trained on GSM8K and MATH with CAPO and GRPO, evaluated
on the respective test set, AMC 2023, and AIME 2024.

Dataset  Model Method | Test Accuracy (%) | AMC 2023 (%) AIME 2024 (%)
GRPO 72.33 15.00 0.00
GSMBK — Qwen2.5-1.5B  cApo ‘ 72.86 ‘ 20.00 0.00
GRPO 62.52 40.00 0.00
MATH — Qwen25-3B  cxpo ‘ 62.80 ‘ 42.50 3.33
0.4 00— CAPO (C=1) /
' ©-0.2 CAPO (C=0.5) S
T 0.2 g CAPO (C=0.1) \J/
g 0.0 9 —0.41 __ cAPO-variant (C=1) /
g 2 _oe CAPO-variant (€ = 0.5) 4
§ -0.21 e GRPO Z . CAPO-variant (C=0.1) /
=0.41 CAPO (C=1) E-08 s
—0.61 —+— CAPO (C=0.5) Lo I e e
10 20 30 40 50 ' 10 20 30
Training steps Training steps

Figure 3: Test reward over training  Figure 4: Training reward over training steps for CAPO
steps for GRPO and our CAPO under  and the CAPO-variant without the £5-ball constraint, under
C =1and C =0.5. C=1,C=0.5,and C =0.1.

4.2 CAPO IMPROVES THE MATHEMATICAL REASONING ABILITIES OF LLMS

We present the performance of models trained on GSM8K and MATH with CAPO and GRPO,
evaluated on the respective test set, AMC 2023, and AIME 2024, in Table (I} From the table, we
make the following observations:

» Compared to GRPO, CAPO delivers consistently stronger performance across all benchmarks.
We attribute this to the explicit resolution of gradient conflicts in CAPO, which allows for more
targeted updates when positive and negative feedback signals are present simultaneously. These
results suggest that even within the class of critic-free methods, incorporating structured gradient
aggregation can further enhance optimization effectiveness.

* The absolute accuracy of the three methods remains low on the AIME 2024 and AMC 2023
benchmarks. This suggests that these out-of-distribution (OOD) evaluation sets pose significantly
greater challenges, likely due to the increased problem complexity and reasoning depth required.
One contributing factor may be the relatively narrow difficulty range of the training data—datasets
such as GSM8K and MATH may not sufficiently expose the models to competition-level problem
structures. In addition, the rule-based reward model, while precise in assessing final answers,
provides limited supervision for intermediate reasoning steps or partial correctness, which are
often crucial in solving complex questions. Despite these challenges, CAPO exhibits relatively
stronger performance than GRPO on both OOD benchmarks. This suggests that the conflict-aware
optimization in CAPO may help improve the robustness when generalizing to problems that differ
from the training distribution, though there remains significant room for improvement overall.

4.3 CAPO ACHIEVES GREATER TEST REWARD GAINS WITH FEWER TRAINING STEPS

We plot the test reward curves during training in Figure 3| Specifically, we show the test reward
of Qwen2.5-1.5B on GSM8K, evaluated on its respective test set throughout training. We observe
that CAPO yields more substantial improvements in test performance within fewer training steps
compared to GRPO. This suggests that the dynamic gradient aggregation in CAPO provides more
effective learning signals, enabling the model to more efficiently convert feedback into generalizable
capabilities early in training. We conjecture that the explicit handling of gradient conflicts leads to
more stable updates and better utilization of the available training feedback.
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4.4 ABLATION: THE /5-BALL CONSTRAINT IS NECESSARY

In the SOCP formulation given in Eq. (6), we introduce a constraint that bounds the new aggregated
gradient within an ¢-ball centered at the vanilla aggregated gradient, i.e., ||g — go|| < C||go]|. As
discussed in Section [3.4] this constraint plays a key role in ensuring the convergence of CAPO, as
it prevents the aggregated gradient from deviating too far from the vanilla gradient. To empirically
verify its necessity, we conduct an ablation study on GSM8K with Qwen2.5-1.5B, comparing CAPO
against a variant that replaces the ¢5-ball constraint with ||g|| < C/||go||. This variant allows more
freedom in selecting the gradient, without preserving proximity to go. However, as shown in Figure
M] we observe a substantial drop in the speed of training reward improvement. This confirms the
importance of the ¢5-ball constraint in maintaining the stability of critic-free training. In addition, we
observe that a larger value of C generally leads to faster increases in the training reward of CAPO,
although the differences in speed are not particularly significant.

5 RELATED WORK

Reinforcement Learning for LLM Reasoning. RL has become a key driver for enhancing LLM
reasoning. PPO remains the dominant method (Schulman et al., [ 2017), though often criticized for
instability and complexity (Rafailov et al.l 2023; Wu et al., [2023}; |Yuan et al., |2023). To reduce
overhead, DPO bypasses explicit reward modeling by reparameterizing preference pairs (Rafailov
et al.,2023)), but its performance drops under noisy or conflicting signals (Gao et al.,|2024;|Liang et al.,
2024). This renewed interest in PPO variants led to GRPO, a critic-free approach estimating relative
response quality via rule-based rewards (Shao et al., [2024)), followed by widespread adoption and
replication in open-source pipelines (Guo et al., [2025). Extensions include DAPO, which decouples
policy and value optimization while emphasizing uncertain steps (Yu et al.,2025), and Dr.GRPO,
which reduces response-length bias by simplifying normalization terms (Liu et al., [2025)). These
works improve training dynamics but largely overlook gradient conflicts within response groups—a
key issue we address (Kim et al.,|2024; |Liu et al., 2024).

Mitigating Gradient Conflicts. Gradient conflicts have been identified as a major obstacle in
machine learning, leading to inefficient learning and wasted computation (Chen et al., 2025; Zhang
et al., 2024} |Alison et al.| 2024} |Chen et al., |2024). It is essential to mitigate the gradient conflicts
for improving optimization effectiveness. Most research on gradient conflict stems from multi-task
learning (MTL), where gradients from different tasks may interfere with each other. This conflict is
often measured via the dot product between gradient vectors (Riemer et al.,[2018}; |Du et al., 2018).
GradNorm balances gradient magnitudes across tasks to ensure uniform convergence (Chen et al.|
2018). PCGrad resolves directional conflicts by projecting gradients onto orthogonal subspaces (Yu
et al.| 2020). MGDA seeks Pareto-optimal updates by maximizing the minimum dot product between
the update and all task gradients (Sener & Koltun, 2018). ConFIG uses the pseudo-inverse to find
conflict-free directions in high-dimensional spaces with theoretical Pareto guarantees (Liu et al.,
2024])), while CAGrad searches for updates within a local neighborhood of the average gradient under
certain constraints (Liu et al.| [2021). Although effective in MTL, they fall short when applied to
policy optimization for LLMs due to their neglect of the asymmetric roles of positive and negative
responses, as well as their computationally intensive operations. As a comparison, we propose a
gradient conflict mitigation method tailored for large-model policy optimization, making a significant
step toward scalable conflict-aware training for LLMs.

6 CONCLUSION

In this paper, we present CAPO, a novel and scalable policy optimization framework that explicitly
mitigates gradient conflicts in large language models through dynamic gradient aggregation. By
formulating the gradient aggregation step as a second-order cone program (SOCP), CAPO strategically
amplifies the influence of positive-advantage responses while suppressing the impact of negative-
advantage ones. We further enhance the scalability of our method through Lagrangian duality and the
Johnson-Lindenstrauss transform, making it tractable for training large-scale models. Experiments
on GSMS8K and MATH using Qwen2.5-1.5B and Qwen2.5-3B demonstrate that CAPO consistently
outperforms strong baselines in terms of accuracy, confirming the effectiveness of our approach.
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7 ETHICS STATEMENT

The mathematical reasoning capabilities of LLMs hold promise for assisting mathematicians in
tackling complex tasks such as theorem proving. However, they may also be used by students to
complete homework assignments without engaging in independent thinking. No human subjects were
directly involved. We strongly discourage any deployment outside research contexts and emphasize
that reward functions and training setups are designed to encourage safe and aligned outputs. All
research was conducted in accordance with the ICLR Code of Ethics, with no conflicts of interest or
external influence on methodology or results.

8 REPRODUCIBILITY STATEMENT

To facilitate reproducibility, we provide detailed descriptions of our algorithm (CAPO) in Section [3]
and Algorithm [T} including pseudo-code and key hyperparameters. Experimental setups, including
data processing, reward functions, and evaluation benchmarks, are described in Section 4| and
Appendix [B] Where applicable, we provide references to publicly available datasets. All derivations,
approximations, and additional analyses supporting the method are included in Appendix [C.2]
Together, these materials provide sufficient information for replication of the reported results.
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A LLM USAGE STATEMENT

In preparing this manuscript, we used a large language model (LLM) in two distinct ways. First, we
employed LLMs as an assistive tool for text refinement, including improving grammar, wording, and
clarity. Second, LLMs themselves are the primary subject of this research: we study reinforcement
learning (RL) training for LLMs. Accordingly, all experiments involve using large models for training,
inference, and scoring, as part of the methodology under investigation.

All scientific content, including problem formulation, methodology, experiments, and conclusions,
was developed and verified entirely by the authors. The authors take full responsibility for the integrity
and accuracy of the manuscript. No LLM was credited as an author, and all substantive research
contributions are attributable exclusively to the human authors.

B MORE DETAILS ABOUT EXPERIMENTS

B.1 DATASETS

We focus on enhancing the mathematical reasoning capabilities of large language models (LLMs)
through policy optimization methods. Our experiments utilize two training datasets with progressive
difficulty levels:

. GSMSKD (Cobbe et al.,2021): A widely-adopted arithmetic reasoning dataset containing 8,500
linguistically diverse grade-school math problems requiring multi-step reasoning. Problems are
presented in natural language with solutions demonstrating explicit logical chains. We use the
standard test split of 1,319 samples for evaluation.

. MATH (Hendrycks et al., 2021): A more challenging dataset covering advanced mathematical
domains including algebra, calculus, and number theory. It contains 12,500 problems with step-
by-step solutions, specifically designed to evaluate deep mathematical understanding and formal
reasoning capabilities. We adopt the “lighteval” subset containing 5,000 problems for efficient
evaluation.

To comprehensively asses generalization, we also test the models on two challenging out-of-
distribution (OOD) benchmarks AMC 2023 (of America, 2023) and AIME 2024 (of Americal
2024). AMC 2023 includes high school-level multiple-choice problems designed to test creative
mathematical thinking, while AIME 2024 features more advanced, open-ended questions that require
multi-step reasoning and precise calculation. Both benchmarks are widely used to assess a model’s
ability to solve competition-style math problems.

B.2 MODELS

We use the pretrained versions of Qwen2.5-1.5B and Qwen2.5-3B models. To avoid any potential
contamination from pre-existing knowledge, we specifically avoid using instruction-tuned variants.

* Qwen2.5-1.5B E] (Yang et al., [2024a): A compact 1.5-billion parameter model optimized for
efficient training while maintaining competitive reasoning capabilities. The base model is initialized
with FP32 precision and trained using LoRA (Hu et al., |2022) (rank=64, a=128) targeting all
attention matrices.

¢ Qwen2.5-3B E] (Yang et al.;2024a): A medium-scale 3-billion parameter variant offering enhanced
representational capacity. We employ identical LoRA configurations as the 1.5B model but with
extended training duration to leverage its larger parameter space.

"nttps://huggingface.co/datasets/openai/gsm8k
Zhttps://huggingface.co/datasets/DigitallearningGmbH/MATH-1lighteval
*https://huggingface.co/datasets/math-ai/amc23
‘nttps://huggingface.co/datasets/HuggingFaceH4/aime_2024
Shttps://huggingface.co/Qwen/Qwen2.5-1.5B
®https://huggingface.co/Qwen/Qwen2.5-3B
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B.3 TRAINING DETAILS

We build our implementation on the recently released and widely adopted veRL framework (Sheng
et al., 2024), which offers an efficient and flexible RL training pipeline. We employ a rule-based
reward model that evaluates both the format and correctness of responses:
1.0, if y follows the correct format and correctly answers x,
r(x,y) =< —0.5, if y follows the correct format but incorrectly answers x, (14)
—1.0, if y is incorrectly formatted.
We use a learning rate of 1 x 10~°, a prompt batch size of 64, a mini-batch size of 64, a group size of
8, a rollout temperature of 1.0, ¢ = 0.2, and 5 = 0.001 for CAPO and GRPO. For the JL transform,

we use d = 8192. We search for the best C for CAPO in {0.1,0.5,1.0}. We run all experiments for
one epoch on 2 NVIDIA A800 GPUs (80GB).

C MATHEMATICAL DERIVATIONS AND THEORETICAL ANALYSIS

C.1 INTRODUCTION TO JOHNSON-LINDENSTRAUSS (JL) TRANSFORMATION

The Johnson-Lindenstrauss (JL) lemma (Johnson et al., [1984)) provides theoretical guarantees for
dimensionality reduction in high-dimensional spaces. Its fundamental insight demonstrates that for
any finite set of points, there exists a linear projection that maps the original high-dimensional data to
a low-dimensional subspace while approximately preserving both pairwise Euclidean distances and
inner products within predefined error margins with high probability. This property has been widely
adopted to accelerate gradient computations in large-scale optimization.

In our implementation, to reduce the computational complexity of Eq. (12), we implement a dimension
reduction strategy through the JL lemma. Following the approach in (Xia et al.||2024), we project the
original gradients into an 8192-dimensional space using randomized linear projections. Formally,

given a gradient vector g € R%, we compute its compressed representation § € R4 through
g=0"g, (15)

where IT € R4 is a random projection matrix whose entries are independently drawn from a
Rademacher distribution (i.e., =1 with equal probability). Here, d denotes the original gradient

dimension and d = 8192 specifies the reduced dimension following (Xia et al., 2024).

C.2 DETAILED DERIVATION OF THE FINAL AGGREGATED GRADIENT g IN CAPO

The final aggregated gradient g in CAPO is derived through Lagrangian duality and first-order
optimality conditions. We provide a step-by-step derivation below.

Original Primal SOCP Problem The gradient aggregation problem is formulated as a second-order
cone program (SOCP) in Eq. (6):

‘s ot
: 16
max - min (g, &) (16)

st. (@g7)>0,1<j<n,

g —goll < Cllgoll,
where C' > 0 controls the proximity to the original gradient g.

Step 1: Equivalent Reformulation with Auxiliary Variable To simplify the max-min objective,
we introduce an auxiliary variable ¢ € R, transforming Eq. into Eq. (7):

min t an
geRd teR

st. —(g,gf)—t<0,1<i<m,
—(8,8;) <0, 1<j<n,
1€ — &oll* — C?llgoll* < 0.
Here, ¢t upper-bounds the negative inner products between g and positive gradients.
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Step 2: Lagrangian Formulation The Lagrangian L of the problem in Eq. is constructed by
incorporating constraints via dual variables o;; > 0,3; > 0, A > 0O:

L(g.t,a, 8, \) ft—Zaz & 8') +1) Zﬂ] & 87)+ (I8 — ol — C?llgol?) . (18)

i=1 j=1

Step 3: First-Order Optimality Conditions The first-order optimality conditions hold because the
problem is convex and satisfies Slater’s condition for C' > 0, ensuring strong duality, while results
trivially hold for C' = 0. Taking partial derivatives of L with respect to ¢ and g, and setting them to
Zero:

aL m m
5 ;;;cx ;;;cx (19)

8L m n 3 _
95 = 2B —D Mgl + 0@ -8 =0 = &= go+* ZalgHZ%
=1

j=1
(20)
Step 4: Dual Problem Derivation Plugging Eq. (19) and Eq. (20) into Eq. (I8) leads to
77)\é f L~7t7aaA
q(e, B, \) et o (8t B,A)
2
1 m n 3 m n B
= — o IPo st + D 8igr | —AC?oll” - <Zaigi+ +) Big; ,go> :
i=1 Jj=1 i=1 j=1
2D
Applying the AM-GM inequality 7| - [|* + AC?||go|* > C/lgoll - ||, we have:

g(a, B,0) < =Cllgoll - | Y cug” + Y Big; || — <Zaigi++25jgj7g0>a (22)
i=1 j=1 i=1 j=1

where equality holds when:

HZZ 104ng +Z] 15]g7
2C]goll

(23)

Step 5: Final Aggregated Gradient Expression Let Ag = > ;g + > i—1 Bjg; - From

Eq. and Eq. (23), substituting \ gives:
~ Ag
g=8+ 5 =8+

Ag
2 5. gl
2Cgoll

A
=g0+0|\g0\|-®. (24)

Step 6: Practical Implementation with JL Projection To compute Ag efﬁc1ent1y, gradients are
projected into a low-dimensional space via the JL transform (Appendlx . Letg = Pi(g)
and g; = PJL(g] ). The dual variables £* = (aq, ..., am,B1,..., )" are obtained by solving:

min Cllgol| (fTGTég) +¢GTgo, st Y &i=1,42>0, (25)
=1

where G = [&,...,&5,87,...,8;]. Substituting £* into Ag and Eq. yields the final
aggregated gradient g.

Summary The derivation rigorously connects the primal SOCP problem to the dual formulation,
ensuring g balances conflict mitigation (via constraints on g, ) and alignment with go (via the
£5-ball constraint). The use of JL projection maintains computational tractability without sacrificing
theoretical guarantees.
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C.3 CONVERGENCE ANALYSIS

We provide the proof of CAPO’s convergence in this section.

L

Assumption C.1. Assume the loss function £(6) is differentiable on R and its gradient V£(6)
go(0) is H-Lipschitz, i.e., ||go(7) — go(y)|| < H ||z — y|| where 0 < H < oc.

Assumption C.2. Assume L* = infycpa £(6) > —oo.

Theorem C.3. If Assumption and Assumption hold, with a fixed step size o satisfying
0<a<1/Hand0 < C; < C* forVt, the CAPO algorithm satisfies the following:

1. For 0 < C* < 1, the gap between the loss at the T-th iteration and the optimal loss L* satisfies:
o T
L(O741) = L7 < L(0o) = L7 = S(1=C) Y lgo(01)]] (26)
t=0

2. When Cy = 1 for Vt, and 0 < o < 1/H, there exists a per-iteration progress rate § > 0 such
that:

L(07) — L£* < L(06) — L — T§. 27)

Proof. We will first prove Eq. . Consider the ¢-th optimization step and denote g(6;) as the
update direction at the ¢-th iteration. Then we have:

L(0r1) — L(8) = L0 — oE(0))) — L(61)
B 5001 by the Assumprion )

< —ogo(0) TEO) + S B0 (since o < 1/H) )
= 5 (leo@I* + @I — llgo(6) ~ &0 17) + 5O

=5 (leo®)I” = IE(6:) — g0(8)])

< —ago(0:) "g(0:) +

< ——(1-C?)|lgo(6s)||* (by the constraint in Eq. (6) (29)

< —=(1—=C")go(6)]* (30)

| 2N

Using telescoping sums, we obtain the inequality

L(Br+1) - L(0) < -5 (1 —C*Qéngo(enu?. &
By introducing the L*, this can be rewritten as
L(Or41) = L7 = (L(6o) — L7) < *%(1 - ) XT: [EIC] (32)
t=0
Rearranging the terms yields
L(Or11) — L% < L(0o) — L7 — %(1 - ) ZTI [ECAI (33)
t=0

Proof of equation[27] For the case C' = 1, we follow an analogous argument to the proof of Eq. (26).
Under the step size constraint 0 < « < 1/H (stricter than « < 1/H), inequality equation
becomes

L(B141) = L0) < =5 (1= CP)lgo(6:) % (34)
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Plugging Cy = 1 (Vt) into Eq. [34]leads to
£(9t+1) — E(Ht) <0 Vt>0. (35)

This implies that the sequence {L£(6;)} is strictly monotonically decreasing. By the lower bounded-
ness of £* (Assumption|[C.2)), there exists a constant § > 0 such that for all ¢ > 0, we have

L(0) — L(Or41) > 6. (36)
Summing overt = 0,1,...,T — 1, we obtain
L(6o) — L(0r) > T6. (37)
Introducing £* and rearranging the terms, we obtain
L(07)— L* < L(Oy) — L* —To. (38)
which completes the proof. O
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