
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Robust Route Planning under Uncertain Pickup Requests for
Last-mile Delivery

Anonymous Author(s)∗

ABSTRACT
Empowered by the widespread adoption of Internet of Things (IoT)
devices and smartphones, last-mile delivery services have evolved
to accommodate both delivery and pickup tasks. An essential chal-
lenge in last-mile delivery is efficiently planning routes for couriers
to handle pre-scheduled delivery requests as well as stochastic
pickup requests. Existing work approaches this problem by either
adjusting routes on the fly when new requests arise or preplan-
ning routes based on predicted future pickup requests. However,
these methods either compromise the optimality of planned routes
or heavily rely on the accuracy of predictions. In this work, we
take conformal prediction as an opportunity to address the issue of
prediction uncertainty. We design ROPU, a novel courier route plan-
ning framework for logistics systems that incorporates conformal
prediction into reinforcement learning. Our work advances the ex-
isting work from two aspects: (i) Pickup request prediction utilizes
spatial-temporal conformal prediction to capture historical pickup
request patterns, providing a unified spatial-temporal conformal
interval with high confidence (ii) A spatial-temporal attention net-
work assesses location importance from various perspectives and
enables the actor to perceive time and integrate the spatial-temporal
conformal interval. We implement and evaluate ROPU on one of
the largest logistics platforms. Extensive experiment results demon-
strate that our method outperforms other state-of-the-art methods
with improvements of at least 30.49% in the pickup overdue rate,
25.00% in the delivery overdue rate, and 5.49% in the traveling
distance metric.
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1 INTRODUCTION
Last-mile delivery, as an emerging Web-of-Things service in lo-
gistics systems, transits parcels from local distribution centers or
stations to the final consumers. In this process, each courier is re-
sponsible for delivering hundreds pieces of parcels to designated
areas (e.g., one or many communities) in one day. Empowered by
the pervasive Internet of Things (IoT) devices and smartphones,
last-mile delivery has integrated an increasing number of sensor de-
vices, such as GPS, RFID, and WiFi [6, 16, 34]. For example, couriers
use their smartphones to record real-time locations and report the
status of each parcel to web servers when it is picked up and deliv-
ered. This integration enhances the efficiency of couriers [17, 31],
improving the traceability of parcels [24], and significantly propels
the advancement of entire logistics systems.

As a recent trend of expanding the existing last-mile delivery
service, pickup services have been integrated into the process [18].
That is, in addition to scheduled delivery, couriers are also respon-
sible for handling an increasing number of on-demand pickup re-
quests (i.e., pickup parcels from customers for delivery), which
account for up to a quarter of the total requests. These requests
can originate from any location in the communities at any time,
and have to be fulfilled within a short time, often as little as one
hour [17]. The timely handling of these requests significantly im-
pacts the courier’s delivery behavior and route. Ignoring or in-
adequately addressing these pickup requests can lead to reduced
operational efficiency, as demonstrated in our experiments. There-
fore, route planning for couriers that considers both delivery and
pickup requests has become an essential aspect of efficient last-mile
delivery services.

Route planning is a variant of the classic Vehicle Routing Problem
(VRP) or Traveling Salesman Problem (TSP). Its primary objective
is to find an optimal route that visits all required locations while
minimizing travel distance. While TSP and VRP deal with static
locations, real-world routing problems are often more intricate,
involving dynamic or stochastic requests and real-time location
updates [21]. One straightforward approach to addressing these
dynamic routing problems is to modify planned routes in real-
time when receiving stochastic requests [19, 26, 32]. However, this
method can disrupt the optimality of planned routes, leading to
detours to accommodate stochastic requests. For instance, it may
require returning to previously visited locations to pick up parcels.
Alternative methods [15, 29, 35] involve predictive planning. These
approaches consider anticipated future requests when devising
routes. Nevertheless, the effectiveness of such methods is contin-
gent upon the accuracy of predictions and may fall short when
faced with prediction uncertainties.

In this work, we aim to design a robust route planning frame-
work that can effectively handle the inherent uncertainty associated
with predicting future stochastic pickup requests. To this end, we
take conformal prediction [25] as an opportunity, which provides
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prediction intervals with high confidence levels, regardless of what
predictor is used. Our focus here is spatial-temporal conformal pre-
diction, where we guarantee the actual pick request happens within
a small set of predicted locations (i.e., spatial interval) in a certain
predicted duration (i.e., temporal interval) at a high confidence
level. By incorporating this high-confidence spatial-temporal inter-
val into our route planning process, we can generate routes that
consider both delivery and pickup requests with reduced uncer-
tainty. This enhancement significantly improves the efficiency of
last-mile delivery services.

Leveraging conformal prediction for courier route planning has
the following two key challenges. First, route planning requires
spatial-temporal information, including both the ’where’ and ’when’
aspects of pickup events. Conformal prediction, as traditionally
applied, primarily handles one-dimensional outputs, such as ob-
ject classes (e.g., cat or dog), which cannot capture the inherent
connection between the spatial and temporal dimensions. More-
over, real-world route planning must count for geographical factors
such as road network, and the spatial-temporal interval can be
affected by distribution shifts over time. [8]. The second challenge
involves incorporating spatial-temporal conformal prediction into
route planning. In particular, we use a Reinforcement Learning(RL)-
based planning method considering it is a common method for
solving stochastic VRP [19, 21]. Despite RL’s applicability, there
is currently a lack of a framework that effectively integrates re-
inforcement learning with spatial-temporal intervals. Specifically,
the challenges lie in adequately representing the spatial-temporal
interval within the reinforcement learning context and enabling the
policy network to account for the potential impact of the spatial-
temporal interval.

To address these challenges, we model courier route planning
as a Markov Decision Process and design a route planning frame-
work by combining actor-critic reinforcement learning and spatial-
temporal conformal prediction, named ROPU. We first design a
spatial-temporal unified conformity score to obtain a spatial-temporal
interval for pickup request prediction. This design takes road net-
works into account as a constraint within the spatial interval while
also considering distribution shifts over time in the spatial-temporal
interval. Then we present irregular the spatial-temporal conformal
interval in a 3D space and integrate them into an RL-based routing
planning model. Following that, we create a spatial-temporal atten-
tion network serving as the actor. This network has the capability to
perceive time and integrate the spatial-temporal conformal interval.
It considers the importance of different locations from four aspects:
temporal, spatial, actual requests, and requests under conformal
prediction, ultimately selecting the most suitable next location.

In particular, our main contributions are as follows.

• To our best knowledge, we are the first to approach the
courier route planning problem under uncertain pickup
requests for last-mile delivery taking the opportunity of
conformal prediction.

• We design ROPU, a novel courier route planning framework
for last-mile delivery that incorporates conformal predic-
tion into reinforcement learning. This framework incor-
porates several innovative components: (i) Pickup request
prediction utilizes spatial-temporal conformal prediction

to capture historical pickup request patterns, providing a
unified spatial-temporal conformal interval with high confi-
dence, while also considering road conditions.; (ii) A spatial-
temporal attention network assesses location importance
from four perspectives: spatial, temporal, actual request,
and predicted request intervals. This network enables the
actor to perceive time and integrate the spatial-temporal
conformal interval, allowing it to select the most suitable
next action (location).

• We implement and evaluate ROPU on one of the largest
logistics platforms, i.e., [anonymous company]. We have
conducted extensive experiments based on 4-month real-
world data, demonstrating that our method outperforms
other state-of-the-art methods with improvements of at
least 30.49% in the pickup overdue rate, 25.00% in the de-
livery overdue rate, and 5.49% in the traveling distance
metric.

2 DEFINITION AND FORMULATION
2.1 Definition
2.1.1 Delivery Request. A delivery request is for couriers to
deliver parcels to a customer with a specific deadline, such as 3 p.m.
or 12 p.m. The delivery requests are generally conformed a certain
duration earlier (e.g., 8 hours) than work hours.

2.1.2 Pickup Request. A pickup request is a stochastic request
from customers to pick up parcels at a designated location (e.g., the
customer’s home) within a specified time period (usually within
one hour) for delivery.

2.1.3 Delivery Station and Delivery Zone. A delivery station
acts as the origin point for last-mile delivery, where courier assem-
bled parcels based on the delivery locations. The covered area of
a delivery station is segmented into several delivery zones (e.g.,
communities), taking into account various real-world factors such
as the configuration of road networks and the dispersion of request
destinations [31]. Each delivery zone is assigned to one delivery
courier, who is responsible for completing all delivery and pickup
requests within the zone.

2.1.4 Area of Interest(AOI). An area of interest (AOI) is a collec-
tion of nearby locations (e.g., building) in a delivery zone and each
delivery zone has one or more AOIs. In our problem, AOI is the
minimum spatial unit that represents delivery and pickup locations.

2.2 Problem Formulation
Courier Route Planning Problem. Given a delivery zone, a set
of delivery requests, and historical pickup requests in this zone,
our goal is to find a function to generate an optimal route for the
courier in this delivery zone that maximizes the courier’s efficiency
(i.e., minimize the total traveling distance) and ensure a good cus-
tomer experience (i.e., maintain a low overdue rate of requests),
considering potential future stochastic pickup requests.

In our work, we formulate courier route planning as a Markov
Decision Process (MDP). We define an agent for the last-mile de-
livery center, which is responsible for providing a delivery route
for each courier in their delivery zone. Formally, this problem is
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characterized by four major components: {A,S,P,R}. A denotes
the action space; S denotes the set of states; P denotes the state
transition; R is the reward function. We introduce A,S,P,R in
detail as follows.
Action A. The action 𝑎𝑘 involves selecting the next location (i.e.,
AOI) the courier should proceed to at decision epoch 𝑘 . These de-
cision epochs represent the moments when the agent determines
actions for creating a planned route. The courier then follows this
route to fulfill delivery requests and potential pickup requests along
the way. After completing a route, we advance to the next deci-
sion epoch, denoted as 𝑘 + 1. We use 𝑡 (𝑘) to represent the time
of decision epoch 𝑘 . It is important to note that the time intervals
between two decision epochs are non-uniform due to varying ac-
tion completion times. During the training process, the agent takes
action (i.e., chooses a location) at each decision epoch, collectively
forming a route. In contrast, during testing, the agent incremen-
tally generates a complete route based on the current state, using
a well-trained model. When a new pickup request is received, the
agent recalculates the route accordingly.
StateS. The state at decision epoch 𝑘 is defined as 𝑠𝑘 = {𝑡 (𝑘), 𝑙𝑜𝑐𝑘𝑐 ,
𝑙𝑜𝑐, 𝑑𝑘

𝑑𝑒
, 𝑑𝑘𝑝 , 𝑑

𝑘
𝑝𝑟𝑒 }, where 𝑡 (𝑘) is the time of decision epoch 𝑘 . 𝑙𝑜𝑐𝑘𝑐 is

the current location of the courier at decision epoch 𝑘 . Each location
(i.e., AOI) has these information {𝑙𝑜𝑐, 𝑑𝑘

𝑑𝑒
, 𝑑𝑘𝑝 , 𝑑

𝑘
𝑝𝑟𝑒 }. The 𝑙𝑜𝑐𝑖 is the

two-dimensional coordinate of AOI 𝑖 . The 𝑑𝑘
𝑑𝑒,𝑖

, 𝑑𝑘
𝑝,𝑖
, 𝑑𝑘
𝑝𝑟𝑒,𝑖

of AOI 𝑖
is defined as follows.

• 𝑑𝑘
𝑑𝑒,𝑖

is the delivery request in AOI 𝑖 at decision epoch 𝑘 ,
represented by a vector where different dimensions of the
vector represent the request within specific time periods
(i.e., the deadline of requests is within a certain time period).
• 𝑑𝑘

𝑝,𝑖
and𝑑𝑘

𝑝𝑟𝑒,𝑖
are actual pickup request and predicted pickup

request in AOI 𝑖 at decision epoch 𝑘 , which are also rep-
resented by a vector, similar to 𝑑𝑘

𝑑𝑒,𝑖
. Predicted pickup re-

quests would not be added to the actual pickup requests
until occurred.

State Transition P. Before entering the next decision epoch 𝑘 + 1,
we update the time and three types of requests according to the
real-world data (i.e., actual pickup requests that occurred) and the
impact of the action (i.e., delivery and pickup requests served). (1)
When an actual pickup request occurs between two decision epochs,
we need to add this request to the actual pickup request and make
reductions in the predicted pickup request. (2) When delivery and
pickup requests are served, we reduce the corresponding actual
request as well as decrease the associated predicted request. (3) We
update 𝑡 (𝑘 + 1) based on 𝑡 (𝑘), traveling time, and serving time. It
is defined as 𝑡 (𝑘 + 1) = 𝑡 (𝑘) + 𝐷𝑖𝑠𝑘 × 𝑆𝑝𝑒𝑒𝑑𝑡𝑟𝑎 + 𝑁𝑘𝑑𝑒 × 𝑆𝑝𝑒𝑒𝑑𝑑𝑒 +
𝑁𝑘𝑝 × 𝑆𝑝𝑒𝑒𝑑𝑝 , where 𝑆𝑝𝑒𝑒𝑑𝑡𝑟𝑎, 𝑆𝑝𝑒𝑒𝑑𝑑𝑒 , and 𝑆𝑝𝑒𝑒𝑑𝑝 represents the
speed of traveling, delivery serving, and pickup serving, which
are estimated from historical speed and service time. 𝑁𝑘

𝑑𝑒
and 𝑁𝑘𝑝

represent the number of customers with delivery requests served
and customers with pickup requests served during decision epoch
𝑘 , respectively. Then we integrate them to the next state, denoted
as 𝑠𝑘+1 = {𝑡 (𝑘 + 1), 𝑙𝑜𝑐𝑘+1𝑐 , 𝑙𝑜𝑐, 𝑑𝑘+1

𝑑𝑒
, 𝑑𝑘+1𝑝 , 𝑑𝑘+1𝑝𝑟𝑒 }.

Reward Function R. Given the state 𝑠𝑘 and the action 𝑎𝑘 at de-
cision epoch 𝑘 , we calculate the reward 𝑟𝑘 , which comprises the

traveling distance and the overdue rate (i.e., indicating delay of ful-
filling requests). A shorter traveling distance and a lower overdue
rate indicate a higher reward. The reward is defined as

𝑟𝑘 = −1
2
𝜆
Δ𝑑𝑒

𝑑𝑒
× 𝐷𝑖𝑠 − 1

2
𝜆
Δ𝑝

𝑝 × 𝐷𝑖𝑠, (1)

where 𝐷𝑖𝑠 is the traveling distance between two AOIs (i.e., the last
selected location and the next selected location). Δ𝑑𝑒 and Δ𝑝 are
the overdue rate of delivery requests and pickup requests during
this period. 𝜆𝑑𝑒 and 𝜆𝑝 , greater than 1, are the penalty factors for
delivery requests and pickup requests. 𝜆Δ𝑑𝑒

𝑑𝑒
and 𝜆Δ𝑝

𝑝 account for
the influence of the overdue rate and serve as penalty terms. The
larger the overdue rate, the less the corresponding reward.

Given the above definition, we aim to learn a policy to make
decisions, which can be represented as

𝑃 (𝐴|𝑠0) =
𝐾∏
𝑘=0

𝜋 (𝑎𝑘+1 |𝑎𝑘 , 𝑠𝑘 ), (2)

where 𝑠𝑘 denotes the state at decision epoch 𝑘 , and A denotes the
route composed of a series of actions (locations). Our goal is to
find an optimal policy 𝜋∗ and maximize the cumulative reward
E𝑎∼𝜋 ( |𝑎,𝑠 ) [

∑∞
𝑘=1 𝑟 (𝑎𝑘 , 𝑠𝑘 )].

3 DESIGN
3.1 Overview

Environment

Pickup request prediction

Spatial-temporal
conformal prediction

State

Actor Spatial-temporal
attention network

Critic

State

Value network

Pr
ob

ab
ili

ty

Pickup requests

Delivery requests

Road

Courier
Actor update

Critic update

Select action

Past
actions

Conformal pickup
request prediction

Fig 1: Framework of ROPU

Wedesign a reinforcement learning-based courier route planning
framework incorporated by conformal prediction, named ROPU,
depicted in Fig. 1. There are twomodules in ROPU: the environment
module and the actor-critic reinforcement learning module. (1) The
environment module simulates couriers’ last-mile delivery opera-
tions based on real-world delivery requests, pickup requests, road
networks, and courier status. We further build a pickup request
prediction model to predict future pickup requests using histori-
cal pickup requests. To quantify the uncertainty of the prediction
model, we develop a spatial-temporal conformal prediction method
to generate a spatial-temporal interval for each pickup request. (2)
The actor-critic reinforcement learning module incorporates real-
time observations from the environment to determine the optimal
route for a courier. This route is continuously updated to adapt
to dynamic changes in requests. Specifically, the agent selects an
action as the next location for couriers at each decision epoch and
receives a reward from the environment. The action is determined

3
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by an actor, in this case, our designed spatial-temporal attention
network. As the state changes, we use the critic to assess the value
of the actions made by the actor and provide feedback to it.

In this section, we first introduce conformal pickup request pre-
diction. Then we introduce the spatial-temporal attention network
and finally introduce the training method.

3.2 Conformal pickup Request Prediction
Considering the significant impacts of the stochastic pickup re-
quests on couriers’ routes, we first predict the time and location of
pickup requests in a future time period (such as a day) by extract
occurring patterns from the historical pickup requests. Then, to
quantify the uncertainty of the prediction model, we introduce
spatial-temporal conformal prediction.

3.2.1 Pickup Request Prediction. In a delivery zone where mul-
tiple pickup requests occur throughout the day, we regard the
prediction of pickup requests as a sequence prediction task [9].
Formally, we define the prediction as

𝑋𝑛+1, ..., 𝑋𝑛+𝐾 = 𝑓 (𝑋1, ..., 𝑋𝑛), (3)

where 𝑋𝑛 = [𝑙𝑛, 𝑡𝑛] denotes the location 𝑙𝑛 and time 𝑡𝑛 of the 𝑛-th
pickup request. {𝑋1, ..., 𝑋𝑛} represent 𝑛 historical pickup requests
and {𝑋𝑛+1, ..., 𝑋𝑛+𝐾 } represent 𝐾 future pickup requests. 𝑓 is a se-
quence prediction model that can be adjusted using various models,
such as LSTM [10] or Transformer [30]. Since the number of pickup
requests varies each day, we apply a method borrowed from Natural
Language Processing (NLP) [20]. We introduce a start symbol and
an end symbol, and then pad any insufficient parts of the sequence
with a special symbol. These symbols can be learned gradually
during the training process and assigned specific meanings for the
sequence’s beginning, end, and padding.

3.2.2 Spatial-Temporal Conformal Prediction. Conformal pre-
diction [25] is a technique for quantifying uncertainties of machine
learning models. Specifically, given an input, conformal prediction
estimates a prediction interval that is guaranteed to cover the true
value with high probability. Formally, given a dataset (𝑋𝑖 , 𝑌𝑖 )𝑛𝑖 and
a new observation (𝑋𝑛+1, 𝑌𝑛+1), it can be represented as

𝑃 (𝑌𝑛+1 ∈ 𝐶𝛼 (𝑋𝑛+1)) ≥ 1 − 𝛼, (4)

where 𝑌𝑛+1 is a true value, 𝐶𝛼 (𝑋𝑛+1) is the prediction interval,
and 𝛼 is the confidence level. In our problem, we use conformal
prediction to generate a spatial-temporal interval for each pickup
request, ensuring high confidence.

The general conformal prediction framework [22, 25] is designed
for a 1-dimensional value or a 2-dimensional location, which does
not capture the inherent connection between the spatial and tempo-
ral dimensions. This special requirement motivates us to design a
unified spatial-temporal interval to guide courier’s routes. Addition-
ally, the spatial-temporal interval needs to consider the constraints
of geographical factors such as road networks. The distribution
shifts over time can also influence the generation of the spatial-
temporal interval [8]. To achieve our goal, we modify the existing
conformal prediction framework with the following five steps.

(i) Identify a score function to quantify inconsistency. The
conformity score is used to evaluate the conformity between the
calibration’s response values and the predicted values. To measure

the conformity of the spatial-temporal outputs, we define it as a
vector 𝑚𝑖 = [𝑚𝑖,𝑠𝑝 ,𝑚𝑖,𝑡 ,𝑚𝑖,𝑠𝑝𝑡 ], where 𝑚𝑖,𝑠𝑝 ,𝑚𝑖,𝑡 ,𝑚𝑖,𝑠𝑝𝑡 are spa-
tial, temporal, and spatial-temporal prediction errors, respectively.
𝑚𝑖,𝑠𝑝 is the distance error, defined as 𝐷𝑖𝑠𝑔 (𝑙𝑦̂, 𝑙𝑦), where 𝑙𝑦̂ is two-
dimensional coordinates of the predicted location, 𝑙𝑦 is the true
location, and𝐷𝑖𝑠𝑔 is the distance between them.𝑚𝑖,𝑡 is the temporal
error, defined as |𝑡𝑦̂−𝑡𝑦 |, where 𝑡𝑦̂ and 𝑡𝑦 are the predicted time and
true timem, respectively.𝑚𝑖,𝑠𝑝𝑡 measures the spatial-temporal joint

error, defined as
√︃
(𝑢 (𝑚𝑖,𝑠𝑝 )2 + 𝑢 (𝑚𝑖,𝑡 )2, where 𝑢 (·) represents a

normalization operation, as𝑚𝑖,𝑠𝑝 and𝑚𝑖,𝑡 are not on the same scale.
(ii) Compute (1 − 𝛼)-th quantile of scores. After that, we

calculate (1 − 𝛼)-th quantile of the conformity scores, denoted
as 𝑄1−𝛼 (𝑀𝑐𝑎𝑙 ) . This quantile is based on 𝑚𝑠𝑝𝑡 to ensures cover-
age both in spatial and temporal aspects. Specifically,𝑄1−𝛼 (𝑀𝑐𝑎𝑙 ) is
composed of three dimensions [𝑄𝑠𝑝1−𝛼 (𝑀𝑐𝑎𝑙 ) , 𝑄

𝑡
1−𝛼 (𝑀𝑐𝑎𝑙 ) , 𝑄

𝑠𝑝𝑡

1−𝛼 (𝑀𝑐𝑎𝑙 ) ].
(iii) Construct prediction interval. Based on 𝑄1−𝛼 (𝑀𝑐𝑎𝑙 ) ,

we can calculate spatial-temporal prediction interval 𝐶𝛼 (𝑋𝑛+1) =
[𝐶𝑠𝑝𝛼 (𝑋𝑛+1),𝐶𝑡𝛼 (𝑋𝑛+1)]. The spatial interval, 𝐶

𝑠𝑝
𝛼 (𝑋𝑛+1), is defined

as [𝑌 𝑠𝑝
𝑛+1 ± 𝑄

𝑠𝑝

1−𝛼 (𝑀𝑐𝑎𝑙 )] and the temporal interval, 𝐶𝑡𝛼 (𝑋𝑛+1), is
defined as [𝑌 𝑡

𝑛+1 ± 𝑄
𝑡
1−𝛼 (𝑀𝑐𝑎𝑙 )]. The resulting spatial-temporal

interval we constructed is a 3D geometry in the spatial-temporal
space, as shown in Fig. 2.

Temporal

Spatial

Fig 2: 3D spatial-
temporal interval

Predicted
location

Spatial conformal
interval A

B
C Pickup

location

Road Network

Fig 3: Impact of geographical
factors on route planning.

(iv) Geographical factors.We consider the impact of geograph-
ical factors on route planning. Fig. 3 illustrates this impact, with
A and B representing the actual and predicted pickup request lo-
cations, respectively. The light gray circle denotes the prediction
interval without considering geographical factors, which includes
point C. In reality, due to road separation, C is distant from A and B.
Including C in the interval could lead to inaccurate route planning.
Therefore, we incorporate a road network and use road distance to
calculate 𝐷𝑖𝑠𝑔 when computing spatial conformal scores.

(v) Distribution shifts over time. For the temporal aspect, the
time sequence data do not conform the exchangeable assumption
due to distribution shifts [8, 33]. To address this issue, we adopt
a technique inspired by [8] for online updates. We first compute
the interval based on existing data. Then whenever a new request
occurs, we update both the spatial-temporal interval 𝐶𝑘+1𝛼𝑘+1 (𝑋𝑘+1)
and the confidence level 𝛼𝑘+1 after 𝑘 pickup requests occurring. The
update of 𝛼𝑘+1 is defined as 𝛼𝑘+1 = 𝛼𝑘 + 𝛽 (𝛼 − I{𝑦𝑘 ∉ 𝐶𝛼𝑘 (𝑋𝑘 )}),
where 𝛽 > 0 is a step size parameter and 𝛼 is the original confidence
level. After updating 𝛼𝑘+1, we also adjust the associated spatial-
temporal interval and make appropriate modifications in the next
state 𝑠𝑘+1.
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3.3 Spatial-Temporal Attention Network.
In our RL framework, the actor is used to select actions (i.e., next
location) based on the probabilities provided by the actor network.
Motivated by [19], we utilize an attention network as the actor. To
incorporate the time windows and the spatial-temporal interval of
predicted pickup requests, we design a spatial-temporal attention
network. Fig. 4 shows the structure of the spatial-temporal attention
network. (i) The inputs of the network are the known (pickup
and delivery) requests and the predicted pickup requests at each
location. Then we encode the known and predicted requests for
all locations by a spatial-temporal embedding layer. Subsequently,
we obtain two kinds of embedding and concatenate them for the
same location. (ii) We feed the embedding of the current courier
location into an RNN to obtain the hidden state. (iii) Then we use
the hidden state from the RNN as the query to obtain attention
scores for different locations and get the probability of each location
being selected. The spatial-temporal attention network computes
the importance of the actual (pickup and delivery) requests and
conformal predicted pickup requests separately, in order to endow
the actor with the ability to perceive time and integrate the spatial-
temporal conformal interval.

3.3.1 Spatial-Temporal Embeddings. Let ℎ𝑘
𝑖
= (𝑙𝑜𝑐𝑖 , 𝑑𝑘𝑑𝑒,𝑖 , 𝑑

𝑘
𝑝,𝑖
)

be the feature of location 𝑖 to represent the known requests, where
𝑙𝑜𝑐𝑖 , 𝑑

𝑘
𝑑𝑒,𝑖

, 𝑑𝑘
𝑝,𝑖

is the location coordinate, the delivery request, and
the actual pickup request of location 𝑖 , respectively. These features
are be directly fed into the embedding layer to obtain the spatial
dimension embeddingℎ

𝑘

𝑖,𝑠𝑝 . Additionally, we add a timemask on the
feature in the time dimension before feeding it into the embedding
layer to obtain the time dimension embedding ℎ

𝑘

𝑖,𝑡𝑒 . The time mask
here is used to hide the requests from previous time steps. We
concatenate the embeddings of spatial and temporal dimensions to
obtain ℎ

𝑘

𝑖,𝑘𝑛 = [ℎ𝑘𝑖,𝑠𝑝 ⊕ ℎ
𝑘

𝑖,𝑡𝑒 ], where ⊕ denotes concatenation.
In addition, we let ℎ𝑘

𝑖,𝑝𝑟𝑒
= (𝑙𝑜𝑐𝑖 , 𝑑𝑘𝑝𝑟𝑒,𝑖 ) be the feature of location

𝑖 to represent the predicted requests. We apply the same embedding
and time mask operations to this feature, producing embeddings in
both the spatial and temporal dimensions. Notably, the time mask
here conceals requests from previous time steps and from the next

few hours, effectively filtering out requests that cannot be fulfilled
in the near future. Then we obtain concatenated embeddings ℎ

𝑘

𝑖,𝑝𝑟𝑒 .
Finally, by concatenating the embeddings of the known requests and
predicted requests for each location, we obtainℎ

𝑘

𝑖 = [ℎ𝑘𝑖,𝑘𝑛⊕ℎ
𝑘

𝑖,𝑝𝑟𝑒 ] .

3.3.2 Attention Network. We employ an RNN for the decoder
and the input of the RNN is the embedding of the courier’s current
location. At each decoder step, we use the hidden state of the RNN
as the query to calculate the importance of each location for the next
decoding step. Let 𝑧𝑘 ∈ R𝐷 represent the hidden state of the RNN
cell at decoding step 𝑘 . We compute the attention scores as 𝛼𝑘 =

𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑢𝑘 ), where 𝑢𝑘
𝑖
is defined as 𝑢𝑘

𝑖
= 𝜎 (𝑊𝑎 [ℎ

𝑘

𝑖 ⊕ 𝑧𝑘 ]). Here,
𝑊𝑎 is trainable weight, and 𝜎 is the activation function. Then we
calculate the weighted sum of the vector, defined as 𝑐𝑘 =

∑𝑀
𝑖 𝛼𝑘

𝑖
𝑥𝑘𝑖 .

We calculate the conditional probabilities by combining the context
vector 𝑐𝑘 , computed as 𝜒𝑘

𝑖
= 𝑣𝑐𝜎 (𝑊𝑐 [𝑥𝑘𝑖 ⊕ 𝑐𝑘 ]), where 𝑣𝑐 is a

trainable variable. Finally, we normalize the values using a softmax
function to obtain the selected probability

𝜋 ( |𝑌𝑘 , 𝑋𝑘 ) = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝜒𝑘 ) . (5)

For generating a feasible route, we use a masking scheme that
sets the log probabilities of infeasible locations to −∞. Specifically,
we use the following masking procedures: (i) spatial mask: locations
with no requests are not allowed to be visited; (ii) temporal mask:
locations cannot be accessed if the requests’ deadlines are 𝑛 hours
later than the current time.

3.4 Training Method
In our RL framework, the critic evaluates the action and provides
feedback to the actor. The critic serves as a function estimator,
taking the agent’s state as input and outputting the state value. The
state value function, denoted as 𝑉𝜃𝑐 (𝑠𝑘 ), represents the expected
long-term value at decision epoch 𝑘 under state 𝑠𝑘 .

Then we introduce the updated strategy of the actor and critic.
Firstly, we update the weights of the critic using time difference
methods [2]. The network parameters 𝜃𝑐 are updated byminimizing
the following loss function

𝐿𝜃𝑐 =
1
2
[𝑟𝑘+1 +𝑉𝜃𝑐 (𝑠𝑘 ) −𝑉𝜃𝑐 (𝑠𝑘+1)]

2, (6)

where 𝜃𝑐 is the parameters of the value network. Secondly, we
update the weights of the actor based on an advantage function

𝐴(𝑠𝑘 , 𝑎𝑘 ) = 𝑟𝑘+1 +𝑉𝜃𝑐 (𝑠𝑘 ) −𝑉𝜃𝑐 (𝑠𝑘+1), (7)

where the advantage function is used to reduce the high variance
of the policy networks and stabilize the model. With the advantage
function, we define the gradient of actor by

∇𝜃𝜌 𝐽 (𝜃 ) = ∇𝜃𝜌𝜋𝜃𝜌 (𝑠
𝑘 , 𝑎𝑘 )𝐴(𝑠𝑘 , 𝑎𝑘 ), (8)

where 𝜃𝜌 is the weight of actor and 𝜋𝜃𝜌 (𝑠𝑘 , 𝑎𝑘 ) is the policy proba-
bility function. Then we update the actor’s parameters 𝜃𝜌 by the
gradient descent rule as 𝜃𝜌 ← 𝜃𝜌+𝜂∇𝜃𝜌 𝐽 (𝜃 ),where𝜂 is the learning
rate.
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4 EVALUATION
In this section, we first introduce our datasets, followed by the
experimental settings. Then, we introduce the performance of our
method.

4.1 Dataset Description
We conduct experiments on a real-world dataset, collected from
[anonymous company], one of the largest logistics companies in
China. The dataset includes delivery and pickup parcel information,
as well as courier trajectories in the central area of a city. The parcel
information includes details such as location, start time, deadline,
and finish time, while the trajectories contain latitude and longitude
information. We focus on a 4-month period of delivery service data,
which included over 960,000 pickup requests and 290,000 delivery
requests. An example of the data is provided in Table 1.

Table 1: An example of data.

Pickup info Location Start time Deadline Finish time
A001 01-12 10:30:30 01-12 11:30:30 01-12 11:15:02

Delivery info Location Start time Deadline Finish time
A002 01-12 06:17:30 01-12 15:00:00 01-12 10:12:00

Trajectory data Id Longitude Latitude Timestamp
D001 121.39 37.50 01-12 09:00:30

4.2 Experimental Setup
4.2.1 Evaluation Configuration. For the time settings, we di-
vide the 24 hours of a day into 15-minute intervals, resulting in
a total of 96 time slots. For the spatial setting, we aggregate the
locations of all delivery and pickup requests within the same AOI,
using the central coordinates of the AOIs as the delivery and pickup
request locations. Additionally, we leverage the road network to
obtain the network distance between AOIs, which is employed in
determining the conformity score and the courier’s travel distance.

For conformal pickup request prediction, we train the model
using data from the first two months and test it with data from
the last month. During training, we utilize pickup request records
from the previous 7 days to predict the pickup requests for the next
day. We set a maximum of 100 pickup requests per day based on
historical records. For the route planning, the courier’s speed is set
at 25 km/h, and the serving time for a customer with a delivery
request is 1 minute, while the serving time for a customer with
a pickup request is 10 minutes, based on the analysis of couriers’
trajectories.

4.2.2 Implementation. We implement our method and baselines
with tensorflow 1.4.0 in Python 3.6 environment and train it with
16GB memory and Intel(R) Xeon(R) CPU E5-2680 v4 @ 2.40GHz
(CPU). We apply the Adam optimizer with a learning rate of 1e-4.
We set the embedding size in actor and critic as 256. We set the
penalty factor of delivery and pickup as 1.5 and 2, respectively.

4.2.3 Baselines. We compare our model with the following base-
lines and variants of our model:

• No-routing. This is the real-world data about how couriers
decide their route by themselves.

• NCO [3]. This is a framework tackling combinatorial op-
timization problems using neural networks and reinforce-
ment learning.

• RL-VRP [19]. This is a reinforcement learning framework
for solving vehicle routing problems. Considering our sce-
nario includes uncertain pickup requests, we adopt an actor-
critic training strategy.

• DRLSA [11]. It is designed for stochastic vehicle routing
problems. They combine neural networks-based Time Dif-
ference (TD) learning with experience replay to approxi-
mate value functions.

• MC-VRP [32]. MC-VRP is an online approach to solve the
dynamic vehicle routing problem. Considering the different
settings, we remove the Monte Carlo tree search.

Variants of our model

• ROPU without Conformal Pickup Request Prediction
(w/o CPRP). In this setting, we remove pickup request
prediction.We recalculate the optimal route each timewhen
a new pickup request occurs.

• ROPU without Conformal Prediction (w/o CP). In this
setting, we remove the conformal prediction and directly
use the results from the prediction.

• ROPUwithout PredictedRequestAttention (w/o PRA).
In this setting, we remove the part designed for predicted
requests in the spatial-temporal attention network.

• ROPU without Spatial-Temporal Attention Network
(w/o STAN). In this setting, we use a general attention
network to replace the spatial-temporal attention network.

4.2.4 Metric. The evaluation metrics are as follows.

• Traveling distance: traveling distance represents the total
distance a courier covers to fulfill all pickup and delivery
tasks, with shorter distances indicating higher efficiency.

• Overdue rate: for 𝑁 delivery tasks, the overdue rate is de-

fined as
𝑁𝑂
𝑑𝑒

𝑁
, where 𝑁𝑂

𝑑𝑒
represents the number of delivery

tasks that are actually completed after their respective dead-
lines. A lower overdue rate indicates a better customer ex-
perience. For pickup tasks, we define the overdue rate in the
same manner. It should be mentioned that 𝑁𝑂𝑝 represents
the number of delivery tasks that are actually completed
after their deadlines and 2 hours before their start time.
We take the start time into account because picking up too
early can lead to a negative experience for the customer.

4.3 Overall Performance
We compare our approach with the baselines, and the comparison
results are in Table 2. From the results, we have following findings:
(1) Our method outperforms other baselines in all the performance
metrics. In summary, our method has achieved at least a 30.49%,
25.00%, and 5.49% improvement in the metrics of pickup overdue
rate, delivery overdue rate, and traveling distance, respectively. Our
approach integrates the spatial-temporal interval of future pickup
requests into reinforcement learning-based route planning, which
equips the courier with the capability to handle potential stochastic
pickup requests.
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Table 2: Overall Performance. Bold scores are for the best values.

Method Pickup
overdue rate

Delivery
overdue rate

Traveling
distance (km)

No routing 0.212 0.085 35.426
NCO 0.196 ± 0.022 0.125 ± 0.006 35.013 ± 1.006

RL-VRP 0.185 ± 0.007 0.086 ± 0.007 33.180 ± 0.842
DRLSA 0.164 ± 0.009 0.076 ± 0.011 32.452 ± 0.927
MC-VRP 0.173 ± 0.007 0.077 ± 0.006 33.006 ± 1.357

ROPU 0.114 ± 0.008 0.057 ± 0.004 30.671± 0.503

(2) Compared to real-world scenarios (i.e., no-routing), our method
has improved the delivery and pickup overdue rate by 32.94% and
46.22% and reduced the courier’s traveling distance by 13.42%. This
indicates that our approach can help logistics platforms enhance
courier efficiency and improve the customer experience.
(3) Compared to methods that are not designed for stochastic pickup
requests (i.e., NCO), those designed for stochastic requests perform
better. We can observe that NCO sacrifice some delivery request
performance to compensate stochastic pickup requests. In addition,
all methods have a decreased overdue rate for pickup requests.

4.4 Results of Pickup Requests Conformal
Prediction

4.4.1 Pickup Request Prediction Results. For pickup request predic-
tion, we choose three common prediction models, i.e., XGBoost [4],
LSTM, and Transformer. We treat this prediction problem as a clas-
sification problem. We first obtain the accuracy of location and time.
Then we can calculate the absolute error of distance and time. The
results are shown in Fig. 3. As evident from the figure, using these
models directly for pickup request prediction leads to significant
errors in both time and location. Using such inaccurate results for
route planning would adversely affect routing performance.

Table 3: Pickup Request Prediction Performance

Method
Accuracy
of location

Absolute error
of distance
(meter)

Accuracy
of time

Absolute error
of time
(minute)

XGBoost 0.457 231.765 0.486 59.236
LSTM 0.112 478.633 0.135 112.312

Transformer 0.576 166.723 0.637 42.761

4.4.2 Conformal Prediction Results. To quantify the uncer-
tainty of the predictions, we employ conformal prediction on the
pickup request prediction results. Specifically, we select the trans-
former with the best performance and apply spatial-temporal con-
formal prediction to guarantee the accuracy of its prediction results.
When we set the confidence level as 0.1, we can achieve 89.8%
coverage. That is, 89.8% of the cases, the true location and time of
the pickup requests are within our prediction interval. The mean
length of the spatial prediction interval is 372 meters and the mean
length of the temporal prediction interval is 85 minutes.

4.5 Ablation Study
4.5.1 The Effect of theConformal PickupRequest Prediction.
To assess the significance of conformal pickup request prediction,

we conducted a comparison among our model ROPU and its two
variants (i.e., w/o CP and w/o CPRP). The performance of ROPU and
its variants is displayed in Fig. 5. We first analyze the importance
of conformal prediction. We observed that when the predicted
results guide the courier’s route planning (i.e., ROPU w/o CP), the
results are worse than those achieved with ROPU. This suggests
that inaccurate prediction results can indeed impact route planning.
We further investigate the importance of conformal pickup request
prediction. In this setting, we neither predict future pickup requests
nor employ conformal prediction. We observe that ROPUw/o CPRP
performs worse than both ROPU and ROPU w/o CP. The possible
reason is that, without prior knowledge of the pickup requests, the
courier’s original route may conflict with the pickup requests, both
spatially and temporally. As a result, the couriers face challenges
in balancing delivery efficiency and service experience.
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Fig 5: The Effect of the Confor-
mal pickup Request prediction

Delivery Pickup0.0

0.1

0.2

O
ve

rd
ue

 R
at

e

ROPU
w/o PRA
w/o STAN

Fig 6: The Effect of Spatial-
Temporal Attention Network

4.5.2 The Effect of the Spatial-Temporal Attention Network.
To understand the importance of the spatial-temporal attention
network, we compare our model ROPU with its two variants (i.e.,
w/o PRA and w/o STAN). Firstly, we remove the part designed for
predicted requests in the spatial-temporal attention network. We
observe that the pickup overdue rate of ROPU w/o PRA increases
and its delivery overdue rate decreases. The possible reason is that
after removing the spatial-temporal attention network part that
focuses on the predicted requests, the model tends to prioritize
the delivery tasks, which in turn shows the effectiveness of the
spatial-temporal attention network in integrating conformal predic-
tion. Next, we replace the spatial-temporal attention network with
a standard attention network. We observe that the performance
deteriorates, and the overdue rate of both delivery and pickup in-
crease. It indicates that our designed spatial-temporal attention
network is suitable for considering spatial-temporal intervals for
route planning.

4.6 Impact of Factors
4.6.1 The Impact of the Ratio of Pickup Requests. In real-
world scenarios, the quantity of stochastic pickup requests varies.
To explore our model’s performance under different conditions, we
manipulated the number of pickup requests, setting them at 0%, 35%,
70%, and 100% of the actual quantity, as depicted in Fig. 7. Observing
the figure, it becomes apparent that as the number of stochastic
pickup requests increases, the model is required to handle a greater
volume of these requests, resulting in higher overdue rates for both
delivery and pickup requests.
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4.6.2 The Impact of the Penalty Factor. The penalty factor is
an essential parameter in the reward function as it determines the
relationship between the traveling distance and the overdue rates
for pickup and delivery tasks. To assess our model’s performance
under various penalty factors, we keep the delivery penalty factor
fixed at 1.5 while adjusting the pickup penalty factor, as shown in
Fig. 8. We see that as the penalty factor for pickup increases, our
model pays more attention to the overdue issues of pickup requests.
As a result, we can achieve a lower overdue rate for pickup. However,
this comes at the cost of increased travel distance and overdue rates
for deliveries. To strike a balance among these metrics, we select
the pickup penalty factor of 2.

5 DISCUSSION
Lessons learned: Based on the results from our paper, we summa-
rize the following lessons learned:

• Conformal prediction provides a high-confidence spatial-
temporal interval for predicting uncertain pickup events,
which can guide the courier’s route. As shown in Fig. 5,
whenwe only use the predicted results to guide the courier’s
route planning, the result is worse than considering con-
formal prediction.

• Spatial-temporal attention network as the actor has the
ability to perceive time and integrate the spatial-temporal
conformal interval. As shown in Fig. 6, the performance de-
teriorates (i.e., the overdue rate increases) when the spatial-
temporal attention network is removed.

Limitation: (i) We evaluate our model on a real-world dataset
from one of the largest logistics companies in China. However, due
to data privacy and sensitivity concerns, the evaluation dataset is
only in the center area of Beijing and last 4month.We further expect
to analyze our model with the dataset covering multiple cities and
longer durations. (ii) In this work, we only consider planning routes
for couriers without taking into account their acceptance level. This
aspect will be considered in our future work.

Ethics and privacy: The delivery and pickup requests data
and couriers’ trajectory data utilized in this work are recorded
by the [anonymous company] platform in order to provide better
services to its users. For delivery and pickup requests, no specific
customer information is involved here; the only data we utilize
is location information. However, in this work, we substitute the
specific location with an Area of Interest (AOI) ID, thereby ensuring
that user privacy is not compromised. Couriers’ trajectory data is
under the consent agreement of the couriers, and we do not utilize
this information to track the detailed trace of the couriers but only
infer delivery time.

6 RELATEDWORK
6.1 Route Planning
Route planning is a variant of the classic Vehicle Routing Problem
(VRP) [13] or Traveling Salesman Problem (TSP) [12], which aims to
find a route to meet all locations’ requests with a minimal travel dis-
tance. The Vehicle Routing Problem (VRP) can be categorized into:
the Standard Vehicle Routing Problem and the Dynamic/Stochastic
Vehicle Routing Problem. For the Standard Vehicle Routing Prob-
lem, the demands for all locations are known beforehand. Some
methods [3, 5, 14, 37] utilize optimization or reinforcement learning
based methods to obtain the optimal routes.

However, the actual situation is complex, and some customers’
requests may be generated randomly [21]. To handle such situa-
tions, some methods [19, 26, 32] either recalculate the route when
new requests arise or continually modify it to accommodate new or-
ders. These methods, however, can potentially disrupt pre-existing
plans and may result in additional detours due to conflicts between
delivery and pickup requests. Some methods [7, 15, 29, 35], when
conducting route planning or making recommendations, attempt
to predict or estimate future demands in advance. However, the
effect of these methods is heavily contingent on the accuracy of
the prediction for future demand because an inaccurate estimation
can significantly impact performance.

6.2 Conformal Prediction
Conformal Prediction aims to provide a prediction interval accom-
panied by associated confidence levels. It does not impose strong
assumptions about the data distribution; it simply requires the
data to satisfy the exchangeability assumption [25, 28]. Some meth-
ods [1, 23] focus on classification problems. Given an input, the
conformal provides a confidence interval or probability set for each
possible classification label. Some methods [22, 25] aim to build a
conformal prediction for regression problems. Conformal prediction
provides a prediction interval instead of a single point estimation.
This interval can offer insights into the uncertainty or variability
of the predicted value. Some methods [8, 27, 33, 36] aim to design a
conformal prediction framework for time-series forecasting tasks,
which don’t meet the exchangeable assumption. For example, [8]
achieves an adaptive conformal inference by treating the distribu-
tion shift as a learning problem, where the optimal value of a single
parameter changes over time and requires constant re-estimation.

However, these methods are not suitable for our scenario because
the general conformal prediction does not meet the requirements
of route planning, nor is there a specific framework to integrate
conformal prediction into reinforcement learning.

7 CONCLUSION
In this work, we focus on robust route planning under uncertain
pickup requests for last-mile delivery. We design a novel courier
route planning framework called ROPU, which combines conformal
prediction with reinforcement learning. ROPU consists of two key
components: (i) pickup request prediction with spatial-temporal
conformal prediction and (ii) a spatial-temporal attention network
with the ability to integrate the spatial-temporal conformal interval.
Extensive experiments demonstrate the effectiveness of our model.
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