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ABSTRACT

Imitation learning (IL) typically depends on large-scale demonstrations collected
from multiple human or algorithmic demonstrators. Yet, most existing methods
assume these demonstrators are either homogeneous or near-optimal—a conve-
nient but unrealistic assumption in many real-world settings. In this work, we
tackle a more practical and challenging setting: IL from heterogeneous demon-
strators with unknown and widely varying expertise levels. Instead of assuming
expert dominance, we model each demonstrator’s behavior as a flexible mixture
of optimal and suboptimal policies, and propose a novel IL framework that jointly
learns (a) a state-action optimality scoring model and (b) the latent expertise level
of each demonstrator, using only a handful of human queries. The learned scoring
model is then integrated into an policy optimization procedure, where it is fine-
tuned with offline demonstrations, on-policy rollouts, and a fine-grained mixup
regularizer to produce informative rewards. The agent is trained to maximize
these learned rewards in an iterative fashion. Experiments on continuous-control
benchmarks show that our approach consistently outperforms baseline methods.
Even when all demonstrators are highly suboptimal, each exhibiting only 5−15%
optimality, our method achieves performance comparable to a baseline trained on
purely optimal demonstrations, despite our lack of optimality labels.

1 INTRODUCTION

Imitation learning (IL) offers a convenient framework that enables agents to acquire skills directly
from expert demonstrations (Zare et al., 2024). Prior research has shown that effective policies can
be learned efficiently when provided with large-scale and high-quality demonstrations (Belkhale
et al., 2023; Saxena et al., 2025). However, in real-world scenarios, large-scale datasets are often
collected from multiple demonstrators, and human or algorithmic demonstrators typically possess
strengths in specific contexts and may perform suboptimally outside their areas of expertise. For
example, in autonomous driving data collected from electric vehicles (Lee et al., 2022; Zhang et al.,
2024), drivers demonstrate a wide range of skill levels, resulting in heterogeneous and imperfect tra-
jectories with unknown degrees of expertise. Treating all such demonstrators as perfect experts can
lead to unreliable or even unsafe agent behavior, posing serious risks in safety-critical applications.

In this work, we study IL from heterogeneous demonstrators whose expertise levels are unknown and
variable, naturally leading to datasets containing suboptimal demonstrations. Existing methods (see
details in Section 2) addressing this setting often rely on one or more of the following assumptions:
(i) demonstrators are homogeneous, i.e., with same expertise levels, and the optimal data dominates
the dataset, (ii) access to explicit labels indicating the optimality of demonstrations, or (iii) the
expertise level of each demonstrator is known a priori. These requirements are demanding and often
impractical when demonstrations come from uncontrolled or large-scale sources.

This brings us to a central question:

Can we design effective IL algorithms without relying on any of these assumptions?

1
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Figure 1: Overview of our heterogeneous IL framework, illustrated with m demonstrators pos-
sessing (unknown) heterogeneous expertise levels (represented in grayscale; darker shades indicate
higher expertise). Green/red indicate inferred optimal/suboptimal pairs. Stage 1 (left panel): Joint
learning of demonstrator expertise levels {αi}mi=1 and the optimality scoring model fϕ through a a
closed-loop process: (1) a surrogate classifier fϕ is trained to predict the demonstrator identity for
each (s, a) pair, which induces fϕ; (2) {αi}mi=1 are updated based on predictions from fϕ. Stage 2
(right panel): Iterative refinement of both fϕ and the agent policy πθ using the demonstrator dataset
D = {(i,Di)}mi=1, a selected set of optimal demonstrations Dopt, and agent-generated samples Dπθ

.

This problem is inherently challenging because neither demonstrator expertise levels nor demon-
stration optimality is observed. In the worst case, all demonstrators may exhibit very low expertise,
making it extremely difficult to extract reliable signals for policy learning.

Our first contribution is a novel problem formulation for IL from heterogeneous demonstrators,
where each demonstrator’s policy is modeled as a mixture of optimal and suboptimal behaviors,
and their expertise level is characterized as the proportion of their actions that align with the optimal
policy. These expertise levels vary across demonstrators, capturing their heterogeneity, but are latent
and unknown, leaving little to no direct information about the quality of the demonstrations. Our
goal is to learn a high-quality policy from this heterogeneous and suboptimal dataset.

Our second contribution is a novel two-stage methodology for addressing the above problem (Fig-
ure 1). In the first stage, we jointly estimate demonstrator expertise levels and learn a scoring model
that assigns optimality scores to the state-action pairs, representing the likelihood that the pair cor-
responds to the (latent) optimal policy. This is achieved through an EM-style iterative procedure,
and we also provide a theoretical analysis showing that this process converges under mild assump-
tions. In the second stage, the learned scoring model serves as a surrogate reward function for policy
learning. However, since it is trained entirely offline, it may suffer from covariate shift during pol-
icy rollouts. To mitigate this, we introduce a refinement procedure that alternates between policy
learning and scoring model updates. This feedback loop produces a more informative reward signal,
which is then used to further improve the agent policy.

We evaluate our method in two challenging heterogeneous scenarios: (i) a wide-range setting, with
demonstrator expertise levels spanning [0.1, 0.9], and (ii) a low-quality setting, where all demonstra-
tors are highly suboptimal with expertise in [0.05, 0.15]. Across both regimes, our method outper-
forms baselines and, remarkably, achieves performance comparable to methods trained on the subset
of purely optimal demonstrations. These results highlight the practical value of our framework in
realistic IL settings where demonstrator quality is unknown, uncurated, and highly variable.

2 RELATED WORK

IL with Homogeneous Demonstrators A large body of IL research assumes that demonstrations
originate from a single, near-optimal expert policy. This assumption underpins classical approaches
such as behavior cloning (BC) (Bain & Sammut, 1995), as well as more recent methods like gener-
ative adversarial imitation learning (GAIL) (Ho & Ermon, 2016), which matches the state–action
occupancy measures of the learner and the demonstrator via adversarial training. Even methods
designed for noisy demonstrations, such as robust imitation learning (RIL) (Tangkaratt et al., 2020),
retain this homogeneity assumption by modeling demonstrators’ behaviors as generated from a fixed
mixture of optimal and suboptimal policies with a constant mixing coefficient representing expertise
level, and assume expert data dominance. While effective in controlled benchmarks, these methods
may fail in more realistic multi-demonstrator scenarios where expertise levels vary widely.
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Table 1: Comparison of IL methods. ✓ = satisfies criterion, ✗ = does not. “Non-dominant opt.
demo” means the method does not require optimal demonstrations to dominate the dataset. “Multi-
demo support” refers to the ability to handle demonstrations from multiple demonstrators with
varying expertise levels. “Handles structured subopt.” indicates whether the method can manage
structured (i.e., non-random) suboptimal demonstrations. “No opt. labels needed” indicates no la-
bels about the optimality of demonstrations is needed. “Prob. demo scoring” denotes whether the
method infers a probabilistic measure of demonstration quality.

Method BC GAIL RIL IC-GAIL PU-GAIL RCE WGAIL ILEED Ours

Non-dominant opt. demo ✗ ✗ ✗ ✓ ✓ ✗ ✗ ✓ ✓
Multi-demo support ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✓
Handles structured subopt. ✗ ✗ ✓ ✓ ✓ ✗ ✓ ✗ ✓
No opt. labels needed ✗ ✗ ✓ ✗ ✓ ✗ ✓ ✓ ✓
Prob. demo scoring ✗ ✓ ✓ ✗ ✓ ✓ ✗ ✗ ✓

IL with Optimality Labels To better handle suboptimal demonstrations, many IL methods use
supervision to distinguish optimal from non-optimal behavior. This strategy underlies extensions
of GAIL. For example, imperfect demonstration and confidence GAIL (IC-GAIL) (Wu et al., 2019)
uses confidence labels to reweight imperfect demonstrations, and positive-unlabeled GAIL (PU-
GAIL) (Wang et al., 2023) leverages positively labeled success trajectories. Similarly, example-
based methods like recursive classification of examples (RCE) (Eysenbach et al., 2021) train success
classifiers from labeled examples to create proxy rewards. These methods work well when labeled
data is available but are unsuitable when such supervision is hard to obtain.

IL without Homogeneity or Labels More recent efforts aim to learn from heterogeneous, unla-
beled, and suboptimal demonstrations without relying on any of the above assumptions. Weighted
GAIL (WGAIL) (Wang et al., 2021) proposes to estimate importance weights directly from dis-
criminator outputs, enabling the policy to emphasize near-optimal samples without requiring prior
knowledge of demonstrator quality. Imitation learning by estimating expertise of demonstra-
tors (ILEED) (Beliaev et al., 2022) addresses the same challenge by jointly learning a policy and
state-dependent expertise levels, treating expertise as a latent variable conditioned on state and
demonstrator embeddings and optimized via maximum likelihood. However, their formulation as-
sumes that suboptimal demonstrations arise from a uniformly random distribution, which limits its
ability to handle structured suboptimality. Building on this direction, our work defines expertise
level as the prior probability that a state–action pair comes from an optimal policy. This formulation
accommodates structured suboptimality and eases estimation by avoiding strong state dependence.

3 IMITATION LEARNING FROM HETEROGENEOUS DEMONSTRATORS

3.1 PROBLEM SETUP

In reinforcement learning (RL), the optimal policy maximizes the expected cumulative reward: π∗ =

argmaxπ Epπ

[∑T
t=1 γ

tr(st, at)
]
, where r(st, at) is the reward associated with the state-action pair

(s, a) at time t, pπ is the trajectory distribution induced by policy π, and γ is the discount factor.
Unlike RL, in IL the reward function is unobserved and learning relies on a dataset of demonstrator
trajectories τ = {(s0, a0), ..., (sTτ , aTτ )} of varying lengths Tτ . The goal is to learn a policy π
whose induced state-action distribution matches that of the optimal policy (Ziebart et al., 2010).

To make this feasible, most IL algorithms assume that all demonstrations are generated by the opti-
mal policy. However, this assumption is overly restrictive, as real datasets are often collected from
multiple demonstrators with varying skills. In this work, we study a more practical IL setting where
demonstrations are provided by heterogeneous demonstrators with different expertise levels.

Dataset: We consider m demonstrators. Each demonstrator i ∈ [m] provides a set of trajectories Di

and is associated with an expertise level αi ∈ [0, 1]. We define αi as the probability that any given
(s, a) pair from Di was generated by the optimal policy, i.e., αi = P[(s, a) ∼ π∗|(s, a) ∈ Di]. This
represents a demonstrator-level attribute: a higher αi means that demonstrator i tends to act more
consistently with π∗. We consider demonstrator heterogeneity, i.e., there ∃ i, j ∈ [m], i ̸= j, such
that αi ̸= αj . The full dataset is D = {(i,Di)}mi=1, and the expertise levels {αi}mi=1 are unknown.
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Optimality Score: For each (s, a) pair, we introduce a binary latent variable z ∈ {0, 1} indicating
its optimality: z = 1 ⇒ (s, a) ∼ π∗, while z = 0 ⇒ (s, a) ∼ πsub, where πsub denotes an
unknown suboptimal policy. The optimality score is defined as the probability that (s, a) is optimal
given its values: P(z = 1|s, a), which can be seen as a sample-specific, conditional expertise level.

Since demonstrators are heterogeneous, we model the policy of each demonstrator-i as a mixture

πi(a | s) = αi π
∗(a | s) + (1− αi)π

sub(a | s). (1)
Let ρπi(s) be the state visitation distribution of πi. The occupancy measure for demonstrator-i is

ρi(s, a) = ρπi(s) πi(a | s) = ρπi(s)
(
αi π

∗(a | s) + (1− αi)π
sub(a | s)

)
. (2)

Similarly, the conditional occupancy measures of the optimal and suboptimal policies are

P (s, a | z = 1) = ρπ
∗
(s)π∗(a | s), P (s, a | z = 0) = ρπ

sub

(s)πsub(a | s). (3)

Policy Learning: Given demonstrations D from these heterogeneous demonstrators, our goal is
to match the optimal policy π∗. Without access to rewards, we aim to learn a scoring model
fϕ(s, a) ≈ P(z = 1|s, a), which estimates the optimality scores and acts as a surrogate reward:

π∗ = argmaxπ Epπ

[∑T
t=1 γ

tfϕ(st, at)
]
.

3.2 JOINT ESTIMATION OF EXPERTISE LEVELS AND SCORING MODEL

We now describe how to learn the scoring model fϕ directly from the heterogeneous dataset D.

3.2.1 SURROGATE DEMONSTRATOR CLASSIFICATION FOR OPTIMALITY SCORING

The optimality scoring task can be framed as a binary class probability estimation (Buja et al.,
2005) problem, where we aim to estimate P(z = 1|s, a) for each (s, a) pair being optimal (with
label z = 1) or sub-optimal (with label z = 0). In the supervised setting, if explicit optimality
labels z were available, one could directly train fϕ with a proper scoring rule, such as cross-entropy.
However, in our setting, such labels are not available. To solve this problem, we adopt a surrogate
learning approach inspired by the surrogage set classification (SSC) framework of Lu et al. (2021).

Surrogate Demonstrator Classification We use the demonstrator identity z̄ ∈ [m] as a surrogate
label. Defining S as the set of states and A as the set of actions, the surrogate task involves training
a multi-class classifier fϕ : S × A → Rm to predict the demonstrator from which each (s, a) pair
originated, by minimizing the risk:

L(fϕ) = E(s,a)∼
∑

i µiρi(s,a)[ℓ(fϕ(s, a), z̄)], (4)

where µi is the prior probability of sampling from demonstrator i, estimated as µi ≈ ||Di||∑m
i=1 ||Di|| ,

||Di|| denotes the cardinality of the dataset Di, and ℓ is the cross-entropy loss. For simplicity, we
denote ρ :=

∑
i µiρi(s, a).

Recovering Optimality Scores Under demonstrator heterogeneity, Lu et al. (2021) show that the
optimality scoring model fϕ can be recovered from the surrogate classifier fϕ via an injective trans-
formation T (·) : R→ Rm, such that: fϕ = Ti(fϕ),1 where the i-th component of T is

Ti(x) =
µi(αi − α′)x+ µiα

′(1− αi)∑m
i=1 µi(αi − α′)x+

∑m
i=1 µiα′(1− αi)

, (5)

Here, αi = P(z = 1|z̄ = i) is the expertise level of demonstrator i, α′ is the expected expertise
in the target environment where the scoring model is deployed. Since this expected expertise is
unknown, we set α′ as 0.5 in this work. If the expertise levels are known, then fϕ can be learned by
minimizing the following equivalent form of Eq. 4:

L(fϕ) = E(s,a)∼ρ [ℓ(T (fϕ(s, a)), z̄)] . (6)

Once fϕ is trained optimally, the scoring model fϕ can be recovered by removing the transformation
layer, as established in Lu et al. (2021).

1With a slight abuse of notation, we use fϕ and fϕ interchangeably to refer to both classifiers and class
probability estimators, i.e., scoring functions in the sense of Buja et al. (2005).
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Algorithm 1 EM-style Joint Learning of Expertise Levels and Scoring Model

1: Input: Dataset D = {(i,Di)}mi=1, number of sample queries n
2: repeat
3: Initialization: Scoring model fϕ(s, a), expertise levels {αi}mi=1 ∼ U(0.1, 0.9), ∀i ∈ [m]
4: for t = 1, 2, ..., T do
5: M-step (Minimize risk to update scoring model):
6: Update fϕ by minimizing the empirical risk from Eq. 6 using current {αi}mi=1
7: E-step (Estimate expertise levels):
8: Update expertise levels αi ←

∑
(s,a)∈Di

[fϕ(s,a)>0.5]

||Di|| , ∀i ∈ [m]

9: end for
10: until Expertise Dispersion Criterion is satisfied
11: Query n samples and correct predictions to satisfy Optimality Alignment Criterion
12: Return {αi}mi=1, fϕ

3.2.2 EM-STYLE OPTIMIZATION OF SCORING MODEL AND EXPERTISE ESTIMATES

However, neither optimality labels nor expertise levels are observed in our setting. To jointly learn
both, we propose an expectation-maximization (EM)-style algorithm, outlined in Algorithm 1.

The algorithm begins by randomly initializing the expertise levels {αi}mi=1 within the range
[0.1, 0.9]. Given the initial {αi}mi=1, we update the scoring model fϕ using the surrogate objec-
tive Eq. 6. We then refine the expertise levels by computing the fraction of samples from each
demonstrator that are labeled as optimal by the current scoring model. This alternating update pro-
cedure is repeated for T epochs. Here, we present a convergence result that guarantees the EM-style
optimization of of α and ϕ converges to a stationary point. The proof is in Appendix B.
Theorem 1 (Convergence Guarantee). Consider the optimization of the objective L(ϕ, α) via iter-
ative updates of the scoring model fϕ and the expertise levels α = {αi}mi=1. Let (ϕt, et) be the
parameters at iteration t. If the updates follow:

ϕt+1 = argmin
ϕ,α
L(ϕt, αt+1), αt+1 =

∑
(s,a)∈Di

[fϕt(s, a) > 0.5]

||Di||
(7)

where L(ϕ, α) = E(s,a)∼ρ [ℓ(Tα(fϕ(s, a)), z̄)], then the sequence {L(ϕt, αt)}∞t=1 is monotonically
non-increasing, i.e., L(ϕt+1, αt+1) ≤ L(ϕt, αt), ensuring convergence to a stationary point.

While Theorem 1 guarantees convergence, the quality of the resulting solution is sensitive to the
initialization of {αi}mi=1. As with other EM-style procedures, it may converge to suboptimal solu-
tions depending on the initialization. To mitigate this, we run the algorithm with multiple random
initializations and use the following two criteria to select the best solution.

Expertise Dispersion Criterion Since our algorithm relies on self-labeled data during training,
it is susceptible to error propagation and confirmation bias. Empirically, we observe that certain
random initializations lead to degenerate solutions, where the scoring model becomes overly confi-
dent and the estimated expertise levels collapse to nearly identical values. To assess the reliability
of the learned expertise levels {αi}mi=1, we measure their dispersion by computing the variance
Var({αi}mi=1). If the variance falls below a small threshold ϵ > 0, we consider the model to have
failed in distinguishing between different expertise levels, as the predictions carry little information,
analogous to having low entropy, and are indicative of overfitting. Conversely, a higher variance
suggests more informative and diverse estimates, suggesting the model has captured demonstrator
heterogeneity. We therefore use this variance as a selection criterion to retain only solutions with
sufficient dispersion in {αi}mi=1.

Optimality Alignment Criterion Due to the unsupervised nature of our setting, the learned scor-
ing model may inadvertently invert the notion of optimality. In such cases, the estimated expertise
levels αi may effectively correspond to 1 − αi. To detect and correct this issue, we query a small
subset of state–action pairs (in our experiments, as few as 5 samples suffice) and ask an expert to ver-
ify the correctness of their predicted labels. If the majority of results indicate a systematic inversion
in predicted labels, we simply flip the predicted labels and correct the outputs as follows:

αi ← 1− αi, fϕ(s, a)← 1− fϕ(s, a), ∀i ∈ [m], ∀(s, a) ∈ D.

5
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Algorithm 2 Joint Learning of Scoring Model and Agent Policy with Demonstration Relabeling

1: Input: Dataset D = {(i,Di)}mi=1, learned scoring model fϕ(s, a), estimated expertise levels
{α̂i}mi=1, ratio of pseudo-optimal samples k

2: Initialization: early stop← False, agent policy πθ, Dopt ← {(s, a) | fϕ(s, a) > 0.5}
3: for t = 1, 2, ..., T do
4: Sample trajectories from agent: Dπθ

← {(s, a) | (s, a) ∼ πθ}
5: Update fϕ by minimizing the empirical risk from Eq. 8
6: if not early stop then
7: Relabel pseudo-optimal set: Dopt ← top-k(s, a) ∈ D by fϕ(s, a)
8: Check early stopping criterion and update early stop if necessary
9: end if

10: Update πθ using RL with reward log(fϕ(s, a))
11: end for
12: Return final policy πθ

3.3 IMITATION LEARNING VIA SCORING MODEL

After learning the scoring model fϕ and estimating the expertise levels {α}mi=1, we perform IL.

3.3.1 PROGRESSIVE SCORING MODEL REFINEMENT VIA FINE-GRAINED SAMPLE SELECTION

The scoring model fϕ is initially trained only on demonstration data, which limits its generalization
to learner-generated trajectories due to covariate shift (Chang et al., 2021). To improve its robust-
ness, we refine fϕ during agent learning using three complementary terms: demonstration discrimi-
native loss in Eq. 6, reflecting the original training signal; agent-matching penalty, discouraging the
misclassification of learner-generated behaviors as optimal; and a mixup regularizer (Zhang et al.,
2017) which interpolates between agent and demonstrator behaviors to smooth the scoring boundary
and stabilize training. The overall objective for refining fϕ is given by:

min
fϕ

Ê(s,a)∼ρ

[
L(fϕ(s, a)

]
+ Ê(s′,a′)∼ρπθ

[
log(fϕ(s

′, a′))
]
+ Ê

(s,a)∼ρ̂π∗

(s′,a′)∼ρπθ

[
Lmixup(s, a, s

′, a′)
]

(8)

where Ê denotes empirical expectation; ρ̂π
∗

represents pseudo-optimal data inferred from Dopt ⊆ D;

Lmixup(s, a, s
′, a′) = λ log

(
1− fϕ(s̃, ã)

)
+ (1− λ) log

(
fϕ(s̃, ã)

)
,

s̃ = λs+ (1− λ)s′, ã = λa+ (1− λ)a′, λ ∼ U(0, 1).
Early in training, the novice agent tends to produce suboptimal behaviors. The agent-matching
penalty discourages fϕ from assigning high scores to these early samples, thereby enhancing its
ability to distinguish between agent and demonstrator behavior and reducing covariate shift. In
parallel, the mixup regularizer acts as both data augmentation and regularization based on agent and
expert data, yielding more stable and informative gradients, ultimately improving the effectiveness
of policy learning in IL (Orsini et al., 2021). The full training procedure is outlined in Algorithm 2.

To further refine fϕ, we adopt a bootstrapping approach where fϕ is used to pseudo-label demonstra-
tion data D. At each iteration: (1) we extract a pseudo-optimal subset Dopt ⊆ D by applying a top-k
selection method, where we choose the lowest ⌊k · ||D||⌋ (⌊·⌋ denotes the floor function) state–action
pairs according to their fϕ scores; (2) we generate new agent trajectories Dπθ

to represent ρπθ ; (3)
we update fϕ using the loss in Eq. 8 (Line 5), computed over D, Dπθ

, and Dopt; (4) we relabel Dopt
using the updated fϕ (Line 7). This mutual reinforcement between scoring model refinement and
pseudo-label improvement allows both components to jointly bootstrap toward higher fidelity.

3.3.2 POLICY LEARNING WITH SCORING MODEL AS A SURROGATE REWARD

As training progresses, the agent begins to generate increasingly competent behaviors. However,
these samples are still treated as suboptimal during scoring model refinement. Notably, at this stage,
the scoring model fϕ functions similarly to a discriminator in the GAIL framework (Ho & Er-
mon, 2016), struggling to distinguish between optimal and agent-generated data. Despite this, our
approach is fundamentally different from GAIL: while GAIL relies exclusively on optimal demon-
strations for supervision, our method operates in an (almost) unsupervised setting, allowing fϕ to

6
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learn from a large number of suboptimal demonstrations provided by heterogeneous demonstrators.
This makes our approach particularly advantageous in scenarios where demonstration quality is low.

As the agent improves, fϕ becomes increasingly confused, and its predictions become unreliable.
To prevent the accumulation of incorrect labels that could mislead policy learning, we introduce an
early stopping criterion for the relabeling process: let ∆t denote the number of sample changes in
Dopt between iterations t and t− 1, counting both removed and newly added samples; if ∆t < δ for
p consecutive steps, we stop relabeling and freeze Dopt. The updated fϕ is employed as a surrogate
reward function for training the agent policy πθ (Line 10). Specifically, we use log fϕ(s, a) as the re-
ward signal in reinforcement learning. This policy is updated using soft actor-critic (SAC) (Haarnoja
et al., 2018) iteratively, alternating with scoring model refinement and pseudo-label updates.

4 EXPERIMENTS

We will test whether our algorithm can (1) train a scoring model on multiple sets of imperfect
demonstration data collected from heterogeneous demonstrators in order to provide optimality la-
bels and estimate demonstrator expertise levels, and (2) learn an optimal agent policy based on the
scoring model and imperfect demonstrations.

To evaluate the robustness of our algorithm under widely varying and low demonstrator expertise, we
design two experiments: (a) General expertise test, using demonstrations from demonstrators with
expertise levels in a normal wide range [0.1−0.9] (average optimal ratio 0.5), and (b) Low expertise
test, with extremely low expertise levels in [0.05−0.15] (average optimal ratio 0.1). Prior works have
mostly focused on cases where most demonstrations are optimal, with only limited exploration of
low-optimal-ratio settings, where their performance degrades significantly (Eysenbach et al., 2021;
Wang et al., 2021; 2023). To address this gap, we specifically evaluate the low expertise setting.
In both tests, datasets are constructed from six demonstrators (each providing 5,000 samples) with
uniformly distributed expertise levels (see Tab. 6 in Appendix). We set the top-k hyperparameter k
to match the average optimal ratio in each test.

4.1 ENVIRONMENT AND DATASETS

We evaluate our algorithm against baseline methods on four MuJoCo environments (Todorov et al.,
2012; Towers et al., 2024) and conduct ablation studies to assess the contributions of our proposed
components. Demonstrations are collected by training a policy with SAC with the true reward.
An early-stage checkpoint πsub provides suboptimal demonstrations, while the final checkpoint π∗

provides optimal demonstrations (see Tab. 5 for the checkpoints’ performance). As in Beliaev et al.
(2022); Tangkaratt et al. (2020), the imperfect dataset is mixture of state-action pairs from π∗ and
πsub. Unlike random behaviors, our suboptimal data comes from a real suboptimal policy, which
reflects that experts may make mistakes, but their actions are still better than random actions. Using
this approach, multiple imperfect demonstration sets D = {(i,Di)}mi=1 are collected.

4.2 COMPARISON WITH BASELINES

Across the experiments, we benchmark our model against four IL baseline algorithms. (1) GAIL
o.s. (optimal subset) (Ho & Ermon, 2016): GAIL trained on the purely optimal subset of demon-
strations, serving as an oracle method; (2) GAIL: GAIL trained on all (optimal and suboptimal)
demonstrations; (3) RIL (Tangkaratt et al., 2020): trains an optimality discriminator via pseudo-
labeling with co-training; (4) WGAIL (Wang et al., 2021): estimates importance weights to empha-
size near-optimal demonstrations. For fair comparison, we adopt a consistent model architecture for
discriminator/classifier/scoring model, and learner policy, modifying only the input and output lay-
ers to match the corresponding state and action spaces of each environment. Moreover, all baselines
incorporate mixup regularization. All learner policies are updated using SAC with same hyperpa-
rameters. Training details are provided in Tab. 13 in the Appendix. We use 5 random seeds per
condition and report the mean and standard deviation in all our results.

The results are summarized in Tab. 2 (see Fig. 3 in the Appendix for training curves). In the general
expertise test, our algorithm outperforms all baselines except GAIL o.s., achieving at least twice the
rewards in all tasks. While GAIL o.s. attains comparable rewards, our algorithm still yields slightly
higher reward in Ant, Swimmer and Walk2d. This is attributed to that our algorithm can achieve
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Table 2: Performance comparison with baselines, mean ± std of reward across last five checkpoints

Environment Dataset GAIL o.s. GAIL RIL WGAIL Scoring (ours)

General expertise test
Ant-v4 4016.3 ± 2776.8 5660.4 ± 163.6 1387.2 ± 301.0 101.8 ± 118.0 1744.0 ± 919.1 6084.6 ± 146.9
HalfCheetah-v4 9988.9 ± 5959.9 9278.2 ± 496.5 3035.8 ± 1186.4 1631.6 ± 959.7 4336.2 ± 335.6 8751.2 ± 1797.9
Swimmer-v4 190.7 ± 149.1 293.6 ± 28.2 76.6 ± 28.3 28.8 ± 16.3 115.6 ± 83.7 305.4 ± 15.7
Walker2d-v4 3096.7 ± 2549.6 3703.0 ± 1011.9 948.6 ± 297.2 1187.2 ± 130.1 665.4 ± 330.2 3959.2 ± 671.4
Low expertise test
Ant-v4 1816.4 ± 1726.3 5542.0 ± 168.1 1439.6 ± 202.0 2.2 ± 174.1 971.6 ± 591.0 5932.0 ± 335.2
HalfCheetah-v4 5222.0 ± 3578.8 9194.2 ± 848.1 3162.8 ± 1417.2 964.2 ± 1100.1 3975.6 ± 369.9 7335.0 ± 1316.4
Swimmer-v4 71.4 ± 89.5 244.4 ± 113.5 37.4 ± 10.5 44.6 ± 2.9 48.8 ± 53.7 195.4 ± 92.1
Walker2d-v4 1062.8 ± 1546.5 3532.6 ± 782.2 737.8 ± 163.2 1140.0 ± 319.0 703.8 ± 291.2 2961.8 ± 339.8

Table 3: Estimation errors of Stage 1 scoring model for expertise levels (mean ± std).
Experiment Ant-v4 HalfCheetah-v4 Hopper-v4 Swimmer-v4 Walker2d-v4
General expertise test (2.67± 1.28)× 10−4 (2.00± 2.00)× 10−5 (3.83± 2.73)× 10−3 (2.00± 2.00)× 10−5 (3.27± 3.12)× 10−4

Low expertise test (9.65± 0.24)× 10−2 (3.67± 0.15)× 10−2 (1.05± 0.02)× 10−1 (2.81± 0.11)× 10−2 (1.34± 0.04)× 10−1

high classification performance on imperfect demonstrations (see Tab. 4), in contrast to GAIL o.s.,
is also capable of leveraging suboptimal data and perform better in the subsequent IL stage. In the
low xpertise test, the trends remain similar: our algorithm surpasses all baselines except GAIL o.s.
However, decreased classification performance on imperfect demonstrations (see Tab. 4) reduces
overall rewards compared to the general expertise test. In this setting, GAIL o.s., which trains on
purely optimal subset of demonstrations, achieves higher rewards in most tasks.

The low rewards achieved by other baselines in both experiments can be attributed to the several
factors. For GAIL, which treats all demonstrations as optimal, its performance is limited when
handling imperfect demonstrations. RIL assumes that most demonstrations are optimal, but in our
experiments, at least half are suboptimal. Consequently, the discriminator’s classification risk does
not align with the risk of distinguishing between optimal and suboptimal demonstrations, reducing
the reliability of its predictions for policy learning. Moreover, even with co-training for pseudo-
labeling, the overconfidence can only be partially mitigated; once error accumulation begins, it
continues to degrade the discriminator’s ability to predict optimality of demonstrations. WGAIL re-
quires an optimal discriminator to compute importance weights, which is approximated by assuming
that the discriminator in the early stage of GAIL is near-optimal. Although early stopping is used
for weight estimation, this assumption can fail due to the instability of adversarial learning.

4.3 ESTIMATION OF EXPERTISE LEVELS

Tab. 3 reports the estimation errors of the scoring model trained in Stage 1 w.r.t. expertise levels
relative to the ground truth, with detailed results provided in Tab. 7-8 in the Appendix. In the
general expertise test, where true expertise levels are widely distributed within [0.1-0.9], errors are
extremely low, remaining below 0.004 across all tasks. In contrast, in the low expertise test, with
levels [0.05-0.15], the estimation errors increase to around 0.1 for most tasks. This indicates that
the scoring model tends to be over-optimistic and produce more false-positive labels on imperfect
demonstrations (see Tab. 8). However, these incorrect labels are largely corrected during Stage 2.

4.4 OPTIMALITY PREDICTION ON IMPERFECTION DEMONSTRATIONS

We evaluate the scoring model fϕ on its ability to classify imperfect demonstrations in terms of
optimality. Labeling is conducted in two stages: Stage 1 using the pretrained fϕ and Stage 2 using
the fine-tuned fϕ. Performance is measured by accuracy and precision, with emphasis on precision,
as it reflects the false positive (FP) risk, which is more critical than false negative risk for policy
learning (Irpan et al., 2019).

Results in Tab. 4 show that in the general expertise test, both accuracy and precision are nearly 1 in
Stage 1, leaving almost no room for improvement in Stage 2. In contrast, in the low expertise test,
where expertise levels are narrowly distributed, the accuracy in Stage 1 maintains above 86%, but
the precision drops significantly, to 43-78%. This indicates that surrogate demonstrator classification
training handles datasets with widely varying expertise well, but struggles when expertise levels are
similar. However, Stage 2 improves both accuracy and precision, with precision increasing by 12-
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Table 4: Classification results of the scoring model on imperfect demonstrations for Stage 1 and
Stage 2 (Accuracy / Precision, %), with Stage 1→ Stage 2 improvement (%) after relabeling.

Test Stage Ant-v4 Impr. HalfCheetah-v4 Impr. Swimmer-v4 Impr. Walker2d-v4 Impr.

General 1 99.91 / 99.89 - 100.00 / 100.00 - 100.00 / 100.00 - 99.92 / 99.90 -
expertise 2 99.89 / 99.89 -0.02 / 0.00 100.00 / 100.00 0.00 / 0.00 99.94 / 99.94 -0.06 / -0.06 99.94 / 99.94 0.02 / 0.04

Low 1 90.33 / 51.78 - 96.33 / 73.68 - 97.19 / 78.84 - 86.39 / 43.01 -
expertise 2 99.65 / 98.23 10.32 / 89.71 99.98 / 99.91 3.79 / 35.60 97.58 / 87.91 0.40 / 11.50 98.48 / 92.40 13.99 / 114.83

(a) General expertise test (b) Low expertise test (c) General expertise test (d) Low expertise test

Figure 2: Ablation results on the impact of Stage 2 relabeling and early stopping, and k selection

115% across tasks. This shows that for imperfect demonstrations with extremely low expertise,
many false positives from a poorly pretrained fϕ can be corrected in Stage 2 after fine-tuning fϕ.
Detailed classification results are presented in Tab. 8 in the Appendix.

4.5 ABLATION TESTS

To assess the effect of each component of our algorithm, we conduct ablation experiments on the
Ant-v4 environment.

Relabeling and Early Stopping: We evaluate the effects of the relabeling step (Alg. 2, step 7)
and early stopping mechanism (Alg. 2, step 8) in Stage 2, shown in the subfigure (a)-(b) of Fig. 2
(see Tab. 9 for numerical results). Without relabeling, performance is comparable to the original
algorithm in the general expertise test but drops by about half in the low expertise test, due to
numerous FP errors generated in Stage 1 (see Sec. 4.4). Without the relabeling step in Stage 2,
these critical FP errors cannot be corrected using the fine-tuned fϕ, causing the performance drop.
Without early stopping during relabeling, rewards decline in both general and low expertise tests as
the agent approaches the optimal policy. This occurs because fϕ can be “fooled” when the agent
generates near-optimal samples, increasing classification errors and accumulating incorrect labels,
which reinforces overconfidence of fϕ and corrupts the surrogate reward for the agent.

Top-k k Value Selection: We study how different k values could influence the final performance
of IL. Results in subfigure (c)-(d) in Fig. 2 show that k can be treated as a hyperparameter without
prior knowledge of the distribution of expertise (numerical results in Tab. 10). For both the general
and low expertise tests, where the average optimality ratio (defined as k∗) of demonstrations is 0.5
and 0.1 respectively, when k < k∗ rewards remain comparable to that when k = k∗. However,
the performance declines as k increases when k > k∗. The reason is that the pseudo optimal set
is selected based on the lowest ⌊k · ||D||⌋ state–action pairs by fϕ scores. Assuming fϕ is well
trained, a k < k∗ leads to a conservative selection (subset of the true optimal set), while k > k∗ can
introduce more FP samples to the pseudo optimal set. This indicates that FP risk is more critical,
and a smaller k is preferable.

Number of Demonstrators: We conduct an ablation study on the number of demonstrators (each
providing 5,000 samples). Results shows that our methods is robust to varying demonstrator counts
in terms of IL performance (see Fig. 4 and Tab. 11- 12 in the Appendix for details).

Appendix C.2 compares our method with variants (e.g., oracle settings, PN loss), showing it consis-
tently matches or outperforms them, demonstrating its robustness and effectiveness.

5 CONCLUSIONS

We presented a general IL framework for handling unlabeled, imperfect demonstrations from het-
erogeneous demonstrators with unknown expertise. Our approach combines EM-style training with
a refinement step to learn a scoring model that guides policy learning. Experiments across chal-
lenging settings demonstrate strong performance, especially in low-quality demonstration regimes,
highlighting the value of leveraging suboptimal data in an (almost) unsupervised manner.
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Appendix

A SURROGATE DEMONSTRATOR CLASSIFICATION TRAINING

We provide more details about the algorithm and theory of Surrogate Demonstrator Classification
training.

Algorithm 3 Learning scoring model

1: Input: {(i,Di)}mi=1, {αi}mi=1 , and α′

2: Initialization: scoring model fϕ(s, a)
3: Compute of T (·) = [T1(·), · · · , Tm(·)] using Eq. 5 based on {αi}mi=1 and α′

4: for t = 1, 2, · · · do
5: Sample examples: z̄, (s, a) ∼ {(i,Di)}mi=1
6: Update fϕ by minimizing the empirical risk from Eq. 6
7: end for
8: Return fϕ

We consider demonstrator heterogeneity, i.e., there ∃ i, j ∈ [m], i ̸= j, such that αi ̸= αj . Accord-
ing to Lu et al. (2021), fϕ∗

surr
that recovered by removing transformation layer T (·) of the optimal

surrogate classifier fϕ∗ (the minimizer of E(s,a)∼ρ[ℓ(fϕ(s, a), z̄)] = E(s,a)∼ρ [ℓ(T (fϕ(s, a)), z̄)]) is
identical to the optimal classifier fϕ∗ that minimize the risk E(s,a)∼ρ [ℓ(fϕ(s, a), z)], which is not
possible if the heterogeneity setting is invalid. Thus, through the transformation function transforma-
tion T (·), the optimality scoring model fϕ∗ can be learned by minimizing the surrogate classification
risk in Eq. 6.

B PROOF OF THEOREM 1

Proof. We first prove that the sequence {L(ϕt, αt)} is non-increasing. If L(ϕ, α) is lower-bounded
(e.g., by zero in many loss formulations), then by the monotone convergence theorem, the sequence
must converge.

L(ϕ, α) = E(s,a)∼ρ [ℓ(Tα(fϕ(s, a)), z̄)] (9)

Minimizing the cross-entropy loss in Eq. 9 is equivalent to maximizing a log likelihood (Shangnan
& Wang, 2021). We define a log likelihood function through the conditional distribution p(z̄|(s, a))
in the form of discriminative training. With scoring model parameters and hidden parameters of
expertise levels, the log likelihood (ll) can be formulated as

ll(ϕ, α) := ln p(z̄|(s, a), ϕ) =
∑
α

p(α) ln p(z̄|(s, a), ϕ) (10)

To prove that {L(ϕt, αt)} is monotonically non-increasing, we only have to prove {ll(ϕt, αt)} is
monotonically non-decreasing, i.e., ll(ϕt+1, αt+1) ≥ ll(ϕt, αt).

We define L(q, ϕ) :=
∑

α q(α) ln p(z̄,α|(s,a),ϕ)
q(α) , q := q(α), and p := p(α|z̄, (s, a), ϕ)

L(q, ϕ) =
∑
α

q(α) ln
p(z̄, α|(s, a), ϕ)

q(α)

=
∑
α

q(α) [ln p(α|z̄, (s, a), ϕ) + ln p(z̄|(s, a), ϕ)− ln q(α)]

=
∑
α

q(α) ln
p(α|z̄, (s, a), ϕ)

q(α)
+
∑
α

q(α) ln p(z̄|(s, a), ϕ)

= −KL(q||p) + ln p(z̄|(s, a), ϕ)

(11)

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Then, the likelihood ll(ϕ, α) can be represented as

ln p(d|(s, a), ϕ) = L(q, ϕ) +KL(q||p),
≥ L(q, ϕ)

(12)

Since KL(q||p) ≥ 0, L(q, ϕ) is the lower bound of ll(ϕ, α).

For likelihood function ll(ϕt, αt) at iteration t,

ll(ϕt, αt) = ln p(z̄|(s, a), ϕt)

= L(q(αt), ϕt) +KL(q(αt)||p(α|z̄, (s, a), ϕt))
(13)

Since L(q(αt), ϕt) = ln p(z̄|(s, a), ϕt) − KL(q(αt)||p(α|z̄, (s, a), ϕt)) is the lower bound
ll(ϕt, αt). We update αt by letting q(αt) = p(α|z̄, (s, a), ϕt) to maximize the lower bound,
where p(α|z̄, (s, a), ϕt) can be calculated based on the second equation in Eq.7. Thus,
KL(q(αt+1)||p(α|z̄, (s, a), ϕt)) = 0. Thus, ll(ϕt, αt+1) can be expressed as

ll(ϕt, αt+1) = ln p(z̄|(s, a), ϕt)

= L(q(αt+1), ϕt) +KL(q(αt+1)||p(α|z̄, (s, a), ϕt))

= L(q(αt+1), ϕt)

(14)

By updating α, we increase the lower bound of ll(ϕt, αt+1) equals to ln p(z̄|(s, a), ϕt). Then we
maximize ll(ϕt, αt+1) with regard to ϕ using a gradient decent method, ll(ϕt+1, αt+1) must be not
smaller than ll(ϕt, αt+1). Finally, we have ll(ϕt+1, αt+1) ≥ ll(ϕt, αt+1) = ln p(z̄|(s, a), ϕt) =
ll(ϕt, αt)

C EXPERIMENT DETAILS

C.1 DETAILED RESULTS
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(b) Low expertise test

Figure 3: Performance comparison (mean ± std, shown as shaded region) with baselines. Supple-
mentary results for Sec. 4.2.
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Table 5: Performance (reward) of checkpoints used as optimal and suboptimal policies across envi-
ronments. Values are reported as mean ± standard deviation.

Environment Optimal policy π∗ Suboptimal policy πsub

Ant-v4 6766.26± 109.70 1266.37± 533.96
HalfCheetah-v4 15947.53± 39.08 4030.23± 169.82
Swimmer-v4 339.80± 1.15 41.60± 2.34
Walker-v4 5638.94± 49.76 554.38± 267.99

Table 6: True expertise levels {αi}mi=1 for different numbers of demonstrators across two tests.
Expertise levels are uniformly distributed within each range.

Demonstrator 1 2 3 4 5 6 7 8
General expertise test
2 demonstrators 0.100 0.900 – – – – – –
4 demonstrators 0.100 0.366 0.633 0.900 – – – –
6 demonstrators 0.100 0.260 0.420 0.580 0.740 0.900 – –
8 demonstrators 0.100 0.214 0.329 0.443 0.557 0.671 0.786 0.900

Low expertise test
2 demonstrators 0.050 0.150 – – – – – –
4 demonstrators 0.050 0.083 0.117 0.150 – – – –
6 demonstrators 0.050 0.070 0.090 0.110 0.130 0.150 – –
8 demonstrators 0.050 0.064 0.079 0.093 0.107 0.121 0.136 0.150

Table 7: Estimated expertise levels {α̂i}mi=1, showing the mean estimate and the mean ± standard
deviation of error across five random seeds. True values are shown separately. Supplementary results
for Sec. 4.3

Demonstrator 1 2 3 4 5 6 Mean error ± std
General expertise test
Ant-v4 0.100 0.260 0.420 0.580 0.740 0.900 (2.67± 1.28)× 10−4

HalfCheetah-v4 0.100 0.260 0.420 0.580 0.740 0.900 (2.00± 2.00)× 10−5

Hopper-v4 0.101 0.259 0.418 0.575 0.734 0.892 (3.83± 2.73)× 10−3

Swimmer-v4 0.100 0.260 0.420 0.580 0.740 0.900 (2.00± 2.00)× 10−5

Walker2d-v4 0.100 0.260 0.420 0.581 0.741 0.900 (3.27± 3.12)× 10−4

True expertise levels 0.100 0.260 0.420 0.580 0.740 0.900
Low expertise test
Ant-v4 0.148 0.170 0.187 0.207 0.222 0.246 (9.65± 0.24)× 10−2

HalfCheetah-v4 0.086 0.105 0.127 0.146 0.167 0.190 (3.67± 0.15)× 10−2

Hopper-v4 0.156 0.176 0.195 0.216 0.231 0.257 (1.05± 0.02)× 10−1

Swimmer-v4 0.077 0.100 0.118 0.139 0.158 0.177 (2.81± 0.11)× 10−2

Walker2d-v4 0.179 0.206 0.219 0.248 0.263 0.287 (1.34± 0.04)× 10−1

True expertise levels 0.050 0.070 0.090 0.110 0.130 0.150
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Table 8: Classification / Labeling results (mean ± std). Stage 1: labeling using the pretrained
scoring model. Stage 2: relabeling using the fine-tuned scoring model. TP (true positive), TN (true
negative), FP (false positive), FN (false negative). Improvement (%) shows the Stage 1→ Stage 2
percentage change of accuracy and precision after relabeling. Supplementary results for Sec. 4.4

Environment Stage TP TN FP FN Accuracy / Precision Improvement (%)

General expertise test

Ant-v4 1 14988.6 ± 3.9 14984.2 ± 10.1 15.8 ± 10.1 11.4 ± 3.9 0.9991 / 0.9989 -
2 14984.0 ± 5.5 14984.0 ± 5.5 16.0 ± 5.5 16.0 ± 5.5 0.9989 / 0.9989 -0.02 / 0.00

HalfCheetah-v4 1 15000.0 ± 0.0 14999.4 ± 0.8 0.6 ± 0.8 0.0 ± 0.0 1.0000 / 1.0000 -
2 15000.0 ± 0.0 15000.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 1.0000 / 1.0000 0.00 / 0.00

Swimmer-v4 1 15000.0 ± 0.0 14999.4 ± 1.2 0.6 ± 1.2 0.0 ± 0.0 1.0000 / 1.0000 -
2 14991.4 ± 16.2 14991.4 ± 16.2 8.6 ± 16.2 8.6 ± 16.2 0.9994 / 0.9994 -0.06 / -0.06

Walker2d-v4 1 14992.0 ± 2.2 14985.0 ± 6.1 15.0 ± 6.1 8.0 ± 2.2 0.9992 / 0.9990 -
2 14990.4 ± 1.6 14990.4 ± 1.6 9.6 ± 1.6 9.6 ± 1.6 0.9994 / 0.9994 0.02 / 0.04

Low expertise test

Ant-v4 1 2997.6 ± 1.5 24101.4 ± 735.5 2898.6 ± 735.5 2.4 ± 1.5 0.9033 / 0.5178 -
2 2947.0 ± 32.9 26947.0 ± 32.9 53.0 ± 32.9 53.0 ± 32.9 0.9965 / 0.9823 10.32 / 89.71

HalfCheetah-v4 1 3000.0 ± 0.0 25898.2 ± 355.8 1101.8 ± 355.8 0.0 ± 0.0 0.9633 / 0.7368 -
2 2997.4 ± 5.2 26997.4 ± 5.2 2.6 ± 5.2 2.6 ± 5.2 0.9998 / 0.9991 3.79 / 35.60

Swimmer-v4 1 3000.0 ± 0.0 26156.2 ± 393.5 843.8 ± 393.5 0.0 ± 0.0 0.9719 / 0.7884 -
2 2637.2 ± 290.4 26637.2 ± 290.4 362.8 ± 290.4 362.8 ± 290.4 0.9758 / 0.8791 0.40 / 11.50

Walker2d-v4 1 2965.0 ± 42.7 22953.2 ± 890.1 4046.8 ± 890.1 35.0 ± 42.7 0.8639 / 0.4301 -
2 2772.0 ± 170.3 26772.0 ± 170.3 228.0 ± 170.3 228.0 ± 170.3 0.9848 / 0.9240 13.99 / 114.83

Table 9: Ablation results on the impact of relabeling and early stopping in Stage 2 on Ant-v4 task.
Reported as mean ± std of reward across last five checkpoints. Supplementary results for Sec. 4.5

Method Expertise [0.1 – 0.9] Expertise [0.05 – 0.15]

Scoring (ours) 6084.6 ± 146.9 5932.0 ± 335.2
Scoring (no relabel) 5593.0 ± 564.2 3316.2 ± 1207.8
Scoring (no early stop) 2129.8 ± 2205.8 1018.2 ± 250.0

Table 10: Ablation study on top-k hyperparameter on Ant-v4 task. Reported as mean ± std of
reward across last five checkpoints. Supplementary results for Sec. 4.5

Top-k fraction Expertise [0.1 – 0.9] Expertise [0.05 – 0.15]

0.05 – 5887.6 ± 263.8
0.1 5403.8 ± 378.7 5932.0 ± 335.2
0.15 – 3663.4 ± 1950.9
0.2 – 1756.6 ± 902.6
0.3 5809.0 ± 274.8 –
0.5 6084.6 ± 146.9 –
0.55 4109.2 ± 2204.9 –
0.6 3641.0 ± 1237.7 –
0.7 2383.0 ± 1059.7 –
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Table 11: Estimated expertise levels {α̂i}mi=1 on Ant-v4 task, showing the mean estimate and the
mean ± standard deviation of error across five random seeds. True values are shown separately.
Results shown for different numbers of demonstrators (2, 4, 6, 8). Supplementary results for Sec. 4.5

Demonstrator Type 1 2 3 4 5 6 7 8 Mean error ± std
General expertise test
2 demonstrators Est. 0.101 0.899 - - - - - - (9.60± 1.60)× 10−4

True 0.100 0.900 - - - - - - -
4 demonstrators Est. 0.100 0.366 0.633 0.899 - - - - (4.50± 2.96)× 10−4

True 0.100 0.367 0.633 0.900 - - - - -
6 demonstrators Est. 0.100 0.260 0.420 0.580 0.740 0.900 - - (2.67± 1.28)× 10−4

True 0.100 0.260 0.420 0.580 0.740 0.900 - - -
8 demonstrators Est. 0.100 0.214 0.329 0.443 0.557 0.671 0.785 0.899 (2.50± 1.97)× 10−4

True 0.100 0.214 0.329 0.443 0.557 0.671 0.786 0.900 -
Low expertise test
2 demonstrators Est. 0.193 0.287 - - - - - - (1.40± 0.03)× 10−1

True 0.050 0.150 - - - - - - -
4 demonstrators Est. 0.106 0.143 0.173 0.208 - - - - (5.77± 0.16)× 10−2

True 0.050 0.083 0.117 0.150 - - - - -
6 demonstrators Est. 0.148 0.170 0.187 0.207 0.222 0.246 - - (9.65± 0.24)× 10−2

True 0.050 0.070 0.090 0.110 0.130 0.150 - - -
8 demonstrators Est. 0.073 0.087 0.101 0.115 0.130 0.144 0.160 0.175 (2.31± 0.10)× 10−2

True 0.050 0.064 0.079 0.093 0.107 0.121 0.136 0.150 -

Table 12: Ablation on the different number of demonstrators for Ant-v4 task. Reported numbers are
mean ± std of reward across last five checkpoints. Supplementary results for Sec. 4.5

Scoring Samples Expertise [0.1 – 0.9] Expertise [0.05 – 0.15]

2 5634.0 ± 617.8 6050.6 ± 120.4
4 5934.0 ± 264.3 5637.2 ± 772.5
6 6084.6 ± 146.9 5932.0 ± 335.2
8 5735.0 ± 225.6 6146.6 ± 107.2
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Figure 4: Ablation on the different number of demonstrators for Ant-v4 task (mean ± std, shown as
shaded region). Supplementary results for Sec. 4.5

Number of Demonstrators: The results in Tab. 11 show that the estimation error of expertise levels
in low expertise test increase when the number of demonstrators is reduced. However, the reward
obtained by the IL agent in Stage 2 (see Tab. 12) does not decrease substantially. These results
demonstrate the robustness of our method with respect to varying demonstrator counts in terms of
IL performance.
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Figure 5: Comparative analysis of our method and its variants.

C.2 ADDITIONAL ANALYSIS OF METHOD VARIANTS

We analyze our algorithm by comparing it against several variants under different settings. (1)
Scoring: original method; (2) Scoring PN: in Stage 2, the first term Ê(s,a)∼ρ

[
L(fϕ(s, a)

]
(demon-

stration discriminative loss) in Eq. 8 is replaced with a PN loss Ê
(s,a)∼ρ̂π∗

(s′,a′)∼ρ̂πsub

[
LPN (fϕ(s, a, s

′, a′)
]
,

where LPN (fϕ(s, a, s
′, a′) = log

(
1 − fϕ(s, a)

)
+ log

(
fϕ(s

′, a′)
)
, and πsub represent the pseudo-

suboptimal data inferred from Dsubopt = D\Dopt. (3) Scoring exp. known: the true expertise levels
are assumed to be given in both Stage 1 and 2. (4) Scoring opt. known: in Stage 2, Dopt is provided
based on the true labels.

The results in Fig. 5 show that, overall, all methods achieve comparable performance. Scoring
PN yields slightly lower rewards in general expertise test on Ant and Swimmer tasks, which may
be attributed to the overconfidence issue introduced by self-labeling when using the PN loss. This
result highlights the effectiveness of our demonstration discriminative loss. Scoring exp. known
and Scoring opt. known serve as oracle variants (with oracle knowledge of expertise levels and
optimality labels, respectively) and achieve only marginally better performance than the original
method in the low expertise test on HalfCheetah and Walker2d. This observation highlights the
effectiveness of our approach in expertise-level estimation and optimality prediction when learning
from imperfect demonstrations.

C.3 REPRODUCIBILITY STATEMENT

To ensure the reproducibility of this work, details of the training parameters are provided in Tab.
13. All reported results are averaged over five random seeds (0–4) per condition/method, with mean
and standard deviation reported. The corresponding code will be released as open-source upon
publication of this work.
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Table 13: Training Parameters

Stage Parameter Value

Stage 1

fϕ learning rate 1× 10−4

fϕ batch size 1000
fϕ optimizer Adam
Variance threshold ϵ for expertise levels 0.0005
Expertise levels estimation frequency Every 5 epochs
fϕ training epochs 50 (Ant, HalfCheetah, Swimmer)

100 (Walker2d)

Stage 2

πθ model SAC (Stable-Baselines3)
πθ learning starts from 100 steps
πθ batch size 1024
πθ learning rate 2× 10−3

πθ replay buffer size 1× 106

πθ training steps / IL iteration 1.5× 104

fϕ learning rate 1× 10−4

fϕ batch size 1024
fϕ optimizer Adam
fϕ updates epochs / IL iteration 500
∆t, p for relabeling early stopping 30 (for 5 consecutive steps)
IL total iterations 200
checkpoints saving freqency 1 per IL iteration
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