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ABSTRACT

Gradient compression is a popular technique for improving communication com-
plexity of stochastic first-order methods in distributed training of machine learning
models. However, the existing works consider only with-replacement sampling of
stochastic gradients. In contrast, it is well-known in practice and recently confirmed
in theory that stochastic methods based on without-replacement sampling, e.g.,
Random Reshuffling (RR) method, perform better than ones that sample the gradi-
ents with-replacement. In this work, we close this gap in the literature and provide
the first analysis of methods with gradient compression and without-replacement
sampling. We first develop a distributed variant of random reshuffling with gradient
compression (Q-RR), and show how to reduce the variance coming from gradient
quantization through the use of control iterates. Next, to have a better fit to Feder-
ated Learning applications, we incorporate local computation and propose a variant
of Q-RR called Q-NASTYA. Q-NASTYA uses local gradient steps and different local
and global stepsizes. Next, we show how to reduce compression variance in this
setting as well. Finally, we prove the convergence results for the proposed methods
and outline several settings in which they improve upon existing algorithms.

1 INTRODUCTION

Federated learning (FL) (Konecny et al., 2016; McMabhan et al., 2017) is a framework for distributed
learning and optimization where multiple nodes connected over a network try to collaboratively carry
out a learning task. Each node has its own dataset and cannot share its data with other nodes or
with a central server, so algorithms for federated learning often have to rely on local computation
and cannot access the entire dataset of training examples. Federated learning has applications in
language modelling for mobile keyboards (Liu et al., 2021), healthcare (Antunes et al., 2022), wireless
communications (Yang et al., 2022), and continues to find applications in many other areas (Kairouz
et al., 2019).

Federated learning tasks are often solved through empirical-risk minimization (ERM), where the
m-th devices contributes an empirical loss function f,,(z) representing the average loss of model z
on its local dataset, and our goal is to then minimize the average loss over all the nodes:

. def 1 u
min | f(x) = i Z fm(@)|, (H
m=1

z€R?
where the function f represents the average loss. Every f,, is an average of sample loss functions

i _each representing the loss of model x on the i-th datapoint on the mth clients’ dataset: that is for
eachm € {1,2,..., M} we have

det 1 = i
fm(JU) = ni Z 'm(x)'
moi=1

For simplicity we shall assume that the datasets on all clients are of equal size: n1 = no = ... = nyy,
though this assumption is only for convenience and our results easily extend to the case when clients
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Algorithm 1 The generalized FedAvg framework for methods with local steps

Input: z( - starting point, v > 0 — local stepsize, n > 0 — global stepsize, I - number of local steps

1: for communication rounds ¢t = 0,1,...,7 — 1 do

2:  for clients m € [M] in parallel do

3 Receive z; from the server and set x?m =T

4 for local steps+ = 0,1,..., H do

5: Set x%ﬁ = ClientUpdate(z} ,,,, v, m, i)

6 end for

7 Send :cflm to the server, or alternatively send the update A; ,, =z} — z; to the server
8: end for

9:  Compute Ty 41 = 77 Z%zl afl,, (Or xep = e + 57 foil Ay if clients sent updates)

10:  Broadcast x;; to the clients
11: end for
Output: zr

have datasets of unequal sizes. Thus our optimization problem is

1 & ,
min | f(2) = 22 >0 > fu@) |- )

z€RC n

Because d is often very large in practice, the dominant paradigm for solving (2) relies on first-order
(gradient) information. Federated learning algorithms have access to two key primitives: (a) local
computation, where for a given model # € R¢ we can compute stochastic gradients V 2 () locally
on client m, and (b) communication, where the different clients can exchange their gradients or
models with a central server.

1.1 COMMUNICATION BOTTLENECK: FROM ONE TO MULTIPLE LOCAL STEPS

In practice, communication is more expensive than local computation (Kairouz et al., 2019), and
as such one of the chief concerns of algorithms for federated learning is communication efficiency.
Algorithms for federated learning have thus focused on achieving communication efficiency, with one
common ingredient being the use of multiple local steps (Wang et al., 2021; Malinovskiy et al., 2020),
where each node uses multiple gradients locally for several descent steps between communication
steps. In general, algorithms using local steps fit the following pattern of generalized FedAvg (due to
(Wang et al., 2021)); see Algorithm 1.

When the client update method in Algorithm 1 is stochastic gradient descent, we get the FedAvg
algorithm (also known as Local SGD). While FedAvg is popular in practice, recent theoretical progress
has given tight analysis of the algorithm and shown that it can be definitively slower than its non-local
counterparts (Khaled et al., 2020; Woodworth et al., 2020a; Glasgow et al., 2022). However, by using
bias-reduction techniques one can use local steps and still maintain convergence rates at least as fast
as non-local methods (Karimireddy et al., 2020), or in some cases even faster (Mishchenko et al.,
2022). Thus local steps continue to be a useful algorithmic ingredient in both theory and practice for
achieving communication efficiency.

1.2  COMMUNICATION BOTTLENECK: FROM FULL-DIMENSIONAL TO COMPRESSED
COMMUNICATION

Another useful ingredient in distributed optimization is gradient compression, where each client sends
a compressed or quantized version of their update A, ,,, instead of the full update vector, potentially
saving communication bandwidth by sending fewer bits over the network. There are many operators
that can be used for compressing the update vectors: stochastic quantization (Alistarh et al., 2017),
random sparsification (Wangni et al., 2018; Stich et al., 2018), and others (Tang et al., 2020). In this
work we consider compression operators satisfying the following assumption:
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Assumption 1. A compression operator is an operator Q : R® — R® such that for some w > 0, the
relations

EQ@)=c and E[|Q)-a|?] <wlel®
hold for x € R%,

Unbiased compressors can reduce the number of bits clients communicate per round, but also increases
the variance of the stochastic gradients used slowing down overall convergence, see e.g. (Khirirat
et al., 2018, Theorem 5.2) and (Stich, 2020, Theorem 1). By using control iterates, Mishchenko et al.
(2019b) developed DIANA—an algorithm that can reduce the variance due to gradient compression
with unbiased compression operators, and thus ensure fast convergence. DIANA has been extended
and analyzed in many settings (Horvath et al., 2019; Stich, 2020; Safaryan et al., 2021) and forms an
important tool in our arsenal for using gradient compression.

1.3 COMMUNICATION BOTTLENECK: FROM WITH REPLACEMENT TO WITHOUT REPLACEMENT
SAMPLING

The algorithmic framework of generalized FedAvg (Algorithm 1) requires specifying a client update
method that is used locally on each client. The typical choice is stochastic gradient descent (SGD),
where at each time step we sample j from {1,...,n} uniformly at random and then do a gradient
descent step using the stochastic gradient V £, (ac;m), resulting in the client update:

ClientUpdate(z ,,,, v, m, 1) = &} ., — YV 1, (] )-

This procedure thus uses with-replacement sampling in order to select the stochastic gradient used at
each local step from the dataset on node m. In contrast, we can use without-replacement sampling to
select the gradients: that is, at the beginning of each epoch we choose a permutation 7y, ma, ..., T,
of {1,2,...,n} and do the i-th update using the 7;-ith gradient:

ClientUpdate(zé,m, v, m, i) = Ty — YV (xim)
Without-replacement sampling SGD, also known as Random Reshuffling (RR), typically achieves
better asymptotic convergence rates compared to with-replacement SGD and can improve upon
it in many settings as shown by recent theoretical progress (Mishchenko et al., 2020; Ahn et al.,
2020; Rajput et al., 2020; Safran and Shamir, 2021). While with-replacement SGD achieves an error
proportional to O (7:) after T' steps (Stich, 2019), Random Reshuffling achieves an error of O (%)

T
after T’ steps, faster than SGD when the number of steps 7' is large.

The success of RR in the single-machine setting has inspired several recent methods that use it as a
local update method as part of distributed training: Mishchenko et al. (2021) developed a distributed
variant of random reshuffling, FedRR. FedRR fits into the framework of Algorithm 1 and uses RR as a
local client update method in lieu of SGD. They show that FedRR can improve upon the convergence
of Local SGD when the number of local steps is fixed as the local dataset size, i.e. when H = n. Yun
et al. (2021) study the same method under the name Local RR under a more restrictive assumption of
bounded inter-machine gradient deviation and show that by varying H to be smaller than n better
rates can be obtained in this setting than the rates of Mishchenko et al. (2021). Other work has
explored more such combinations between RR and distributed training algorithms (Huang et al.,
2021; Malinovsky et al., 2022; Horvéth et al., 2022).

1.4 THREE TRICKS FOR ACHIEVING COMMUNICATION EFFICIENCY

To summarize, we have at our disposal the following tricks and techniques for achieving communica-
tion efficiency in distributed training: (a) Local steps, (b) Gradient compression, and (c) Random
Reshuffling. Each has found its use in federated learning and poses its own challenges, requiring
special analysis or bias/variance-reduction techniques to achieve the best theoretical convergence
rates and practical performance. Client heterogeneity causes local methods (with or without random
reshuffling) to be biased, hence requiring bias-reduction techniques (Karimireddy et al., 2020; Murata
and Suzuki, 2021) or decoupling local and server stepsizes (Malinovsky et al., 2022). Gradient
compression reduces the number of bits clients have to send per round, but causes an increase in
variance, and we hence also need variance-reduction techniques to achieve better convergence rates
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under gradient compression (Mishchenko et al., 2019b; Stich and Karimireddy, 2019). However, it is
not clear apriori how these techniques should be combined to improve the convergence speed, and
this is our starting point.

1.5 CONTRIBUTIONS

In this paper, we aim to develop methods for federated optimization that combine gradient compres-
sion, random reshuffling, and/or local steps. While each of these techniques can aid in reducing the
communication complexity of distributed optimization, their combination is under-explored. Thus
our goal is to design methods that improve upon existing algorithms in convergence rates and in
practice. We summarize our contributions as:

¢ The issue: naive combination has no improvements. As a natural step towards our goal, we
start with non-local methods and propose a new algorithm, Q-RR (Algorithm 2), that combines
random reshuffling with gradient compression at every communication round. However, for Q-RR
our theoretical results do not show any improvement upon QSGD when the compression level is
reasonable. Moreover, we observe similar performance of Q-RR and QSGD in various numerical
experiments. Therefore, we conclude that this phenomenon is not an artifact of our analysis but
rather an issue of Q-RR: communication compression adds an additional noise that dominates the
one coming from the stochastic gradients sampling.

¢ The remedy: reduction of compression variance. To remove the additional variance added
by the compression and unleash the potential of Random Reshuffling in distributed learning
with compression, we propose DIANA-RR (Algorithm 3), a combination of Q-RR and the DIANA
algorithm. We derive the convergence rates of the new method and show that it improves upon the
convergence rates of Q-RR, QSGD, and DIANA. We point out that to achieve such results we use n
shift-vectors per worker in DIANA-RR unlike DIANA that uses only 1 shift-vector.

< Extensions to the local steps. Inspired by the NASTYA algorithm of Malinovsky et al. (2022), we
propose a variant of NASTYA, Q-NASTYA (Algorithm 4), that naively mixes quantization, local
steps with random reshuffling, and uses different local and server stepsizes. Although it improves
in per-round communication cost over NASTYA but, similar to Q-RR, we show that Q-NASTYA
suffers from added variance due to gradient quantization. To overcome this issue, we propose
another algorithm, DIANA-NASTYA (Algorithm 5), that adds DIANA-style variance reduction to
Q-NASTYA and removes the additional variance.

Finally, to illustrate our theoretical findings we conduct experiments on federated linear regression
tasks.

1.6 RELATED WORK

Federated optimization has been the subject of intense study, with many open questions even in the
setting when all clients have identical data (Woodworth et al., 2020b;a; 2021). The FedAvg algorithm
(also known as Local SGD) has also been a subject of intense study, with tight bounds obtained only
very recently by Glasgow et al. (2022). It is now understood that using many local steps adds bias to
distributed SGD, and hence several methods have been developed to mitigate it, e.g. (Karimireddy
et al., 2020; Murata and Suzuki, 2021), see the work of Gorbunov et al. (2021) for a unifying lens on
many variants of Local SGD. Note that despite the bias, even vanilla FedAvg/Local SGD still reduces
the overall communication overhead in practice (Ortiz et al., 2021).

There are several methods that combine compression or quantization and local steps: both Basu et al.
(2019) and Reisizadeh et al. (2020) combined Local SGD with quantization and sparsification, and
Haddadpour et al. (2021) later improved their results using a gradient tracking method, achieving
linear convergence under strong convexity. In parallel, Mitra et al. (2021) also developed a variance-
reduced method, FedLin, that achieves linear convergence under strong convexity despite using local
steps and compression. The paper most related to our work is (Malinovsky and Richtarik, 2022)
in which the authors combine iterate compression, random reshuffling, and local steps. We study
gradient compression instead, which is a more common form of compression in both theory and
practice (Kairouz et al., 2019). We compare our results against (Malinovsky and Richtarik, 2022) and
show we obtain better rates compared to their work.
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Algorithm 2 Q-RR: Distributed Random Reshuffling with Quantization

Input: x( — starting point, v > 0 — stepsize
1: fort=0,1,...,7 —1do
2:  Receive x; from the server and set x?’m =2
Sample random permutation of [n]: 7, = (7
fori=0,1,...,n—1do
form =1,..., M in parallel do _
Receive z¢ from the server, compute and send Q (V fmm (mi)) back
end for ,
Compute and send z{ ™! =z} — 4L S 0 (Vf;;[” (xi)) to the workers
9:  end for
10: Ti41 = 1’?
11: end for
Output: zr

S A

2 ALGORITHMS AND CONVERGENCE THEORY

We will primarily consider the setting of strongly-convex and smooth optimization. We assume that
the average function f is strongly convex:

Assumption 2. Function f : R — R is p-strongly convex, i.e., for all x,y € R,

J(@) = £y) = (V)2 —y) 2 Slla —yl*, 3)
and functions fi, fi,... fi, : R% — Rare convex foralli=1,...,n.

Examples of objectives satisfying Assumption 2 include ¢5-regularized linear and logistic regression.
Throughout the paper, we assume that f has the unique minimizer z. € R?. We also use the
assumption that each individual loss f}, is smooth, i.e. has Lipschitz-continuous first-order derivatives:

Assumption 3. Function f!, : R? — R is L; ,,-smooth for every i € [n] and m € [M)], i.e., for all
x,y € R% and for allm € [M] and i € [n],

IV f1(@) = V7, < Limll2z = yll. 4)
We denote the maximal smoothness constant as Ly def max; m Lim.

For some methods, we shall additionally impose the assumption that each function is strongly convex:
Assumption 4. Each function fi : R — R is [i-strongly convex.

The Bregman divergence associated with a convex function h is defined for all z,y € R? as

def
Du(z,y) = h(z) = h(y) = (VA(y),z —y) .
Note that the inequality (3) defining strong convexity can be compactly written as Dy(z,y) >
Sl =yl
2

2.1 ALGORITHM Q-RR

The first method we introduce is Q-RR (Algorithm 2). Q-RR is a straightforward combination of
distributed random reshuffling and gradient quantization. This method can be seen as the stochastic
without-replacement analogue of the distributed quantized gradient method of Khirirat et al. (2018).

We shall the use the notion of shuffling radius defined by Mishchenko et al. (2021) for the analysis of
distributed methods with random reshuffling:

Definition 2.1. Define the iterate sequence z't! = z' — ; Zivrle \Y f;;" (). Then the shuffling

radius is the quantity
M
o def 1 i
Orad = miaX W Z]EnglL(x*7$*) .

m=1
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We now state the main convergence theorem for Algorithm 2:

Theorem 2.1. Let Assumptions 1, 3, 4 hold and let the stepsize satisfy 0 < v < W Then,
7 ) max

for all T > 0 the iterates produced by Q-RR (Algorithm 2) satisfy

22 omd 2’yw (C o2)

Ellor —z.)* < (L—am)"" [lzo — @.||* + ®)

def

M M n )
where 2% g 30 IV fm()|I?, and 02 % g 30 3 195, () =V fn )]

All proofs are relegated to the appendix. By choosing the stepsize v properly, we can obtain the
communication complexity (number of communication rounds) needed to find an e-approximate
solution as follows:

Corollary 1. Under the same conditions as Theorem 2.1 and for Algorithm 2, there exists a stepsize
~ > 0 such that the number of communication rounds nI' to find a solution with accuracy € > 0

(ie. Bz — .|| < €) is equal to O <(1 + ﬁ) Zmax 4 W(]\/C[f:‘;*) + \;L) , where O(-) hides

constants and logarithmic factors.

The complexity of Quantized SGD (QSGD) is (Gorbunov et al, 2020):

O( (14 ) sy LEHIHEDT) ) B Gimplicity, 1 lect the diff b d
( JFM) m + MpZe . For simplicity, let us neglect the differences between p an

1. First, when w = 0 we recover the complexity of FedRR (Mishchenko et al., 2021) which is known
to be better than the one of SGD as long as ¢ is sufficently small as we have n#o7/s < g2, < nLol/s
from (Mishchenko et al., 2021). Next, when M = 1 and w = 0 (single node, no compression) our
results recovers the rate of RR (Mishchenko et al., 2020).

However, it is more interesting to compare Q-RR and QSGD when M > 1 and w > 1, which is
typically the case. In these settings, Q-RR and QSGD have the same complexity since the O(1/¢)
term dominates the O(1/\/) one if ¢ is sufficiently small. That is, the derived result for Q-RR has no
advantages over the known one for QSGD unless w is very small, which means that there is almost
no compression at all. We also observe this phenomenon in the experiments.

The main reason for that is the variance appearing due to compression. Indeed, even if the current
point is the solution of the problem (z; = w.), the update direction —y 77 Z%Zl Q (V fmm (x;))
has the compression variance

Eq

i 2 ryzw M i
( (VI () = V frin () ]éMQZHVf;m(x*)HZ.
m=1

This upper bound is tight and non-zero in general. Moreover, it is proportional to 42 that creates the
term proportional to v in (5) like in the convergence results for QSGD/SGD, while the RR-variance is
proportional to 72 in the same bound. Therefore, during the later stages of the convergence Q-RR
behaves similarly to QSGD when we decrease the stepsize.

m=1

2.2 ALGORITHM DIANA-RR

To reduce the additional variance caused by compression, we apply DIANA-style shift sequences
(Mishchenko et al., 2019b; Horvath et al., 2019). Thus we obtain DIANA-RR (Algorithm 3). We
notice that unlike DIANA, DIANA-RR has n shift-vectors on each node.

Theorem 2.2. Let Assumptions 1, 3, 4 hold and suppose that the stepsizes satisfy v <

min ———— ¢, and a < ——. Define the following Lyapunov function for eve
{Znu (1+Lw1) } d < Dﬁ hfll g Lyap f f ryt >0
% ) Lmax
def 4w72 M n—1
T T 5 Z Z (1 —yp) ||At+1 mll?s (6)
=1j=0
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Algorithm 3 DIANA-RR

Input: 1z, - starting point, {h{, m} — initial shift-vectors, v > 0 — stepsize, a > 0 — stepsize

for learning the shifts

m,i= 11

1: fort=0,1,...,T — 1do
2:  Receive z; from the server and set a:?’m =4
3:  Sample random permutation of [n]: 7, = (7),,..., 7% 1)
4. fori:=0,1,...,n—1do
5: form =1,2,..., M in parallel do ‘
6: Receive z! from the server, compute and send Q (V frm (xi) — h:*,;) back
7 Set grm = him, +Q(Vf (mim)—hf”;;l)
8: Set hlry . = him —|—aQ(Vf " (@) —h;jg;)
9: end for
10: Compute zj! = 2} — 4 M gt m and send 1! to the workers

11:  end for
12: Ti41 = 1’?
13: end for
Output:

where A{_H’m = hfi”l,m - Vf:;i" (24) Then, for all T > 0 the iterates produced by DIANA-RR
(Algorithm 3) satisfy
2 2 2
E[Ur] < (1—~fi)"T Wy + 2L Trad
Corollary 2. Under the same conditions as Theorem 2.2 and for Algorithm 3, there exists stepsizes
v, a > 0 such that the number of communication rounds nT" to find a solution with accuracy € > 0 is
0] (n(l +w)+ (14 ) Lo 4 o ) :

ep®

Unlike Q-RR/QSGD/DIANA, DIANA-RR does not have a O(1/c)-term, which makes it superior to
Q-RR/QSGD/DIANA for small enough . However, the complexity of DIANA-RR has an additive

O(n(1 + w)) term arising due to learning the shifts {hi 1Y mem,icn)- Nevertheless, this additional
term is not the dominating one when ¢ is small enough. Next, we elaborate a bit more on the compar-

ison between DIANA and DIANA-R. That is, DIANA has O ((1 + ﬁ) Zmax | (1;:)‘67 ) complexity

(Gorbunov et al., 2020). Neglecting the differences between p and i, Lmax and L., We observe
a similar relation between DIANA-RR and DIANA as between RR and SGD: instead of the term
O((1+w)o?/(Mp2e)) appearing in the complexity of DIANA, DIANA-RR has O(7w//=5) term much
better depending on €. To the best of our knowledge, our result is the only known one establishing
the theoretical superiority of RR to regular SGD in the context of distributed learning with gradient
compression. Moreover, when w = 0 (no compression) we recover the rate of FedRR and when
additionally M = 1 (single worker) we recover the rate of RR.

2.3 ALGORITHM Q-NASTYA

By adding local steps to Q-RR, we can do enable each client to do more local work and only

communicate once per epoch rather than at each iteration of every epoch. We follow the framework of

the NASTYA algorithm (Malinovsky et al., 2022) and extend it by allowing for quantization, resulting

in Q-NASTYA (Algorithm 4).

Theorem 2.3. Let Assumptions 1, 2, 3 hold. Let the stepsizes vy, n satisfy 0 < n < m,
max M

0<y< 5 L . Then, for all T > 0 the iterates produced by Q-NASTYA (Algorithm 4) satisfy

97 ana.x ((n+

nH
E [llor - 2] < (1- 7) lzo — =.[1* + 8 4 ¢ +07) -
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Algorithm 4 Q-NASTYA

Input: z( — starting point, v > 0 — local stepsize, > 0 — global stepsize
1: fort=0,1,..., 7 —1do

2:  for m € [M] in parallel do

3 Receive 2 from the server and set z,, = x;

4: Sample random permutation of [n]: 7, = (72,,..., 7% 1)

5: fori=0,1,...,n—1do

6 Set aihl =t — YV i (34 1)

7 end for

8 Compute g; , = ,%n (:rt — x?m) and send Q;(g¢ ) to the server

9:  end for
10:  Compute g; = =5 Zf\le Qi(gt,m)
11:  Compute z;41 = xy — ngy and send ;41 to the workers
12: end for
Qutput: x7

Corollary 3. Under the same conditions as Theorem 2.3 and for Algorithm 4, there exist stepsizes
~ = /n and 1 > 0 such that the number of communication rounds T to find a solution with accuracy

5>Ois(5(Lm‘“‘(1—|— + 37 <*3—|—\/6‘;“‘\/C* ) If v — 0, one can choose n > 0 such

that the above complexity bound improves to o < o (1 + ) + 37 ECM )

We emphasize several differences with the known theoretical results. First, the FedCOM method
of Haddadpour et al. (2021) was analyzed in the homogeneous setting only, i.e., fn(z) = f(z)
for all m € [M], which is an unrealistic assumption for FL applications. In contrast, our result
holds in the fully heterogeneous case. Next, the analysis of FedPAQ of Reisizadeh et al. (2020)
uses a bounded variance assumption, which is also known to be restrictive. Nevertheless, let us
compare to their result. Reisizadeh et al. (2020) derive the following complexity for their method:

1) (% (1 + %) + ﬁ% + ﬁés) . This result is inferior to the one we show for Q-NASTYA:

when w is small, the main term in the complexity bound of FedPAQ is o (1/¢), while for Q-NASTYA

the dominating term is of the order O (1//z) (when w and ¢ are sufficiently small) We also highlight
that FedCRR (Malinovsky and Richtérik, 2022) does not converge if w > M* vue/(2||e7,, ||I*), while
Q-NASTYA does for any w > 0. Finally, when w = 0 (no compression) we recover NASTYA as a
special case, and using y = 7/n, we recover the rate of FedRR (Mishchenko et al., 2021).

2.4 ALGORITHM DIANA-NASTYA

As in the case of Q-RR, the complexity bound for Q-NASTYA includes a O(«/<) term, appearing due
to quantization noise. To reduce it, we apply DIANA-style correction sequences, which leads to a new
method for which we coin the name DIANA-NASTYA (Algorithm 5).

Theorem 2.4. Let Assumptions I, 2, 3 hold. Suppose the stepsizes vy, 1, o satisfy 0 < v < 5

maxn’
0 <7 <min { TR W} yand a < H—w. Define the following Lyapunov function:
N N Z Ve m — B2l @)
Then, for all T' > 0 the iterates produced by DIANA-NASTYA (Algorithm 5) satisfy
E[Ur] < (1 _ %) Wy + 372:L ((n+1)C2+02). ®)

Corollary 4. Under the same conditions as Theorem 2.4 and for Algorithm 5, there exist stepsizes
v =1/n, n > 0, @ > 0 such that the number of communication rounds T to find a solution with
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Algorithm 5 DIANA-NASTYA

Input: x( — starting point, {ho,m}f‘le — initial shift-vectors, v > 0 — local stepsize, n > 0 — global
stepsize, a > 0 — stepsize for learning the shifts

1: fort=0,1,...,T —1do

2 for m = 1,..., M in parallel do

3 Receive z; from the server and set I’gm =T

4: Sample random permutation of [n]: 7, = (70,,..., 7% 1)
5: fori=0,1,...,n—1do

6 Set &y, =y — YV f" (2 1)

7 end for

8: Compute g; , = ,yin (a:t — x;fm) and send Q¢ (g¢,m — hi,m) to the server
9: Set hyy1,m = hem + @Qy (9e,m — him)
10: Set gt,m = ht,m + Q4 (gt,m - ht,m)
11:  end for

M M
12: hyy = ﬁ Y omet Ptrtm = e + 57 2 om—1 @t (9t,m — hem)

13: gt = ﬁ E%:l gt,m = ht + ﬁ Zn]\ile Qt (gt7m - ht,m)
14: xt-‘,—l = Tt — T]gt

15: end for

Output: z7

accuracy € > 0is O (w—i— L';a" (1 + %) + w%v@% + ig) .If~v — 0, one can choose n > 0

7 7 2] Lmax
such that the above complexity bound improves to O (w + (1 + %)) .

In contrast to Q-NASTYA, DIANA-NASTYA does not suffer from the O(1/=) term in the complexity
bound. This shows the superiority of DIANA-NASTYA to Q-NASTYA. Next, FedCRR-VR (Malinovsky

and Richtarik, 2022) has the rate 0] <(w+1)(1_“) + ‘/E(C*+U*)) , which depends on 1) (/).

(G=O-0 7 A
However, the first term is close to O ((w + 1)/{2) for a large condition number. FedCRR-VR-2
utilizes variance reduction technique from Malinovsky et al. (2021) and it allows to get rid of

n

@rD(1-2=)° | e, . . .
T T complexity, but it requires

(o))
additional assumption on number of functions n and thus not directly comparable with our result.
Note that if we have no compression (w = 0), DIANA-NASTYA recovers rate of NASTYA.

permutation variance. This method has o

3 EXPERIMENTS

We evaluated our methods for solving logistic regression problems and training neural networks
in three parts: (i) Comparison of the proposed non-local methods with existing baselines; (ii)
Comparison of the proposed local methods with existing baselines; (iii) Comparison of the proposed
non-local methods in training ResNet-18 on CIFAR1O.

In our first experiment (refer to Figure 1a), we compared non-local algorithms named Q-RR and
DIANA-RR with their corresponding classical baselines, QSGD (Alistarh et al., 2017) and DIANA
(Mishchenko et al., 2019b), that use a with-replacement mini-batch SGD estimator. In the second
experiment (see Figure 1b), we assessed local methods named Q-NASTYA and DIANA-NASTYA, along
with other baselines, FedCOM (Haddadpour et al., 2021), and FedPAQ (Reisizadeh et al., 2020).

For the third set of experiments, we focused on training the ResNet -18 model on the CIFAR10
dataset Krizhevsky and Hinton (2009). We tested Q-RR, QSGD, DIANA, and DIANA-RR in the
distributed training of ResNet-18 on CIFAR1O0 (see Figure 2). These experiments were conducted
using the FL_PyTorch simulator (Burlachenko et al., 2021).

To adhere to space limitations, we have provided the experimental results and details in Appendix A.
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A EXPERIMENTAL DETAILS

In this section, we provide missing details on the experimental setting from Section 3. The codes are
provided in the following anonymous repository: https://anonymous.4open.science/r/
diana_rr—-[]BOAS.

A.1 LOGISTIC REGRESSION

To confirm our theoretical results we conducted several numerical experiments on binary classification
problem with L2 regularized logistic regression of the form

M n
. def 1 1 -
Rl flz) = Mﬂ;a;ﬂn,i , )

where fi, ; 4l 1og (1 + exp(=ymia;x)) + M zl|3 (ami, ymi) € RIx € {=1,1},i =1,...,n,
are the training data samples stored on machines m = 1,..., M, and A > 0 is a regularization
parameter. In all experiments, for each method, we used the largest stepsize allowed by its theory
multiplied by some individually tuned constant multiplier. For better parallelism, each worker m
uses mini-batches of size = 0.1n,,. In all algorithms, as a compression operator Q, we use Rand-k
(Beznosikov et al., 2020) with fixed compression ratio ¥/a 2 0.02, where d is the number of features
in the dataset.

Hardware and Software. All algorithms were written in Python 3.8. We used three different CPU
cluster node types:

1. AMD EPYC 7702 64-Core;
2. Intel(R) Xeon(R) Gold 6148 CPU @ 2.40GHz;
3. Intel(R) Xeon(R) Gold 6248 CPU @ 2.50GHz.

Datasets. The datasets were taken from open LibSVM library Chang and Lin (2011), sorted in
ascending order of labels, and equally split among 20 machines \clients\workers. The remaining

part of size N — 20 - | N/20| was assigned to the last worker, where N = 211-\,1/[:1 N, is the total size
of the dataset. A summary of the splitting and the data samples distribution between clients can be
found in Tables 1, 2, 3, 4.

Table 1: Summary of the datasets and splitting of the data samples among clients.

Dataset M N (dataset size) d (# of features) n,, (# of datasamples per client)
mushrooms 20 8120 112 406

w8a 20 49749 300 2487

a9a 20 32560 123 1628

Table 2: Partition of the mushrooms dataset among clients.

Client’s Ne  # of datasamples of class ”-1”  # of datasamples of class "+1”

1-9 406 0

10 262 144
11-19 0 406
20 0 410

Hyperparameters. Regularization parameter A was chosen individually for each dataset to guar-
antee the condition number Z/,. to be approximately 10%, where L and p are the smoothness and
strong-convexity constants of function f. For the chosen logistic regression problem of the form
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Table 3: Partition of the w8a dataset among clients.

Client’s Ne  # of datasamples of class ”-1”  # of datasamples of class "+1”

1-19 2487 0
20 1017 1479

Table 4: Partition of the a9a dataset among clients.

Client’s Ne  # of datasamples of class ”-1”  # of datasamples of class ”+1”

1-14 1628 0

15 1328 300
16-19 0 1628
20 0 1629

(9), smoothness and strong convexity constants L, Ly,, L; ,, i, it of functions f, f,, and ffn were
computed explicitly as

M
L = Ajax S Z L AT A, +2)I
M — dn, ™

1
L = Amax (A;AmwAI)
an,,
1 T
Li,m = Amax Zamiami +2A1
wo= 2\
o= 2

where A, is the dataset associated with client m, and a,,; is the i-th row of data matrix A,,,. In
general, the fact that f is L-smooth with

1 M 1 N
L<—> =3 Lin
follows from the L; ,,,-smoothness of f (see Assumption 3).

In all algorithms, as a compression operator O, we use Rand-k as a canonical example of unbiased
compressor with relatively bounded variance, and fix the compression parameter k = |0.02d |, where
d is the number of features in the dataset.

In addition, in all algorithms, for all clients m = 1,..., M, we set the batch size for the SGD
estimator to be b,, = |0.1n,, |, where n,,, is the size of the local dataset.

The summary of the values L, L,,, L; m Lmax, 1, by, and k for each dataset can be found in Table 5.

Table 5: Summary of the hyperparameters.

Dataset L Liax A k b, (batchsize)
mushrooms 2.59 5.25 258-107% 1.29-107* 2 40

w8a 0.66 28.5 6.6-107° 3.3-107° 6 248

a%a 1.57 3.5 1.57-107* 7.85-107° 2 162

In all experiments, we follow constant stepsize strategy within the whole iteration procedure. For each
method, we set the largest possible stepsize predicted by its theory multiplied by some individually
tuned constant multiplier. For a more detailed explanation of the tuning routine, see Sections A.1.1
and A.1.2.

16



Under review as a conference paper at ICLR 2024

10! mushrooms; Rand-2 10! w8a; Rand-6 a9a; Rand-2

-@- QsGD -@- QsGD -@- QsGD
4F- QRR - QRR 4 QRR
V- DIANA V- DIANA V- DIANA
~# DIANA-RR 107! ~# DIANA-RR 107t ~#- DIANA-RR

GBS0

A L S

*opres Thrrreey

-7 -
1000 3000 5000 1000 3000 5000 1000 3000 5000
Data passes Data passes Data passes

(a) Non-local methods

mushrooms; Rand-2 w8a; Rand-6 a9a; Rand-2
@ Q-NASTYA ~@- Q-NASTYA @ Q-NASTYA
] ~J- DIANA-NASTYA —#- DIANA-NASTYA ~#- DIANA-NASTYA
| V- FedCOM V- Fedcom ei V- Fedcom
- FedPAQ dp- FedPAQ 1 - FedPAQ
<10 21071 F1071 WP,
3 = 3 e
= - -
1 ' \E\am 5 PRy
X X X
= = > &«%’,& ~¥,e =
Pogr?
1073 1073 1073
1000 3000 5000 1000 3000 5000 1000 3000 5000

Data passes Data passes Data passes

(b) Local methods

Figure 1: The comparison of the four proposed methods (Q-NASTYA, DIANA-NASTYA, Q-RR, DIANA-
RR) and existing baselines (FedCOM, FedPAQ) with tuned stepsizes and Rand-k compressor.

SGD implementation. We considered two approaches to minibatching: random reshuffling and

with-replacement sampling. In the first, all clients m = 1, ..., M independently permute their local
datasets and pass through them within the next subsequent L%J steps. In our implementations

of Q-RR, Q-NASTYA and DIANA-NASTYA, all clients permuted their datasets in the beginning of
every new epoch, whereas for the DIANA-RR method they do so only once in the beginning of the
iteration procedure. Second approach of minibatching is called with-replacement sampling, and it
requires every client to draw b,,, data samples from the local dataset uniformly at random. We used
this strategy in the baseline algorithms (QSGD, DIANA, FedCOM and FedPAQ) we compared our
proposed methods to.

Experimental setup. To compare the performance of methods within the whole optimization
process, we track the functional suboptimality metric f(z;) — f(x) that was recomputed after each
epoch. For each dataset, the value f(z,) was computed once at the preprocessing stage with 1016
tolerance via conjugate gradient method. We terminate our algorithms after performing 5000 epochs.

A.1.1 EXPERIMENT 1: COMPARISON OF THE PROPOSED NON-LOCAL METHODS WITH
EXISTING BASELINES

In our first experiment (see Figure 1a), we compare Q-RR and DIANA-RR with corresponding
classical baselines (QSGD (Alistarh et al., 2017), DIANA (Mishchenko et al., 2019b)) that use a
with-replacement mini-batch SGD estimator. Figure la illustrates that Q-RR experiences similar
behavior as QSGD both losing in speed to DIANA method in all considered datasets. However,
DIANA-RR shows the best rate among all considered non-local methods, efficiently reducing the
variance, and achieving the lowest functional sub-optimality tolerance. The results observed in
numerical experiments are in perfect correspondence with the derived theory.

For each of the considered non-local methods, we take the stepsize as the largest one pre-
dicted by the theory premultiplied by the individually tuned constant factor from the set
{0.000975,0.00195, 0.0039, 0.0078,0.0156,0.0312,0.0625, 0.125, 0.25, 0.5, 1, 2, 4, 8,16, 32, 64,
128,256,512, 1024, 2048,4096} .

Therefore, for each local method on every dataset, we performed 20 launches to find the stepsize
multiplier showing the best convergence behavior (the fastest reaching the lowest possible level of
functional suboptimality f(xz:) — f(xy)).
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Theoretical stepsizes for methods Q-RR and DIANA-RR are provided by the Theorems 2.1 and 2.2,
whereas stepsizes for QSGD and DIANA were taken from the paper Gorbunov et al. (2020).

A.1.2 EXPERIMENT 2: COMPARISON OF THE PROPOSED LOCAL METHODS WITH EXISTING
BASELINES

The second experiment shows that DIANA-based method can significantly outperform in practice
when one applies it to local methods as well. In particular, whereas Q-NASTYA shows comparative
behavior as existing methods FedCOM (Haddadpour et al., 2021), FedPAQ (Reisizadeh et al., 2020)
in all considered datasets, DIANA-NAST YA noticeably outperforms other methods.

In this set of experiments, we tuned stepsizes similarly to the non-local methods. However, for
algorithms Q-NASTYA, DIANA-NASTYA, and FedCOM we needed to independently adjust the client
and server stepsizes, leading to a more extensive tunning routine.

As before, for each local method on every dataset, tuned client and server stepsizes are defined by the
theoretical one and adjusted constant multiplier. Theoretical stepsizes for methods Q-NASTYA and
DIANA-NASTYA are given by the Theorems 2.3 and 2.4, whereas FedCOM and FedPAQ stepsizes
were taken from the papers by Haddadpour et al. (2021) and Reisizadeh et al. (2020) respectively.
We now list all the considered multipliers of client and server stepsizes for every method (i.e. v and
respectively):

* Q-NASTYA:
— Multipliers for  : {0.000975, 0.00195, 0.0039, 0.0078, 0.0156, 0.0312, 0.0625, 0.125,
0.25,0.5,1,2,4,8, 16, 32, 64,128}
— Multipliers for 7 : {0.0039, 0.0078, 0.0156, 0.0312, 0.0625, 0.125, 0.25, 0.5, 1, 2, 4, 8,
16, 32, 64, 128}.
« DIANA-NASTYA:

— Multipliers for v and 7 : {0.000975, 0.00195, 0.0039, 0.0078, 0.0156, 0.0312, 0.0625,
0.125,0.25,0.5, 1, 2,4, 8, 16, 32, 64,128};

* FedCOM:
— Multipliers for « : {0.0312, 0.0625, 0.125, 0.25, 0.5, 1, 2, 4, 8, 16, 32, 64, 128, 256,
512,1024, 2048, 4096, 8192, 16384, 32768 };
— Multipliers for 7 : {0.000975, 0.00195, 0.0039, 0.0078, 0.0156, 0.0312, 0.0625, 0.125,
0.25,0.5,1,2,4,8, 16, 32, 64, 128}.
* FedPAQ:

— Multipliers for ~ : {0.00195, 0.0039, 0.0078, 0.0156, 0.0312, 0.0625, 0.125, 0.25, 0.5,
1,2,4,8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384, 32768, 65536,
131072, 262144, 524288, 1048576 }.

For example, to find the best pair (v, n) for FedCOM method on each dataset, we performed 378
launches. A similar subroutine was executed for all algorithms on all datasets independently.

A.2 TRAINING DEEP NEURAL NETWORK MODEL: RESNET-18 ON CIFAR-10

Since random reshuffling is a very popular technique in training neural networks, it is natural to test
the proposed methods on such problems. Therefore, in the second set of experiments, we consider
training ResNet-18 (He et al., 2016) model on the CIFAR10 dataset Krizhevsky and Hinton
(2009). To conduct these experiments we use FL_PyTorch simulator (Burlachenko et al., 2021).

The main goal of this experiment is to verify the phenomenon observed in Experiment 1 on the
training of a deep neural network. That is, we tested Q-RR, QSGD, DIANA, and DIANA-RR in
the distributed training of ResNet-18 on CIFAR10, see Figure 2. As in the logistic regression
experiments, we observe that (i) Q-RR and QSGD behave similarly and (ii) DIANA-RR outperforms
DIANA.

To illustrate the behavior of the proposed methods in training Deep Neural Networks (DNN), we
consider the ResNet-18 (He et al., 2016) model. This model is used for image classification,
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Figure 2: The comparison of Q-RR, QSGD, DIANA, and DIANA-RR on the task of training
ResNet-18 on CIFAR-10 with n = 10 workers. Top-1 accuracy on test set is reported. Stepsizes
were tuned and workers used Rand-k compressor with #/d ~ 0.05.

feature extraction for image segmentation, object detection, image embedding, and image captioning.
We train all layers of ResNet —18 model meaning that the dimension of the optimization problem
equals d = 11,173,962. During the training, the ResNet—-18 model normalizes layer inputs via
exploiting 20 Batch Normalization (Ioffe and Szegedy, 2015) layers that are applied directly before
nonlinearity in the computation graph of this model. Batch normalization (BN) layers add 9600
trainable parameters to the model. Besides trainable parameters, a BN layer has its internal state
that is used for computing the running mean and variance of inputs due to its own specific regime of
working. We use He initialization (He et al., 2015).

A.2.1 COMPUTING ENVIRONMENT

We performed numerical experiments on a server-grade machine running Ubuntu 18.04 and Linux
Kernel v5.4.0, equipped with 16-cores (2 sockets by 16 cores per socket) 3.3 GHz Intel Xeon, and
four NVIDIA A100 GPU with 40GB of GPU memory. The distributed environment is simulated
in Python 3.9 via using the software suite FL_PyTorch (Burlachenko et al., 2021) that serves
for carrying complex Federate Learning experiments. FL_PyTorch allowed us to simulate the
distributed environment in the local machine. Besides storing trainable parameters per client, this
simulator stores all not trainable parameters including BN statistics per client.

A.2.2 Loss FUNCTION

Training of ResNet—18 can be formalized as problem (1) with the following choice of f,

|"m|
1 , )
Jmnl@) = ; CE®Y, g(a", 2)), (10)

where CE(p, q) % — S ffclasses ), log(g;) with agreement 0-1og(0) = 0 is a standard cross-entropy
loss, function g : R?3%28 x R? — [0, 1]#°125° i5 a neural network taking image a/) and vector
of parameters x as an input and returning a vector in probability simplex, and n,, is the size of the
dataset on worker m.

A.2.3 DATASET AND METRIC

In our experiments, we used CIFAR10 dataset Krizhevsky and Hinton (2009). The dataset consists
of input variables a; € R?8*28%3 and response variables b; € {0,1}'? and is used for training
10-way classification. The sizes of training and validation set are 5 x 10 and 10* respectively. The
training set is partitioned heterogeneously across 10 clients. To measure the performance, we evaluate
the loss function value f(z), norm of the gradient ||V f(z)||2 and the Top-1 accuracy of the obtained
model as a function of passed epochs and the normalized number of bits sent from clients to the
server.
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A.2.4 TUNING PROCESS

In this set of experiments, we tested QSGD (Alistarh et al., 2017), Q-RR (Algorithm 2), DI-
ANA (Mishchenko et al., 2019a) and DIANA-RR (Algorithm 3) algorithms. For all algorithms,
we tuned the strategy € {A, B, C'} of decaying stepsize model via selecting the best in terms of the
norm of the full gradient on the train set in the final iterate produced after 20000 rounds. The stepsize
policies are described below.

A. Stepsizes decaying as inverse square root of the number epochs

1
it e ife > s,
Yo = Yinit m

Vinit ife <s,

where 7, denotes the stepsize used during epoch e + 1, s is a fixed shift.

B. Stepsizes decaying as inverse of number epochs

- if e >
init * , ife>s,
v= Vinit e— s+ 1
Yinit, ife <s.
C. Fixed stepsize
Y = Yinit-

We say that the algorithm passed e epochs if the total number of computed gradient oracles lies

between ¢ Zf\le Ny, and (e + 1) Z%Zl n,y,. For each algorithm the used stepsize ;¢ and shift

parameter s were tuned via selecting from the following sets:

Vimit € Vset = {4.0,3.75,3.00, 2.5, 2.00, 1.25, 1.0, 0.75, 0.5, 0.25,
0.2,0.1,0.06,0.03, 0.01, 0.003, 0.001, 0.0006 }.

S € st 2 {50,100, 200, 500, 1000}

In all tested methods, clients independently apply Rand-k compression with carnality k¥ = |0.05d .
Computation for all gradient oracles is carried out in single precision float (fp32) arithmetic.
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Figure 3: Comparison of QSGD and Q-RR in the training of ResNet-18 on CIFAR-10, with
n = 10 workers. Here (a) and (d) show Top-1 accuracy on test set, (b) and (e) — norm of full gradient
on the train set, (c) and (f) — loss function value on the train set. Stepsizes and decay shift has been
tuned from s,.; and 7. based on minimum achievable value of loss function on the train set.
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Figure 4: Comparison of DIANA and DIANA-RR in the training of ResNet—-18 on CIFAR-10, with
n = 10 workers. Here (a) and (d) show Top-1 accuracy on test set, (b) and (e) — norm of full gradient
on the train set, (c) and (f) — loss function value on the train set. Stepsizes and decay shift has been
tuned from s4.; and vs.; based on minimum achievable value of loss function on the train set. For
both algorithms stepsize is fixed. For both algorithms stepsize is decaying according to srategy B.
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A.2.5 OPTIMIZATION-BASED FINE-TUNING FOR PRETRAINED RESNET-18.

In this setting, we trained ResNet—18 image classification in a distributed way across n = 10
clients. In this experiment, we have trained only the last linear layer.

Next, we have turned off batch normalization. Turning off batch normalization implies that the
computation graph of NN g(a, x) with weights of NN denoted as x is a deterministic function and
does not include any internal state.

The loss function is a standard cross-entropy loss augmented with extra fo-regularization all=ll* /2
with o = 0.0001. Initially used weights of NN are pretrained parameters after training the model on
ImageNet.

The dataset distribution across clients has been set in a heterogeneous manner via presorting dataset
D by label class and after this, it was split across 10 clients.

The comparison of stepsizes policies used in QSGD and Q-RR is presented in Figure 6. The behavior
of the algorithms with best tuned step sizes is presented in Figure 5. These results demonstrate that in
this setting there is no real benefit of using Q-RR in comparison to QSGD.

A.2.6 EXPERIMENTS

The comparison of QSGD and Q-RR is presented in Figure 3. In particular, Figures 3b and 3e
show that in terms of the convergence to stationary points both algorithms exhibit similar behavior.
However, Q-RR has better generalization and in fact, converges to the better loss function value. This
experiment demonstrates that Q-RR with manually tuned stepsize can be better compared to QSGD
in terms of the final quality of obtained Deep Learning model. For QSGD the tuned meta parameters
are: Yinit = 3.0,s = 200, strategy = B. For QSGD-RR tuned meta parameters are: ¥;n;: = 3.0,
s = 1000, strategy = B.

The results of comparison of DIANA and DIANA-RR are presented in Figure 4. For DIANA the tuned
meta parameters are: Y;ni¢ = 1.0,s = 0, strategy = C' and for DIANA-RR tuned meta parameters are:
Yinit = 1.0, s = 0, strategy = C'. These results show that DIANA-RR outperforms DIANA in terms of
the all reported metrics.
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Figure 5: Comparison of QSGD and Q-RR in the training of the last linear layer of ResNet-18 on
CIFAR-10, with n = 10 workers. Here (a) shows Top-1 accuracy on test set, (b) — norm of full
gradient on the train set, (c) — loss function value on the train set. Stepsizes and decay shift has been
tuned from s,.; and 7. based on minimum achievable value of loss function on the train set. Both
algorithms used fixed stepsize during training.
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Figure 6: Comparison of QSGD and Q-RR in the training of the last linear layer of ResNet-18 on
CIFAR-10, with n = 10 workers. Here (a) and (b) show Top-1 accuracy on test set, (c) and (d) —
loss function value on the train set, (e) and (f) — norm of full gradient on the train set. Stepsizes and
decay shift has been tuned from sg.; and 7s.; based on minimum achievable value of loss function
on the train set. During training stepsize was fixed. Batch Normalization was turned off.
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B MISSING PROOFS FOR Q-RR

In the main part of the paper, we intoduce Assumptions 3 and 4 for the analysis of Q-RR and
DIANA-RR. These assumptions can be refined as follows.

Assumption 5. Function f ™= ﬁ Ef\il f;?” : RY — R is L-smooth for all sets of permutations
m=(m,...,Tm) from [n] and all i € |n], ie.,

max ||V () = V™ (y)| < Lz —y|| Va,yeR™

i€[n],m

Assumption 6. Function f’ri = ﬁ Z£1 f;;;" : RY — R is pi-strongly convex for all sets of
permutations ™ = (71, ..., Ty) from [n] and all i € [n], ie.,

min {7 (2) = 7 () = (VW) —y) } = Slr—yl? VoyeR

i€[n],m
Moreover, functions fi, fa, ..., fs; : RY — R are convex foralli = 1,...,n.

We notice that Assumptions 3 and 4 imply Assumptions 5 and 6. In the proofs of the results for
Q-RR and DIANA-RR, we use Assumptions 5 in addition to Assumptions 3 and we use Assumption 6
instead of Assumption 4.

B.1 PROOF OF THEOREM 2.1

For convenience, we restate the theorem below.
Theorem B.1 (Theorem 2.1). Let Assumptions 1, 3, 5, 6 hold and 0 < v < ﬁ Then, for
all T' > 0 the iterates produced by Q-RR satisfy .

~ 27202 2w
E —z, 2 < (1— nT _ 2 de - 2 2
o = < (1) o =+ T2 + D (2 4 02).

M M = ,
where (2 = 5 3 IV fm(z)|? and 0F = 515 32 3 IV fr(@*) = V fin (@),

m=1 m=11:=1

Proof. Using zit! = i — 5™ Vfﬁ“ (x4) and line 7 of Algorithm 2, we get

2

lry ™ — 2

I
IER
SN
|
=
x>
|
B
2
— —
2=
=
—
@)
/N
e
N
/—:
=
S
~—
N—
|
e,
3
N
N~—
N——
IS
&
|
=
N
\/

M X )
Bo [lei*! —f117] = Hasi—xiHQ—zv<MZ(wkm—wkm),xz—xi>

2

3
ﬂ‘
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In view of Assumption 1 and E¢[|€ — c||? = E¢||¢ — E¢&||? + ||Ec€ — ¢||?, we have
[”szrl i+1||2]

T Z<Vf — Vi (@), a) - al)

2

+1Eq ]\ij( o (Vi (a)) = Vi (ah)
m=1
L1 M _ 2
0?57 2 (Va7 ) - Vi ()
i 7 2’7 M m i P i i
< ot =2l = 57 D (VR @) = Vi () — o)

where in the last step we apply independence of Q (V f;:” (1:;)) for m € [M]. Next, we use

three-point identity' and obtain

Eg [l — 2|7 < ||9«“i—ﬂﬂi||2

Z (Do @) + D oy, () = D oy (@ 2))

m m

2

Lt M . .
7|57 2 (V@) - Vi ()
m=1

YW 2 ol
> v
m=1

Applying L-smoothness and convexity of - A Doy fm , Ji-strong convexity of - A 1 fm , and
Linax-smoothness and convexity of fi , we get

M
‘ N1
Eo [[l«it — 22 < (1 —~f) [|af — 2% *27<17L7 M;Dm (x}, )
M 2 M . )
+27M ,mZ:l D Wlin (I*, ‘T*) + W TnZ:1 vamm (I;)

IA
-
|
2
=
=

- V1 X _
" =2y (1 - Lv) 7 D o (af,22)

M
2’ygw xt
+27M ZD o, (T ) + S5 ;HV m" ()

m

27w

Z vam xt me (m*)

"For any differentiable function f : R — R% we have: (Vf(z) —V f(y),2—2) = Dy(z,2)+ Dy (x,y) —
Dj(z,y).
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So, we get
Bo It~ < (=i -t 5 3 [0 )|
2y
+Mmz::1Dfﬂ (2% 4)

T 2 mx
—2’7(1—’Y<L+ a )) ZDFL T, 1),

Taking the full expectation and using a definition of shuffle radius, 0 < v < ( L

—~————, and
L4274 Liax)

e mEAjIE [vsie|]

ot o , N2 Mo 4
= (1= )E |||z - 2i||"] +27%02s + A};; POD I AFFACN]

m=1j=1

Dfﬂ'n (xi,x,) > 0, we obtain

E[llef™ = o2 < (1— i) E[|lai - ai]’] + 24702

SN ST 127
< (=@ E |||zt — 27| + 2700 Lo (C* al).
Unrolling the recurrence in ¢, we derive

n—1

Eflee —2?] < (0=70)"E [z — 2.’ + 24020 3 (1 = 1)’
§=0
D) 2 n—1 .
+ ?\4 (G +02) > (1 —m).
7=0
Unrolling the recurrence in ¢, we derive
T—1 n—1
E[llzr —al?] < (1 =3@)"" llzo = @ll” +29%05 Y (L=7@)" (1 = ya)’
t=0 7=0
2720‘) nT—1 n—1
JFT (4*2 + Uf) Z (=)™ > (1 =~i).
j=0 §=0
Since Z 0 1 —Ap) < =5 we get the result. O

Corollary 5. Let the assumptions of Theorem B.1 hold and

v = min 1 Eg , EEM 550 (11
L + 2 Lde 60rad 6w (C* + 0-*)

Then, Q-RR finds a solution with accuracy € > 0 after the following number of communication

rounds:
G(L, @l @ EH02 O
g M o M ep? [ei3

Proof. Theorem B.1 implies

2v2 O'rad 2'yw ( 2y

Ellzr —a* < (1=2@)"" oo — z.|* + = Ltor). (12)
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To estimate the number of communication rounds required to find a solution with accuracy € > 0, we
need to upper-bound each term from the right-hand side by /3. Thus, we get additional conditions on
" 27202 € 2yw €
Tne o= (o) < o

o 37 uM 3

and also the upper bound on the number of communication rounds n’1T’

~(1
TH
Substituting (11), we get a final result. O

B.2 NON-STRONGLY CONVEX SUMMANDS

In this section, we provide the analysis of Q-RR without using Assumptions 4, 6. Before we move
one to the proofs, we would like to emphasize that

M i )
r =y S (V).
m=1

Then we have

n—1 1 M ; . 1 n—1 M s )
rer = =73 37 30 @ (VA e) = e =m0 3D @ (VA a).
where 7 = yn. For con;eniencejwe denote o
1 n—1 M i )
0= 37 2 2 @ (V)

allowing to write the update rule as xy11 = x; — 7g.

Lemma B.1 (Lemma 1 from (Malinovsky et al., 2022)). Forany k € [n], let&y,, . .., &x, be sampled
uniformly without replacement from a set of vectors {&1, ... ,&n } and &, be their average. Then, it
holds L
_ _ _ n—
EE, = E [||& — &)*] = ———02, 13
=& Bll6 -8 = =0 (13)
_ _ k . _
where § = %Z:‘L:1 §i & = %Z¢:1 fm-, o? = %22;1 ‘fz - 5”2

Lemma B.2. Under Assumptions 1, 2, 3, 5, the following inequality holds

7 n—1
TH 7L i
Eo [~2r{gt, a1 — 2.)] £ = lloe = wull® = r(f(we) = () + 2= 3 Il — wall”.
i=0

Proof. Using that Eg [g;] = 7= Z?;ol Z%zl \Y f,T,rL:” (x%) and definition of h*, we get

n—1 M
1 o
—27Eq [{g, 2t — x4)] = ~n Z% mz;l <mem (x3),x¢ — x*>
1 M n-—1 s s
= o 30 (I ) - VR ) — ).
m=1 i=0
Using three-point identity, we obtain
2 M n—1
~2rEq (g, ze — w.)] = —7r- Z: g (Df;;n (#0,2) + D o, (w0, 2) = D oy (1, )
- n—1 - n—1
= —27Dy(zy,xy) ZDf.,\.i (Tw, ) + ZDf,,i (e, x})
i=0 i=0

P
—27Dy(wt,m4) + o z% (B
i

IA

27
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where in the last inequality we apply L-smoothness and convexity of each function f "

using p-strong convexity of f, we finish the proof of the lemma.

Lemma B.3. Under Assumptions 1, 2, 3, 5, the following inequality holds

Eo[llgl?] < 2L(L+-—
=0

+8(T+ ﬁLW) (f(@:) = ().

Proof. Taking the expectation w.r.t. Q and using variance decomposition E [[|¢]?]

E[l¢-E[g]?] 2 we get
[ n—1 M 2
Eo [lgll’] = Eqg | ZZ ( )
=0 m=1
= Fe | nii( Q (Vi (ah)) = Vi
=0 m=

n—1 2

0 2

M
>V
m=1

Next, Assumption 1 and conditional independence of Q (V f;,?” (a:;)) form =1,...,

0,...,n—1imply

n—1 M )
ollnl’) = g 3 3 Ee [0 (Vb ) - Vi) |

i=0 m=1
n—1 M 2
T 2 O VAR
i=0 m=1

w n—1 M n—1 M

¢ LSS e | 5 S v

i=0 m=1 i=0 m=1

IN

2

28

)1 | ” +4w
max - m — T
nz e Mn

(C*JFU)

i
Ty

)

2

2

s S5 [t - v | + e S o)

Finally,
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Using Lmax-smoothness and convexity of ffn and L-smoothness and convexity of f”i =

&= Z 1 ™ we derive

n—1 M n—1 M
4w )
2 7 m
Eg [llg:]*] < MTnngaxZ > D i, (23, 20) + M2 DI va H
i=0 m=1 i=0 m=1
n—1
+AL~ Zwa (af,20) + 2|V f ()]
=0
_ n—1 M
S 4 (L+ max) Zwa xtv'rt M2 2 Z Z va m H
b Z Z [vsm @0~ Vi ||+ 2019 @) - V@) P
1 n—1 n—1 M
< 2L(L+ Lmax>nZth x| +M2n222me )
Sw n—1 M N
2 Lmex g Z= D o, () +4AL (f(1) — f(2.).
Taking the full expectation, we obtain
w 1 n—1 ) n—1 M
2 (7 i
E[lgl?] < 2L (L—i—mLmax) ni_oE[th—xtH ]+ M2 . ;;E[me z.) ]
~ 8w
(4T + Lo ) BLF) = )
~/~ W 1= i 2 dw o,
4 (4E 4 22 Lo | B[ () — f()]
Mn max Tt Tyl -
O
Lemma B.4. Let Assumptions 1, 2, 3, 5 hold and 1 < ———=—-———_ Then, the following
24/ L(L+ 52 Lmax)
inequality holds
1= w
=S Eflai-@ill?] < 247 (D4 - Linax ) E — fl@s
n Zz:% [HfEt | ] = T + Mn [f(ze) — f(2)]

2

w g
82 2 2 82 *,7
+877 = (G oy) + 87—,

Where O-E,n = % Z:;l |vfl (3?*)

Fi(@) = 3 Ty Fin(@). i € [n)

29



Under review as a conference paper at ICLR 2024

. i J :
Proof. Since x} = x4 — 1 2%21 Z;:B Q (Vf;t;’" (xi)) we have

M i—1 . )
Eo[lef —wl?] = 7Eo || Do D (Vi)
m=1 j=0
- 2
1 M i—1 . ) i
= B ||l5- 3> (Q(Vsial)) - Vi (ad)
m=1 j=0

m=1 j=0
7_2 M i—1 ; ) i o
< g 2 X el (VD) - vt
m=1 j=0
L1 M i—1 ey 2
+7 m Z Zmenz (xt)
m=1 j=0

Using Assumption 1, L-smoothness and convexity of f™ = ﬁ Zf\le 7 and Ly, ax-smoothness
and convexity of f!,, we obtain

2

‘ , L2, M-l RN ST S
Eo[lei —ail?] < g D ||V @D +72 |5 DD Vi )
m=1j=0 m=1j=0
‘ 2
272 oL A T - 2 1t ;
< o Y|Vl = VR || 2| = Y (@)
m=1j=0 =0
) 2
1 — J J
il Py (V5 @) =i (@) (14)
o
272 oL L i 2
+M2n2 Z Hmem(mt)
m=1j5=0
2
47_2w M n—1 ) i—1 ;
< [YEre Z Lmafoﬂ7 (], ) + 27 —ZVJM (x¢)
m=1 j=0 " j=0
n—1 27_2w M n—1 2
AL 37D o (whw) + gy 2 D |V )|
j=0 m=1 j=0
w 1 n—1
= 472 (L + M—Lmax> -~ Z D i (i, 24)
=0
1 ? M n—1
1 — i 272w — i 2
272 | 23V @)|| s D |V £ ) (15)
=0 m=1j=0
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Next, we need to estimate the second term from the previous inequality. Taking the full expectation
and using Lemma B.1 and using new notation o7 = - 3" E[|V f7(z;) — V f(z:)|]%], we get

1 1—1 ; 2 Z.Q 7:2 i—1 J 2
|2V | = SEIVAI + SE |3 Y (V57 @) - Vi)
=0 =0
2 n
< SEIVA)I?] + ZE V£ (@) = V()]
] 1
< E[IVS@)I] +%o§. 16)

Taking the full expectation from (15) and using (16), we obtain

Eflai—a?] < 42 (T4 max)Z]E[ oo (o)

M n-—1
272w wd
Az O > E [vamm(x*)
m=1 j=0

+27%E [||V f (o) |1?] +

1

Using L-smoothness of f”j, we get

E [z} —z,?] < 2L7? (L + — max) Z]E { lad — IfHQ}
272 M n-—1
+27°E [||Vf($t)H } + 7015 Z ZE [vam s H }
=1j=

1
24/L(L+ 52 Limax)

Bz -zl?] < 2(1-2072 (T+ max))ZE[Hrct—mtll]

Since 7 < , we have

2 4 4r20 L 2
< ATPE |V f(ae)|?] + —o? + LTErS Z ZE [va m(xt)H }
m=1 j=0
8r2w & il 9
< M2 ;;E[vamm(mt)—me’"(x*) ]
2 M n— 0
+% Z |:Hme .T*) :| + 4T2E [va(xt) _ Vf(x*)HQ:I
m=1 j=0
72 n _
T RNV - E 195 G0I]
j=1

872w

M n—-1 i ;
Ve 2o 2B [ H5 ) - Vi )
555

i Z S [|vsite.

15=0

égi2ZI:E[IIVJ”'(:%) VI (@)lP] ZJE IV @Ol?]
j=1

IN

]

} +872E [|[V (1) — V()]
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Summing from ¢ = 0 to n — 1 and using L-smoothness of f? and Ly ax-smoothness of f};l, we obtain

n—1 2 ~
2 2Bl -] < BT B (o) — @) + LR (f (@) — f(z)
87’ w

T2 ~
(@ o?) + T2, + SR () — fe)].

O
Theorem B.2. Let Assumptions 1, 2, 3, 5 hold and stepsize vy satisfy
1
0<vy< — . a7
16 (L + 3% Linax )
Then, for all T' > 0 the iterates produced by Q-RR satisfy
n 2nL
Bllor - o] < (1= "98) oo a4 180 (G5 4ot 4 02,)
—|—8 hed (C* +02),
where
0}, = }:mUZmHQ (18)

Proof. Taking expectation w.r.t. @ and using Lemma B.3, we get

Eo [[lzisr —2.l?] = e — zll® — 27Eg (g1, 21 — )] + 7°Eg [llg"|I°]
< ey — sc*Hz —27Eg [<gt Ty — x*ﬂ

+2r°L (L+ —Lmax) ZE Iz} — ))%]

4Tw

872 (L4 5 Linax ) (f(@e) = f(@) + T (¢E 4+ 02).
Using Lemma B.2, we obtain
Eg [lrers — zull?] < flwe —

TH T n—1

=5 e =2l = 7(f(2e) = f(z) +*Z|Ixt—wtll
~ 1t )
+27°L (L4 5 Lina ) = D E[lle} — 1]
=0

+87% (L4 2 Linax ) (f(@0) = f(@2) + T (C2 + %)

(1) ot — .
—r (1=87 (T4 5 Lunax) ) (fla) = f (@)

IN

~ ~ w ]. 7
+7L (1+27 <L+mLmax)) ﬁ : E[th_xtHﬂ

47'w

—(C+ ).
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Next, we take the full expectation and apply Lemma B.4:
T
A [th+1 - 55*”2] = (1 - #) E [”mt - x*HZ]
~ w
—7 (1=87 (L+ 57— Linax) ) E[f(22) — f(a.)]

+247°L (1427 (4 L)) (£ 5 L) () = F(20)

2
g~ ~ w w Okn 472w
+87'3L (1+27' (L+mLmax)> (m(ngFUE)JF ;: > (C* *)'
Using (17), we derive

E |01 —zl?] < (1 - %) E [[lae — 2]

2
s~ [ w Oin 412w
+97°L (Mn(cf +ol) + — ) (¢ + o)
. . . . . . . oo t 2
Recursively unrolling the inequality, substituting 7 = n-y and using (1 — %) < 5. we get the
=0
result. H

Corollary 6. Let the assumptions of Theorem B.2 hold and

. 1 el (w 9 o \"z euM
— min _ ] (EA2 4, n) , : (19)
gl 16n (L b Lmax) 82nl \M T * 24wA2

where A2 = (2 + 2. Then, Q-RR finds a solution with accuracy € > 0 after the following number
of communication rounds

R \/nL\/ (G tot)to2,
I epd V M

Proof. Theorem B.2 implies

=

Efler -7 < (1-"24)" uxo—x*nuls”f( (G +02) +02,)
W 2 2
+8uM (G +o07).

To estimate the number of communication rounds required to find a solution with accuracy € > 0, we
need to upper bound each term from the right-hand side by /3. Thus, we get additional conditions on
i

I
182

(37 @Fot) wol,) <50 80 (@ o) <

and also the upper bound on the number of communication rounds n’1T’

nT = (9(1>
T

Substituting (19) in the previous equation, we get the result. O

c
37
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C MISSING PROOFS FOR DIANA-RR

C.1 PROOF OF THEOREM 2.2

Lemma C.1. Let Assumptions 1, 3, 5, 6 hold and o < 1_%” Then, the iterates of DIANA-RR satisfy

M M
1 i, i, 2 l-a o o, 2
37 2 Be [Wffim = VA @I < == 30 Wi - VA )

M
200l ax i
M mz::l Df:,r;" (xt, l‘*).
Proof. Taking expectation w.r.t. Q, we obtain
Eq Iy m = Viar @)IP] = B [l + aQ(Vfm (2f) - hi) = Vfair (@.)]?]

= hp = ViR @l
+20Eq [( QS (2}) = W), b, — Vi (2.))]
+a?Eg [I1Q(V fri* (21) = b))
= b — Vi @)
20 (VR () = Wi, B = Vi )
+a*Bo [IQ(V £ (e}) — A 2]

Assumption 1, Ly,.x-smoothness and convexity of f and a < 1/(1+w) imply

Eo (A — VIR @] < 1075 — Vi (@)

20 (V1 (@) = Wi, h, = Vi (@)

+a?(1+w) |V fi @l — WP
< b~ ViR ()]

(VIR () = i b+ VI (@) = 29 £ ()
< b~ ViR ()]

+al| Vi (@) = Vi @) = allhf, = V fa ()|
< (- o)Ay — Vi @)l

+al|V far () = V far ()| (20)
< (1- a)”h:% — Y frm (m*)HQ + QQLmafo,,;n (m;, T

O

Summing up the above inequality for m = 1,..., M, we get the result.

IN

Theorem C.1. Let Assumptions 1, 3, 5, 6 hold and 0 < v < min{ﬁ, W} @
V max
Then, for all T' > O the iterates produced by DIANA-RR satisfy

on 22 2
E[Wr] < (1— o) W+ =2,

where Uy is defined in (6).
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Proof. Using zit! = z! — 2%21 v f;,rl (24) and line 9 of Algorithm 3, we derive
M ;
rl— a2l — Z ( ( ))

M
i -t - % 2 { (@~ ) i )

=1

2

—_

[t &

[

2
1 ot o
NCERAS (z.))

—1—72

Taking expectation w.r.t. Q and using EHf - C||2 = E||¢ — E£||? + ||E€ — ¢||?, we obtain

M
Eo [llof*! — 2] = ||of — o - A}g_xwm ~ Vfrr (@), - al)
1 M i i i ?
+9°Ee |||5; mz::l (Q (Vi (i) = b ) + bl — Vi ()

m=1
2
+7°Eq % % (Q (Vf’ﬁn (i) = i ’") Vi el 1 )
m=1
M ?
72 > (VF5 (@) - V£ o)

Independence of Q ( V f;rf” (xh) — hf’;;) ,m € [M], assumption 1, and three-point identity imply
i i i i||2
B [+ — 27 < Hwt -]

M
-5 mZ (D (o) + D oy () = Dy (a2

1 m
v 3° foss e i
m=1

2

1 M i i .
57 2 (Vhi @) = Vi)
=1

IN
&
|
8

*

M
2y ;
i E (for’;n (z%,21) + D £ (zt,2,) =D . (mi,x*))

f m
m=1 "

272w 1 2

M
Z vam ft vfm (37*)
m=1

2

1 i o
i) (mem (2) = VI ()
on2y M 5
+o Z_jl — Vi ()
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Using Lyax-smoothness and yi-strong convexity of functions fi and L-smoothness and [i-strong

. i M i .
convexity of f™ = - >0, fa, we obtain

Eg [llzit! — 2% Y?] < (1 —~p) ||« — 2|
—2’}/ (1 - (Z + ?\4. max)) Z D 7rL J?t,l'*

ZD x*,x* Q,Yw

m,

wt 2
= V" (37*)

Taking the full expectation and using Defenition 2, we derive

E[lef - 27 < (1= E [} - i)
M

~ 2w 1 i
—9y (1 _ <L + MLmax)> - mz E [Dﬁ;” (af, x*)]

o

— VA ()

M
'y w
+2'7 Urad + M2 E [ h’t
m=1

Recursively unrolling the inequality, we get

E [z —of?] < Pﬂﬂ“ﬁﬁ*%ﬂ

27 w — 2
25 St i - v ]
m=1 j=0
M n-—1 )
—2y ( <L+ i max)) mz Z) (1—~7)’E |D [ i (x;,x*)]
n—1 )
+29%025 > (1 — i)
j=0
Next, we apply (6) and Lemma C.1:
n—1 )
E[Wesr] < (1= )"E [llo = 2.]*] + 29702 Y- (1 = 1)
j=0
M n—1 2
+<(1a > ZleﬂE{ me( ) ]
m=
1 M n—1 ) )
—2y (1 — ey Lpmax — L + Lmax)) M Z Z(l - Vﬁ)JE {Dfﬁn (asi,x*) s
m=1 j=0 "
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where ¢ =

&>, Using a < 14— and y < min { S — }, we obtain

204t (L469/M Liax )

E W]

IN

(1= 70)"E [z — o]

4w72 M
+(1- >QM2221—M[!

m=1 j=0

me ( *)

]
n—1
+29%05, > (1 — vy
=0
(6%

max { (1= 7i)", (1= 5) JE[w]

IN

n—1
+29%05, > (1 — i)
=0
n—1 ‘
(1= i) E [W] + 29%024 > (1 — i)’
=0

IN

Recursively rewriting the inequality, we obtain

T-1

n—1
E[Wr] < (1—v0)""Wo+27%02 > (1—vm)™ > (1 —f)’
=0 =0
nT—1

< (=)™ o+ 2902 Y (1— i)t
k=0

“+o0 \ k
Using that > (1 - %) < %, we finish proof. O
k=0

Corollary 7. Let the assumptions of Theorem C.1 hold, o = H% and

) « 1 e
= —, = ) . 21
Y = min { i T4 %’Lmax %7 } (21)

Then DIANA-RR finds a solution with accuracy € > 0 after the following number of communication
rounds:

A E w Lmax Ora,
(’)(n(l—l—w)—l—ﬁ—i--i-d).

M p Ve
Proof. Theorem C.1 implies

2
E[Wr] < (1—y@)"" o+ Wurdd

To estimate the number of communication rounds required to find a solution with accuracy € > 0, we
need to upper bound each term from the right-hand side by 5. Thus, we get an additional condition
on y:
2’7 _ rad < 57
m 2
and also the upper bound on the number of communication rounds n’I’

nT = O<1)
T

Substituting (21) in the previous equation, we get the result. [
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C.2 NON-STRONGLY CONVEX SUMMANDS

In this section, we provide the analysis of DIANA-RR without using Assumptions 4, 6. We emphasize

that ;' = 2} — 44 M| g7 Then we have

n—1 n—1 M
Tern =T = WZ Z W == 3 > 4T
m= i=0 m=1

We denote §; = 1= > r g Som_, § Afm
Lemma C.2. Let Assumptlons 1, 2, 3, 5 hold. Then, the following inequality holds

n—1

=270 [(gr — huy 1 — 4] < —%th — P =7 (f) = flan) + 7L Z lze — 241,
where h* = V f(x,) = 0.

Proof. Since h* = V f(x,) = 0, the proof of Lemma C.2 is identical to the proof of Lemma B.2. [
Lemma C.3. Let Assumptions 1, 2, 3, 5 hold. Then, the following inequality holds

n—1
i = (7 L ; =
Eo [I9: = hull?] < 2L (L4 7o=Liax) + D llok = 2ell® +8 (L4 = Lunax) (/(@0) = (@)
=0

’ 2

n—1 M ) i
s S0 O W~ VI ()P
i=0 m=1
Proof. Taking expectation W.r.t. Q, we get
n—1 M 2
. 2
EQ |:Hgt_h’*H :| = EQ Mn zz:o?nz:lgt m_
[ n—1 M i ) s 2
= o || S 3 (i (Vb - 1)) 1
i=0 m=1
[ n—1 M ) L . 2
= Eo || o3 (i —Vﬂﬁ’"(wiHQ(Vfr’lm(wi)—hf,%))H
i=0 m=1
n—1 M 2
T 2 > Vi ad) — b,
=0 m=1
Independence of Q <V f;?" (xh) — hf’;;) ,m € [M] and Assumption 1 imply
n—1 M . s ) s 2
Eollg—hl?) = 135> > Eo [Hh o= VR @)+ Q (VAR ) — b )| ]
i=0 m=1
n—1 M 2
T O V) b
i=0 m=1
n—1 M ) 1 n—1 ) . 2
< MQnQ Z Z va " xt t77’7LL ﬁ vaﬂ- (Ié) - h*
n—1 M )
< s SN | - v+ ZHW D=V @)
=0 m=1
n—1 M P 2 177‘7 ) 2
e 2 2 i~ VA o] +2| L v ) -
1=0 m=1 i=0
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Using Lyax-smoothness and convexity of f and L-smoothness and convexity of f ™ we obtain

n—1 M ~
i 40 Linax
Eo [l —hall’] < a2 2 Dy (at +fZwa
=0 m=1
n—1 M ; 9 ~
s 30 00 Wi = A )| 4 () = 7))
i=0 m=1
n—1 M
b 3 3 || O ) - g )|
=0 m=1
< 2L (Bt 5o L) S ot 2 + 4 (f(a)  f(a)
=0
Sw n—1 M
+7Lmax Z Z fmin (x4, 24)
Mn =0 m=1
n—1 M ; 9
+ iz - Vi)
=0 m=1

O

Lemma C4. Let o < ﬁ and Assumptions 1, 2, 3, 5 hold. Then, the iterates produced by
DIANA-RR satisfy

n—1 M i n—1 M ;
S S o [Ih - VAR ] < = V@)
1=0 m=1 1=0 m=1
2L Linay =
T“ZII%—%II
=0

+404Lmax (f(mt) - f(d?*)) .

Proof. Fist of all, we introduce new notation: H; = 5 > i Zm 1Eo [Hh *;;l S v () Hz}

Using (20) and summing it up for ¢ = 0, . . —1,we obtam
1 _an—l M i n—1 M
Hinr < —Z Z | = i () |2 + Z Z IV frm (o) = Vi )|
=0 m=1 —0 m=1
-1 M -1 M _
< M Z B — Vi @) 2 + Z IV g () — Vi ()|

n— M
20
i Z IV i (@e) = Vi ()|

1=0 m=1

Next, we apply Lax-smoothness and convexity of £, and L-smoothness and convexity of f s

n—1 M ; n—1 M
Hi1 < M Z Z ||h — V(2|2 + maxz Z D i (i, 24)
=0 m=1 =0 m=1
n—1 M
maxz Z D ,rt .'L't,(E*
=0 m=1
n—1 M 20 ~ n—1
< M NS - "‘(m*>\|2+;LmeZ||xz—mt||2
=0 m=1 1=0
n—1 M
maXZZDf . :L't;x*
=0 m=1 "
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1

————_ Then, the following inequality
24/ L(L+ 3 Lmax)

Lemma C.5. Let Assumptions 1, 2, 3, 5 and 7 <
holds

whereo =1 Z =1 ||Vfl(x*)||2

Proof. Since z} = x; — 5 M Z;;E (h;rfjl +Q (Vfﬁ” (x]) — h?%)), we have

) 1 - xd -
Eo [laf —zil*] = 7*Eo |||37= 2. 2 (him+Q (Vi (al) - b))

2

= Bo || 57 03 W5k~ VAR ) + @ (VA ) - 1))

2

Independence of Q <Vf i (]) — by

t,m

) m € [M] and Assumption 1 imply

Eg [[lz; — w¢]l”]

st ol )|

2

I
SMS
M1
=
©

m=1 j=0
1 2
T W - ) 7
< S S|l - b | S v (@)
n=1j=0 =
214w e j i
7T'7 ﬂ-]
< TS Y v - v )|+ Zw (x)
=1 4j=0
27-2w M n-—1 7‘—] ﬂ_]
i £ 5wt EEoren-srie
m=1 j=0
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Using Lyax-smoothness and convexity of f and L-smoothness and convexity of f™ , we obtain

M n-—1
i 477w -
EQ [th - xtHQ] < M2 QLmax Z ZDfﬂ,J (Jct,xt + 27’ ZVf J
m=1 j=0
27_2w M n—1 9 2T2L2
T = V)| + Z e
14=0
2
~ [~ w 1= 1L ;
2 2 s
< 2L (T4 g L) 5 D Nl =il +27%|| 2 3" V7 (@)
j=0 j=0
272w oL A . - 2
+]\42712 ’ ht,% —Vfm(z )H
m=1 j=0

Taking the full expectation and using (16), we derive

n—1
) ~ /~ 1 )
E[[la —2]?] < QTQL(LJFA;",RLW)nz;uz[”xg_xtuﬂ+2¢2E[||Vf(xt)|2}
p
A7 L
szz{

M n—1

mmx E|: j 5 *):| .
M2 2 lez f l‘t xr

— VR ()

2 272 9
] +—-E [o7]

Using Lyax-smoothness and convexity of f7, and L-smoothness and convexity of f™ , we obtain

Eflei -] < 270 (T4 25 L) ZE[llwﬁztll}
M n-—1 )
f}“;ZZEU = VI (@) }+%E[ot]
#7? (L4 1oy v ) BLf (o) = f22)]

Now we need to estimate 22" E [0?]. Due to E [02] < L S0 B[V fi(z,)||?], we get

2 2.
%E[gﬂ < %ZE[IW]”(%)W
Jj=1
472 & ; j 20, 477 ¢ j 2
< S E(VAG) - VE@I + T Y ENVA @I
= Jj=1
<

872 ~ 472 &
LZE ij l't,ﬂf* +FZO’72%*'
j=1

j=1
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Combining two previous inequalities, we get

E[[lzi — 2|?] < 27-2L(L+ max) ZE[Isz:vtll]
s 3 5 o |

=0
Lmax> E [f(l't) - f(l'*)}

— Vi (x,)

2w

2
+47 (L+M2 5

IR (@) - f)+ T30
=1

1

——— we obtain
24/ L(L+ 5 Lmax)

Summing from ¢ = 0 ton — 1 and using 7 <

n—1
%ZE[IIzi—xtHQ] < 2(1-2L (L4450 )) ZE [l — 4]|?]
=0

< 87w 2

< s 2 e[ -vsibo|

+872 (L 22 Lo B L1 (00) = £ (02)

].67' ~ 872 &
—LE[f(n) = f@]+ S5 D on

We consider the following Lyapunov function:

M n-—1

Wpir = [z — ] + Z > |

=1 45=0

t+1,m me (33*)

Theorem C.2. Let Assumptions 1, 2, 3, 5 hold and

. « 1 1 10w
vy <min{ —, a<l ——

— , < c=—".
np’ 195, (LJF%LIMX) 1+w’ aMn

Then, for all T > 0 the iterates produced by DIANA-RR satisfy

*,Mm

L -
L
E[Ur] < (1—%) \I/0+20%02

Proof. Taking expectation w.r.t. Q and using Lemma C.2, we get

Eg [lze+1 — 2l?] & — 79 — 2. + TH*|?

= |z — 2.? = 27EQ [(g¢ — h* 2 — x.)] + T°Eo [[l6: —

IN

T o
e = @ull? = T llze — 2.2+ 7Eo [lg: — b1

n—1

—7 (f(w0) = @) + 7L~ Z e — a1

42
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Next, due to Lemma C.3 we have

n—1

Eo [loe —=.l?] < (1-75) Ilwtfx*||277<f<xt>ff<w*>>+ﬂ Z\Ixt*ﬂ%ll

+27'QE (L + 7Lmdx) Z th - $t||

872 (L + 57— Lunax) (/(0) = ()

n—1 M
4wr?

tap O D I = Vi @)

=0 m=1

IN

or? Y x:
(1= 2 o =]+ M%ZZHh - Vh )P

1=0 m=1

—7 (187 (L4 1 Loax) ) () = (@)
+7L (1+2T (Z+ n max)) inzlllxi—xtlﬁ
1=0

Using (22), we obtain

Qn—lM

Z Z| me ()7
i=0 m=1
—7(1—87(E+Mn max))( (2¢) — f(24))
+7L <1+2T (L+ )) TllZth—th
o M n-1
iﬂ 3 ZE[ 2]
m=1 j=0

To estimate the last term in the above inequality, we apply Lemma C.4:

Eg [¥iy1] < (1 - 7) |2 — |2 +

1m — Vo (@)

2, dwr? TN & o 9
EoWrn] < (1= )l —al®+ 355 > D Ihim - Vo @)
=0 m=1

—r (1=87 (4 g Linax) ) (fla) = f(22)

n—1
¥ T w 1 i 2
+TL <1 + 2T (L + mLmaX)) ﬁ ; ||xt - xt”

nl]\/[

PSS I - VA ()P
=0 m=1
20 L Lo el N
07—27 Z Hxi - xt||2 + 4C’7_2O‘Lmax (f(xt) - f(x ))

=0

n

(1= 5) lloe —a]? + (1 —a+ %) F Z mZ 3 = VI @)l
-7 (1 —detalgyax — 8T (E + MLanax)) (f(ze) = flz))
L)

~ 1
+7L (1 + 2ctalpmax + 27 (L +— ) " Z g — .

IN
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Let H; =
Lemma C.S, we get

T 4w
(1 - 7) E [|lo; — 2.)%] + (1 —a+ cMn> H,

—T (1 —detalpa — 8T (E + ﬁLmax)) E[f(w:) — f(x4)]

el [Hh m —V f;; (x*)HQ} Taking the full expectation and using

E[W;14]

IN

g 7 w 1 i 2
+7L (1 + 2ctalipax + 27 (L + m[/max>) -~ ;IE [||a:t — x| ]

(1 - 7“) [z — 2.]|?] + (1 —a+ L) ",
-7 (1 —4etalpmax — 8T (L + — M ) [f(xe) — flay)]

+2473T (1 4 2¢7L e + 27 (L n —Lmax)) (Z n Mianax) E[f(x:) — f(z.)]
)

IN

Mn
o}

,n

+87°T (1 + 2¢7aLmax + 27 (E v LLmaX)
Mn n
87Lw
+ Mn (1 + 2CTOéLmalx + 27 (L + — Mn de)) Ht
Aw

Selecting ¢ = 37, where A is a positive number to be specified later, we have
«

Lmax) = 1 + 27— (E + MLIH&X) )

14+ 2cralymax + 27 (E +

Mn Mn
~  w ~ (A+ 1w
— — - >1— A .
1 —4deralpy.x — 8T (L + Un Lmax> >1-—8r (L + n Lmax>

Then, we have

B[] < (1_%)1E[||xt—x*||] (l—oz+A)’Ht

e (R R A T EN)
#2147 (L 12 ) (127 (L 22 00) ) 2170 - s
+873L (1 +2r (Z + (A;;l)wLmax)) Ui

n
8av ~ ~ (A+ 1w
+ZTL (1 + 27 (L + Manax>> H.

Taking 7 = W, where B is some positive constant, we obtain
B(L+%2% Linax)

4 ~ 2
E[U,.1] < (172“)15[||xtz*|2]+(1 ot Ba L(1+>)’H,t

N

A A B
. (1 B (1 i ;)) E[f(xe) - f(.)

~ 2 0'2
8BL(1+ = ) =2,
+37 <+B>n

Choosing A =10, B =12, 7 < %, we have

2
TH « 37 %%,n
E [¥ < (1— { })E\I/ 10730 220
[Tip1] < min 575 [T,] + 107 "
12 3~O—3,n
< (17—)E[\I/t}+107 Lo
2 n
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400

Recursively unrolling the inequality, substituting 7 = ny and using > (1 - %")t < %, we finish
=0

proof. O

Corollary 8. Let the assumptions of Theorem C.2 hold, o« = ——, and

14w’

. @ 1 €
v = min EIE 0 , N'u 5 . (23)
ni 19 (L + Lo Lmax) 40nLo?,,

Then, DIANA-RR finds a solution with accuracy € > 0 after the following number of communication

rounds:
~ nL w Ly, nl
O 1 o= e max —— Oy
n( +w)+u—|—M . +”s,u3g’

Proof. Theorem C.2 implies

’YQ”Z 2

E[Ur] < (1 —~yp)"F o +20 o

*ne

To estimate the number of communication rounds required to find a solution with accuracy € > 0, we
need to upper bound each term from the right-hand side by 5. Thus, we get an additional condition
on y:
Y+
nL €
J ag 2 < 5,

and also the upper bound on the number of communication rounds n7’

nT:6(1>.
YH

Substituting (23) in the previous equation, we obtain the result. [

20
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D MISSING PROOFS FOR Q-NASTYA

We start with deriving a technical lemma along with stating several useful results from (Malinovsky
et al., 2022). For convenience, we also introduce the following notation:

n—1
1 i .
m — \Y m ; m).
gt, " Z [ (frt, )

i=0
Lemma D.1. Let Assumptions 1, 2, 3 hold. Then, for all t > 0 the iterates produced by Q-NASTYA
satisfy

2 2Lmax L dw
Eo [llgell*] < ) 525 et — ) 8L (14 57 ) () = fla))+ 7,

m=1 1=0

where Eq is expectation w.r.t. Q, and (? = 3 Z%Zl IV fom () ||

Proof. Using the variance decomposition E [||¢]|?] = E [||¢ — E [¢] ||?] 2, we obtain
1 M 1 n—1 i 2
ollael’] = 35 2 Ee H ( ZW " ) — o 2 V@
m=1 i=0
| M o1 . 2
e > S s )
m=1 i=0
M n—1 2 M n-—1 2
Asm.1 w 1 - i 1 7er i
< 55 Z n i (xt,m) + Mn Z vam (xt,m)
m=1 1=0 m=1 i=0
Next, we use V f, () = L S0 Vfrm (z) and [Ja + b||2 < 2]l + 2b||%:
o M. |1 n=2 ) _ 2 o M
g i T, 2
Eollol’] < 175 2 |15 2 (VA @hm) = Vi @) | + 355 2 [V m(a)]
m=1 =0 m=1
ks M n—1 2 | M 2
n Z (me t,m me (x4 ) i Z V ()
m=1 i=0 m=1
2
) (1 + ﬁ) M 1 n—1
< = a7 - m m
< gt X | X (VA e - VA @)
m=1 =0
N
2 2
S IV ()P + 21V S )
m=1
Using L; ,,-smoothness of f, and f and also convexity of f,,,, we obtain
M n—1 Ao M
Bollal?] < 205 SS9 (ah) - VA 0| + 2% 3 1V (o) - V(eI
m=1 i=0 m=1
dw &
2 2
Ve Z IV fm (@)™ +2[Vf(2) = V(2]
2L2 (1+ M n-—1 ﬁ dw
< —max M 8luax (14 37) 5~ =
- ;;H% mnll Z fn (T 20) + 376
[
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Lemma D.2 (see (Malinovsky et al., 2022)). Under Assumptions 1, 2, 3, it holds

M n-—1 1 1 M n-—1
2 max
Zz< :Efm f*l"*> §*Z”1’t*x*” *i(f(xt) 2Mn ZZ |17fm $t|
m=1 1=0 m=1 1=0
Lemma D.3 (see (Malinovsky et al., 2022)). Under Assumptions 1, 2, 3 and v < 5T L —, it holds

M n-—1 ) 9

Z Z H',I’ﬂi,m - xtH < 8'7277‘2Lmax (f(-%’t) - f(x*)) + 272n (03 + (n + 1)@3) .

m=1 1=0

Theorem D.1. Let Assumptions 1, 2, 3 hold and stepsizes v, n satisfy

1
0<n<——r—r, 0<y< 24
7= 16 Lo (14 +%) 7S S &9

Then, for all T > 0 the iterates produced by Q-NASTYA satisfy
9 v’ nLmax
Efler 22 < (1-2) oo — ol + 3 G e 1)) 8

Proof. Taking expectation w.r.t. Q and using Lemma D.1, we get

Eg [z —aull’] = o —aul® — 20Eg [{ge, 20 — 24)] +772]EQ [llg*1?]
M
1
S ||"Et7x*|| 7277EQ < < vam ,,m ) ,$t$*>]
m=1 =0
2Lr2nax ( M n—1 . )
A mZ:“ZH%m—th
80" Linax (14 57 ) (F(a) = f(@.) + 4n* 2=
M n—1 ; .
< el = 25 S0 S (VAR o - )
m=1 i=0
2L2 M n—1 ‘
max( Z Hxém_xtH2

+87* Lina (1+ UG ) Fa) +an? ¢

Next, Lemma D.2 implies

o [llzers = 2l®] < Nz — 2]~ %Ilwt —a? =0 (f(ze) — flzs))

M n—1

80 L (14 37) (F01) = i) + 2 zl z; ot =
ML, (1+ 34 f: nZletm — +4n
m=1 =0
< (1- @) e - a1 - nz<1 — 87 Lunax (1+ %)) (f(@r) - f(a.))
o (L Bt (L 8) 57 5

m=1 ¢=0

47



Under review as a conference paper at ICLR 2024

Using Lemma D.3, we get

Eo [loes —al?] < (1-2

P e = a2 =n (1=8nL (1+57) ) (@) = f())

41 L max (1 + 21 Lax (1 + %)) -29%n (af + (n+ 1)(3)
w
A = (2.
+4n MC*
In view of (24), we have
Eo [laem — o] < (1= %) o — 2l + 40? 5¢2

1 (1= 8L (14 25 ) = 87202 L0 (14 2L (14 23)) ) () = ()

+272nn Linax (1 + 2nL (1 + %)) (Uf + an)

9
< (1= o =l + 402 2 + 0Ly (oF + (n+ 1)0%).
. . . . . T nu\t 2
Recursively unrolling the inequality and using »° (1 — %) < 2., we get the result. O
=0

Corollary 9. Let the assumptions of Theorem 2.3 hold, v = /n, and

. 1 Epn 2 Y2 euM
= 1 : 25
n mm{mm(“m, oL, (NG o) o (25)

Then, Q-NASTYA finds a solution with accuracy € > 0 after the following number of communication

rounds:
A Lmax w C* -
0( ; (1+M Mo ,/ e /n>

1 epM
16 Lomax (1437 ) 7 240CE

otz 1+ 2)+ £5).

If v — 0, one can choose n = min { } such that the above complexity bound

improves to

Proof. Theorem 2.3 implies
T 9 v2nLax
E [[lzr — 2] < (1 - %) lzo — 24]|* + 5% (n+1)¢+02)+8 TIMC

To estimate the number of communication rounds required to find a solution with accuracy € > 0, we
need to upper bound each term from the right-hand side by /3. Thus, we get additional conditions on

7

9772LmaX 9 9 15 nw o €
2 I Fmax 1 < el <
2 np (n+ ¢t 0) <3 8% <3

and also the upper bound on the number of communication rounds 7'

r=0 ()

Substituting (28) in the previous equation, we get the first part of the result. When v — 0, the proof
follows similar steps. O
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E MISSING PROOFS FOR DIANA-NASTYA

Lemma E.1. Under Assumptions 1, 2, 3, the iterates produced by DIANA-NASTYA satisfy

M

1 X x 0 1
Eo | 1r . {gum -] < —ant—x*n?—i(f(mt)—f<x*>>
m=1
M n-—1
1 S ()
m=1i=0 "
M n—1
max 2
T DI CEE M

where h* = V f ().

Proof. Using that Eg [G¢ ] = ¢¢.m and definition of h*, we get

M M
1 R 1
_EQ lM <gt,’rn - h*7 Tt — $*>‘| = _M <gt,’m - h*7 Tt — Z‘*>
m=1 m=1
1 M n-1 i i
= —m;;<vfmm($i,m) = V" (T4), T4 —90*>~

Next, three-point identity and L, ,-smoothness of each function f?, imply

n—1

M M n—
1 . N 1 i i
~Eo lM m; (Gtm — h* 20 — m] - - mZ::l ; (Dt @02) + D oy (@0, 1) = D oy (1,37, )
1 M n—1
< —Df(fEt,iU*) - n Z Df:: (x*vxt m)
m=1 i=0
M n-—1
L S S o e
m=1 i=0
Finally, using p-strong convexity of f, we finish the proof of lemma. O
Lemma E.2. Under Assumptions 1, 2, 3, the iterates produced by DIANA-NASTYA satisfy
R . 2L[2n . 1 + M n—1
Bo (lg— w7 < 2PmeU oS SN Syt s 8L (14 ) () = f(22)
m=1 i=0

4w M
T Z [Ptm = B |12
m=1

Proof. Since g; = 2 S0, gi.m and E[|€ — ¢||? = E[|¢ — E¢||? + E||E€ — ¢||?, we have

2
Eo [Hﬁt—h*”Q] = Eo MZ (ht;m + Q(9t,m — him) — hiyy)
m=1
- o 9
= Ko MMZ (htym + Q(Gt,m — hem)) — gt +||9t—h*||2-
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Next, independence of Q (g m —
ity of each function f¢, imply

M
~ * w *
B [Ig—h*IP] < 255 D lgum — heanll® + llge = 0*I
m=1
20 L ’ 0 &
2
< szl *vam — Vim(xt) +szz:1”vfm(xt)_ht7m“
+2|lg: — Vf(:vt)II +2(V () — b
2 T M
’Vn 2
< w2 a ZO Vi ~Vim(@)| + 5 mzzl IV fon (1) = o
M 2
2 ( va " me<zt>> +2||V () — b
2020 (14 57) <= %
< —M DD Nt~ + Z IV fon () = Bt
m=1 :=0
+2(|V £ (1) — b¥1*.
Using L, .x-smoothness and convexity of f,,,, we get
~ * 2L12n X — i 2w M
o flan—wF] < el S ey 173 2 V(@) = hewl?
m=1 i=0 m=1
+4Lmax( () — f(z))
2L3 ox (1 + M) SR i 2, 4w = 2
< M—nmz::l 2 2tm = 2™+ 755 n; IV fn () — hay |l
4w M
+W Z l[htm — thHQ + 4Lmax (f(z1) — f(24))
2L121'13.X i, ) SLmdxw
< ( Z [} 1y — 2 ]|” + Z Dy, (x4, 24)
=11=0
4w N
"’m Z 1Bem = hrall” + 4Lmax (f (z0) = f(2)) -
m=1
O

Lemma E.3. Under Assumptions 1, 2, 3, and o <

1+ ’
satisfy
M M
1—«a 2oL
* |12 * |12 max
mz:: o [lher1,m — b l?] < STE mz::lllht,m—hmll +

+aLmax (f(w:) — f(4)) -
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the iterates produced by DIANA-NASTYA

n—1

M n—
DD Mt — el

m=1 i=0
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Proof. Taking expectation w.r.t. Q and using Assumption 1, we obtain

M M
1 N 1 N
17 2 Bo llhesrm = BLlP] = 57 D Eo [llhem +aQ(gtm — hem) = hiyll’]
m=1 m=1
1 M
< (|, m — Byl + 20EQ [(Q(ge,m — hesm)s htm — Biy)])
m=1
M
M ] HQ 9t,m — ht,m)Hﬂ
1 M
< 9 2 e = B + 20 (gem — b hen = h,)
m=1
+Oé 1+OJ Z ||gtm htm||2
Using a < 1+w, we get
1 X 1 M
17 2 Bo llheeim = 5lP] < 57 D7 (e = Bll® + @ (Gram = heims hean + grm — 2h7,))
m=1 m=1
M
1 *
S Y (Iht,m = hill® + allgem — B l1* = allhm — R, [17)
m=1
o M
< = hl® 4 57 D lgem — ol

Finally, L,ax-smoothness and convexity of f,, imply

1 - * 12 -« = * 12
i E Eo [[htt1,m —hill?] < i E [ ht,m — R,
m=1

_|_
=/
ol

3
Il

IA
!
P_ﬂ:

m=1

3
£

|
—

n

(VI (2 ) = V(1)

_l’_
Nk
M=
S|

Il
=]

i

3
ﬂ‘

”ht m — hy, ”2 + 4Lmaxa (f(frt) -

IN
55 =l
Smi

M n—1

max
> Nt =

m=1 i=0

Theorem E.1. Let Assumptions 1, 2, 3 hold and stepsizes -, n, o satisfy

0<y< :
7= 16 Lapacn 21" 16 Lanax (1 + 3

Then, for all T > 0 the iterates produced by DIANA-NASTYA satisfy

T 9~%nL
B < (1-5) \1/0+§7M (0% + (n+1)¢2).
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(Igeam =V fm (@)1 + 1V fin(2¢) —

w12 ALmaxo M
|ht,m - hm” + T Z Df‘rn(

0<n<mi @ 1 < 1
min e —— e «Q o um——
» IS , S Trw

honl?)

xtax*)

2

CH)

(26)

27)
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Proof. We have

lzer1 — SU*Hz = @t —ngs — . + ﬂh*”Q
2y — 21* = 20(ge — h* 20 — 22) + 07 |G — BY)I°

Taking expectation w.r.t. Q and using Lemma E.1, we obtain

Eg [llzet1 — 2] ot — @l = 2nEq [(g¢ — h*, w¢ — @4)] + n*Eq [[1ge — 1*[|°]

nu 2n i
< (1% lae— = n(f (@) = fl@2) — 21 23Dy (et
L " M n-—1 ]
+ 220 5 S ik — il + 7B [l — 1717
m=11=0
Next, Lemma E.2 implies
nu 9 M n-1 )
Eo [lloe —a.l?] < (1-7%) e = = () = F) = 570 32 30D (i)
M n-—1 2712 w M n-—1
Lmaxn i 277 Lmax 1+ M i
B3 DI AL KR A o o T TR
m=1 i=0 m=1 i=0
w 4w M
o <8Lmax (1+7) (fl@e) = f@)) + 175 3 e = B, )
< (1= o =@l =0 (1= 8nLmax (14 77) ) (fl@) = f(2))

M n—1

+Lmaxn (1 + 2nLmax (1 + )) Z Z ”xt m xtHQ

m=1 1=
M 1 477 w
LS SD g i) Z Vot — B

mle

n—

Using (6) and Lemma E.3, we get
—_ — 27 — E—
Eo Wi < (1=2) ar— ol =5 (1= 81Luax (1+ 57 ) ) (@) = f(22))

M
+Lmax77 (1 + 277Lmax (1 + 7)) Z
M n X

2n
~3n 2 -

m=1 ¢=0

n—1

Z It i = @2

4n w
D o (T ) + Z 1t m = B

Fm

1

M n—1

M
11—« * 2al’l?nax %
+erp? ( i 2 e = B l? + > j D Nzt = @ell® + 4aLmax (F(20) — f(22))
m=1 1=0

m=1

N 4w 1 U
(1= el (et~ + 57 ) 3 3 e =1
m=

-n (1 — 81 Lmax (1 + %) - 40‘770Lma>c> (f(xe) — f(z4))

n—

IN

=

w 1
+Ln (1 + 20 Lax (1 + H) + 2omchax) n

M=

[Erme
14=0

3
Il
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Taking the full expectation, we derive
M
n dw 1 x
Bl < (1)l o (o0 -0+ 57 ) 37 D [lhan A
w
-n (1 - 877Lmax (1 + M) - 40”76L> E [f(xt) - f(l‘*)]

M
w 1 i
+Lmax77 (1 + 277Lmax (1 + M> + 2anCLrnax) E 4 E [th,m - xtHQ] :

Using Lemma D.3, we get
N dw) 1 &
E[¥r] < (1 - 7) E [z — z.]*] +n? <c(1 —a)+ > > E [lhtm — b, )17]

= (1= 80 Lmax (14 57 ) = dancLunas ) ELf (@) = f(2.)]
89202 L (14 20 Lmae (14 57 ) + 2000 Lnax ) B 1 (22) = f(2)]

291 L (14 20Lmax (14 77 ) +20m0Lmax) (0 4 (n + 1)¢?)

In view of (26), we have

2 M
E[W;1] < (1 - %) E [HIt - x*HQ] + (1 - %) % Z E [”ht,m - h:n||2]

m=1
9
+ 7 P L) (03 + (0 + 1))
+o00 :
Using definition of Lyapunov function and using (1 — %) < %, we get the result. O
=0
Corollary 10. Let the assumptions of Theorem 2.4 hold, v = 1/n, o = H-% and
. o 1 eun 2 o\ —1/2
=min{ —, , n+1)(; +o . 28
n {2N 16 L0 (1 T QJ)TL;) 9L (( )C* *) (28)

Then, DIANA-NASTYA finds a solution with accuracy € > O after the following number of communi-

cation rounds:
~ L w L.
O max (1 ) m?x 2 Jf n
<w+ +37) T T VG

o 1
2147 16 Lmax (1492 )
rounds T’ to find solution with accuracy € > 0 is

& (w22 (14 37)).

If v = 0, one can choose 1 = min { } such that the number of communication

Proof. Theorem 2.4 implies

T 2nL
E[Ur] < (p%) \I/0+2M((n+l)éf+af).

To estimate the number of communication rounds required to find a solution with accuracy € > 0, we
need to upper bound each term from the right-hand side by 5. Thus, we get an additional restriction
on 7:

9n°L 9 o\ _E
5% ((TL"F 1)C* +J*) < 5,
and also the upper bound on the number of communication rounds 7'

o(1)

Substituting (28) in the previous equation, we get the first part of the result. When v — 0, the proof
follows similar steps. O
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F ALTERNATIVE ANALYSIS OF Q-NASTYA

In this analysis, we will use additional sequence:

i—1
7D Vim(x). (29)
-

Theorem F.1. Let Assumptions 1, 3, 4 hold. Moreover, we assume that (1—7u)" < 9/1111/140 C<1

for some numerical constant C' > 1. Also let § = % < 307%“ and v < L—ax Then, for all T > 0
the iterates produced by Q-NASTYA satisfy

B

< 1-—
_max( 0’

1- 2>‘I’t+ =BY 670 (30)

8 w14
E (lor - 2ulP] < (1 15 ) o=l + 57208 + 36 174
where A, = o5 Zn]\le 27, — @.]|? and 624 < Lmax (¢Z + no?/4).
Proof. The update rule for one epoch can be rewritten as

m=1
1 Ty — T,
o e 20 ().
M

Using this, we derive
2

lzt+1 — x*HQ =

1 al xt—x?m
nong (M)
m=1

'YTL

:I:m

=|mt—x*||2—2n<xt—x*, ZQ( )>
xt mt’m

Taking conditional expectation w.r.t. the randomness comming from compression, we get

LA
. ) R
Eqllwetr — 2ull” = [lwe — .|| _277<xt_x*’Mmz:1< m )>

M 2

1 .th.’ﬂ?m
w2 (*5)
MWZ:1 n

Next, we use the definition of quantization operator and independence of @ (

+ UQIEQ

n
Tt—Ty m

),me[M}:

yn

1 H Ty — TV
Egllecs — @l < fla — @ - 20 < D (’”)>

m=1 m
2
M n 2 M n
o | W 1 Tt — Ty m 1 Tt — Ty m
+ — —| +t || e
U M M r; n M mz:% yn
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Since 8 = -L, we obtain

M
1 n
Emwﬂl—xd2<nw—umﬁ—26<m—xmﬂlggtm—xm»>

+ﬁh*ZWtQM+W

1 < o
= ||zs — x| +2B< m*,MmZ:1(astm xt)>
w1l & 2 1 ’
+52MM;||%—$%H + 52 Mmz_:l(xtm_xt)
M 2
e, m*+/5<]\142(:rtm—xt) o L Zth—xth
m=1

Using the condition that z.. = ﬁ Z%Zl xy ,, we have:

2

o ZHmt 2P

i\H

Eqllwirn — z* <

(1= B) (e — ) +6<

i z:m)>

m=1

Convexity of squared norm and Jensen’s inequality imply

Eqllzers — ol < (1= B)llwe — x.]|* + 8

b
M:

Next, from Young’s inequality we get

M
1 n n w
EQ||1‘t+1 - 1‘*”2 S (1 - B)”mt - $*||2 =+ 6 M n; ('rt,m - x*,m) + SﬁZMth - x*”Q
w M w M
2 n n 2 2 2
+38 Mﬂmz:: 12t — 2 lI” + 36 Mﬂm: — T %

Theorem 4 from (Mishchenko et al., 2021) gives
1M -
i > g, - xf,m||2] < (1—~p)" [let — } + 24362 (1= )
m=1 :
=1 =" [let — x| } + 29262,
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It leads to
1
Blovss =l < (1= Bl =l 4 5 (1= 20" e = 1] + 2170 )
w w 1
30y 2 4 32 ((1 =" [l - ] + 27002
w 1

S(1—5+Bﬂ—7@”+&¢Merﬁiﬂ—WMﬂH%—xdz

2570k (14 3657) +35° 1o Z a2, = .l
Using (1 —yu)" < 9/115:/140’ we have
U_VWHS%F;Z?
(1 — )" (1+C) <1%_%
— BB =)+ S T <0
g B0+ B+ Dy <1 - B

. 1 .
Next, applying 8 < Tr30E > We derive

LB B ) 357 438 (1t <1 - 2
Finally, we have

8 1 1
]E||$t+1—33*2§(1 2l — P + 2805207 (14 5
5
(1 ||xtfa:*||2+ L6

+3B277 Z Hx* ,m 1,*”2

m=1

56



Under review as a conference paper at ICLR 2024

G ALTERNATIVE ANALYSIS OF DIANA-NASTYA

n o Y10=YB _
< 14+1/B

B < 1f0r some numerical constant B > 1. Also let f = -L < ﬁ and v < m and also

yn
a < w+1 Then, for all T' > O the iterates produced by DIANA-NASTYA satisfy

Theorem G.1. Let Assumptions 1, 3, 4 hold. Moreover, we assume that (1 — )

BV < 1B e T\IJ 72 31
T S max *1*0 2 o+ B ﬂ’y rad' G

Proof. We start with expanding the square:

e41 = @l = llwe — nge — 2|

M
1
e =N Z (htm + Q(gt,m — he,m)) — T

m=1

M
:xt—x*||2—217< Z htm + Q(gt,m — ht7m>)7xt_x*>

2

M
Z hfm+Q gtm ht,m))

Taking the expectation w.r.t. Q, we get

M
1
Eqllzers — zu[? = |z — 2[* — 20 <M Z Gtm» Tt — $*>

2

+ T}2EQ

M
Z htm"’Q gt,m _htm))

M
1
= ||z — 2.l — 29 <M Z Gt,m, Tt — $*>

m=1

2 2

+ anQ

M
M Z gt.m
m=1

M
Z htm+Q gtm_htm) gt,m)
m=1
<ol o ( S g2
= t * M t,my Lt *
m=1
o M M 2
2 2 2

+n W;“gt,m_ht,m“ +n M;gt,m

1 M
<l — @.]> = 2n <M > Grmowr — x>
m=1

=[=

1 & ’
ar Z 9t,m
M m=1

M M
P2 S g~ Bl 7 S i — b 2
n M2 gt,m *,m n M2 t,m *,m n
m=1 m=1
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Next, using definition of g; ,,, we obtain

M M

1 Ty — TY :— TP

Ellzis1 — o) < |xt—x*||2—2n<M > —> T
m=1 m=1
w 2w
P2 S o~ b P42 g = ol
m=1 m=1
| M M 2
:|a:t—g:*||2+204<MZ(xzm—xt),xt—x > Z Ty,

m=1 m=1

M
2w
2 2 2
+n M2 § llgt,m — hosm | + 1 M2 E ||htm— Pl

m=1
M 2
= ||lxy — s + a— E (:c;’m—xt)
M '
m=1

M
+n227w2||gtm*h*m”2 22w Z”htm* *m”2
M2 ’ ’

(1 B) (@ —a.) + (;4 > (@ - w:f,m>>

2

M
1 n n
S (1 - ﬁ)”xt - ‘T*HQ +ﬂM Z th,m - x*,m||2

M
2w 2w
+0° 3z 2 9em = heml® + 0715 § Moo = e

m=1
Let us consider recursion for control variable:
[hes1,m — Paml? = [|hem + @Q(gt,m — hem) — B ||?
= || ht,m — h*,mH2 + a{Q(gt,m — Pt,m), hem — haem) + 042||Q(9t7m - ht,m)HQ-
Taking the expectation w.r.t. Q, we have
Eollht+1,m — ha 7n||2 < Pt — h*,mH2 + 20 (gt,m — htyms Ptm — Paom) + o’ (w+1) lgt,m — ht,m||2 :
Using o < —=5 we have
E”htJrl,m - h*,m||2 < ”ht-,m - h*,m”2
+ 20 (g1, — Bty T m = P + @ llg1m — e[
= ”ht-,m - h*,m||2
+ 20 (gt.m — htms htom — Paeom) + @ {(Gem — Btomy Ge.m — him)
= ||ht,m - h*,mH2
+ a{gt,m = Pt.ms Gt.m — hem + 2R m — 2ha )
= Hht,m - h*>m||2
+ @ (gt,m = Ptms Geom + Pem — 2R m)
= ”ht-,m - h*,m”2
+ a(gt.m — Retm — P + By Gem + Bim — 2R m)
= ”ht,m - h*,mn2
+o <gt,m —hum — (ht,m - h*,m)a (gt,m - h*,m) + (ht,m - h*,m»
= [|ht,m — h*m||2 + allgt,m — h*,m||2 — allht,m — h*,mH2

= (1= )l = haml® + allgem — hamll.
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Using this bound we get that

M
1
MZEQ”}LHLWL_ Bl < (1 =)= Z”htm_ *mH2+a ZHgtm— B ||

m=1
Let us consider Lyapunov function:

don? 1 &
‘Ift:th*I*H”i*Z [Btm = hom|

Using previous bounds and Theorem 4 from (Mishchenko et al., 2021) we have

1
EVii1 < (1= B)lloe — 2.l + 5 ((1 = y)"Ellz — x.]* + 73W0’3ad>

E

M

2w 2, 2w 1 9
4w172 1 2 4w172 1 M 9
+(1_a) aM M ZZlEHht,m _h*,m” ZEHgtm_ *m“
M M
4wm? 1 9 26w 1 9
< (1) A 37 2 Bl — ol 73757 3 Bl = o

n 1 jal
(L= Bl — 22+ 8 ((1 ) Bl — P+ f”waiad-)

Let us consider

) 1 M ) M l‘*—l’f 2
n M;Ellgt,m—h*,m\l = Z: R
2 1 M Tt — T« 2 1 M x?m_x:}m ?
<21 MEZIE - +277 M;E T
1 X 1 U 2
§252M ZE”xtfz*” +2B2 ZEH‘rtm* *mH
m=1 m=1

M
gzﬂQEnzt—z*HQwﬂ ZEthm— o

Putting all the terms together and using (1 — yu)" < 9/113_:/12 E_B<1,8< we have

1
12B&+1

w w
E <(1— 12282 4192 82(1 — v )™ 4+ B(1 — )]E - 52
t41 < B+12576% + MB( )" + B = )" ) Ellz — 2.2 +va rad
M

6w 1 . 4wn? 1
vttt (12 5) ar 37 2 Bl = o

B 4wn? 1 M
< (1 45) Bl — ol 4 29%2+ (1) T35y 3 Bl — el

g o 2,9,
< max <110,12 \IltJr;ﬂnycrfad.
Unrolling this recursion we get the final result. O
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