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1. Introduction

The Hamiltonian matrix (H) contains rich infor-
mation about the electronic properties of materials,
in particular their bandstructure and electron dis-
tribution. It can be typically computed with den-
sity functional theory (DFT), an ab initio method
that consists in solving the Kohn-Sham [1] and Pois-
son equations self-consistently until convergence is
reached. While small unit cells are sufficient to cap-
ture the behavior of ideal materials with DFT, realis-
tic components including defects, disorder, or inter-
faces require larger unit cells (> 10 A) with hundreds
to thousands of atoms to be accurately described
(Fig. 1) [2]. As DFT scales with O(N?3), the calculation
of Hamiltonian matrices for large-scale materials is
prohibitively expensive.

This computational bottleneck can be bypassed
using graph neural networks (GNNs), which have
proven successful at predicting the H of small
molecules and periodic structures. However, due
to computational limitations, they have yet to be
demonstrated on large disordered samples. In this
work, we introduce a strictly local network com-
bined with an augmented partitioning approach to
break down large graphs for training, obtaining
a prediction MAE of 0.99-5.16 meV for amorphous
structures with 1,000-3,000 atoms

Fig. 1: Illustration of the differences between ideal
periodic (left) and compositionally (middle) or
structurally (right) disordered materials, Circles
(lines) correspond to atoms (bonds).

2. Background
2.1 Related Work

Existing GNNs for Hamiltonian predictions inte-
grate the rotational covariance of the (H) elements
through tensor product operations that maintain
SO(3) equivariance. These equivariant networks [3]
achieve state-of-the-art accuracy on small molecule
[4] and crystalline [5] datasets. The subsequent re-
formulation of tensor products from SO(3) to SO(2)
significantly improved the scaling from O(IS,,.)
downto O(13,,,), where I, is the maximum degree
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Fig. 2: (a) General organization of the network archi-
tecture, with a detailed description of the node up-
date block (blue). (b) Illustration of the augmented
partitioning approach. Virtual edges (e; ;) con-
nect virtual nodes (j') to the labeled ones. Solid
vertical lines indicate partition boundaries. Dif-
ferent colors represent different atomic species.

of the angular momentum considered [6]. The in-
troduction of attention [7] further improved the per-
formance of GNNs on H datasets [8]. However, the
size of the corresponding graphs explodes for dis-
ordered materials and large unit cells, resulting in
slow/unfeasible training. Being able to predict H in
such cases remains an open issue that we aim to ad-
dress in this work. Our dataset includes industry-
relevant materials like amorphous HfO,, PtGe and
GeSbTe (a-HfO,, a-PtGe and a-GST).

3. General Approach
3.1 Network Architecture

The Hamiltonian matrix can be first decomposed
into sub-matrices H; ; of size (N¢ , x N? ). Each of
them describes the interactions between the (N¢ ,
basis elements (orbitals) on atoms 7 and the N”
ones on atom j. The diagonal (H; ;) and off-diagonal
(H;,;) blocks of H are represented by the nodes and
edges of the GNN, respectively. The inputs to the
nodes (edges) are the atomic numbers (distances be-
tween atoms). Due to the nearsightedness principle
of H in the local basis, atoms outside of a fixed cutoff
radius can be neglected [9]. The network architec-
ture is illustrated in Fig. 2. We adopt efficient eSCN
convolutions in our network [6], along with equivari-
ant attention [7], to distinguish and learn complex
atomic environments.


https://orcid.org/0000-0000-0000-0000
https://orcid.org/0000-0000-0000-0000
https://orcid.org/0000-0000-0000-0000
https://orcid.org/0000-0000-0000-0000
https://orcid.org/0000-0000-0000-0000
https://orcid.org/0000-0000-0000-0000
https://orcid.org/0000-0000-0000-0000
mailto:chexia@iis.ee.ethz.ch 

Al4X 2025, Singapore, 8-11 July 2025

3.2 Augmented Partitioning Approach

Large, densely connected graphs representing
realistic materials with disorder consume large
amounts of memory, often exceeding GPU mem-
ory limits. They cannot be straightforwardly parti-
tioned through the removal of edges. Doing so mis-
informs the network, as it aggregates information
through an incorrect graph structure. To be able
to train large structures while maintaining connec-
tivity and accuracy, we introduce a so-called aug-
mented partitioning approach. The graph is first par-
titioned into sub-graphs where the data can fit into
the memory of a single GPU. Atoms located outside
of a given partition, but connected to those inside
of it, are represented by virtual nodes (Fig. 2(c) -
dashed circles). They are connected to the parti-
tion through virtual edges (Fig. 2(c) - dashed lines).
These virtual nodes/edges are initialized similarly to
their labeled counterparts with input atomic num-
bers and distances. However, their outputs are not
used. Their only role is to inform each partition of its
full connectivity so that the network can then learn
an accurate and generalizable aggregation function
during message passing. As the virtual nodes and
edges represent only the 1-hop neighborhood, the
network is strictly local. As demonstrated by previ-
ous strictly local architectures, e.g., Allegro [10], in-
formation from the local environment is sufficient
to achieve state-of-the-art prediction accuracy when
locality holds. Additional local layers can also be in-
cluded to capture many body interactions [11].

4. Results

In all our experiments, we train the model using
the proposed augmented partitioning approach, and
testit on a full, unseen structure. The Mean Absolute
Error (MAE) is reported for nodes (¢,,) and edges (e.).
Details on datasets are found in Appendix A.

en[mE}R] ee[mE}]

n n 5.18 1.66
n —=n 229 0.20

Table 1: Ablation study on the impact of virtual
nodes on the prediction accuracy of a-HfO,

Compared to training with raw partitions, the ad-
dition of virtual nodes and edges reduces the node
and edge prediction error by over 50% and 88%, re-
spectively (Table 1). Such an improvement is ex-
pected, as raw partitions are characterized by a
large proportion of missing edges and thus incor-
rect atomic neighborhoods. We then investigate the
effect of augmented partitioning on accuracy (Ta-
ble 2). Despite the different divisions ranging from
5 (torice ~12 A) to 27 (torice ~2 A) slices, e, and e
remain very close to the values obtained by train-
ing with the full graph (¢g;.. = 52.346 A). The pre-
diction error is thus insensitive to the partition size.
It also performs consistently across a diverse range

of test datasets (Table 3), which consists of large,
disordered materials. The total errors range from
0.99 meV to 5.16 meV, for test structures contain-
ing 1,000 to 3,000 atoms and 200,000+ to 2,000,000+
edges. These values are comparable to what a pre-
vious study obtained (2.2 meV)) using equivariant
GNNs for smaller structures with <150 atoms per
unit cell [12]. For the case of PtGe, the use of small
slices also enables a larger r.,; of 16 A within GPU
memory limitations, allowing for further improve-
ments in prediction accuracy.

Lstice [A] Ny Ne EPOChS En[mEh} ee[mEh]

~2 27 95398 15790  2.35 0.20
~3 18 141,512 18990 215 0.18
~4 14 184730 17,098  2.32 0.19
~8 7 320,324 20,599  2.37 0.17
~12 5 381,504 19351  2.69 0.18
~52 1 533,364 23,396 246 0.16

Table 2: Prediction accuracy for a-HfO, when the
network is trained on differently-sized partitions
of the same graph.

Material Teut [A] €n [mEh} €e [mEh] €tot [meV}
a-HfOq 8 2.15 0.18 5.16
a-PtGe 8 0.78 0.08 2.39
a-PtGe 16 0.82 0.04 0.99
a-GST 12 0.97 0.10 2.77

Table 3: Summary of the model performance when
trained and tested on a-HfO,, a-PtGe, and a-GST.

Stoichiometry (x) en[mEp]  €e[mER]
Train set  Test set

1.8 19 248 0.18

1.8 1.8 2.50 0.17

1.8 1.7 2.60 0.18

Table 4: Model trained on a-HfO,_; g and tested on
full unseen HfO,, structures

A model trained on one stoichiometry (a-HfO,—1 g
with oxygen vacancies), can also generalize well to
unseen HfO,, structures with different stoichiometry
(Table 4), with ¢,, and ¢, lying within a small range
(2.48-2.60 mE}, and 0.17-0.18 m E},, respectively).

Finally, after reassembling the predicted H, we
compute its eigenvalues and compare them to those
of the DFT reference. For HfO, with 3,000 atoms, we
achieve an L1 error of 0.55%, sufficient for practical
applications. Compared to full graph training, our
method with just 8 augmented slices resultsin a 6.5 x
speedup per epoch (0.38 vs. 2.5s) and a 7.2 x decrease
in memory consumption per rank (8.59 vs. 61.68
GiB) without affecting accuracy (Appendix B). Our
approach can thus be applied to train and predict the
H of materials with arbitrarily large structures for a
wide range of applications, including phase change
compounds, functional oxides, or semiconductor-
dielectric interfaces [13, 14].
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Appendix A. Datasets

The structures generated and used for training, vali-
dation and testing during the experiments are shown
in Al. Atomic structures corresponding to materi-
als in the amorphous phase are not straightforward
to generate since they must accurately capture the
structural motifs underlying this phase and a real-
istic range of atomic coordination. To accurately
reproduce long-range structural disorder, the struc-
tures used must also be large enough to avoid the
creation of wavefunctions that repeat over periodic
boundaries. Existing methods to do so include melt-
quench [15], seed-and-coordinate [16], or ‘decorate
and relax’ [17] approaches.

In this work, we use melt-quench processes with
molecular dynamics (MD) to evolve each of the three
materials considered from their crystalline phases,
following a similar procedure as the ones described
in [18] and [15]. We then perform a structural relax-
ation with CP2K code [19] to correct for any discrep-
ancies between the relaxed bond lengths attained
with the force field used for MD and those obtained
with DFT. Due to the large cell sizes of the a-HfO,
structures, all necessary information is contained
within the I" point (where the wavevectors k, = k,
=k, = 0). The energies at this location can be com-
puted by directly diagonalizing H.

Further details specific to each material are pro-
vided in the sections below.

1.1 a-Hng

We generate 3 independent structures of a-HfOq
using the QuantumATK toolkit [20]. As the first step,
we run an MD NVT simulation at 3000K for 50 ps with
a step size of 1 fs. We use the MTP-Hf05-2022 poten-
tial provided by the software. Next, we run an NPT
simulation for 300 ps (and the same 1 fs step size),
with an initial reservoir temperature of 3000K and a
final temperature of 300K, for a cooling rate of 9K/ps.
Finally, we anneal the structure at 300K for 50 ps.

Due to the computational cost of using a more
complete Double-( Valence Polarized (DZVP) basis
set [21], we use a simpler Single-¢ Valence (SZV) ba-
sis [21], which uses 4 basis functions per Oxygen
atom and 10 basis functions per Hafnium atom. The
plane-wave cutoff is set to 500 Ry, while a cutoff of
60 Ry is used for mapping the Gaussian-type orbitals
onto the grid. We use the PBE functional for the
exchange-correlation energy [22]. To accurately cap-
ture the band gap of a-HfO,, we apply the Hubbard
correction [23] of U =7 eV to the 3d orbital of Ti and
the Hubbard correction of U =10 eV to the 2p orbital
of O.

1.2 Substoichiometric HfO,

We create a dataset for sub-stoichiometric HfO,,
structures by introducing randomly distributed oxy-
gen vacancies into the original, pristine HfO, struc-
tures. The sub-stoichiometric structures are gener-
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Material  Structure Purpose reut [A]  #atoms  #orbitals  # edges z [A] y [A] 2 [A]
a-HfOo 1 validate 8 3,000 18,000 527,348 52.876  26.308 26.242
a-HfOo 2 train 8 3,000 18,000 533,364 52.346  26.237  26.293
a-HfOo 3 test 8 3,000 18,000 530,920 52.722 26.267 26.191
a-GST 1 train/validate (6:1 split) 12 1,008 13,104 230,848 29.541 25.583 41.777
a-GST 2 test 12 1,008 13,104 226,406 25.857 29.857 41.691
a-PtGe 1 train/validate (10:1 split) 8 2,688 16,128 319,262 82.283 23.171 25.031
a-PtGe 2 test 8 2,688 16,128 319,306 82.283 23.171 25.031
a-PtGe 2 test 16 2,688 16,128 2,154,506  82.283 23.171 25.031

Table Al: Attributes of the generated dataset for three materials, each with its own training, validation, and
test set: The [z, y, 2] triplet defines the periodic unit cell size. nnzy is the number of non-zero elements in
the Hamiltonian, encompassing all orbital interactions. Edges were defined according to an interaction

distance r.y;.

ated for x = 1.9, 1.8, and 1.7 (corresponding to va-
cancy concentrations of 5%, 10%, and 15 %, respec-
tively). Vacancies are treated as ghost atoms (atoms
with no orbitals, but with a basis set defined at their
locations), to mitigate the basis set superposition er-
ror [24], a known problem related to localized basis
sets. More precisely, by treating vacancies as ghost
atoms, one prevents the excessive borrowing of the
basis sets from neighboring atoms by the vacancy,
which improves the accuracy of the predicted elec-
tronic properties. These ghost atoms are assigned an
atomic number of 0.

1.3 a-GST

Two amorphous GST-124 (Ge(SbT'ey)2) structures
containing 1008 atoms have been used for training
and validation. The first structure is extracted from
a crystallization trajectory provided by [25] (Supple-
mentary Material). It is contained in a 25 A x 30
A x 40 A orthorhombic bounding box. The second
structure is the result of passing a fully crystalline
GST-124 structure (the unit cell of which was from
the Materials Project [26] and duplicated to fill a 25
A x30A x 40 A monoclinic bounding box) through a
standard melt-quench procedure (Randomization at
3,000 K (20 ps), cooling to the melting point of 600K
at a rate of 10! K.s 1, holding for 30 ps, quenching
to 300 K at 2.5 x 10'®K.s ! then holding again for
another 50 ps). Both structures are relaxed via MD
simulations in LAMMPS [27] equipped with the QUIP
library for Gaussian Approximation Potential (GAP)
[28]. The corresponding Hamiltonian terms are ob-
tained using CP2K, where we run the calculations
with the DZVP basis, the plane-wave cutoff of 300 Ry,
the Gaussian-type orbitals mapping cutoff of 50 Ry,
and the PBE functional.

1.4 a-PtGe

To generate the PtGe structures, germanium
structures are taken from the Materials Project
database [26]. This is followed by an NVT melt-
quench process using LAMMPS and Stillinger-Weber
parameters [29, 30, 31]. The structures are heated
to a melting temperature of 5000K at a rate of 0.47

10'2K.s !, kept at the melting temperature for 20000
ps (structure 1) or 22000 ps (structure 2), quenched
at a rate of 4.7 10'2K.s !, and finally annealed at
300K for 100 ps.1/3 of the Ge atoms are then ran-
domly replaced by Pt atoms. The cell of the alloy is
then stretched to match the cell of a PtGe, structure
(taken from the Materials Project and optimized us-
ing CP2K). Fixed-volume geometry relaxation is then
performed on the PtGe alloy. For the structural opti-
mization, as well as for the H and S generation, SZV
basis set and PBE exchange-correlation functionals
are used. We apply a plane-wave cutoff of 1000 Ry
and a cutoff for Gaussian-type orbitals mapping of
70 Ry.

Appendix B. Compute environment and runtime
comparisons

The training is performed with PyTorch Distributed
Data Parallel [32], where the graph partitions (slices)
can be distributed between GPUs.

2.1 Memory consumption of full-graph training

During the training of the full graph model, the
peak memory consumption observed was 61.68 GiB
on a single NVIDIA A100 GPU. Most of the consump-
tion does not stem from the network and the struc-
ture but from the additional memory needed for the
convolution operations.

2.2 Scalability of augmented partitioning

In Fig. Al, we show the decrease in time per
epoch and resulting speedup when using the aug-
mented partitioning approach introduced in Section
3.2. Since the partitions are independent, the only
communication involved in every epoch is a collec-
tive to inform each GPU/rank of the loss of each other
rank. The time per epoch thus decreases uniformly
with the number of slices (IV;) used.

Despite the independence of each batch and the
minimal communication per epoch, the scaling is
not perfectly linear. The deviation from an ideal
speedup can be attributed to two factors:
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Fig. Al: (a) Time per epoch and (b) speedup resulting from the use of increasing numbers of slices N;. Median
values are shown, while the error bands are one standard deviation. Experiments were run on NVIDIA
A100 GPUs with # ranks set to V;. Measurements are only shown up to 8 slices/8 GPUs due to limitations
in available compute resources at the time of submission. The fill-between indicates the range in runtime
over the first 30 minutes of training. The dashed black line corresponds to the ideal speedup, in which case
the use of IV, slices would enable an N;x speedup in the runtime per epoch. (c) Measured peak memory
consumption as a function of the number of partitions, where each bar corresponds to a different GPU.
Variation in memory consumption between GPUs at each individual value of [V, translates to load imbal-
ance, which correlates with the deviation from ideal scaling shown in (b).

« Load imbalance: The partitioning approach
was designed to leverage the periodicity in the
y- and z- direction within a straightforward
implementation. However, it is not ideal in
terms of the number of cuts/number of virtual
nodes/edges required, resulting in a slightly dif-
ferent amount of work per rank which leads
to an observable load imbalance at higher ;.
This effect can be seen in the allocated mem-
ory per partition (Fig. Al(c)). We note that the
augmented partitioning method can be used with
any standard graph-partitioning algorithm.

« Computational overhead of the virtual nodes
and edges: Individual nodes and edges of the
graph can be repeated in labeled and virtual
node lists. Treating the replicas introduces addi-
tional computational cost while training the net-
work, which increases with N;. This overhead
is maximum with the use of very small slices
(large N;), thus introducing a trade-off between
parallelism and time per epoch.

2.3 H,0 vs HfOq runtimes

We make a comparison between the computa-
tional cost of computing the Hamiltonian for an HyO
molecule and the HfO, structure. To approximate
the cost of generating them under the same com-
putational conditions, we set up CP2K simulations
with a DZVP basis for H,O. The computation time
per H,O molecule was 7s, when run on 12 nodes with
12-core Intel Xeon E5-2680 CPUs and NVIDIA P100
GPU, resulting in a total of 0.04 node hours. The HfO,
structures require 3.65 node hours in the same com-
pute environment (but distributed to 27 nodes). The
difference, omitting scaling behavior, is ~100x.

Appendix C. Hyperparameters

For all experiments, the embedding size is fixed at
16, and the feedforward dimension size is 64. L.
and M,, .. are both setto 4, and 2 attention heads are
used.

For training, we use a an Adam optimizer, and a
ReduceLRonPlaeau scheduler, with an initial rate of
1 x 10~%. The scheduler decreases the learning rate
by a decay factor of 0.5 when it does not detect a fur-
ther decrease in validation loss within the decay pa-
tience of 500. Once the minimum learning rate of
1x 10~ % isreached, the training stops. Mean Squared
Error (MSE) is used as the loss function.
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