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ABSTRACT

Existing methods for expressive music performance rendering rely on supervised
learning over small labeled datasets, which limits scaling of both data volume
and model size, despite the availability of vast unlabeled music, as in vision
and language. To address this gap, we introduce Pianist Transformer, with four
key contributions: 1) a unified Musical Instrument Digital Interface (MIDI) data
representation for learning the shared principles of musical structure and expres-
sion without explicit annotation; 2) an efficient asymmetric architecture, enabling
longer contexts and faster inference without sacrificing rendering quality; 3) a self-
supervised pre-training pipeline with 10B tokens and 135M-parameter model, un-
locking data and model scaling advantages for expressive performance rendering;
4) a state-of-the-art performance model, which achieves strong objective metrics
and human-level subjective ratings. Overall, Pianist Transformer establishes a
scalable path toward human-like performance synthesis in the music domain.

1 INTRODUCTION
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Figure 1: The profound impact of large-scale self-supervised pre-training. We compare our
Pianist Transformer against an identical model trained from scratch (w/o PT). (a, b) Pre-training
leads to dramatic improvements in objective metrics that measure distributional similarity to human
performances. (c) This is rooted in a much better learning foundation, as the pre-trained model
converges faster and to a significantly lower loss during fine-tuning.

Expressive performance rendering aims to automatically generate a human-like musical perfor-
mance from a symbolic score. This task goes beyond mere pitch-and-rhythm accuracy to capture
the subtle variations in timing, dynamics, articulation, and pedaling that shape musical expression.
The core challenge lies in computationally modeling the intricate mapping from a score’s underlying
musical structures, such as its melody and harmony, to these expressive choices. For decades, re-
search from probabilistic models (Teramura et al., 2008) to modern deep learning approaches using
RNNs (Jeong et al., 2019b) and Transformers (Borovik & Viro, 2023) has predominantly relied on
a supervised paradigm. This paradigm, however, faces a persistent bottleneck: the aligned score-
performance supervised datasets are typically labor-intensive and expensive to scale.

To maximize the utilization of the limited dataset, existing works often adopt asymmetric, special-
ized representations, injecting rich structural descriptors on the score side (e.g., measures, meter)
(Jeong et al., 2019b; Maezawa et al., 2019; Borovik & Viro, 2023). This improves label efficiency
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because each labeled example delivers explicit structural cues rather than forcing the model to infer
them. However, these descriptors require a notated score and a score–performance alignment. In
contrast, performance MIDI is typically captured from digital-piano recordings or produced by AI
transcription and thus consists of a stream of note events without explicit measures, meter, or a us-
able tempo map. As a result, such methods cannot compute their required structural features for the
vast, unaligned corpora of performance-only MIDI, making them ill-suited for leveraging unsuper-
vised data at scale. Renault et al. (2023) explores an adversarial, cycle-consistent architecture that
disentangles score content from performance style, and a score-to-audio generator learns to render
expressive piano audio from unaligned data against a realism discriminator. Nevertheless, adversar-
ial training is challenging to scale due to complex training dynamics, and the resulting generation
quality has so far been limited. A more stable and scalable paradigm is desirable to truly harness
the potential of the vast, unaligned corpora of in-the-wild MIDI performances that remain largely
untapped.

In this paper, we present Pianist Transformer, a model for expressive performance rendering trained
with large-scale unlabeled MIDI corpus. Our main contributions are as follows:

Unified Data Representation: We introduce a single, fine-grained MIDI tokenization that encodes
notated scores and expressive performances in the same discrete event vocabulary. By closing the
representation gap between these modalities, this shared formulation makes unaligned, performance-
only MIDI directly usable for pre-training, scaling to 10B MIDI tokens without explicit score-
performance alignment, while preserving data diversity. In this unified space, the model can learn
not only the “grammar” of music but also the statistical links between score-level structure and
expressive controls (timing, dynamics, articulation, and pedaling).

Efficient Architecture for Musical Modeling: We design an asymmetric encoder-decoder archi-
tecture with note-level sequence compression that merges the fixed per-note event bundle into one
token, reducing encoder self-attention cost by 64×. This concentrates compute in a single parallel
pass, alleviates the decoding bottleneck, and yields longer context coverage and faster inference with
strong rendering quality. Compared with a symmetric architecture, it delivers 2.1× faster inference,
meeting low-latency requirements for real-world use without sacrificing expressive quality.

Scalable Training Pipeline: We adopt a self-supervised pre-training scheme that furnishes the
model with an initialization, internalizing common musical regularities and expressive patterns.
Consequently, during downstream supervised fine-tuning the model starts from a stronger represen-
tation, converges faster and to a substantially lower loss than an otherwise identical model trained
from scratch, and achieves stronger objective metrics. The contrast is clear in our results: a scratch
model quickly plateaus at a high loss and yields weaker objective scores (Fig. 1a, 1b), whereas
the pre-trained model begins from a superior foundation and descends to a markedly lower loss
throughout fine-tuning (Fig. 1c; see also Fig. 1). To bridge model generation and practical music-
production workflows, we introduce Expressive Tempo Mapping, a post-processing algorithm that
converts model outputs into editable tempo maps. This produces an editable format suitable for
real-world use while preserving expressive timing.

Resulting performance model: The overall training recipe yields a state-of-the-art expressive per-
formance model. On objective metrics, it outperforms strong baselines. In a comprehensive listening
study, its outputs are statistically indistinguishable from a human pianist and are more preferred.

2 RELATED WORK

Piano Performance Rendering. The goal of performance rendering is to synthesize an expres-
sive, human-like performance from a symbolic score. The field has evolved from early rule-based
(Sundberg et al., 1983) and statistical models (Teramura et al., 2008; Flossmann et al., 2013; Kim
et al., 2013) to deep learning architectures based on RNNs (Cancino-Chacón & Grachten, 2016),
variational autoencoders (Maezawa et al., 2019), graph neural networks (Jeong et al., 2019b), and
Transformers. For instance, recent work such as ScorePerformer (Borovik & Viro, 2023) has fo-
cused on fine-grained stylistic control, a goal complementary to our focus on scalable pre-training.
Despite these architectural innovations, progress has been bottlenecked by the supervised learning
paradigm; the small, costly aligned datasets it requires are insufficient for models to learn the com-
plex mapping from musical structure to expressive nuance. This reliance limits model scalability
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and generalization. While recent work has explored adversarial training on unpaired data to bypass
alignment (Renault et al., 2023), challenges with training stability and quality remain. This under-
scores the need for a robust paradigm that can effectively leverage vast, unaligned data, which we
propose through large-scale self-supervised pre-training.

Self-Supervised Learning in Music. Self-supervised pre-training, a dominant paradigm in NLP
(Devlin et al., 2019; Brown et al., 2020) and computer vision (Chen et al., 2020; He et al., 2022),
has also been adapted for music. In the symbolic domain, early efforts like MusicBERT (Zeng et al.,
2021) applied masked language modeling to MIDI for understanding tasks. This approach has re-
cently been scaled up significantly: Bradshaw et al. (2025) pre-trained on large piano corpora for
tasks like melody continuation, while foundation models like Moonbeam (Guo & Dixon, 2025) have
been trained on billions of tokens for diverse conditional generation. Parallel efforts also exist for
raw audio using contrastive or reconstruction objectives (Spijkervet & Burgoyne, 2021; Hawthorne
et al., 2022). However, the application of self-supervised pre-training to the specific task of expres-
sive performance rendering is largely unexplored. While existing self-supervised models excel at
learning high-level musical semantics for tasks like generation or classification, performance ren-
dering is a distinct, fine-grained challenge centered on modeling subtle expressive details. Whether
the benefits of large-scale self-supervised pre-training can successfully transfer to this nuanced,
performance-level domain is an open question that motivates our work.

3 THE PIANIST TRANSFORMER FRAMEWORK

Our goal is to develop a powerful piano performance rendering system that can leverage large-scale,
unlabeled data through a self-supervised pre-training paradigm. This section details our approach,
beginning with the core of our methodology: a unified data representation that enables large-scale
pre-training. We then describe the Transformer-based architecture and the two-stage training strat-
egy built upon this representation. Finally, we introduce a novel post-processing step that ensures
the model’s output is practical for musicians.

3.1 UNIFIED MIDI REPRESENTATION

A fundamental challenge in applying self-supervised learning to performance rendering is the dis-
parity between structured score data and expressive performance data. Specifically, scores represent
music with symbolic, metrical timing (e.g., quarter notes, eighth notes) and categorical dynamics
(e.g., p, mf, f), while performances are captured as streams of events with absolute timing in mil-
liseconds and continuous velocity values. To overcome this, we propose a unified, event-based token
representation that treats both formats identically, enabling them to be mixed in a single, massive
pre-training corpus.

We represent each musical note as a sequence of eight tokens. This sequence captures the note’s
Pitch, Velocity, Duration, and the Inter-Onset Interval (IOI) from the previous note, with timing in-
formation quantized from milliseconds. To model nuanced pedal control, we include four additional
Pedal tokens, which represent the sustain pedal state at sampled points within the note’s IOI window.

Crucially, this representation, avoiding reliance on high-level musical concepts like measures or
beats, unlocks large-scale pre-training on unaligned MIDI and empowers the model to uncover mu-
sical principles, from melodic contours to harmonic progressions, through statistical regularities.

3.2 ARCHITECTURE FOR EFFICIENT LONG-SEQUENCE MODELING

We employ an Encoder-Decoder Transformer, but its standard O(N2) self-attention complexity
presents a critical bottleneck for long musical sequences, which often exceed thousands of tokens.
To enable efficient rendering, we introduce two synergistic architectural modifications: Encoder
Sequence Compression and an Asymmetric Layer Allocation.

Encoder Sequence Compression. Leveraging the fixed 8-token structure of each note, we com-
press the encoder’s input sequence. Instead of processing raw token embeddings, we first project and
then aggregate the eight embeddings of a single note into one consolidated vector. This note-level

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Transformer Encoder

U
n

ifie
d

 T
o

k
e
n

iz
e
r

E
m

b
e

d
d

in
g

 a
n

d
 

P
ro

je
c

tio
n

 la
y
e

rs

C
o

n
c

a
te

n
a

tio
n

…
… …

…

…
…

…

T
ra

n
s
fo

rm
e
r 

D
e
c
o

d
e
r

Cross-Entropy Loss

Pre-train SFT Inference

Cross-Entropy Loss

Linear Head

Expressive Tempo Mapping

Tempo Curve+

… …

… …

… …

… …… …

S
e

q
u

e
n

c
e
  

C
o

m
p

re
s

s
io

n

Performance

Score

Score

Aligned 

Performance

Figure 2: The overall architecture and workflow of Pianist Transformer. Our framework pro-
cesses all MIDI data through a Unified Tokenizer, enabling a two-stage training process. The core
model is an asymmetric Transformer with Encoder Sequence Compression for efficient process-
ing of long musical scores. The workflow consists of three stages: (1) Pre-train: The model learns
foundational musical context from a massive unlabeled corpus via a masked denoising objective. (2)
SFT: Supervised Fine-Tuning adapts the model to map musical context to expressive nuances using
aligned score-performance pairs. (3) Inference: The model generates a performance, which is then
made editable for DAWs by our Expressive Tempo Mapping algorithm.

aggregation reduces the sequence length by a factor of 8, which in turn leads to a 64-fold reduction
in the self-attention computational cost from O(N2) to O((N/8)2). As a result, the encoder can
efficiently process much longer sequence, capturing the global context essential for rendering.

Asymmetric Encoder-Decoder Architecture. We employ a deliberately asymmetric architecture
with a deep 10-layer encoder with a lightweight 2-layer decoder (henceforth, 10-2) to maximize
efficiency. This design, synergistic with our sequence compression, concentrates the majority of
computation into a single, highly parallelizable encoding pass. This significantly accelerates train-
ing speed and reduces memory overhead for both training and inference. During generation, the
shallow decoder, which is the primary bottleneck for autoregressive tasks, operates with minimal
latency and memory footprint while being conditioned on the encoder’s powerful representation.
This architecture represents a conscious trade-off between computational efficiency and model per-
formance, a balance which we quantitatively analyze in our ablation studies in Section 4.5.

3.3 TWO-STAGE TRAINING FOR EXPRESSIVE RENDERING

Our training paradigm directly addresses the core challenge of expressive rendering: modeling the
complex dependency between a score’s musical structure and the nuances of human performance.
To achieve this, our training proceeds in two stages: first, learning to comprehend musical context,
and second, learning to translate that context into an expressive performance.

3.3.1 SELF-SUPERVISED PRE-TRAINING ON MUSICAL PRINCIPLES

The initial pre-training stage builds an understanding of the implicit context guiding human expres-
sion. We employ a self-supervised masked denoising objective on our massive, unlabeled MIDI
corpus. By learning to reconstruct the original music pieces from their corrupted context, the model
is compelled to internalize the deep structural cues such as harmonic function and melodic direction
that inform performance choices.
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The objective is to minimize the negative log-likelihood of the original tokens at the masked posi-
tions:

Lpre-train = −
∑
i∈M

log p(xi|Xcorr,X<i)

where M is the set of indices of the masked tokens, and p(xi|Xcorr,X<i) is the probability of
predicting the original token xi given the corrupted input and the ground-truth prefix X<i.

3.3.2 SUPERVISED FINE-TUNING FOR EXPRESSIVE RENDERING

With a model that comprehends musical context, we then perform Supervised Fine-Tuning (SFT)
to teach it how to translate this understanding into a performance. This stage learns the explicit
mapping from the latent structural cues to the subtle, continuous parameters of human expression.

The SFT is framed as a sequence-to-sequence learning task on aligned score-performance pairs. The
encoder processes the score’s token sequence, while the decoder is trained to autoregressively gen-
erate the corresponding performance sequence by minimizing a standard cross-entropy loss. This
fine-tuning stage grounds the model’s expressive decisions, such as variations in timing and dynam-
ics, in the deep musical understanding it acquired during pre-training.

3.4 POST-PROCESSING: EXPRESSIVE TEMPO MAPPING

A key challenge for practical application is that raw model outputs, with timings in absolute mil-
liseconds, lack compatibility with standard music software. These performances do not align with
the metrical grid of a Digital Audio Workstation (DAW), hindering editability. To bridge this gap be-
tween AI generation and modern music production workflows, we introduce a novel post-processing
algorithm, Expressive Tempo Mapping.

This algorithm, detailed in Appendix C, intelligently translates the performance’s expressive timing
deviations into a dynamic tempo map. It then realigns all note and pedal events to a musical grid
governed by this new tempo curve. The process preserves the sonic nuance of the generated perfor-
mance while restoring the structural alignment essential for editing and integration. The final output
is a MIDI file that is both musically expressive and fully editable in any standard DAW.

4 EXPERIMENTS

We conduct a comprehensive set of experiments to evaluate our proposed Pianist Transformer. Our
evaluation is guided by three central questions. First, to what extent does large-scale self-supervised
pre-training contribute to the final performance of a rendering model? Second, how does Pianist
Transformer perform against existing methods when judged by both objective metrics and subjective
human evaluation? And third, what architectural choices influence the model’s effectiveness, and
how robust is its performance across diverse musical contexts? The following sections are structured
to address each of these questions in turn.

4.1 EXPERIMENTAL SETUP

We pre-train our model on a massive 10-billion-token corpus aggregated from several public MIDI
datasets. For supervised fine-tuning and evaluation, we use the ASAP dataset (Foscarin et al., 2020)
with a strict piece-wise split. Our Pianist Transformer is compared against strong baselines, includ-
ing VirtuosoNet-HAN (Jeong et al., 2019a) and VirtuosoNet-ISGN (Jeong et al., 2019b), as well as
the unexpressive Score MIDI and ground-truth Human performances.

We evaluate all models using a suite of objective and subjective measures. Objectively, we assess
distributional similarity to human performances using Jensen-Shannon (JS) Divergence and Inter-
section Area across four key expressive dimensions: Velocity, Duration, IOI and Pedal. Subjectively,
we conduct a comprehensive listening study to evaluate human-likeness and overall preference.
Comprehensive details regarding the datasets, baseline implementations, and evaluation protocols
are provided in Appendix B and Appendix D.
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Table 1: Objective evaluation results on the ASAP test set. We compare our Pianist Transformer
against baselines using JS Divergence and Intersection Area. For JS Div, lower is better (↓). For
Intersection, higher is better (↑). The “Overall” columns report the average scores across the four
expressive dimensions. Our model achieves the best performance on most metrics among the gen-
erative models, outperforming prior SOTA and demonstrating the profound impact of pre-training.

Model Velocity Duration IOI Pedal Overall (Avg.)
JS Div (↓) Inter. (↑) JS Div (↓) Inter. (↑) JS Div (↓) Inter. (↑) JS Div (↓) Inter. (↑) JS Div (↓) Inter. (↑)

Human 0.0427 0.9724 0.0438 0.9655 0.0535 0.9496 0.0244 0.9771 0.0411 0.9662

Score 0.7492 0.2255 0.6868 0.3152 0.7706 0.2106 0.4281 0.5467 0.6587 0.3245
VirtuosoNet-ISGN 0.2574 0.7981 0.2321 0.7903 0.5441 0.4928 0.0829 0.9410 0.2791 0.7556
VirtuosoNet-Han 0.2407 0.8132 0.3438 0.6744 0.4170 0.6374 0.1339 0.8507 0.2839 0.7439

Pianist Transformer (w/o PT) 0.5363 0.4826 0.5399 0.4886 0.2789 0.7360 0.2860 0.7054 0.4103 0.6032
Pianist Transformer (Ours) 0.1805 0.8517 0.1879 0.8303 0.1740 0.8292 0.1111 0.8893 0.1634 0.8501

4.2 PRE-TRAINING SUBSTANTIALLY IMPROVES PERFORMANCE

To quantify the impact of large-scale self-supervised pre-training, we conduct a direct ablation study
comparing our full Pianist Transformer against an identical model trained from scratch (w/o PT) on
only the supervised dataset. This controlled comparison, presented in Table 1, isolates the effect of
the pre-training stage and reveals its critical importance.

The objective evaluation results reveal a dramatic performance gap. The full Pianist Transformer
overwhelmingly outperforms its non-pre-trained counterpart across nearly all metrics. The most
telling comparison is the overall average Intersection Area, where the pre-trained model achieves
0.8501, a 40.9% relative improvement over the 0.6032 score of the scratch model.

This substantial gain is consistent across all expressive dimensions, with pre-training yielding re-
markable error reductions in JS Divergence for velocity (66.3%), duration (65.2%), IOI (37.6%),
and pedal (61.2%). These figures provide clear evidence that a model trained only on limited su-
pervised data struggles to learn the complex, high-variance distributions of human expression. In
contrast, by first internalizing a rich musical commonsense from 10 billion tokens, our pre-trained
model effectively generates performances with far greater nuance and realism.

This stark contrast validates our central hypothesis: large-scale self-supervised pre-training is not
merely beneficial but essential. It effectively bridges the knowledge gap left by small supervised
datasets, enabling the model to learn the deep mapping from musical structure to expressive nuance
that is otherwise unattainable.

4.3 PIANIST TRANSFORMER ACHIEVES STATE-OF-THE-ART RESULTS

We now compare our full Pianist Transformer against prior state-of-the-art models. As shown in
Table 1, our model demonstrates superior performance across the board.

Our model achieves the best scores among all generative models on 6 out of 8 metrics and on both
overall average scores. Notably, Pianist Transformer significantly narrows the gap to the Human
ground truth. For instance, its overall JS Divergence of 0.1634 represents a substantial improvement
over the best baseline, VirtuosoNet-ISGN (0.2791). This indicates that the distributions of velocity,
duration, and timing generated by our model are substantially more human-like than those from
previous methods.

A closer look at the per-dimension results reveals our model’s strengths in modeling musical time.
The most significant gains are in Duration and IOI, which govern the rhythmic and temporal feel of
the music. Our model’s JS Divergence scores for these dimensions (0.1879 and 0.1740 respectively)
are markedly lower than the best baseline scores. This suggests that large-scale pre-training endows
the model with a sophisticated understanding of musical timing and phrasing, likely learned from
the deep structural context in the data.

It is worth noting that VirtuosoNet-ISGN achieves a better score on the Pedal metrics, which may be
attributed to its specialized architecture. However, our model still produces high-quality pedaling.
Its JS Divergence of 0.1111 is competitive with the state-of-the-art (0.0829) and outperforms other
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baselines. This demonstrates that while not optimal in this specific dimension, our general-purpose
pre-training approach yields strong all-around performance.

4.4 SUBJECTIVE EVALUATIONS REVEAL HUMAN-LEVEL PERFORMANCE

While objective metrics quantify statistical similarity, they often fail to capture the holistic qualities
of a truly musical experience. We therefore conducted a comprehensive subjective listening study
to perform a definitive, human-centric evaluation.

4.4.1 STUDY DESIGN

We designed a rigorous subjective listening study to ensure the reliability and impartiality of our
findings. We recruited 57 participants from diverse musical backgrounds and retained 39 high-
quality responses after a stringent screening process based on attention checks and completion time.
Participants rated and ranked five anonymized performance versions (our model, two baselines,
Score, and Human) for six 15-second musical excerpts spanning Baroque to modern Pop styles. To
mitigate bias, the presentation order of all performances was fully randomized for each participant.
The comprehensive methodology, including participant demographics, stimuli selection, and our
rigorous data validation protocols, is detailed in Appendix D.

4.4.2 MAIN RESULTS: OVERALL PREFERENCE AND HUMAN-LIKENESS
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Figure 3: Subjective Preference Ranking Results. (a) The average rank of our Pianist Trans-
former is statistically indistinguishable from the Human performance and significantly better than
all baselines. (b) Our model achieves a slightly higher first-place vote rate than the human pianist,
demonstrating strong listener appeal.

The listening study results, summarized in Figure 3, reveal a clear and consistent preference for
Pianist Transformer. The most direct measure of quality is listener preference, and our model was
consistently ranked as the best among all generative systems.

As shown in Figure 3b, the first-place vote rate for Pianist Transformer (32.7%) was not only sub-
stantially higher than that of the baselines (7.7% and 14.7%) but was even marginally higher than
the human pianist’s (30.8%). This suggests that its renderings are not only realistic but also highly
appealing to listeners.

This trend is corroborated by the average ranking results (Figure 3a). Pianist Transformer achieved
the best overall average rank (2.29), outperforming the human performance (2.50). To rigorously
assess these differences, we conducted a series of two-sided paired t-tests. The results confirm
that our model is rated significantly better than VirtuosoNet-ISGN (p < 0.001), VirtuosoNet-Han
(p < 0.001), and the Score baseline (p < 0.001). While the observed advantage of our model over
the Human performance was not found to be statistically significant (p = 0.21), this result provides
strong evidence that our model has reached a level of quality that is not only on par with but also
highly competitive against human artists.
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4.4.3 MULTI-DIMENSIONAL QUALITY AND STYLISTIC ROBUSTNESS

To understand the reasons behind this strong listener preference, we analyzed the multi-dimensional
ratings and the model’s performance across different musical styles within our test pieces.
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Figure 4: Multi-dimensional Subjective Ratings (Normalized). A radar chart visualizing the aver-
age scores on a 5-point scale for four expressive dimensions. Pianist Transformer exhibits a profile
that closely mirrors the Human performance , indicating a well-balanced and high-quality rendering
across all aspects. The area covered by ours is substantially larger than all of other baselines.

As visualized in the radar chart (Figure 4), the expressive profile of our Pianist Transformer closely
mirrors that of the Human performance, indicating a well-balanced, high-quality rendering across all
rated aspects. Quantitatively, our model’s average scores were rated higher than the human pianist’s
not only in Rhythm & Timing (3.44 vs. 3.21) and Articulation (3.38 vs. 3.24), but also in the most
critical global metric, Human-likeness (3.43 vs. 3.29). This remarkable result suggests our model
generates performances that are perceived as human, perhaps even as idealized versions, free of the
minor imperfections or idiosyncratic choices present in any single human recording.
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Figure 5: Analysis of Human-likeness Scores Across Musical Styles. Violin plots show the distri-
bution of Human-likeness ratings for each model, grouped by historical period. (a, b) For Baroque
and Classical music, the performance of baseline models degrades significantly, sometimes falling
below the Score baseline. (c) While baselines perform better on Romantic music, Pianist Trans-
former maintains a consistently high level of performance across all styles.

Furthermore, the benefits of pre-training are evident in the model’s stylistic robustness across his-
torical periods, as shown in Figure 5. While baseline models exhibit a strong style dependency, with
their performance degrading significantly for Baroque and Classical pieces, Pianist Transformer
maintains a consistently high level of human-likeness across all styles, close to the human level. We
attribute this robustness to the diverse musical knowledge acquired during large-scale pre-training,
which prevents overfitting to the specific stylistic biases of the fine-tuning dataset. A case study on
out-of-domain generalization to pop music is provided in Appendix D.3.

4.5 ANALYSIS OF SCALING EFFECTS AND ARCHITECTURE

In our final analysis, we conduct a preliminary exploration of scaling effects to understand the rela-
tionship between performance, scale, and our architectural choices. The results, presented in Figure
6, validate that our framework is scalable while also revealing key bottlenecks that inform our design
trade-offs.

Model Scaling and Decoder Bottleneck. We first analyze the effect of model size. As shown
in Figure 6a, increasing model parameters from 15M to 65M yields substantial performance gains.
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(b) Data Scaling

Figure 6: A Preliminary Exploration of Scaling Effects. Pre-training validation loss as a function
of model size and data volume. (a) Increasing parameters in our asymmetric 10-2 architecture
consistently improves performance, though saturation is observed at 135M. The star marks the lower
loss achieved by a symmetric 6-6 variant, highlighting the decoder as a bottleneck. (b) Increasing
data yields substantial gains up to 1B tokens, after which performance plateaus, suggesting the 135M
model’s capacity becomes a limiting factor.

However, the curve flattens significantly from 65M to 135M, indicating performance saturation.
We hypothesized that this bottleneck stems from our lightweight 2-layer decoder. To test this, we
trained a symmetric 6-layer encoder, 6-layer decoder (6-6) variant with a more powerful decoder
(marked by a star). It achieved a notably lower loss of 1.230 compared to our 135M model’s 1.260,
confirming that the shallow decoder is indeed the primary bottleneck for model capacity scaling.

Data Scaling and Model Capacity Bottleneck. Next, we examine the impact of data scale. Figure
6b shows a dramatic drop in loss when scaling data up to 1B tokens. However, the performance again
saturates when increasing the data tenfold to 10B (1.199 vs. 1.195). To determine if this was also a
decoder issue, we leveraged our more powerful 6-6 model. Even with this stronger architecture, the
loss on 10B data only marginally decreased to 1.168. This suggests that for a massive 10B-token
dataset, the overall model capacity (around 135M parameters) itself becomes the primary bottleneck,
regardless of the encoder-decoder layer allocation.

Architectural Trade-off. These analyses validate our conscious architectural trade-off. The shal-
low decoder is identified as both a performance bottleneck for scaling and the primary source of
efficiency. Crucially, as demonstrated in our comprehensive subjective evaluations (Section 4.4),
our 2-layer decoder is already sufficient to generate performances of human-level quality. Given
this, the marginal improvement in pre-training loss offered by a more powerful decoder comes at
a steep cost. Our asymmetric 10-2 architecture is approximately 2.1x faster during CPU inference
compared to the symmetric 6-6 variant. This design therefore strikes an effective balance, prioritiz-
ing the practical, low-latency rendering required for real-world applications without compromising
the final expressive quality.

5 CONCLUSION

In this work, we introduced Pianist Transformer, establishing a new state-of-the-art in expressive pi-
ano performance rendering through large-scale self-supervised pre-training. By learning from a 10-
billion-token MIDI corpus with a unified representation, our model overcomes the data scarcity that
has hindered prior methods from learning the complex mapping between musical structure and ex-
pression. Our experiments provide compelling evidence for this paradigm shift: Pianist Transformer
not only excels on objective metrics but achieves a quality level statistically indistinguishable from
human artists in subjective evaluations, where its renderings were sometimes preferred. Further-
more, our model demonstrates robust performance across diverse musical styles, a direct benefit of
its pre-trained foundation. Ultimately, Pianist Transformer demonstrates that scaling self-supervised
learning is a promising path toward generating music with genuine human-level artistry, establishing
an effective and scalable paradigm for future research in computational music performance.
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ETHICS STATEMENT

The pre-training and fine-tuning of our model were conducted exclusively using publicly available
datasets, as detailed in Appendix B. Our research did not involve the collection of new private data.
For our subjective listening study, we recruited human participants. All participants were presented
with an informed consent form prior to the study, which outlined the purpose of the research, the
nature of the task, and how their data would be used. To protect participant privacy, all experimental
responses were fully anonymized prior to analysis and were stored separately from any personal
information required for compensation. We compensated each participant for their time and effort
with a payment that exceeds the local minimum wage standard. We foresee no direct negative
societal impacts resulting from this work, which is intended to advance research in computational
music and creativity.

REPRODUCIBILITY STATEMENT

We are fully committed to the reproducibility of our research. Upon publication, we will re-
lease our complete source code and final model weights. To facilitate comprehensive verifica-
tion during the review process, the supplementary materials include the source code, a repre-
sentative subset of audio renderings for the test set, as well as the audio samples used in our
subjective listening study. Furthermore, the complete set of generated audio for the entire test
set and all listening study materials are available for review at the following anonymous URL:
https://anonymous.4open.science/r/JSKJDHKIOWBBCGFBDKS/. All essential de-
tails regarding our methodology, including data sources, model architecture, and hyperparameters,
are thoroughly documented in the appendices of this paper.
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A LLMS USAGE STATEMENT

We used Large Language Models (LLMs) to assist with the writing of this paper. Their primary role
was to improve grammar, phrasing, and clarity. LLMs were also used to help survey and summarize
related work. In accordance with ICLR policy, the authors have reviewed and take full responsibility
for all content, including its scientific accuracy and any text influenced by the LLMs.

B EXPERIMENTAL SETUP & IMPLEMENTATION DETAILS

B.1 DATASET DETAILS

The pre-training corpus is constructed from the following sources. We applied specific preprocessing
steps to ensure data quality and diversity.

• Aria-MIDI (Bradshaw & Colton, 2025): A large collection of over 1.1 million MIDI files
transcribed from solo piano recordings. To ensure high fidelity, we only included segments
with a transcription quality score above 0.95. Due to the coarse quantization in the original
transcriptions, we applied random augmentations to the Velocity, Duration, and IOI values
of these files to better simulate performance nuances.

• GiantMIDI-Piano (Kong et al., 2022): A dataset of over 10,000 unique classical piano
works transcribed from live human performances using a high-resolution system. These
files retain fine-grained expressive details, including velocity, timing, and pedal events.

• PDMX (Long et al., 2025): A diverse dataset of over 250,000 musical scores, originally
in MusicXML format. We used their MIDI conversions to provide our model with clean,
score-based MIDI data. To filter out overly simplistic or empty files, we only included
MIDI files larger than 7 KB.

• POP909 (Wang et al., 2020): A dataset of 909 popular songs. We extracted the piano
accompaniment tracks to include non-classical and accompaniment-style patterns.

• Pianist8 (Chou et al., 2021): A collection of 411 pieces from 8 distinct artists, consisting
of audio recordings paired with machine-transcribed MIDI files.

For SFT and evaluation, we use the ASAP dataset (Foscarin et al., 2020), a collection of aligned
score-performance pairs of classical piano music.

To ensure precise note-level correspondence between scores and performances, we refined the pro-
vided alignments. We first employed an HMM-based note alignment tool to establish a direct map-
ping for each note. For localized mismatches where a few notes could not be paired, we applied
an interpolation algorithm to infer the correct alignment based on the surrounding context. Finally,
segments with large, contiguous blocks of unaligned notes were filtered out and excluded from our
training and evaluation sets to maintain high data quality. We create a strict piece-wise split by ran-
domly holding out 10% of the pieces for our test set. The remaining 90% are used for fine-tuning.

B.2 MODEL ARCHITECTURE AND TOKENIZER

B.2.1 MODEL ARCHITECTURE

Our Pianist Transformer employs an asymmetric encoder-decoder architecture based on the T5-
Gemma framework. The encoder is designed to be substantially deeper than the decoder, with 10
layers, to efficiently process long input sequences and build a rich contextual representation. The
decoder, with only 2 layers, is lightweight to ensure fast and efficient autoregressive generation
during inference. This design strikes a balance between expressive power and practical utility. Key
hyperparameters for our 135M model are detailed in Table 2.

B.2.2 UNIFIED MIDI REPRESENTATION

Central to our approach is a unified, event-based token representation that treats both score and per-
formance MIDI identically. Each musical note is represented as a fixed-length sequence of eight to-
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Table 2: Key hyperparameters for the Pianist Transformer.

Parameter Value
Model Architecture T5-Gemma
Total Parameters ≈ 135M
Hidden Size 768
Intermediate Size (FFN) 3072
Number of Encoder Layers 10
Number of Decoder Layers 2
Attention Head Dimension 128
Total Vocabulary Size 5389

kens, capturing its core attributes and nuanced pedal information. The sequence order is: [Pitch,
IOI, Velocity, Duration, Pedal1, Pedal2, Pedal3, Pedal4].

The vocabulary is structured as follows:

• Pitch: MIDI pitch values are mapped directly to 128 tokens (range 0–127).

• Velocity: MIDI velocity values are mapped to 128 tokens (range 0–127).

• Timing (IOI & Duration): The Inter-Onset Interval (IOI) and Duration are quantized at a
1ms resolution and share a common vocabulary of 5000 tokens. The Duration can utilize
the full range (0–4999), while the IOI is restricted to a slightly smaller range (0–4990)
to avoid a known artifact in transcribed MIDI where durations frequently saturate at the
maximum value.

• Pedal: Four pedal tokens represent the sustain pedal state at sampled points within the
preceding note’s IOI window. Each pedal value is mapped to one of 128 tokens (range
0–127). While this representation supports continuous (half-pedal) values, our pre-training
data predominantly contained binary pedal events (0 or 127), effectively training the model
to generate on/off pedal control.

Special tokens including [PAD], [MASK], [BOS], [EOS], and a special [PLAY] unused, result-
ing in a total vocabulary size of 5389.

B.3 TRAINING PROCEDURE

B.3.1 SELF-SUPERVISED PRE-TRAINING

The pre-training phase is designed to build a foundational understanding of musical structure and
expression from our large-scale, unlabeled MIDI corpus. We employ a masked denoising objective,
similar to T5, where the model learns to reconstruct corrupted segments of the input token sequences.
The model was trained for 40,000 steps using the AdamW optimizer. Key hyperparameters for this
stage are detailed in Table 3.

B.3.2 SUPERVISED FINE-TUNING

The fine-tuning process ran for 2 epochs. We used a much smaller learning rate compared to pre-
training to preserve the learned representations, which was also governed by a cosine decay schedule
but without a warmup phase. The global batch size was set to 32. All other settings remained consis-
tent with the pre-training stage. A side-by-side comparison of pre-training and SFT hyperparameters
is provided in Table 3.

B.4 BASELINE IMPLEMENTATION

For both baselines, we utilized the official code and pre-trained models publicly available in the
authors’ GitHub repositories. We followed the authors’ recommended inference commands and
procedures to generate the performance MIDI files. To achieve the best possible output from these
models, we selected the composer style settings that most closely matched the musical pieces in
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Table 3: Comparison of hyperparameters for Pre-training and SFT stages.

Parameter Pre-training SFT
Optimizer AdamW
Learning Rate Schedule Cosine decay
Peak Learning Rate 3e-4 5e-4
Warmup Steps 2,500 0
Training Duration 40,000 steps 2 epochs
Global Batch Size 64 32
Maximum Sequence Length 4096
Precision bfloat16
Hardware 4x NVIDIA A800 GPUs

our test set. All generated MIDI files were then synthesized into audio using the same high-quality
piano soundfont as our model’s outputs for the subjective listening study.

C EXPRESSIVE TEMPO MAPPING ALGORITHM

To make our model’s output compatible with standard music production software, we introduce the
Expressive Tempo Mapping algorithm. This process converts the generated performance, which has
timing in absolute milliseconds, into a standard MIDI file where expressive timing is encoded as a
dynamic tempo map. This makes the performance fully editable within any DAW. The procedure is
outlined in Algorithm 1.

Algorithm 1 Expressive Tempo Mapping

1: Input: Score MIDI Mscore, Performance MIDI Mperf

2: Output: DAW-friendly expressive MIDI MDAW

3: Extract notes Nscore, Nperf and pedal events CCperf from input files.
4: Estimate a dynamic tempo curve Tchanges based on timing deviations.
5: Initialize empty lists for aligned events: Naligned, CCaligned.
6: for each corresponding note pair (nscore, nperf ) do
7: Create a new note nnew where:
8: - pitch is from pitch of nscore

9: - velocity is from velocity of nperf

10: - onset in ticks is converted from nperf ’s onset in milliseconds using Tchanges.
11: - duration in ticks is converted from nperf ’s duration in milliseconds using Tchanges.
12: Append nnew to Naligned.
13: end for
14: for each control event cc in CCperf do
15: Convert cc’s timestamp from milliseconds to ticks using Tchanges to get tnew.
16: Create a new control event ccnew with value from cc and time from tnew.
17: Append ccnew to CCaligned.
18: end for
19: Assemble MDAW by combining Tchanges, Naligned, and CCaligned.
20: return MDAW
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The algorithm executes in three main stages:

1. Tempo Estimation (Line 4): First, we compare the timing of note onsets between the score
MIDI (Mscore) and the generated performance MIDI (Mperf). The differences in timing are
used to calculate a local tempo (BPM) for each segment of the piece. This sequence of
tempo changes forms a dynamic tempo curve, Tchanges, which captures all the expressive
timing (rubato) of the performance.

2. Event Remapping (Lines 6-18): Next, we create a new set of notes and pedal events.
Each new note uses the pitch from the original score and the velocity from the generated
performance. The crucial step is converting the onset time and duration of every note and
pedal event from absolute milliseconds into musical ticks. This conversion is done using
the tempo curve Tchanges estimated in the previous step. This aligns all events to a musical
grid while preserving their expressive timing.

3. Final Assembly (Line 19): Finally, the newly created tempo curve (Tchanges), the remapped
notes (Naligned), and the remapped pedal events (CCaligned) are combined into a single,
standard MIDI file (MDAW). The resulting file sounds identical to the original performance
but is now fully editable in a DAW, with all timing nuances represented in the tempo track.

D SUBJECTIVE LISTENING STUDY DETAILS

To conduct a definitive, human-centric evaluation of our model’s performance, we designed and
carried out a comprehensive subjective listening study. This appendix provides a detailed account
of the study’s design, participants, materials, and procedures.

D.1 PARTICIPANT DEMOGRAPHICS

Our subjective listening study’s validity rests on the quality and diversity of its participant pool.
We initially recruited 57 individuals; after a rigorous screening for attentiveness and completion
quality, 39 responses were retained for the final analysis. This section details the demographic
composition of this group, providing evidence for its suitability for the nuanced task of evaluating
musical expression.

The detailed distributions of participants’ musical experience and listening habits are visualized in
Figure 7. Several key characteristics of the group bolster the credibility of our findings:

Balanced Expertise Spectrum (Figure 7a). The participants’ formal music training is not skewed
towards one extreme. The pool includes a substantial proportion of listeners with no formal training
(28.2%), ensuring that our model’s appeal is not limited to musically educated ears. Concurrently,
the presence of highly experienced individuals (15.4% with > 10 years of training) guarantees that
subtle expressive details are also being critically evaluated. This heterogeneity mitigates potential
bias and strengthens the generalizability of our preference results.

Representative Listening Habits (Figure 7b). The distribution of classical piano listening fre-
quency reflects a general audience rather than a niche group of connoisseurs. The largest segment
listens “Monthly” (46.2%), suggesting that the superior performance of Pianist Transformer is per-
ceptible and appreciated even by those who are not deeply immersed in the genre daily.

Competent and Calibrated Self-Assessment (Figure 7c). The self-assessed ability to discern
music quality is centered around “Moderate” (46.2%), with a healthy portion rating themselves as
“High” (20.5%). This distribution suggests a group that is confident in their judgments without
being overconfident, indicating that the participants were well-suited for the evaluation task.

In summary, the participant pool is intentionally diverse, comprising a mix of novices, enthusiasts,
and experts. This composition ensures that our findings are robust, reliable, and reflective of a broad
range of listener perceptions.
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1-3 Years
33.3%

No Experience

28.2%

>10 Years
15.4%

5-10 Years

12.8%
3-5 Years

10.3%

(a) Music Training Duration

Monthly
46.2%

Almost Never23.1%

Weekly

20.5%
Almost Daily

10.3%

(b) Piano Listening Frequency

1 (Very Low)
10.3%

2 (Low)
17.9%

3 (Moderate)
46.2%

4 (High)

20.5%5 (Very High)

5.1%

(c) Self-Assessed Discernment

Figure 7: Demographic distribution of the 39 participants in the listening study. The plots show
(a) the duration of formal music training, (b) the frequency of listening to classical piano music,
and (c) self-assessed ability to discern piano music quality on a 1-5 scale. This diverse composition
validates the generalizability of our study’s findings.

D.2 MUSICAL EXCERPTS FOR EVALUATION

The listening study was based on six musical excerpts, each approximately 15 seconds long. To
ensure an unbiased comparison, all excerpts were systematically taken from the beginning of each
piece. The selection was also deliberately curated for stylistic breadth, featuring works from the
Baroque, Classical, and Romantic periods, as well as modern pop style. This diversity provides a
rigorous testbed for evaluating the models’ generalization abilities across varied musical contexts.
The specific pieces are detailed in Table 4.

Table 4: Musical excerpts selected for the subjective listening study, highlighting their stylistic
diversity.

Composer Work Period / Style
J. S. Bach Prelude and Fugue in G minor, BWV 885, Prelude Baroque
J. Haydn Keyboard Sonata No. 58 in C major, Hob.XVI:48:II Classical
L. v. Beethoven Piano Sonata No. 4 in E-flat major, Op. 7:I Classical
F. Chopin Étude in D-flat major, Op. 25, No. 8 Romantic
F. Liszt Étude d’exécution transcendante No. 1, Preludio, S. 139 Romantic
Joe Hisaishi Merry-Go-Round of Life Modern Pop

D.3 CASE STUDY: GENERALIZATION TO OUT-OF-DOMAIN POPULAR MUSIC

To rigorously probe the generalization capabilities of our model, we included a musical excerpt from
a modern popular song. This piece is stylistically distinct from the primarily classical ASAP dataset
used for fine-tuning, thereby serving as a challenging out-of-domain test. The goal was to assess
whether the robust musical understanding gained during pre-training would translate effectively to
genres beyond the immediate scope of the fine-tuning data.

The results of this case study, summarized in Figure 8, reveal a nuanced dynamic. We observe that
VirtuosoNet-ISGN delivers a highly competitive performance on this slow, lyrical piece. Its multi-
dimensional ratings (Figure 8a) and average rank (Figure 8b) are nearly on par with our Pianist
Transformer, suggesting that the expressive patterns it learned are well-suited for this particular
style of song-like playing.

However, a crucial distinction emerges from the first-place vote rate (Figure 8c). Despite the close
average scores, listeners chose Pianist Transformer as the single best performance by a dominant
margin. This finding highlights a key advantage of our approach. While other systems may pro-
duce competent or even good performances on stylistically favorable pieces, Pianist Transformer
is significantly more likely to generate a truly exceptional rendering that listeners perceive as the
definitive best. We attribute this superior appeal to the fine-grained nuances and avoidance of subtle
AI artifacts learned during large-scale pre-training, which ultimately translates to a more compelling
and preferred musical experience.
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Figure 8: Case Study on an Out-of-Domain Popular Music Excerpt. Subjective evaluation results
for a slow, lyrical pop piece. (a, b) VirtuosoNet-ISGN performs competitively in average ratings and
rankings. (c) However, our Pianist Transformer secures a dominant share of first-place votes,
indicating superior overall appeal and quality.

D.4 RELIABILITY AND CONSISTENCY ANALYSIS

To ensure the robustness and impartiality of our subjective evaluation, we embedded an internal
consistency check within the study. For one musical excerpt (Liszt’s work), two identical audio
clips from the same model’s performance were presented to each participant as if they were distinct
versions. The analysis of ratings for these duplicates, shown in Table 5, provides crucial insights
into the study’s validity.

First, the analysis confirms the experiment’s impartiality. The Mean Error (Bias) between the rat-
ings for the duplicate clips is negligible, and a paired t-test showed these differences to be statisti-
cally insignificant (all p > 0.6). This result demonstrates that our experimental design successfully
mitigated systematic biases, such as those arising from presentation order or listener fatigue. Fur-
thermore, the Pearson correlation (r) between the paired ratings is positive but modest. This is an
expected outcome, reflecting the inherent variability and noise in the subjective human perception
of music. The presence of this natural perceptual uncertainty makes our main findings, the clear
and statistically significant preference for Pianist Transformer, even more compelling. It indicates
that the perceived quality difference between our model and its counterparts was strong and con-
sistent enough to overcome this noise, thereby solidifying the significance and reliability of our
conclusions.

Table 5: Intra-rater reliability analysis on duplicate audio stimuli. We report the Mean Error (Bias)
and Pearson Correlation (r) between ratings for two identical audio clips presented to the same user.
The low, statistically non-significant bias confirms the experiment’s impartiality.

Metric Dynamics Rhythm Articulation Human-likeness
Mean Error (Bias) 0.026 -0.103 0.000 0.051
Pearson Corr. (r) 0.155 0.377 0.351 0.133

E LIMITATIONS AND FUTURE WORK

While Pianist Transformer demonstrates strong performance, it has several limitations that suggest
future directions. First, our efficient lightweight decoder is a performance bottleneck for scaling,
motivating research into more powerful yet efficient decoder architectures. Second, our focus on
solo piano invites extending our self-supervised paradigm to multi-instrument and orchestral set-
tings. Finally, moving beyond the limitation of score-based rendering to controllable generation
from intuitive inputs like natural language remains a promising frontier.
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