
Published as a conference paper at COLM 2024

Empowering Large Language Model Agents through Action
Learning

Haiteng Zhao1 Chang Ma3 Guoyin Wang2 Jing Su2 Lingpeng Kong3

Jingjing Xu2 Zhi-Hong Deng1 Hongxia Yang2

1 Peking University 2 ByteDance 3 The University of Hong Kong
{zhaohaiteng, zhdeng}@pku.edu.cn {cma, lpk}@cs.hku.hk
guoyinwang.duke@gmail.com {sujing.29, xujingjing, hx.yang}@bytedance.com

Abstract

Large Language Model (LLM) Agents have recently garnered increasing
interest yet they are limited in their ability to learn from trial and error,
a key element of intelligent behavior. In this work, we argue that the
capacity to learn new actions from experience is fundamental to the ad-
vancement of learning in LLM agents. While humans naturally expand
their action spaces and develop skills through experiential learning, LLM
agents typically operate within fixed action spaces, limiting their potential
for growth. To address these challenges, our study explores open-action
learning for language agents. We introduce a framework LearnAct with
an iterative learning strategy to create and improve actions in the form of
Python functions. In each iteration, LLM revises and updates the currently
available actions based on the errors identified in unsuccessful training
tasks, thereby enhancing action effectiveness. Our experimental evalua-
tions across Robotic Planning and Alfworld environments reveal that after
learning on a few training task instances, our approach to open-action
learning markedly improves agent performance for the type of task—by
32% in AlfWorld compared to ReAct+Reflexion, for instance— highlighting
the importance of experiential action learning in the development of more
intelligent LLM agents.

1 Introduction

Language agents, which employ the large language model (LLM) as the policy model to
control agents to iteratively take actions and interact with environments, have recently
garnered increasing interest (Yao et al., 2023a; Brohan et al., 2023; Wang et al., 2023a; Xie
et al., 2023; Song et al., 2023; Xu et al., 2023). The underlying reason is that LLMs offer a
fresh angle to address the commonsense issue that is difficult to tackle in the reinforcement
learning paradigm which learns the agent policy solely from trial and error. Reasoning and
planning of agents are often derived from prior knowledge in the particular environment,
precisely where LLMs excel.

Researchers increasingly recognize that, while leveraging LLMs for agent control shows
promise, it is far from perfect due to their limited ability to learn from experience (Yao et al.,
2023b; Shinn et al., 2023; Huang et al., 2023). The substantial scale of LLMs makes direct
policy model finetuning impractical. Instead, LLMs depend on incorporating historical
interactions into prompts to leverage past experiences for future action planning (Yao et al.,
2023a; Shinn et al., 2023; Sun et al., 2023; Madaan et al., 2023). However, these approaches
are often constrained in their capacity to learn from long-term experiences and typically
draw experience on single-instance (Wang et al., 2023c; Ma et al., 2024; Wang et al., 2023a).

While humans naturally expand their action spaces and develop skills through experiential
learning, LLM agents typically operate within predetermined action spaces (Qin et al., 2023;
Schick et al., 2023), limiting their potential for growth. In this work, we propose a novel
learning paradigm for LLM agents that focuses on learning to expand and iteratively refine

1



Published as a conference paper at COLM 2024

Act Agent

move(

!

, 

"

)

carry_two_to(

"

, 

!

,

#

,

#

)

carry_to(

"

, 

!

, 

$

,

%

)

pick(

$

,

"

,

%

)

Drop:  drop(

#

,

!

,

%

)

Error: You already have a 
ball in hand, cannot pick 
up another ball.

Error
Feedback

[Instruction]:  You can use the following action: pick, 
move, drop, carry_to, carry_two_to……

User

[History]:  Init obs: Ball1 is a ball.  Ball1 is at rooma.  Ball10 is a 
ball.  Ball10 is at rooma…… Left is a gripper.  Left is free.  Right is 
a gripper.  Right is free.  Robby is at roomb. rooma is a room. 
roomb is a room.
Action: move('roomb','rooma')
Obs: Ball1 is a ball.  Ball1 is at rooma ……Robby is at rooma.
Action: carry_to('ball1','rooma','right')
Obs: Ball1 is a ball. Ball1 is at roomb ……

Action: carry_to('ball2','rooma','right’)

Obs: Ball1 is a ball. Ball1 is at roomb. Ball2 is a ball. Ball2 
is at roomb……

Test Stage：Using Learned Actions        with 
Act Prompting 

Train Stage: Create/Revise Learnable Actions 

Assess Agent on Training Instances

Move:  move(

"

,

!

)

Action Learner

Carry:  carry_to( ", !, #, %)
def carry_to(room1,room2,obj,gripper):
      try:
            move(room2,room1)
      except:
            pass
      pick(obj,room1,gripper)
      move(room1,room2)
      drop(obj,room2,gripper)

Pickup:  pick(
#

,
"

,
%

)

Adapted 
Policy Model

Augmented 
Action Space

[Goal]: You should perform actions to accomplish the goal: 
ball1 is at roomb…ball10 is at roomb

Figure 1: Illustration of the training and test stage of LearnAct: Left: During the training
stage, LearnAct expands the action space by first creating actions and then optimizing them
based on the execution feedback. Right: The test stage uses learned action space to facilitate
sequential decision-making. The prompting format follows the Act (Yao et al., 2023a) agent.

the action space, thereby aligning tasks more closely with the agents’ planning abilities. By
adapting the action space to fit the LLM’s planning, we address the limitations imposed by
fixed action spaces, such as the misalignment between commonsense knowledge-guided
planning and actions, and the prevalence of action errors due to unmet prerequisites or
ineffective strategies(Gu et al., 2022; Ma et al., 2024; Ahn et al., 2022). This approach not only
mitigates bottlenecks in language agent performance but also allows transferring experience
across different tasks.

For a more illustrative view, we could look at the example where an LLM agent is asked to
make cocktails. With a learnable and open action space, LLMs may naturally instruct the
agent to gather all the components in a specific order and mix them, while the closed action
space may only involve basic handling, such as moving to different places and grabbing
bottles, which greatly increases the difficulty of the task for LLM agent. On the other hand, it
is necessary to update existing actions to accommodate changing factors in the environment.
Still, in the cocktail example, when making an Old Fashioned cocktail, muddling sugar is
often the standard practice. However, if only syrup is available, the agent should adapt its
pre-set actions to prevent repeated failures despite being competent to accomplish the task.

To solve these issues, we conduct an extensive exploration of action learning in LLM agents.
We introduce a framework LearnAct, designed to generate and optimize new action types
as APIs dynamically. The newly generated action types are in the form of Python functions,
leveraging the LLM’s extensive prior knowledge and code generation ability to devise
a diverse and representative action space. Furthermore, LearnAct stands out due to its
iterative learning strategy, which continuously refines actions through a feedback loop. In
each cycle, the LLM evaluates the effectiveness of current actions using training examples,
identifying and rectifying errors in failed instances. The learning strategy progressively
deepens task understanding and improves learnable actions.

Our experimental results demonstrate that this method of iterative refinement not only
creates complex and user-friendly action types but also achieves more effective and efficient
learning compared to previous state-of-the-art methods such as Reflexion (Shinn et al., 2023).
By learning on a few problem instances, LearnAct can generalize to a general type of task
with strong performance. In summary, our contributions are as follows.

• We propose the action learning framework for interactive decision making language
model agents by generating and updating learnable actions, enabling learning
customized action space that better fits the LLM’s planning capacity.

• To implement the action learning framework, our method LearnAct employs
Python functions to generate new actions, enabling flexible definitions of action
types. Our iterative learning strategy incorporates LLM to autonomously refine

2



Published as a conference paper at COLM 2024

and updates the currently available actions based on errors in failed tasks.

• Our experimental results demonstrate that LearnAct effectively learns action spaces
within a few trials, acquiring transferable capabilities in diverse environments.
Through action learning, LearnAct outperforms SOTA agents by a significant mar-
gin, showcasing the potential of action learning for LLM agents.

2 Related Work

LLM Agent Learning Recent research has advanced the use of large language models
(LLMs) in embodied agents (Duan et al., 2022; Huang et al., 2022a; Ahn et al., 2022; Huang
et al., 2022b; Yao et al., 2023a; Park et al., 2023; Wu et al., 2023; Sun et al., 2023; Ma et al.,
2024; Yuan et al., 2023; Qiao et al., 2023; Stengel-Eskin et al., 2024). These methods differ
from previous reasoning-centered methods like Chain-of-Thought (Wei et al., 2022; Chen
et al., 2022; Liang et al., 2023; Wang et al., 2023b) as they iteratively incorporate environment
feedback to modify subsequent plans. This closed-loop process is centered on the ability of
LLM agents to learn from environment.

The majority of previous work on multi-turn reflection concentrates on learning from
environment feedback within the same problem (Lai et al., 2023; Le et al., 2022; Chen et al.,
2023; Liu & Abbeel, 2023; Singh et al., 2023). ReAct (Yao et al., 2023a) propose a basic
framework for using thought to enforce the LLM reflect on previous behaviors within
the same trial. Reflexion (Shinn et al., 2023; Park et al., 2023), on the other hand, uses
a multi-trial approach to perform reflection. By summarizing historical experiences and
identifying reasons for failure, LLM is prompted to generate insights for more effective
agent instruction. Similarly, ExpeL (Zhao et al., 2023) facilitates a general learning system
that extracts insights and past experiences with retrieval. Retroformer (Yao et al., 2023b)
propels introduce prompt-based training to enhance LLM reflections.

Our method differs from this line of work in two points (1) LearnAct performs direct learning
in the action space, which substantially improves the reliability and utility of generated
actions. (2) LearnAct does not target a single problem instance but learns experience from a
few training instances and is tested on a general type of task. A more detailed comparison
is provided in Table 1.

Hierarchical Reinforcement Learning LearnAct generates new action types based on
atomic actions to enable more informative and applicable actions, similar to the approach
in hierarchical reinforcement learning (Erol et al., 1994; Kulkarni et al., 2016; Bacon et al.,
2017), where a high-level executor plan with high-level action types, and then executes the
seed actions according to the high-level plan (Yao et al., 2023a; Sharma et al., 2022; Wang
et al., 2023a; Sun et al., 2023). Our approach also differs from hierarchical reinforcement
learning by not only using code-based action space, providing stronger capacity due to the
code statements such as conditions and loops (Cai et al., 2023; Qian et al., 2023), but also
avoiding the typical imposition of a strict two-level structure, using flexible mixed-level
actions instead.

Closed Loop Action Type Learnable Transferable Learnable Module
ReAct ✔ Natural language ✗ - -
ReAct+Reflexion ✔ Natural language ✔ ✗ Policy
CodeAsPolicy ✗ Code ✗ - -
Voyager ✔ Code !–

✔ Action
LearnAct ✔ Code ✔ ✔ Action

Table 1: The comparison of our method and other open action agents. !–Voyager used a
curriculum learning pipeline tailored for Minedojo to learn new actions.

3 Problem Statement

The task of a language agent can be succinctly modeled as a Partially Observable Markov
Decision Process (POMDP), which is defined by a tuple ⟨S ,O,A, T ,R⟩, with S representing

3



Published as a conference paper at COLM 2024

Algorithm 1 Training Process of LearnAct

Input: Training Set Dtrain = {E1, . . . , EM}, Language Agent G, Learner LLM F.
Input: Original Actions A0, Basic Task Instruction π0
# Assess action space
function SolveProblem(π, E ,A, G)

for t = 1 to maxsteps do
at = G(π, E , ht)
Execute at, add observation or fail info to ht

end for
return IsSolved(E , ht)

end function
# Training Procedure
A1, πA1 = ActionCreation(π0, F)
for i = 1 to maxiter do

results = SolveProblem(π0 + πAi , Em,A0 ∪Ai, G), m = 1 to M
s1:T , a1:T , r = SelectErrorCase(results)
Ai+1, πAi+1 = ActionLearn(Ai, s1:T , a1:T , r, F)

end for
Return Alast, πAlast

the set of all possible states, O being the observation space through which the agent perceives
the state, A denoting the action space, T : S ×A → S being the state transition function,
and R : S ×A → {0, 1} being the reward function.

At step t, the language agent G takes an action step at based on policy π (policy
prompt), problem E (problem instructions), and previous observation-action trajectory
ht = [o1, a1, . . . , ot−1, at−1, ot],

at = G(π, E , ht) (1)

π, E , and ht correspond to the instruction, goal, and history in Figure 1 (right), respectively.
Action at is successfully grounded (executable) only if it is within the action space, i.e.
at ∈ A. Even successfully grounded action may be invalid due to unmet conditions or has
no effect in the current state. The agent aims to maximize the final reward r. In this work, we
use an outcome-based reward mechanism (ORM) (Uesato et al., 2022) that assigns a binary
indicator as a reward, depending on whether the task has been successfully completed.

In this work, we try to answer the question How to learn from experience and apply them to
other decision-making problems? We focus on the training-testing setting, where for each
task, our LLM agent optimizes its action space and corresponding policy on the training
set Dtrain = {E1, . . . , EM}, before trying to accomplish problems in the test set Dtest =
{EM+1, . . . , EM+N}. These problems share the same original action spaces and rules, though
requiring varied policies to solve them as they have different scenarios and goals. This
setting poses a challenge for the agent to develop a general capacity through learning to
accumulate experience and accomplish tasks of this general type.

To address this problem, we introduce an action-learning framework designed for language
agents, enabling them to autonomously enhance their skills by learning from interactions
within their environment, as shown in Figure 1. The framework considers the action space,
denoted as A, to be an open set capable of learning and expanding. More specifically, we
define the original action space as A0 and augment it with newly learned action type (API)
A′, represented as A0 ∪A′. Also, instruction for using these new actions πA′ is updated to
the original policy instructions π0, i.e. the new policy is denoted as π0 + πA′ . Consequently,
subsequent actions by this LLM agent are characterized as at = G(π0 + πA′ , E , ht), at ∈
A0 ∪A′, as depicted in Figure 1 (right), where the agent is guided to generate both origin
and learned actions.

4



Published as a conference paper at COLM 2024

4 Method

The overall pipeline of LearnAct is illustrated in Figure 1 and Algorithm 1. The training
stage of LearnAct involves first creating new actions and then refine them based on the
error feedback on training samples. After learning the action space and policy instructions
in the training stage, the refined agent perform actions from the augmented action space
and try to accomplish the problem step by step. The training stage is specified in §4.1, and
test stage is detailed in §4.2.

4.1 Training Stage

1. Expanding Action Space by Action Creation. Our method first creates custom action
types, akin to API, to enable LLMs to interact with the environment more seamlessly,
denoted as ActionCreation. These newly crafted action types are implemented as code
functions, thereby unlocking the potential for more intricate logical expressions that leverage
the foundational APIs through constructs such as conditional statements (if-else), loops,
and assertions. ActionCreation involves two steps:

(1) Generating Action Function A′: Upon receiving detailed instructions and problem specifics,
the LLM, denoted as F, is prompted to summarize high-level actions to complete this task in
the form of Python functions for agent use. The detailed prompt is in the Appendix. These
functions can call multiple basic or defined actions to complete subtasks. After generation,
functions are parsed and added to the action space. See detailed prompt in Appendix.

(2) Generating Policy Instruction πA′ for Using New Action: After generating new action
functions, we then update the agent with information about their potential applications. As
the basic instruction contains action descriptions and usage examples, the updated policy
guidance includes both a description of each function and a usage example.

First, the LLM F is prompted to provide a comprehensive description of each new function.
The purpose of this description is to offer the agent an overview of the anticipated outcomes
and necessary conditions, along with the input-output format of the new action. Second,
the language model generates illustrative usage examples for the new functions. This is
crucial for guiding LLM to use the new action in the appropriate scenario, as indicated by
previous work (Schick et al., 2023). Prompts are in Appendix.

We denote this process by the ActionCreation:

A1, πA1 = ActionCreation(π0, F), (2)

2. Learning Actions Based on Error Feedback After creating the initial set of actions, there’s
a possibility that these actions may have errors, misunderstand the task, overlook certain
task scenarios, or possibility for misuse. To address this, we devise the training phase that
allows the language model to learn through trial and error, as shown in Figure 2. In this
phase, the agent is executed in the training instances, identifies action failures, and then
iteratively updates the action set, until successfully solving all the instances with no action
errors or exceeding maximum optimization steps.

During the learning process, the agent first tries to solve problems in the training set with
the current available action space A and policy instruction πA, denoted as the SolveProblem
process. Then a failed problem with action error is sampled with SelectErrorCase operator
and then the ActionLearn either fixes it by revising the used action or writing note as an
annotation. We present each of them below:

(1) SolveProblem: The assessment of current policy and action space is done by trying to
solve problems in the training set. We follow the simple Act(Yao et al., 2023a) agent and
prompt the agent to solve the task by interacting with the environment and generating
actions based on history.

(2) SelectErrorCase: This step identifies error-inducing steps in action sequences based on
the environment’s feedback, such as invalid actions due to unmet preconditions, ineffective
actions, or errors in action names or parameters. For learnable actions composed of multiple
atomic steps, it evaluates errors in each atomic step execution.

5



Published as a conference paper at COLM 2024

LLM-
Agent

Find Failed Case

   Sample Best     ,         

Environment

Action

Observation

Results 

Revised Samples of 
Action Space and Policy

Action Learner

Function 
Updating

Write 
Notes for 
Functions

Assess Revised Action Space  

Trajectory & Error Feedback

Action Space

def pour_shot_to_shaker(shot, ingredient, 
shaker, hand1, level1, level2):
     pour_shot_to_clean_shaker(shot, 
ingredient, shaker, hand1, level1, level2)
    clean_shot(shot, ingredient, hand1, hand2)
    leave(hand1, shot)

Instruc,on:
You can take following ac=ons:
……
pour_shot_to_shaker(shot, ingredient, shaker, 
hand1, level1, level2): This ac=on pour the 
ingredient…… 
……

……
a: fill_shot('shot1','ingredient3','right','leC','dispenser3')
o: Shot1 contains ingredient3.
a: pour_shot_to_shaker(‘shot1’, ‘ingredient3’, ‘shaker1’, ‘right’, ‘l1’, ‘l2’)
o: The ac=on is not valid.
……

Instruc,on:
You can take following ac=ons:
……
pour_shot_to_shaker(shot, ingredient, shaker, 
hand1, level1, level2): This ac=on pour the 
ingredient…… Note that this ac=on can only be 
used to pour ingredient into clean shaker that 
contains no other ingredients.
……

def pour_shot_to_shaker(shot, ingredient, 
shaker, hand1, level1, level2):
    if level1 == 'l0':
        pour_shot_to_clean_shaker(shot, 
ingredient, shaker, hand1, level1, level2)
    else:
        pour_shot_to_used_shaker(shot, 
ingredient, shaker, hand1, level1, level2)
    clean_shot(shot, ingredient, hand1, hand2)
    leave(hand1, shot)

Function Updating Write Notes for Functionsor

Figure 2: Left: During the learning stage, action usage by agent and action optimization are
repeatedly executed. The improved action is evaluated on the training instances, identifying
the failed case for the subsequent learning step. Actions are improved through either updat-
ing the functions or writing notes. Multiple samples are produced during the learning, and
upon evaluation against training instances, the optimal one is selected for the next iteration.
Right: Case example of action updating and note writing. The action update addresses
previous shortcomings by refining functions for improved issue resolution. Conversely,
note writing advises agents on proper action usage. LLMs have the freedom to select from
two learning options.

(3) ActionLearn: We address errors by implementing either function updates or writing
notes. Function updates refines the Python function to correct the misunderstanding and
overlooking of tasks, whereas writing notes entails enhancing the function’s description to
guide the agent toward more accurate use. The two options are both available and LLM F
is free to choose one of them, as shown in Figure 2. When function updates are made, the
corresponding action instructions πAi are also updated later to adapt to the new actions.
Although function updating is triggered for a specific action function, it is not restricted to
modifying just this single action. By accessing all action functions via prompt, LLM could
choose by itself the actions to revise and could also incorporate new actions. Consequently,
ActionLearn can freely update the entire action space in each iteration. The detailed prompt
is in the Appendix.

3. Augment Action Learning with Sampling In practice, the action learner could generate
low-quality actions that can greatly affect the efficiency of the overall optimization process.
Also, some action revisions may be spurious. Thus to enhance the stability of the learning
process and improve the quality of each step, we sample K times with ActionLearn, yielding
K revised results {Ak

i , πk
Ai
}k=1,...,K. During the learning iteration, each action-policy pair is

evaluated on the training set, and the best one is chosen, as shown in Figure 2 (left) and the
detailed algorithm in Appendix.

We select the best action based on the results obtained with the agent. The score µ for a
sample Ak

i , πk
Ai

is as follows:

µ = psucc + pstepacc, (3)

Here, psucc denotes the success rate of the agent in training instances, and pstepacc refers to
the ratio of successfully executed actions to the total number of steps taken by the agent,
indicating the practicality of generated actions. Based on these selection criteria, we identify
the most beneficial and feasible action sample Ai, πAi .

4.2 Testing Stage

After completing the learning phase, the agent possesses an updated action space and
refined policy instructions. In the testing phase, the agent attempts to solve problems in
the same procedure as the SolveProblem process used during training. Notably, whereas

6



Published as a conference paper at COLM 2024

most prior research (Sun et al., 2023; Shinn et al., 2023) has concentrated on the learning
loop within a single problem instance, LearnAct is designed to facilitate the transfer to this
general type.

5 Experiment

5.1 Tasks

Robotic Planning (Ma et al., 2024) includes four challenging Robotic Planning tasks, namely
Gripper, Blockworld, Barman, and Tyreworld. We followed the environment implemen-
tation of AgentBoard (Ma et al., 2024) and LLM+P (Liu et al., 2023). These tasks involve
long-horizon robot planning problems, such as creating cocktails based on customer orders
using available ingredients and containers, moving objects between different rooms using
grippers, or rearranging piles of blocks to achieve a specified target configuration. These
tasks put a significant demand on the agent’s long-term planning capabilities.

AlfWorld (Shridhar et al., 2020) simulates six types of objectives within a household. For
instance, agents are required to locate an apple within the house, heat it, and then place it in
a target area. These tasks push the agent to explore the house systematically, given that the
complete state of the environment is unknown to the agent.

5.2 Baselines

Act & ReAct (Yao et al., 2023a): The basic agent, Act, is prompted to iteratively take actions
and obtain observations in the environment. Based on Act, the ReAct agent employs “Think”
as an additional action.

Reflexion (Shinn et al., 2023): Reflexion is a learning method for language agents that utilize
language as a learned policy. The original Reflexion is designed for learning individual
policies in each instance. In our study, we adapt Reflexion for the training-testing setting,
where policies are designed to be not instance-specific, facilitating transferability. Details
are in the Appendix.

CodeAsPolicy (Liang et al., 2023): The method utilizes code to generate the entire solution
for the task in an open-loop way. As the method does not interact with environments, we
only report the results of CodeAsPolicy on Robotic policy tasks, because the ALfWorld
task necessitates exploration in the environment to obtain information, and CodeAsPolicy
cannot generate a code solution without access to the complete environmental information.

Voyager (Wang et al., 2023a): Voyager proposes functions as actions to solve tasks in a
closed-loop agent manner. The original Voyager is specifically designed for Minedojo (Fan
et al., 2022), emphasizing skill acquisition through a structured hierarchical task curriculum.
For comparison, we reimplement it as Wong et al. (2023), which creates skills via code with
basic verification.

5.3 Setting

We test on both GPT-4 and GPT-3.5 Turbo models as the LLM during testing. We employ
GPT-4 throughout our learning for action creation and improvement, as well as the learning
of Reflexion and Voyager. We set the temperature as 0.0 for consistency and reproducibility
in our experiments. The sampling number in our method is set to 4. For each task, we
randomly select 3 instances for the training set, with the remaining instances used for testing.
We report test set results for our LearnAct and all baseline models. The primary evaluation
metric was the task success rate. Each experiment is conducted three times per task, and we
present the average results. We ensure a fair comparison by providing a single in-context
example to LearnAct and all baselines. CodeAsPolicy and Voyager’s action creation utilize
the identical code example as ours.

7



Published as a conference paper at COLM 2024

GPT-3.5 GPT-4
blockworld gripper barman tyreworld Avg. blockworld gripper barman tyreworld Avg.

Act 0.0 5.9 0.0 10.0 4.0 57.1 58.7 64.7 62.1 60.7
ReAct 0.0 5.9 9.8 0.0 3.9 71.4 45.1 70.5 66.4 63.3
Act+Reflexion 0.0 11.8 4.0 0.0 3.9 62.1 58.8 70.6 37.1 57.2
ReAct+Reflexion 4.3 9.9 11.8 4.3 7.6 72.2 57.1 74.4 63.1 66.7
CodeAsPolicy 0.0 0.0 1.9 5.0 1.7 23.6 41.2 17.6 29.3 27.9
Voyager 18.6 2.0 6.0 19.3 11.5 66.4 76.5 80.5 65.0 72.1
LearnAct 10.0 34.8 15.0 32.9 23.2 73.9 82.5 87.4 87.6 82.8

Table 2: Performance of LearnAct and baselines on Robotic Planning tasks.

GPT-3.5 GPT-4
Put Clean Heat Cool Look Put 2 Avg. Put Clean Heat Cool Look Put 2 Avg.

Act 34.7 15.1 13.0 14.2 48.1 23.6 24.8 77.7 50.5 13.0 42.8 40.8 66.6 48.6
ReAct 25.4 8.3 3.2 13.1 11.1 36.1 16.2 73.9 61.9 30.5 46.4 59.7 49.8 53.7
Act+Reflexion 44.5 22.6 24.9 26.2 33.6 11.8 27.3 71.4 47.5 6.8 35.1 80.2 52.4 48.9
ReAct+Reflexion 41.4 11.9 3.2 7.1 8.9 39.3 18.6 61.8 54.0 39.9 62.9 57.6 52.3 54.7
CodeAsPolicy - - - - - - - - - - - - - -
Voyager 31.5 27.4 11.7 7.2 22.6 9.6 18.3 84.1 60.8 27.9 49.7 68.6 57.1 58.0
LearnAct 65.1 36.1 30.3 42.0 24.1 16.9 35.8 85.6 76.2 53.2 72.0 64.5 81.5 72.2

Table 3: Performance of LearnAct and baselines on Alfworld tasks.

barman
blockworld

gripper
tyreworld

clean
cool

examine

heat
put puttwo

0

0.2

0.4

0.6

0.8

Initial Learned
Action Calling Rate

barman
blockworld

gripper
tyreworld

clean
cool

examine

heat
put puttwo

0
0.2
0.4
0.6
0.8

1
Initial Learned

Action Success Rate

1 2 3 40

0.1

0.2

0.3

0.4

0.5
Ours ReAct+Reflexion no learningalfworld gpt3.5

Iteration Steps

Su
cc

es
s 

ra
te

1 2 3 40.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8
Ours ReAct+Reflexion no learningalfworld gpt4

Iteration Steps

Su
cc

es
s 

ra
te

1 2 3 40

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
Ours ReAct+Reflexion no learningrobotic gpt3.5

Iteration Steps

Su
cc

es
s 

ra
te

1 2 3 40.4

0.5

0.6

0.7

0.8

0.9
Ours ReAct+Reflexion no learningrobotic gpt4

Iteration Steps

Su
cc

es
s 

ra
te

Figure 3: Left: The frequency of use and accuracy of learned actions before and after learn-
ing. Post-learning, there is a marked increase in the action usage frequency and accuracy,
indicating their enhanced reliability and utility for the agent. Right: The performance
with different maximum learning iteration steps. The performance varies with different
maximum learning iteration steps. LearnAct’s performance notably improves with the
application of learning, particularly at step two. Although ReAct+Reflexion also shows
improvement, its progress is less significant and stable.

5.4 Main Results

We present a comparison of LearnAct with baseline models in Tables 2 and 3. LearnAct
outperforms the baselines in various tasks, utilizing both GPT-3.5 Turbo and GPT-4 as
backbones. We further analyze the performance and discuss the conclusions drawn from
the comparison.

A well-designed action space enhances the language agent’s ability to plan and solve
tasks. LearnAct markedly surpasses the Act baseline in performance, highlighting the
crucial role of the action space. It is noteworthy that, after its learning phase, LearnAct is
also an Act type agent except with a developed action space. This supports our hypothesis
that the limitation of language agents lies in the effective integration of the planning process
with the action space, and an adaptable action space can substantially unlock the latent
planning capabilities of LLM. Additionally, LearnAct surpasses ReAct in both Robotic

8



Published as a conference paper at COLM 2024

Planning and AlfWorld, demonstrating that while “Think” improves planning, it suffers
from ill alignment with the action space.

Action learning outperforms the verbal policy learning. In the realms of Robotic Planning
and AlfWorld, LearnAct markedly outperforms both Act+Reflexion and ReAct+Reflexion.
Reflexion writes policy prompts during the learning process to assist the agent in task-
solving. This approach does yield improvements over the Act and ReAct methods; however,
these enhancements are considerably less pronounced than those achieved by LearnAct,
which focuses on learning within the action space. While learned verbal policies and
prompts can aid in enhancing the agent’s planning capabilities, possessing proficient skills
is essential for the agent to fully realize its potential.

Action learning is important for the action quality. LearnAct outperforms coding baselines
such as CodeAsPolicy and Voyager. CodeAsPolicy directly generates code in open loop
without interacting with the environment, leading to inferior performance compared to
closed-loop agent baselines. Notably, while Voyager generates actions using a method
similar to LearnAct, it lacks the component of iterative action learning. This highlights
the significance of action learning. Without this learning phase, the created actions are
constrained by insufficient understanding of the task.

5.5 Analysis of the Learning Process

Learning enhances performance through action reliability and utility. We further analyze
action utilization to explain why action learning enhances agent performance. We assess
the frequency of use and accuracy at both the initial stage of learning and the post-learning.
These results are presented in Figure 3 (left). It is evident that, compared to the initial action
values, the actions post-learning demonstrate significantly higher correctness, indicating
their enhanced reliability and utility for the agent. This is a direct consequence of our learn-
ing method, which focuses on correcting errors encountered during usage. Additionally, it
is observable that the rate of action usage also improves after learning. It is possible because
the agent is more inclined to employ these actions upon recognizing their usefulness, i.e.,
observing valid effects after calling the action.

Robotic Planning Alfworld

Function Updating 0.86 0.92
Note Writing 0.14 0.08

Table 4: The ratio of two learning choices.

Robotic Planning AlfWorld

Initial 3.75 3.44
After Learning 3.83 3.50

Table 5: Average number of learned actions.

LearnAct learns action by updating functions, writing notes, and generating new actions.
We analyze the learning choices and learned action numbers. The strategies for learning
encompass function updates and writing notes. We find that the model prefers to update
functions. Table 4 shows function updating occurs for about 90 % in the learning. This
may be due to the model’s ability to circumvent most invalid executions through code
adjustments. Additionally, the learning process can lead to the creation of new functions.
As shown in Table 5, the average number of learned actions ranges from 3 to 4 for both
Robotic Planning and AlfWorld, and the number of actions tends to increase after learning,
showing that new actions could be innovated while updating existing ones.

The iteration number influences the performance of the model. We illustrate the impact
of learning iterations on LearnAct and ReAct+Reflexion in Figure 3 (right). It is evident
that in both AlfWorld and Robotic Planning tasks, LearnAct’s learning markedly enhances
performance, achieving optimal results within just two iterations. The enhancement from
our learning approach is notably more substantial than that observed with Reflexion. While
ReAct+Reflexion also shows performance gains, its impact is less consistent and displays
more negative effects.

Why does prolonged learning with LearnAct detrimentally affect performance? We observe
that as it cannot be avoided for agents to make mistakes, excessive optimization for these
mistakes can lead to overfitting to specific training cases and misunderstanding the task
rule. See failed cases in Appendix.

9



Published as a conference paper at COLM 2024

5.6 Ablation Study

We conducted ablation experiments to demonstrate the significance of various components
in our method. First, we evaluated the action format of our method, including descriptions
and usage examples of actions. The results of employing GPT-4 as the agent in Robotic
Planning and Alfworld are presented in Table 6. It was observed that both the description
and usage examples contribute to the performance, with the usage examples having a more
pronounced impact compared to the descriptions. Interestingly, we discovered that the
usage examples are often incorrect. Despite this, they still encourage the agent to utilize the
learned actions. The descriptive aspect also plays a crucial role in Robotic Planning tasks.
This could be attributed to that the actions have many pre-conditions, so the descriptions of
the learned actions aid the agent in their correct usage.

Robotic Planning Alfworld
LearnAct 82.8 72.2
w.o. description 78.5 72.4
w.o. usage example 77.4 65.4

Table 6: The ablation study on the form of ac-
tions, specifically the action description and
usage examples of actions.

Robotic Planning Alfworld
LearnAct 82.8 72.2
sampling only 73.4 60.2
w.o. updating function 75.3 62.0
w.o. writing notes 80.8 71.5
w.o. sampling 73.2 62.4

Table 7: The ablation study of the learning
method, including the options during learn-
ing and the sampling method.

Next, we examine the components of our learning algorithm, which includes two types
of learning: updating function and writing notes, as well as sampling during the learning
process. The results are presented in Table 7. Function updating plays a crucial role in
action learning, and writing notes for actions further enhances performance. We observed
that function updating occurs approximately 90% times during learning, suggesting that
the learner predominantly opts to modify functions to improve actions rather than merely
adjusting notations for more accurate action use.

Moreover, sampling is vital for the effectiveness of the learning process. In the absence of
sampling, the learner generates only a single action proposal for the next iteration, which
is highly prone to errors and can negatively impact overall performance. However, note
that sampling alone (w.o. learning) is ineffective in learning actions as LearnAct does,
highlighting the importance of our learning algorithm.

6 Conclusion

In conclusion, our research advances LLM agents by equipping them with the ability to
learn and refine actions through direct interaction with the environment. Our proposed
framework LearnAct demonstrates a significant improvement in agent performance by
enabling open-action learning, which aligns closely with how humans acquire and enhance
skills. The empirical success of our methods in Robotic Planning and Alfworld environments
underscores the potential of action learning in developing more intelligent and capable
LLM agents.

References

Ahn, M., Brohan, A., Brown, N., Chebotar, Y., Cortes, O., David, B., Finn, C., Fu, C.,
Gopalakrishnan, K., Hausman, K., et al. Do as i can, not as i say: Grounding language in
robotic affordances. arXiv preprint arXiv:2204.01691, 2022.

Bacon, P.-L., Harb, J., and Precup, D. The option-critic architecture. In Proceedings of the
AAAI conference on artificial intelligence, volume 31, 2017.

Brohan, A., Chebotar, Y., Finn, C., Hausman, K., Herzog, A., Ho, D., Ibarz, J., Irpan, A., Jang,
E., Julian, R., et al. Do as i can, not as i say: Grounding language in robotic affordances.
In Conference on Robot Learning, pp. 287–318. PMLR, 2023.

10



Published as a conference paper at COLM 2024

Cai, T., Wang, X., Ma, T., Chen, X., and Zhou, D. Large language models as tool makers.
arXiv preprint arXiv:2305.17126, 2023.

Chen, W., Ma, X., Wang, X., and Cohen, W. W. Program of thoughts prompting: Disentan-
gling computation from reasoning for numerical reasoning tasks, 2022.

Chen, X., Lin, M., Schärli, N., and Zhou, D. Teaching large language models to self-debug.
arXiv preprint arXiv:2304.05128, 2023.

Duan, J., Yu, S., Tan, H. L., Zhu, H., and Tan, C. A survey of embodied ai: From simulators
to research tasks. IEEE Transactions on Emerging Topics in Computational Intelligence, 6(2):
230–244, 2022.

Erol, K., Hendler, J., and Nau, D. S. Htn planning: complexity and expressivity. In Proceedings
of the Twelfth AAAI National Conference on Artificial Intelligence, pp. 1123–1128, 1994.

Fan, L., Wang, G., Jiang, Y., Mandlekar, A., Yang, Y., Zhu, H., Tang, A., Huang, D.-A., Zhu,
Y., and Anandkumar, A. Minedojo: Building open-ended embodied agents with internet-
scale knowledge. Advances in Neural Information Processing Systems, 35:18343–18362, 2022.

Gu, Y., Deng, X., and Su, Y. Don’t generate, discriminate: A proposal for grounding
language models to real-world environments. ArXiv preprint, abs/2212.09736, 2022. URL
https://arxiv.org/abs/2212.09736.

Huang, J., Chen, X., Mishra, S., Zheng, H. S., Yu, A. W., Song, X., and Zhou, D. Large
language models cannot self-correct reasoning yet. arXiv preprint arXiv:2310.01798, 2023.

Huang, W., Abbeel, P., Pathak, D., and Mordatch, I. Language models as zero-shot planners:
Extracting actionable knowledge for embodied agents. In International Conference on
Machine Learning, pp. 9118–9147. PMLR, 2022a.

Huang, W., Xia, F., Xiao, T., Chan, H., Liang, J., Florence, P., Zeng, A., Tompson, J., Mordatch,
I., Chebotar, Y., Sermanet, P., Brown, N., Jackson, T., Luu, L., Levine, S., Hausman, K.,
and Ichter, B. Inner monologue: Embodied reasoning through planning with language
models, 2022b.

Kulkarni, T. D., Narasimhan, K., Saeedi, A., and Tenenbaum, J. Hierarchical deep reinforce-
ment learning: Integrating temporal abstraction and intrinsic motivation. Advances in
neural information processing systems, 29, 2016.

Lai, Y., Li, C., Wang, Y., Zhang, T., Zhong, R., Zettlemoyer, L., Yih, W.-t., Fried, D., Wang, S.,
and Yu, T. Ds-1000: A natural and reliable benchmark for data science code generation.
In International Conference on Machine Learning, pp. 18319–18345. PMLR, 2023.

Le, H., Wang, Y., Gotmare, A. D., Savarese, S., and Hoi, S. C. H. Coderl: Mastering code
generation through pretrained models and deep reinforcement learning. Advances in
Neural Information Processing Systems, 35:21314–21328, 2022.

Liang, J., Huang, W., Xia, F., Xu, P., Hausman, K., Ichter, B., Florence, P., and Zeng, A. Code
as policies: Language model programs for embodied control. In 2023 IEEE International
Conference on Robotics and Automation (ICRA), pp. 9493–9500. IEEE, 2023.

Liu, B., Jiang, Y., Zhang, X., Liu, Q., Zhang, S., Biswas, J., and Stone, P. Llm+ p: Empowering
large language models with optimal planning proficiency. arXiv preprint arXiv:2304.11477,
2023.

Liu, H. and Abbeel, P. Emergent agentic transformer from chain of hindsight experience.
arXiv preprint arXiv:2305.16554, 2023.

Ma, C., Zhang, J., Zhu, Z., Yang, C., Yang, Y., Jin, Y., Lan, Z., Kong, L., and He, J. Agentboard:
An analytical evaluation board of multi-turn llm agents, 2024.

Madaan, A., Tandon, N., Gupta, P., Hallinan, S., Gao, L., Wiegreffe, S., Alon, U., Dziri, N.,
Prabhumoye, S., Yang, Y., et al. Self-refine: Iterative refinement with self-feedback. arXiv
preprint arXiv:2303.17651, 2023.

11

https://arxiv.org/abs/2212.09736


Published as a conference paper at COLM 2024

Park, J. S., O’Brien, J., Cai, C. J., Morris, M. R., Liang, P., and Bernstein, M. S. Generative
agents: Interactive simulacra of human behavior. In Proceedings of the 36th Annual ACM
Symposium on User Interface Software and Technology, pp. 1–22, 2023.

Qian, C., Han, C., Fung, Y. R., Qin, Y., Liu, Z., and Ji, H. Creator: Disentangling abstract and
concrete reasonings of large language models through tool creation, 2023.

Qiao, B., Li, L., Zhang, X., He, S., Kang, Y., Zhang, C., Yang, F., Dong, H., Zhang, J., Wang, L.,
et al. Taskweaver: A code-first agent framework. arXiv preprint arXiv:2311.17541, 2023.

Qin, Y., Liang, S., Ye, Y., Zhu, K., Yan, L., Lu, Y., Lin, Y., Cong, X., Tang, X., Qian, B., Zhao, S.,
Tian, R., Xie, R., Zhou, J., Gerstein, M., Li, D., Liu, Z., and Sun, M. Toolllm: Facilitating
large language models to master 16000+ real-world apis, 2023.

Schick, T., Dwivedi-Yu, J., Dessı̀, R., Raileanu, R., Lomeli, M., Zettlemoyer, L., Cancedda, N.,
and Scialom, T. Toolformer: Language models can teach themselves to use tools, 2023.

Sharma, P., Torralba, A., and Andreas, J. Skill induction and planning with latent language.
In Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), pp. 1713–1726, 2022.

Shinn, N., Cassano, F., Gopinath, A., Narasimhan, K. R., and Yao, S. Reflexion: Language
agents with verbal reinforcement learning. In Thirty-seventh Conference on Neural Informa-
tion Processing Systems, 2023.

Shridhar, M., Yuan, X., Côté, M.-A., Bisk, Y., Trischler, A., and Hausknecht, M. Alf-
world: Aligning text and embodied environments for interactive learning. arXiv preprint
arXiv:2010.03768, 2020.

Singh, I., Blukis, V., Mousavian, A., Goyal, A., Xu, D., Tremblay, J., Fox, D., Thomason, J., and
Garg, A. Progprompt: Generating situated robot task plans using large language models.
In 2023 IEEE International Conference on Robotics and Automation (ICRA), pp. 11523–11530.
IEEE, 2023.

Song, C. H., Wu, J., Washington, C., Sadler, B. M., Chao, W.-L., and Su, Y. Llm-planner: Few-
shot grounded planning for embodied agents with large language models. In Proceedings
of the IEEE/CVF International Conference on Computer Vision, pp. 2998–3009, 2023.

Stengel-Eskin, E., Prasad, A., and Bansal, M. Regal: Refactoring programs to discover
generalizable abstractions. arXiv preprint arXiv:2401.16467, 2024.

Sun, H., Zhuang, Y., Kong, L., Dai, B., and Zhang, C. Adaplanner: Adaptive planning from
feedback with language models, 2023.

Uesato, J., Kushman, N., Kumar, R., Song, F., Siegel, N., Wang, L., Creswell, A., Irving, G.,
and Higgins, I. Solving math word problems with process-and outcome-based feedback.
arXiv preprint arXiv:2211.14275, 2022.

Wang, G., Xie, Y., Jiang, Y., Mandlekar, A., Xiao, C., Zhu, Y., Fan, L., and Anandkumar, A.
Voyager: An open-ended embodied agent with large language models. arXiv preprint
arXiv:2305.16291, 2023a.

Wang, H., Gonzalez-Pumariega, G., Sharma, Y., and Choudhury, S. Demo2code: From
summarizing demonstrations to synthesizing code via extended chain-of-thought. arXiv
preprint arXiv:2305.16744, 2023b.

Wang, X., Wang, Z., Liu, J., Chen, Y., Yuan, L., Peng, H., and Ji, H. Mint: Evaluating llms in
multi-turn interaction with tools and language feedback. ArXiv preprint, abs/2309.10691,
2023c. URL https://arxiv.org/abs/2309.10691.

Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E., Le, Q. V., Zhou, D., et al.
Chain-of-thought prompting elicits reasoning in large language models. Advances in
Neural Information Processing Systems, 35:24824–24837, 2022.

12

https://arxiv.org/abs/2309.10691


Published as a conference paper at COLM 2024

Wong, L., Mao, J., Sharma, P., Siegel, Z. S., Feng, J., Korneev, N., Tenenbaum, J. B., and
Andreas, J. Learning adaptive planning representations with natural language guidance.
arXiv preprint arXiv:2312.08566, 2023.

Wu, Y., Min, S. Y., Prabhumoye, S., Bisk, Y., Salakhutdinov, R., Azaria, A., Mitchell, T., and
Li, Y. Spring: Gpt-4 out-performs rl algorithms by studying papers and reasoning. arXiv
preprint arXiv:2305.15486, 2023.

Xie, T., Zhou, F., Cheng, Z., Shi, P., Weng, L., Liu, Y., Hua, T. J., Zhao, J., Liu, Q., Liu, C.,
et al. Openagents: An open platform for language agents in the wild. arXiv preprint
arXiv:2310.10634, 2023.

Xu, Y., Su, H., Xing, C., Mi, B., Liu, Q., Shi, W., Hui, B., Zhou, F., Liu, Y., Xie, T., et al.
Lemur: Harmonizing natural language and code for language agents. arXiv preprint
arXiv:2310.06830, 2023.

Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., and Cao, Y. React: Synergizing
reasoning and acting in language models, 2023a.

Yao, W., Heinecke, S., Niebles, J. C., Liu, Z., Feng, Y., Xue, L., Murthy, R., Chen, Z., Zhang, J.,
Arpit, D., et al. Retroformer: Retrospective large language agents with policy gradient
optimization. arXiv preprint arXiv:2308.02151, 2023b.

Yuan, L., Chen, Y., Wang, X., Fung, Y. R., Peng, H., and Ji, H. Craft: Customizing llms by
creating and retrieving from specialized toolsets. arXiv preprint arXiv:2309.17428, 2023.

Zhao, A., Huang, D., Xu, Q., Lin, M., Liu, Y.-J., and Huang, G. Expel: Llm agents are
experiential learners. arXiv preprint arXiv:2308.10144, 2023.

13



Published as a conference paper at COLM 2024

A Appendix

A.1 The Action Learning with Sampling

Algorithm 1 illustrates the general framework for the learning iteration. In practice, we
include multi-sampling in each learning iteration, to avoid the misdirection of low-quality
solutions to the whole learning. Here we give a detailed algorithm of our learning method
with sampling in Algorithm 2.

Algorithm 2 Training Process of LearnAct with Sampling

Input: Training set Dtrain = {E1, . . . , EM}, LLM G.
Input: Original Actions A0, Basic Task Instruction π0
Input: Sampling Number K
# Training Procedure
Ak

i , πk
Ai

= ActionCreation(π0), k = 1 to K
for i = 1 to maxiter do

resultsk = SolveProblem(π0 + πk
Ai

, Em,A0 ∪Ak
i , G), m = 1 to M, k = 1 to K

# Compute score and select the best sample
µk = pk

succ + pk
stepacc, k = 1 to K

kbest = arg maxk µk

results, πAi ,Ai = resultskbest , π
kbest
Ai

,Akbest
i

s1:T , a1:T , r = SelectErrorCase(results)
Ak

i+1, πk
Ai+1

= ActionLearn(Ai, s1:T , a1:T , r), k = 1 to K
end for
Return Alast, πAlast

A.2 Complexity Analysis

The testing stage of LearnAct follows the standard language agent setting, except that the
action space is augmented with manufactury actions. The overall time complexity is thus
the same as the standard Act method. As for the learning stage, the time complexity is
O(MKI), where M is the training instance number, K is the sampling number, and I denotes
the max iteration number.

A.3 A Bayesian View of Open-Action Learning

In this subsection, we present a Bayesian perspective on our learning approach. We express
the transition function T and reward function R in probabilistic terms p(st+1|st, at) and
p(r|s1:T). Denote the observation as function of state ot = o(st), and the history at time t is
denoted as h(s1:t, a1:t−1) = [o(s1), a1, . . . , o(st−1), at−1, o(st)], i.e., the function of s1:t, a1:t−1.
The distribution of a Partially Observable Markov Decision Process trace is as follows:

pA,πA(s1:T , a1:T) = p(s1)
T−1

∏
t=1

[πA(at|h(s1:t, a1:t−1))p(st+1|st, at)]πA(aT |h(s1:T , a1:T−1)) (4)

The reward r conditioned on action space A and policy πA follows the distribution:

p(r|A, πA) = EpA,πA (s1:T ,a1:T)
p(r|s1:T) (5)

The objective of POMDP is to maximize the reward, which can be seen as the posterior of
action space A and policy πA given the maximum reward:

p(A, πA|r = rmax) =
p(A, πA)EpA,πA (s1:T ,a1:T)

p(r = rmax|s1:T)

Zrmax

(6)

14



Published as a conference paper at COLM 2024

where Zrmax = Ep(A,πA)EpA,πA (s1:T ,a1:T)
p(r = rmax|s1:T) is the normalization factor. In con-

ventional reinforcement learning, A is predetermined and remains constant, while the
model only learns πA through maximum likelihood rather than posterior estimation. This
is attributed to the complexity of computing the posterior, which is due to the necessity of
domain knowledge for the prior p(A, πA) and the intractable calculation of the posterior.

However, leveraging the advanced capabilities of language models, we propose employing
them to estimate the posterior of the action space and policy toward the open action
space learning. The prior p(A, πA) can be defined as the operator ActionCreation, and the
posterior updating can be inferred as ActionLearn.

A.4 Detailed Prompt

We present the prompt used in our experiment here, due to space limitations of the main
text.

We first present the prompts for action learning. The ActionCreation process entails two
phases: initially, function generation is guided by Prompt 4, followed by the crafting of
function descriptions and usage instructions, as directed by Prompt 5 and 6, respectively.

During the action learning iterations, ActionLearn leverages Prompt 7 to derive results.
If the LLM suggests updates to action functions, descriptions and usage instructions are
regenerated using the Prompt 5 and 6.

Prompt for Action Creation

{basic task instruction}

Please propose several high-level steps for this task.

Each high-level step should be a Python function encompassing multiple (at least
two) basic actions. All the values used in the function should be given as input
rather than fixed in the function.

The provided actions are Python functions and can be executed directly, for example,
```python
{basic action example}
`

No additional interfaces besides the provided actions are available. All the code
should be wrapped by```python
```

Here are examples: {created action example}

Now please write your solution:

Figure 4: Prompt for action creation.

Prompt for Action Description Generation

{basic task instruction}

Now here are some Python function encompassing multiple basic actions to serve
as high-level interface in this task. Please write interface instruction for the given
Python function.

15



Published as a conference paper at COLM 2024

Here are examples:

{action description examples}

Now please write interface instruction for this high-level step {func name}:
Function:
```python
{function}
```
Instruction:

Figure 5: Prompt for action description generation.

Prompt for Action Usage Example Generation

{basic task instruction}

Now, here are some Python functions encompassing multiple basic actions to serve
as high-level interfaces in this task. Please complete the task with the interface
following the format of the examples. {format instruction}

Here are examples:

{action usage examples}

Now, please complete the task using these interfaces:
Function:
```python
{function}
```Example:

Figure 6: Prompt for action usage example generation.

Prompt for Action Learning

{basic task instruction}
{task goal}

The actions provided are Python functions and can be executed directly, for example,
```python
{action example}
```
No additional actions besides the provided actions are available. All the code should
be wrapped by```python
```
Now here are some high-level steps to complete this task. Each high-level step is
a general Python function encompassing multiple (at least two) basic actions. All
the values used in the function should be given as input rather than fixed in the
function.

16



Published as a conference paper at COLM 2024

The high-level steps are executed but failed. Please analyze why the execution failed,
and give one of the following improvement: Update, Plan. Please respond in the
following format:
Failed reason: <>
Improve: <Update or Plan: [The target function]>
Content: <>
Test case: <>(This is only for Update case, not for Plan)

Here are examples:

{in context example}

Now please analyze this case:
```python
{actions}
```
The agent performs this task, and the high-level action {function name} is executed
last:
{agent trajectory}

But an error is observed in the last call ({error info}). The detailed subprocess of this
step is:
{error subprocess}

Failed reason:

Figure 7: Prompt for action learning.

We then show the prompts during the testing stage, i.e. the prompt of our agent. It is the
same as the basic Act agent, as shown in the Prompt 8 for the Blockworld task.

Prompt Details for Blockworld

System Prompt
You are a master in planning.

Instruction
The domain assumes a world where there are a set of blocks that can be stacked on
top of each other, an arm that can hold one block at a time, and a table where blocks
can be placed.
The actions defined in this domain include:
Pickup(block): allows the arm to pick up a block from the table if it is clear and the
arm is empty. After the pickup action, the arm will be holding the block, and the
block will no longer be on the table or clear.
Putdown(block): allows the arm to put down a block on the table if it is holding a
block. After the putdown action, the arm will be empty, and the block will be on the
table and clear.
Stack(block1,block2): allows the arm to stack a block on top of another block if the
arm is holding the top block and the bottom block is clear. After the stack action, the
arm will be empty, the top block will be on top of the bottom block, and the bottom
block will no longer be clear.
Unstack(block1,block2): allows the arm to unstack a block from on top of another
block if the arm is empty and the top block is clear. After the unstack action, the arm
will be holding the top block, the top block will no longer be on top of the bottom
block, and the bottom block will be clear.

17



Published as a conference paper at COLM 2024

{learned action instructions}

Here are examples:
Goal: The goal is to satisfy the following conditions: b1 is on b2., b2 is on b3.
Observation: b2 is on b3. b3 is on b1. b1 is on the table. Robot arm is empty. The b2
is clear.
Action: Unstack(’b2’,’b3’)
Observation: b3 is on b1. b1 is on the table. The b3 is clear. You are holding b2.
Action: Putdown(’b2’)
Observation: b3 is on b1. b1 is on the table. b2 is on the table. Robot arm is empty.
The b2 is clear.
Action: Unstack(’b3’,’b1’)
Observation: b1 is on the table. b2 is on the table. The b1 is clear. The b2 is clear.
Robot arm is empty. You are holding b3.
Action: Putdown(’b3’)
Observation: b1 is on the table. b2 is on the table. b3 is on the table. Robot arm is
empty. The b1 is clear. The b2 is clear. The b3 is clear.
Action: Pickup(’b2’)
Observation: b1 is on the table. b2 is on the table. The b1 is clear. The b3 is clear. You
are holding b2.
Action: Stack(’b2’,’b3’)
Observation: b1 is on the table. b2 is on b3. b3 is on the table. Robot arm is empty.
The b1 is clear. The b2 is clear.
Action: Pickup(’b3’)
Observation: The action is not valid and therefore takes no effect. Please remember
to satisfy the restriction of actions.
Action: Pickup(’b1’)
Observation: b2 is on b3. b3 is on the table. The b2 is clear. You are holding b1.
Action: Stack(’b1’,’b2’)
Observation: b1 is on b2. b2 is on b3. b3 is on the table. Robot arm is empty. The b1
is clear. The goal is satisfied.

{usage example for learned actions}

{goal of testing task}
{history trajectory}
Action:

Figure 8: Prompt details of agent testing for task Blockworld.

A.5 Learned Result Case

We illustrate the learned actions and corresponding instructions in Figure 9. The {learned
action instructions} and {usage example for learned actions} are used in Prompt 8 to inform
the agent model about how to use the learned action function.

Learned Result Case for Blockworld

learned action function
1 def dismantle_stack_until(block_list , block_target):
2 for top_block , bottom_block in zip(block_list , block_list [1:]):
3 if top_block == block_target:
4 break
5 Unstack(top_block , bottom_block)
6 Putdown(top_block)
7

18



Published as a conference paper at COLM 2024

8

9 def construct_stack(block_list):
10 for top_block , bottom_block in reversed(list(zip(block_list ,

block_list [1:]))):
11 Pickup(top_block)
12 Stack(top_block , bottom_block)

learned action instructions
dismantle stack until(block list, block target): Allows the arm to dismantle a
stack of blocks one by one, stopping when it reaches a specific target block.
‘dismantle stack until(block list, block target)‘ sequentially unstacks each block
from the block list starting from the top and places it on the table until it reaches
the target block. The blocks in the list must be clear and stacked consecutively. If
the top block from the list matches the target block, the function ends, leaving the
arm empty and the blocks dismantled on the table. For example, if blocks b3, b2,
and b1 are clear with b3 on top of b2 and b2 on top of b1, and the arm is empty,
‘dismantle stack until([’b3’,’b2’,’b1’], ’b2’)‘ will unstack b3 from b2 and put b3 on the
table without touching b2 or b1.
construct stack(block list): This function allows the arm to construct a stack of
blocks given a list of blocks if the arm is empty and all the blocks are clear and on the
table. It achieves this by iterating from the end of the list, picking each block starting
from the penultimate block and stacking it on the block next to it (assuming the list
is arranged from bottom block to top block). After the execution of construct stack,
all the blocks in the list will be stacked on top of each other in the order they were
arranged in the block list, the arm will be empty and only the top block will be clear.
For example, if block1, block2, and block3 are all clear and on the table and the arm
is empty, calling construct stack([block1, block2, block3]) will result in block3 being
stacked on block2 and block2 on block1, and the arm will be empty.

usage example for learned actions
The goal is to satisfy the following conditions: b1 is on b2, b2 is on b3.
Observation: b3 is on b2, b2 is on b1, b1 is on the table. Robot arm is empty. The b3
is clear.
Action: dismantle stack until([’b3’,’b2’,’b1’], ’b1’)
Observation: b1 is on the table. b2 is on the table. b3 is on the table. Robot arm is
empty. The b1 is clear. The b2 is clear. The b3 is clear.
Action: construct stack([’b1’,’b2’,’b3’])
Observation: b1 is on b2. b2 is on b3, b3 is on the table. Robot arm is empty. The b1
is clear. The goal is satisfied.

Figure 9: Prompt details of agent testing for task Blockworld.

A.6 Experiment Details

A.6.1 Baselines

We imply baseline Reflexion for our learning-testing setting, where the testing instances
are unseen during learning. Original Reflexion learns policy on a single instance, which
can generate very detailed hints for the next turn, like “In this trial, I was able to find the
desklamp on desk 1, but I did not find the bowl under the desklamp. In the next trial, I will
go to desk 1, turn on the desklamp, then look for the bowl under the desklamp on desk 1 or
desk 2. If I still cannot find the bowl, I will check the shelves and drawers.” The detailed
hint helps the agent perform in the same task instance, but can not transfer to different
instances. We imply Reflexion to generate transferable policies based on the failed trial,
such as “To accomplish the task, first locate the object, then navigate towards the cleaning
location, clean the object, and finally deposit it at the specified receptacle. Follow the action

19



Published as a conference paper at COLM 2024

def find_and_take(obj, recep):

observation = goto(recep)

object_name = parse_object_name(obj, observation)

if object_name is not None:

observation = take(object_name, recep)

return observation

Error: The action is not valid. The cabinet 2 is closed.

Update:
def find_and_take(obj, recep):

observation = goto(recep)

if not any([recep.startswith(location) for 
location in ['shelf', 'countertop']]):

observation = open(recep)

if 'is open' in observation:

object_name = parse_object_name(obj, 
observation)

if object_name is not None:

observation = take(object_name, recep)

return observation

To find the object I need, I should explore 
different receptacles.

Failed Trail. In the trial, saw a closed cabinet but do not open it.

Reflexion:

Before attempting to interact with the 
receptacle, ensure that it is open or 
accessible in the first place. Validate 
object's existence and accessibility in the 
said location.

Figure 10: The failed cases of LearnAct (left) and Reflexion (right). The learning overfits
the current task instance with misunderstanding. Left: The agent causes error when using
action find and take because the action does not consider the case that the cabinet is closed.
However, the learner updates action find and take by adding a conditional based on the
receptacle name, which is not the correct condition to open the receptacle. Right: The agent
failed in a trial in which it saw a closed cabinet but did not open it. The Reflexion learner
advises the misleading policy “before attempting to interact with the receptacle, ensure that
it is open or accessible in the first place”.

sequence: locate - navigate - clean - store. Ensure to recheck your inventory to confirm the
success of your actions.”. The experiment shows that general policy can improve agent
performance, as shown in Table 2 and 3.

A.6.2 Setting

We use language models GPT-4 and GPT-3.5 Turbo through interface ope-
nai.ChatCompletion.create via Azure platform. For all the learnable models, including
LearnAct, Reflexion, and Voyager, GPT-4 serves as the learner for both GPT-4 and GPT-3.5
Turbo agents. This choice is driven by the necessity for substantial model capacity to
facilitate agent learning, aligning with original papers of baselines where learning is implied
by strong language models.

A.6.3 Case Study for Failed Learning

Figure 3 demonstrates that excessive iterations can degrade performance, likely due to
overfitting and misinterpretations of the learning task. Failed cases involving LearnAct and
Reflexion are shown in Figure 10, in which the learner inaccurately diagnoses failure causes,
resulting in misguided actions or policies that further impair performance.

20


	Introduction
	Related Work
	Problem Statement
	Method
	Training Stage
	Testing Stage

	Experiment
	Tasks
	Baselines
	Setting
	Main Results
	Analysis of the Learning Process
	Ablation Study

	Conclusion
	Appendix
	The Action Learning with Sampling
	Complexity Analysis
	A Bayesian View of Open-Action Learning
	Detailed Prompt
	Learned Result Case
	Experiment Details
	Baselines
	Setting
	Case Study for Failed Learning



