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Abstract

Estimating the counterfactual outcome of treatment is essential for decision-making
in public health and clinical science, among others. Often, treatments are adminis-
tered in a sequential, time-varying manner, leading to an exponentially increased
number of possible counterfactual outcomes. Furthermore, in modern applications,
the outcomes are high-dimensional and conventional average treatment effect esti-
mation fails to capture disparities in individuals. To tackle these challenges, we
propose a novel conditional generative framework capable of producing counter-
factual samples under time-varying treatment, without the need for explicit density
estimation. Our method carefully addresses the distribution mismatch between
the observed and counterfactual distributions via a loss function based on inverse
probability weighting. We present a thorough evaluation of our method using
both synthetic and real-world data. Our results demonstrate that our method is
capable of generating high-quality counterfactual samples and outperforms the
state-of-the-art baselines.

1 Introduction
Estimating time-varying treatment effect from observational data has garnered significant attention
due to the growing prevalence of time-series records. One particular relevant field is public health
[31, 76, 8], where researchers and policymakers grapple with a series of decisions on preemptive
measures to control epidemic outbreaks, ranging from mask mandates to shutdowns. It is vital to
provide accurate and comprehensive outcome estimates under such diverse time-varying treatments,
so that policymakers and researchers can accumulate sufficient knowledge and make well-informed
decisions with discretion.

In the literature, average treatment effect estimation has received extensive attention and various
methods have been proposed [58, 23, 26, 34, 6, 4, 65, 39, 17, 71]. By estimating the average
outcome over a population that receives a treatment or policy of interest, these methods evaluate the
effectiveness of the treatment via hypothesis testing. However, solely relying on the average treatment
effect might not capture the full picture, as it may overlook pronounced disparities in the individual
outcomes of the population, especially when the counterfactual distribution is heterogeneous.

Recent efforts [29, 28, 40] have been made to directly estimate the counterfactual density function of
the outcome. This idea has demonstrated appealing performance for univariate outcomes. Nonethe-
less, for multi-dimensional outcomes, the estimation accuracy quickly degrades [64]. In modern
high-dimensional applications, for example, predicting COVID-19 cases at the county level of a state,
these methods are hardly scalable and incur a computational overhead.

Adding another layer of complexity, considering time-varying treatments causes the capacity of the
potential treatment sequences to expand exponentially. For example, even if the treatment is binary at
a single time step, the total number of different combinations on a time-varying treatment increases
as 2d with d being the length of history. More importantly, time-varying treatments lead to significant
distributional discrepancy between the observed and counterfactual outcomes, as shown in Figure 1.
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Figure 1: (a) Mean is incapable of describing the heterogeneous
effect in counterfactual distributions. (b) The observed distribution
may be more deviated from that of the counterfactual as the length
of the history dependence, d, increases.

In this paper, we provide a whole
package of accurately estimating high-
dimensional counterfactual distribu-
tions for time-varying treatments. In-
stead of a direct density estimation,
we implicitly learn the counterfactual
distribution by training a generative
model, capable of generating credi-
ble samples of the counterfactual out-
comes given a time-varying treatment.
This allows policymakers to assess a
policy’s efficacy by exploring a range
of probable outcomes and deepening
their understanding of its counterfactual result. Here, we summarize the benefits of our proposed
method:

1. Our model is capable of handling high-dimensional outcomes;

2. Our model outperforms existing state-of-the-art baselines in terms of estimation accuracy and
generating high-quality counterfactual samples;

3. Our model enables fast downstream inference, such as average treatment effect estimation and
uncertainty quantification.

To be specific, we develop a conditional generator [41, 67]. This generator, which we choose in
a flexible manner, takes into account the treatment history as input and generates counterfactual
outcomes that align with the underlying distribution of counterfactuals. The key idea behind the
scenes is to utilize a “proxy” conditional distribution as an approximation of the true counterfactual
distribution. To achieve this, we establish a statistical relationship between the observed and counter-
factual distributions inspired by the g-formula [45, 60, 54, 15]. We learn the conditional generator by
optimizing a novel weighted loss function based on a pseudo population through Inverse Probability
of Treatment Weighting (IPTW) [54]. We evaluate our framework through numerical experiments
extensively on both synthetic and real-world data sets. A comprehensive overview of the related work
is included in Appendix A.

2 Methodology
2.1 Problem setup
In this study, we consider the treatment for each discrete time period (such as day or week) as
a random variable At ∈ A = {0, 1}, where t = 1, . . . , T and T is the total number of time
points. Note that our framework also works with categorical and even continuous treatments. Let
Xt ∈ X ⊂ Rh be the time-varying covariates, and Yt ∈ Y ⊂ Rm the subject’s outcome at time t.
We use At = {At−d+1, . . . , At} to denote the previous treatment history from time t− d+ 1 to t,
where d is the length of history dependence. Similarly, we use Xt = {Xt−d+1, . . . , Xt} to denote
the covariate history. We use yt, at, and xt to represent a realization of Yt, At, and Xt, respectively,
and use at = (at−d+1, . . . , at) and xt = (xt−d+1, . . . , xt) to denote the history of treatment and
covariate realizations. In the sections below, we will refer to Yt, At, and Xt as simply Y , A, and X ,
where t will be clear from context.

The goal of our study is to obtain realistic samples of the counterfactual outcome given a time-
varying treatment a, without estimating its counterfactual density. Let Y (a) denote the counterfactual
outcome for a subject under a time-varying treatment a, and define fa as its counterfactual distribution.
We note that fa is different from the marginal density of Y , as the treatment is fixed at A = a in
the conditioning. It is also not equal to the unadjusted conditional density f(y|a). Instead, fa is
the density of the counterfactual variable Y (a), which represents the outcome that would have been
observed if treatment were set to A = a, if the standard assumptions [56, 34] hold. See Appendix B
for more details about assumptions. We also assume that Y , A, and X follows the typically structural
causal relationship as shown in Figure 7 (Appendix C), which is a classical setting in longitudinal
causal inference [51, 56].
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2.2 Counterfactual generative framework for time-varying treatments
This paper proposes a counterfactual generator, denoted as gθ, to simulate Y (a) according to the
proxy conditional distribution fθ(y|a) instead of directly modeling its expectation or specifying a
parametric counterfactual distribution. Here we use θ ∈ Θ to represent the model’s parameters, and
formally define the generator as a function:

gθ(z, a) : Rr ×Ad → Y. (1)
The generator takes as input a random noise vector (z ∈ Rr ∼ N (0, I)) and the time-varying
treatment a.
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Figure 2: The architecture of the proposed counterfac-
tual generative models. The generator gθ is designed to
produce samples of the outcome variable Y (a) with a
given time-varying treatment a. The generated samples
are expected to conform to the proxy conditional distri-
bution fθ , which is an approximate of the underlying
counterfactual distribution fa.

The output of the generator is a sample of pos-
sible counterfactual outcomes that follows the
proxy conditional distribution represented by θ,
i.e.,

y ∼ fθ(·|a),
which can be viewed as an approximate of the
underlying counterfactual distribution fa. Fig-
ure 2 shows an overview of the proposed gener-
ative model architecture.

The learning objective is to find the optimal gen-
erator that minimizes the distance between the
proxy conditional distribution fθ(·|a) and the
true counterfactual distribution fa, as illustrated
in Figure 3. If the distance metric is Kullback-
Leibler (KL) divergence, this objective can be
expressed equivalently by maximizing the log-
likelihood [43]:

max
θ∈Θ

ℓ(θ) := E
y∼fa

log fθ(y|a). (2)

To obtain samples from the counterfactual distribution fa, we follow the idea of marginal structural
models (MSMs) introduced by [45, 60, 54] and extended by [15] to account for time-varying
treatments. Specifically, we introduce Lemma 1, which follows the g-formula proposed in [54] and
establishes a connection between the counterfactual distribution and the data distribution. The proof
can be found in Appendix C.
Lemma 1. Under unconfoundedness and positivity, we have

fa (y) =

∫
1{A = a}∏t

τ=t−d f
(
Aτ |Aτ−1, Xτ

)f (
y,A,X

)
dAdX, (3)

where f denotes the observed data distribution.

Now we present a proposition using Lemma 1, allowing us to substitute the expectation in (2),
computed over a counterfactual distribution, with the sample average over a pseudo-population. This
pseudo-population is constructed by assigning weights to each data tuple based on their subject-
specific IPTW. Figure 3 gives an illustration of the learning objective. See the proof in Appendix D.
Proposition 1. Let D denote the set of observed data tuples. The generative learning objective can
be approximated by:

E
y∼fa

log fθ(y|a) ≈
∑

(y,a,x)∈D

wϕ(a, x) log fθ(y|a), (4)

where wϕ(a, x) denotes the subject-specific IPTW, parameterized by ϕ ∈ Φ, which takes the form:

wϕ(a, x) =
1∏t

τ=t−d fϕ(aτ |aτ−1, xτ )
. (5)

Remark 1. The generative learning objective in Proposition 1 offers specific benefits when compared
to plugin methods using Lemma 1 [7, 28] and parametric density estimation [40]. The use of IPTW
over doubly robust methods can be supported due to its computational efficiency and the potentially
lower chance of model misspecification in high-dimensional outcome settings. We include a detailed
discussion in Appendix E.
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Figure 3: An illustration of our learning objective. We
aim to minimize the KL-divergence between the proxy
conditional distribution fθ(·|a) and the true counterfac-
tual distribution fa.

Here we use another model, denoted by ϕ ∈
Φ, to represent the conditional probability
f(Aτ |Aτ , Xτ ), which defines the IPTW wϕ and
can be learned separately using observed data.
Note that the effectiveness of this method is de-
pendent on a correct specification of the IPTW
ϕ, i.e., the black dot is inside of the blue area in
Figure 3 [15, 34]. In [34], they use an RNN-like
structure to represent the conditional probability
fϕ without making strong assumptions on the
form of the conditional probability. The choice
of gθ and fϕ are entirely general and both can be
specified using deep architectures. In this paper,
we use fully-connected neural networks for both
gθ and fϕ.

Variational approximation and learning To compute the weighted log-likelihood as expressed
in (4) and learn the proposed generative model, we can leverage various state-of-the-art generative
learning algorithms, such as conditional normalizing flow [5] and guided diffusion models [13]. In
this paper, we adopt the conditional variational autoencoder (CVAE) [67], a commonly-used learning
algorithm for generative models, approximate the logarithm of the proxy conditional probability
using its evidence lower bound (ELBO):

log fθ(y|a) ≥ −DKL (q(z|y, a)||pθ(z|a)) + Eq(z|y,a) [log pθ(y|z, a)] , (6)

where q is a variational approximation of the posterior distribution over the random noise given
observed outcome y and its treatment a. The first term on the right-hand side is the Kullback–Leibler
(KL) divergence of the approximate posterior q(·|y, a) from the exact posterior pθ(·|a). The second
term is the log-likelihood of the latent data-generating process. The complete derivation of (6)
and implementation details can be found in Appendix F. We summarize our learning procedure in
Algorithm 1.

3 Experiments

Figure 4: The estimated and true counterfactual distributions for
(d = 3) on the fully synthetic datasets (m = 1). We include the
plot for d = 1 and d = 5 in Appendix H.

We evaluate our method using
numerical examples and demon-
strate the superior performance com-
pared to five state-of-the-art meth-
ods. These are (1) Kernel Den-
sity Estimation (KDE) [59], (2)
Marginal structural model with a fully-
connected neural network (MSM+NN)
[55, 34], (3) Conditional Variational
Autoencoder (CVAE) [67], (4)Semi-
parametric Plug-in method based
on pseudo-population (Plugin+KDE)
[29], and (5) G-Net (G-Net) [33]. In
the following, we refer to our pro-
posed conditional event generator as
marginal structural conditional varia-
tional autoencoder (MSCVAE). See Appendix G.1 for a detailed review of these baseline methods.
More details of the evaluation metrics and experiment set-up can be found in Appendix G.2 and G.3.

3.1 Fully synthetic data
We first assess the effectiveness of the MSCVAE using fully synthetic experiments. Following the
classical experimental setting described in [55], we simulate three synthetic datasets with different
lengths of history dependence (d = 1, 3, 5) using linear models. See Appendix G.4 for a detailed
description of the synthetic data generation. It is worth mentioning that the learned distribution
produced by CVAE deviates significantly from the desired target, emphasizing the significance of
the weighting term in Proposition 1 in accurately approximating the counterfactual distribution.
Table 1 summarizes the quantitative comparisons across the baselines. The MSCVAE not only
consistently achieves the smallest Wasserstein distance in the majority of the experimental settings,
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Table 1: Quantitative performance on fully-synthetic and semi-synthetic data
Fully synthetic (m = 1) COVID-19 TV-MNIST

d = 1 d = 3 d = 5 m = 67 m = 784
Methods Mean ↓ Wasserstein ↓ Mean ↓ Wasserstein ↓ Mean ↓ Wasserstein ↓ FID* ↓ FID* ↓
MSM+NN 0.001 (0.002) 0.601 (0.603) 0.070 (0.159) 0.689 (0.718) 0.198 (0.563) 0.600 (0.737) 1.085 (1.665) 1.236 (3.956)
KDE 0.246 (0.267) 0.244 (0.268) 0.520 (1.080) 0.538 (1.080) 0.538 (1.419) 0.539 (1.419) 0.981 (2.665) 1.509 (2.557)

Plugin+KDE 0.010 (0.014) 0.034 (0.036) 0.045 (0.168) 0.132 (0.168) 0.147 (0.598) 0.182 (0.598) 0.652 (0.759) 1.370 (1.799)
G-Net 0.211 (0.258) 0.572 (0.582) 1.167 (2.173) 1.284 (2.173) 2.314 (5.263) 2.354 (5.263) 0.965 (1.856) 1.751 (6.096)
CVAE 0.250 (0.287) 0.253 (0.288) 0.517 (1.061) 0.553 (1.061) 0.539 (1.430) 0.613 (1.430) 0.641 (2.654) 2.149 (5.484)

MSCVAE 0.006 (0.006) 0.055 (0.056) 0.046 (0.150) 0.105 (0.216) 0.150 (0.633) 0.173 (0.633) 0.336 (0.712) 0.270 (1.004)

* Numbers represent the average metric across all treatment combinations and those in the parentheses represent the worst across treatment combinations.

(a)
(b)

Figure 5: (a) Results on the semi-sythetic TV-MNIST datasets (m = 784). We show representative samples
generated from different methods under the treatment combinations a = (1, 1, 1). (b) Results on the semi-
synthetic Pennsylvania COVID-19 mask datasets (m = 67) under the treatment combination a = (1, 1, 1). We
visualize the distribution of “hotspots” from the generated and true counterfactual distribution. For each model,
we generate 500 counterfactual samples. Each sample is a 67-dimensional vector representing the inferred new
cases per 100K for the counties in Pennsylvania. We define the hotspot of each sample as the coordinate of
the county with the highest number of new cases per 100K, and visualize the density of the 500 hotspots using
kernel density estimation.

but also demonstrates highly competitive accuracy on mean estimation, which is consistent with the
result in Figure 4. Note that even though our goal is not to explicitly estimate the counterfactual
distribution, the results clearly demonstrate that our generative model can still accurately approximate
the underlying counterfactual distribution, even compared to the unbiased density-based method such
as Plugin+KDE.

3.2 Semi-synthetic Data
To demonstrate the ability of our generative framework to generate credible high-dimensional
counterfactual samples, we test our method on two semi-synthetic datasets. The benefit of these
datasets is that both factual and counterfactual outcomes are available. Therefore, we can obtain a
sample from the ground-truth counterfactual distribution, which we can then use for benchmarking.

Time-varying MNIST We create TV-MNIST, a semi-synthetic dataset using MNIST images
[12, 27] as the outcome variable (m = 784). In this dataset, images are randomly selected, driven by
the result of a latent process defined by a linear autoregressive model, which takes a 1-dimensional
covariate and treatment variable as inputs and outputs a digit (between 0 and 9). Here we set the length
of history dependence, d, to 3. This setup allows us to evaluate the performance of the algorithms by
visually contrasting the quality and distribution of generated samples against counterfactual ones.
The full description of the dataset can be found in Appendix G.5.

Pennsylvania COVID-19 mask mandate We create another semi-synthetic dataset to investigate
the effectiveness of mask mandates in Pennsylvania during the COVID-19 pandemic. We collected
data from multiple sources, including the Centers for Disease Control and Prevention (CDC), the US
Census Bureau, and a Facebook survey [78, 16, 79, 19, 9, 21]. The dataset encompasses variables
aggregated on a weekly basis spanning 106 weeks from 2020 and 2022. There are four state-level
covariates (per 100K people): the number of deaths, the average retail and recreation mobility, the
surveyed COVID-19 symptoms, and the number of administered COVID-19 vaccine doses. We set the
state-level mask mandate policy (with values of 0 indicating no mandate and 1 indicating a mandate)
as the treatment variable, and the county-level number of new COVID-19 cases (per 100K) as the
outcome variable (m = 67). We simulate 2, 000 trajectories of the (covariate, treatment) tuples of 300
time points (each point corresponding to a week) according to the real data. The outcome model is
structured to exhibit a peak, defined as the "hotspot", in one of the state’s two major cities: Pittsburgh
or Philadelphia. The likelihood of these hotspots is contingent on the covariates. Consequently, the
counterfactual and observed distributions manifest as bimodal, with varying probabilities for the
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hotspot locations. To ensure a pertinent analysis window, we’ve fixed the history dependence length,
d, at 3, aligning with the typical duration within which most COVID-19 symptoms recede [38]. The
full description of the dataset can be found in Appendix G.6.

As we can observe in Figure 5a and 5b, the MSCVAE outperforms other baselines in generating
samples that closely resembles the ground truth. This visual superiority is also reinforced by the
overwhelmingly better FID* scores of MSCVAE compared to other baselines methods, as shown
in Table 1 (see Appendix G.2 for the definition of FID*). It’s worth noting that the samples
produced by the Plugin+KDE appear blurred in Figure 5a and exhibit noise in Figure 5b. This
can be attributed to the inherent complexities of high-dimensional density estimation [64]. Such
observations underscore the value of employing a generative model to craft high-dimensional samples
without resorting to precise density estimation. We also notice that G-Net fails to capture the
high-dimensional counterfactual outcomes, particularly due to challenges in accurately defining
the conditional outcome model and the covariate density model. The superior results of MSCVAE
compared to CVAE and of Plugin+KDE over KDE emphasize the pivotal role of IPTW correction
during modeling. Moreover, deterministic approaches like MSM+NN might fall short in capturing key
features of the counterfactual distribution. In sum, the semi-synthetic experiments highlights the
distinct benefits of our generative framework, particularly in generating high-quality counterfactual
samples under time-varying treatments in a high-dimensional causal context.

3.3 Real Data
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Number of cases per 100K

a = (0, 0, 0)

a = (1, 1, 1)

Figure 6: Observed distribution and estimated coun-
terfactual distribution of the number of real COVID-19
cases per 100K under two mask policies. The vertical
dashed lines represent the mean of the corresponding
distributions.

We perform a case study using a real COVID-19
mask mandate dataset across the U.S. from 2020
to 2021 spanning 49 weeks. Due to the limita-
tion on the sample size for state-level observa-
tions, we only look at the county-level data, cov-
ering 3, 219 U.S. counties. This leads to m = 1.
The details can be found in Appendix G.6. Fig-
ure 6 illustrates a comparative analysis of the dis-
tribution of the observed and generated outcome
samples under two different scenarios: one with-
out a mask mandate (a = (0, 0, 0)) and the other
with a full mask mandate (a = (1, 1, 1)). In
the left panel, we observe that the distributions
under both policies appear remarkably similar,
suggesting that the mask mandate has a limited
impact on controlling the spread of the virus. In the right panel, we present counterfactual distributions
estimated using our method, revealing a noticeable disparity between the mask mandate and no mask
mandate scenarios. The mean of the distribution for the mask mandate is significantly lower than that
of the no-mask mandate. These findings indicate that implementing a mask mandate consistently
for three consecutive weeks can effectively reduce the number of future new cases. It aligns with
the understanding supported by health experts’ suggestions and various studies [69, 1, 22, 46, 73]
regarding the effectiveness of wearing masks. Finally, it is important to note that the implementa-
tion of full mask mandates exhibits a significantly higher variance compared to the absence of a
mask mandate. This implies that the impact of a mask mandate varies across different data points,
specifically counties in our study.

4 Conclusions
We have introduced a powerful conditional generative framework tailored to generate samples
that mirror counterfactual distributions in scenarios where treatments vary over time. Our model
approximates the true counterfactual distribution by minimizing the KL-divergence between the
true distribution and a proxy conditional distribution, approximated by generated samples. We
have showcased our framework’s superior performance against state-of-the-art methods in both
fully-synthetic and real experiments.

The generative nature of our framework enables various future downstream applications including un-
certainty quantification and can be enhanced by adopting cutting edge generative learning algorithms,
such as diffusion models. Additionally, our generative approach can be easily adapted to scenarios
with continuous treatments, where the conditional generator enables extrapolation between unseen
treatments under continuity assumptions.
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A Related work

Our work has connections to causal inference in time series, counterfactual density estimation, and
generative models. To our best knowledge, our work is the first to intersect the three aforementioned
areas. Below we review each of these areas independently.

Causal inference with time-varying treatments. Causal inference has historically been related to
longitudinal data. Classic approaches to analyzing time-varying treatment effects include the g-
computation formula, structural nested models, and marginal structural models [60, 51, 53, 57, 56, 15,
33]. These seminal works are typically based on parametric models with limited flexibility. Recent
advancements in machine learning have significantly accelerated progress in this area using flexible
statistical models [63, 10] and deep neural networks [34, 6, 4, 33, 65, 39, 17, 71] to capture the
complex temporal dependency of the outcome on treatment and covariate history. These approaches,
however, focus on predicting the mean counterfactual outcome instead of the distribution. The
performance of these methods also heavily relies on the specific structures (e.g., LSTMs) without
more flexible architectures.

Counterfactual distribution estimation. Recently, several approaches have emerged to estimate the en-
tire counterfactual distribution rather than the means, including estimating quantiles of the cumulative
distributional functions (CDFs) [11, 72], re-weighted kernel estimations [14], and semiparametric
methods [28]. In particular, [28] highlights the extra information afforded by estimating the entire
counterfactual distribution and using the distance between counterfactual densities as a measure of
causal effects. [40] uses normalizing flow to estimate the interventional density. However, these
methods are designed to work under static settings with no time-varying treatments [2], and are
explicit density estimation methods that may be difficult to scale to high-dimensional outcomes.
[33] proposes a deep framework based on G-computation which can be used to simulate outcome
trajectories on which one can estimate the counterfactual distribution. However, this framework
approximates the distribution via empirical estimation of the sample variance, which may be unable
to capture the complex variability of the (potentially high-dimensional) distributions. Our work,
on the other hand, approximates the counterfactual distribution with a generative model without
explicitly estimating its density. This will enable a wider range of application scenarios including
continuous treatments and can accommodate more intricate data structures in the high-dimensional
outcome settings.

Counterfactual generative model. Generative models, including a variety of deep network architec-
tures such as generative adversarial networks (GAN) and autoencoders, have been recently developed
to perform counterfactual prediction [20, 37, 75, 61, 44, 62, 70, 24, 32, 3, 18, 36, 50, 77, 48]. How-
ever, many of these approaches primarily focus on using representation learning to improve treatment
effect estimation rather than obtaining counterfactual samples or approximating counterfactual distri-
butions. For example, [75, 61] adopt deep generative models to improve the estimation of individual
treatment effects (ITEs) under static settings. Some of these approaches focus on exploring causal
relationships between components of an image [62, 70, 50]. Furthermore, there has been limited
exploration of applying generative models to time series settings in the existing literature. A few
attempts, including [37, 32], train autoencoders to estimate treatment effect using longitudinal data.
Nevertheless, these methods are not intended for drawing counterfactual samples. In sum, to the
best of our knowledge, our work is the first to use generative models to approximate counterfactual
distribution from data with time-varying treatments, a novel setting not addressed by prior works.

B Assumptions

The standard assumptions needed for identifying the treatment effects are [15, 34, 63]:

1. Consistency: If At = at for a given subject, then the counterfactual outcome for treatment, at, is
the same as the observed (factual) outcome: Y (at) = Y .

2. Positivity: If P{At−1 = at−1, Xt = xt} ≠ 0, then P{At = at|At−1 = at−1, Xt = xt} > 0 for
all at [25].

3. Sequential strong ignorability: Y (at) ⊥⊥ At|At−1 = at−1, Xt = xt, for all at and t.

Assumption 2 means that, for each timestep, each treatment has a non-zero probability of being
assigned. Assumption 3 (also called conditional exchangeability) means that there are no unmeasured

12



confounders, that is, all of the covariates affecting both the treatment assignment and the outcomes
are present in the the observational dataset. Note that while assumption 3 is standard across all
methods for estimating treatment effects, it is not testable in practice [49, 56].

C Proof of Lemma 1

Given a probability distribution for (Y,A,X) and a causal directed acyclic graph (DAG) shown in
Figure 7, we can factor f(Y,A,X) as

f(Y,A,X) = f
(
Y |A,X

) t∏
τ=t−d

f
(
Xτ |Aτ−1, Xτ−1

) t∏
τ=t−d

f
(
Aτ |Aτ−1, Xτ

)
. (7)

Using the definition of g-formula [54], we have

fa (y) =

∫
f
(
y|a,X

)
·

t∏
τ=t−d

f
(
Xτ |aτ−1, Xτ−1

)
dX

=

∫
f
(
y|a,X

)
·
∏t

τ=t−d f
(
aτ |aτ−1, Xτ

)∏t
τ=t−d f

(
aτ |aτ−1, Xτ

) · t∏
τ=t−d

f
(
Xτ |aτ−1, Xτ−1

)
dX

(i)
=

∫
1∏t

τ=t−d f
(
aτ |aτ−1, Xτ

)f (
y, a,X

)
dX

=

∫
1{A = a}∏t

τ=t−d f
(
Aτ |Aτ−1, Xτ

)f (
y,A,X

)
dAdX,

where the equation (i) holds due to (7).
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Figure 7: The causal directed acyclic graph (DAG) of the time-varying treatment.
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D Proof of Proposition 1

Note that the unstabilized weight is defined as w(A,X) = 1/
∏t

τ=t−d f
(
Aτ |Aτ−1, Xτ

)
. Using

Lemma 1, we have

E
y∼fa

log fθ(y|a) =
∫

log fθ(y|a)fa (y) dy

=

∫
log fθ(y|a)

∫
1{A = a}∏t

τ=t−d f
(
Aτ |Aτ−1, Xτ

)f (
y,A,X

)
dAdXdy

=

∫
log fθ(y|a)

∫
w(A,X)1{A = a}f

(
y,A,X

)
dAdXdy

=

∫
log fθ(y|a)

∫
w(a,X)f

(
y, a,X

)
dXdy

=

∫ ∫
log fθ(y|a)w(a,X)f

(
y, a,X

)
dXdy

=

∫ ∫
log fθ(y|a)w(a,X)f

(
y, a|X

)
f
(
X
)
dydX

(i)
=

∫
w(a,X)f

(
X
)

E
(y,a)

[log fθ(y|a)
∣∣X]dX

= E
X

[
E

(y,a)

[
w(a,X) log fθ(y|a)

∣∣X]]
(ii)
= E

(y,a,x)∼f
w(a, x) log fθ(y|a)

≈
∑

(y,a,x)∈D

w(a, x) log fθ(y|a),

where (i) follows from Fubini’s theorem and (ii) follows from the tower property of expectation.

E Connection to counterfactual density estimation

Plug-in density estimation Plug-in approaches have been commonly used to estimate the coun-
terfactual density in the static setting[7, 29, 28] and can be extended to our time-varying setting via
direct application of Lemma 1. However, this practice could be problematic when the sample size
is large as it requires averaging the entire observed dataset for each evaluation of y. Instead, we
circumvent this computational challenge by approximating the counterfactual density using a proxy
conditional distribution fθ(·|a) which is represented by a generative model, gθ(z, a).

Doubly-robust (semi) parametric density estimators Doubly-robust density estimators have
proven successful in directly estimating the counterfactual density in the static setting [28, 40]. Our
framework differs from these methods in three aspects:

1. To our best knowledge, there is a scarcity of unified theory for doubly-robust density approxi-
mation of potential outcomes in longitudinal settings. One may wish to extend our framework
to a doubly robust setting, and a common approach is to incorporate an estimator including
G-computation [52, 33] into the loss function. When Y is potentially high-dimensional, however,
correct estimation of the outcome model and the covariate density model in G-computation be-
come challenging. Therefore, we opt for the IPTW-based approach in proposition 1 as estimating
the propensity model is less challenging thanks to the 1-dimensional, binary values of At.

2. The direct density estimation approaches in [28, 40] use a separate density model to directly
approximate fθ(·|a) for each a, whereas our approach uses a generator, gθ(z, a) to approximate
the proxy conditional distribution fθ(·|a) under all a. This approach requires training only a
single model and has the potential to generalize to continuous treatments.

3. The framework in [40], when extended to the time-varying scenario using IPTW, requires
integrating the log-likelihood of the density model over both the observed samples and the
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outcome space Y (see (8)). In practice, this will require performing a Monte Carlo sampling of Y
for each gradient step to optimize (8), which can be prohibitive when Y is high-dimensional. Our
proposed loss function in Proposition 1, on the other hand, only requires computing the weighted
log-likelihood over observed samples which is easy to implement. Therefore, our Proposition 1
can be viewed as a novel reformulation of (8) that enhances the scalability of model training for
high-dimensional outcomes.

E
y∼fa

[− log fθ(y)] ≈
∫
y∈Y

log fθ(y)
∑

(y,a,x)∈D

wϕ(a, x)f(y, a, x)dY. (8)

F Derivation and implementation details of variational learning

Derivation of the proxy conditional distribution Now we present the derivation of the log
conditional probability density function (PDF) in (6). To begin with, it can be written as:

log fθ(y|a) = log

∫
pθ(y, z|a)dz,

where z is a latent random variable. This integral has no closed form and can be usually estimated by
Monte Carlo integration with importance sampling, i.e.,∫

pθ(y, z|a)dz = E
z∼q(·|y,a)

[
pθ(y, z|a)
q(z|y, a)

]
.

Here q(z|y, a) is the proposed variational distribution, where we can draw sample z from this
distribution given y and a. Therefore, by Jensen’s inequality, we can find the evidence lower bound
(ELBO) of the conditional PDF:

log fθ(y|a) = log E
z∼q(·|y,a)

[
pθ(y, z|a)
q(z|y, a)

]
≥ E

z∼q(·|y,a)

[
log

pθ(y, z|a)
q(z|y, a)

]
.

Using Bayes rule, the ELBO can be equivalently expressed as:

E
z∼q(·|y,a)

[
log

pθ(y, z|a)
q(z|y, a)

]
= E

z∼q(·|y,a)

[
log

pθ(y|z, a)pθ(z|a)
q(z|y, a)

]
= E

z∼q(·|y,a)

[
log

pθ(z|a)
q(z|y, a)

]
+ E

z∼q(·|y,a)
[log pθ(y|z, a)]

= −DKL(q(z|y, a)||pθ(z|a)) + E
z∼q(·|y,a)

[log pθ(y|z, a)] .

Implementation details For the KL-divergence term in the ELBO (6), both q(z|y, a) and pθ(z|a)
are often modeled as Gaussian distributions, which allows us to compute the KL divergence of Gaus-
sians with a closed-form expression. In practice, we introduce two additional generators, including
the encoder net gencode(ϵ, y, a) and the prior net gprior(ϵ, a), respectively, to represent q(z|y, a) and
pθ(z|a) as transformations of another random variable ϵ ∼ N (0, I) using reparameterization trick
[66]. A common choice is a simple factorized Gaussian encoder. For example, the approximate
posterior q(z|y, a) can be represented as:

q(z|y, a) = N (z;µ, diag(Σ)),

or

q(z|y, a) =
r∏

j=1

q(zj |y, a) =
r∏

j=1

N (zj ;µj , σ
2
j ).

The Gaussian parameters µ = (µj)j=1,...,r and diag(Σ) = (σ2
j )j=1,...,r can be obtained using

reparameterization trick via an encoder network ϕ:

(µ, log diag(Σ)) = ϕ(y, a),

z = µ+ σ ⊙ ϵ,
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Algorithm 1 Learning algorithm for the conditional generator θ

Input: Training set D data tuples: D = {(y(i)t , a
(i)
t , x

(i)
t )}t=d,...,T, i=1,...,N where T is the time

horizon and I is the total number of individuals; the number of the learning epoches E.
Initialization: model parameters θ and fitted ϕ̂ using D.
while e < E do

for each sampled batch Dk with size n do
1. Draw samples ϵ ∼ N (0, I) from noise distribution;
2. Compute the ELBO of log fθ(y|a) for (y, a, x) ∈ Dk given ϵ and θ according to (6);
3. Re-weight the ELBO for (y, a, x) ∈ Dk using wϕ̂(a, x) according to (5);
4. Update θ using stochastic gradient descent by maximizing (4).

end for
end while
return θ

where ϵ ∼ N (0, I) is another random variable and ⊙ is the element-wise product. Because both
q(z|yi, ai−1) and pθ(z|ai−1) are modeled as Gaussian distributions, the KL divergence can be
computed using a closed-form expression.

The log-likelihood of the second term can be implemented as the reconstruction loss and calculated
using generated samples. Maximizing the negative log-likelihood pθ(y|z, a) is equivalent to mini-
mizing the cross entropy between the distribution of an observed outcome y and the reconstructed
outcome ỹ generated by the generative model g given z and the history a.

We emphasize that our model is not tied to any specific type of generative models and learning
algorithms, and we use the variational learning framework for illustrative purposes.

G Additional experiment details

G.1 Baselines

Here we present an additional review of each baseline method in the paper as well as implementation
details.

Marginal structural model with a fully-connected neural network (MSM+NN) We include the
classic MSM+NN proposed in [57, 51]. This classical framework assumes that the counterfactual mean
of the outcome variable can be represented as a linear function of the treatments. We use this model
while replacing the linear model with a 3-layer fully-connected neural network, gmsm. This serves as
a deterministic baseline for our generative framework. We learn the MSM+NN using stochastic gradient
descent with a weighted loss function:∑

(y,a,x)∈D

wϕ(a, x)(y − gmsm(a))
2.

To establish a fair comparison, we train the MSM+NN using an identical training size to that of the
MSCVAE model. We train the MSM+NN for 1, 000 epochs with a learning rate of 0.01. However, it’s
important to note that in this particular setup, our capacity is limited to estimating the mean instead
of the entire distribution. For computing the Wasserstein distance in the full-synthetic experiments,
we treat the MSCVAE samples as coming from a degenerate distribution at its predicted value.

Conditional variational autoencoder (CVAE) To examine the impact of Inverse Probability of
Treatment Weighting (IPTW) on training generative models, we include a vanilla conditional varia-
tional autoencoder (CVAE) with an architecture identical to that of the MSCVAE, but excluding IPTW
weighting. The CVAE is a widely-used type of conditional generative model that has found applications
in various tasks, including image generation [42, 67], neural machine translation [47], and molecular
design [35]. To train the CVAE, we follow the same procedure as MSCVAE, with the exception that we
replace the loss function with the unweighted version of (4).∑

(y,a,x)∈D

log fθ(y|a),
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where fθ(·) is the conditional distribution represented by the CVAE.

Kernel density estimator (KDE) We use a Gaussian kernel density estimator [59] to estimate the
empirical conditional distribution from the observed data. This is achieved by running KDE on the
observed outcomes with the same treatments, i.e.,

fa ≈ gkde(y|A = a),

where gkde(·) is the KDE estimator. We learn the KDE with bandwidth set to 0.5, 1, 1.5, and 2,
respectively, and report the metrics with bandwidth = 0.5 as the optimal results.

Semi-parametric Plug-in method based on pseudo-population (Plugin+KDE) We include a
baseline using Lemma 1 as a plugin estimator by following the semi-parametric KDE approach in
[40]. Specifically, we rewrite Lemma 1 as:

fa (y) ≈
∑

(y,a,x)∈D

1{A = a}wϕ(a, x)f
(
y,A, x

)
.

To estimate the right-hand side of the equation, we performed KDE on y|A = a where each sample
tuple (y, a, x) is weighted by its IPTW, wϕ(a, x), for each A = a separately. The bandwidth is set to
be the same as in KDE.

G-Net (G-Net) We implement G-net proposed in [33] based on G-computation. For our exper-
iment setting, at each time step t ∈ [T ], we designed the conditional covariates block, the history
representation block, and the final conditional outcome block as a 3-layer fully connected neural
network respectively. The types of blocks are interconnected to form sequential net structures across
different time steps, followed by a conditional outcome block at the end, which has a 2-layer structure.
This makes the G-net model include a total of (2× d) + 1 blocks. The loss function is the sum of
the mean squared error: ∑

(x,y)∈D

(x̂− x)2 + (ŷ − y)2,

where x̂ and x are the predicted and groundtruth covariate history, while ŷ and y are the predicted
and groundtruth outcome. Following the original literature, we impose a Gaussian parametric
assumption over the underlying counterfactual distribution, and introduce prediction variability by
adding Gaussian noise whose variance is empirically estimated from the residuals between the
predicted and groundtruth outcomes.

G.2 Experiment metrics

To quantify the quality of the approximated counterfactual distributions, we used the following
metrics:

Mean This is the difference between the empirical mean of the evaluated samples.

1-Wasserstein Distance We used the earth mover’s distance, which is defined as:

l1(u, v) = inf
π∈Γ(u,v)

∫
Ω×Ω

|x− y|dπ(x, y),

where Γ(u, v) is the joint probability distributions for the groundtruth and learned counterfactual
distributions, and Ω is the space of each distribution.

FID* Both semi-synthetic datasets have high-dimensional outcomes, making comparisons using
the mean or Wasserstein distance of the distributions less interpretable. A common approach in
the generative model community is FID (Fréchet inception distance ). In summary, FID uses a
pre-trained neural network (frequently the inception v3 model) to obtain a feature vector for each
sample, generated for groundtruth. The feature vector is the activation of the last pooling layer
prior to the output layer of the pre-trained network. The feature vectors are then summarized as
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multivariate Gaussians by computing their mean and covariances. The distance between the generated
or groundtruth image distribution is then computed by calculating the 2-Wasserstein distance between
two sets of Gaussians. A lower FID score represents a more realistic distribution for the generated
images.

Since FID is not specifically designed for our TV-MNIST and semi-synthetic COVID-19 datasets, we
propose to use FID* by following a similar idea of FID. For the semi-synthetic COVID-19 dataset, we
first compute a PCA projection matrix of size 67×2 using samples from the counterfactual distribution
under each treatment. The projection serves as the purpose of the pre-trained network in the original
FID because it captures key information, including spatial correlation, of the 67-dimensional outcome
variables. For each treatment combination, we then project the 67-dimensional samples into the
2-dimensional representational space using the PCA projection matrix and compute the 1-Wasserstein
distance of the projection between the generated and counterfactual samples. A lower FID* score
represents the generated samples have a similar distribution compared to the counterfactual ones.

For the TV-MNIST dataset, we use a 3-layer fully-connected neural network pre-trained to classify
MNIST images. This network serves as the purpose of the pre-trained network in the original FID
because it represents the semantic information (the digit label) of the 784-dimensional outcome
variables. For each treatment combination, we then project the 784-dimensional samples into a
1-dimensional label space using the pre-trained MNIST classifier and compute the 1-Wasserstein
distance of the projection between the generated and counterfactual samples. A lower FID* score
represents the generated samples have a similar semantic distribution (in terms of the digit labels)
compared to the counterfactual ones.

G.3 Experiment set-up

Experiment set-up To learn the model parameter θ, we use stochastic gradient descent to maximize
the weighted log-likelihood (4). We adopt an Adam optimizer [30] with a learning rate of 10−3 and
a batch size of 256. To ensure learning stability, we follow a commonly-used practice [74, 34] that
involves truncating the subject-specific IPTW weights at the 0.01-th and 99.99-th percentiles and
normalizing them by their mean. All experiments are performed on Jupyter Notebook with 16GB
RAM and a 2.6 GHz 6-Core Intel Core i7 CPU.

The counterfactual generator gθ, the IPTW wϕ, and the encoder network gencode share the same two-
layer fully-connected network architecture with ReLU activation. The layer width is set to 1, 000, and
the length of the latent variable z is set to r which is determined by the specific synthetic experiment
setting: r = 5 for d = 1 and d = 3, r = 10 for d = 5 and all the semi-synthetic and real data.
For gencode, the fully-connected networks map the d+ 1 dimensional input vector (consisting of a d-
dimensional treatment and 1-dimensional response) to the r-dimensional latent representation. For gθ,
the fully-connected networks map the r + d dimensional input vector (consisting of a d-dimensional
treatment and r-random noise) to the 1-dimensional generated counterfactual outcome. For wϕ,
the fully-connected networks map the 2d-dimensional input vector (consisting of a d-dimensional
treatment and d-dimensional covariate) to the 1-dimensional conditional probability. We use a
Sigmoid output layer for wϕ to ensure the output falls within [0, 1]. We set the batch size to 256
and the number of training epochs to 200 for training all the models in both synthetic and real data
settings. The learning rate was set to 10−3 with a linear step-wise learning rate scheduler (Pytorch
learning rate scheduler function StepLR) to ensure stable convergence of the learning process.

G.4 Fully Synthetic data

In this section, we provide an overview of the procedures for generating synthetic data. Our goal is to
evaluate the performance of the proposed MSCVAE method and compare it to baseline approaches in
the context of time-varying treatments. We follow the classic setting in [55] and simulate time series
data with time-varying treatments and covariates. The presence of the time-varying confounders
serves as an appropriate testbed for comparing MSM-based models to the baselines. To be specific,
we generate three synthetic datasets with varying levels of historical dependence denoted as d. Each
dataset consists of 10,000 trajectories, which represent recorded observations of individual subjects.
These trajectories comprise 100 data tuples, encompassing treatment, covariate, and outcome values
at specific time points. The causal relationships between these variables are visually depicted in
Figure 7. For each time trajectory of length T , the datasets are generated based on the following
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Table 2: Coefficients of the linear model in synthetic data generation
α β γ

d = 1 (−3, 2,−1) (−0.5, 0.5, 0.5,−0.5) (0, 1,−1)
d = 3 (−1, 12, 6, 3, 2, 1, 0.5) (−0.5, 0.5,−0.5, 0.5, 0.5,−0.5, 0.5,−0.5) (−1, 1.5, 1, 0.5,−1.5,−1,−0.5)
d = 5 (−1, 12, 6, 3, 1, 0.5, 2, 1, 0.5, 0.1, 0.05) (−0.5, 0.5,−0.5, 0.5,−0.5, 0.5, 0.5,−0.5, 0.5,−0.5, 0.5,−0.5) (−1, 1.5, 1, 0.5, 0.1, 0.05,−1.5,−1,−0.5,−0.1,−0.05)

Algorithm 2 Algorithm for obtaining a counterfactual sample
Input: Generated trajectory of a single subject: {(Yt, Xt, At)}t=1,··· ,T .
Initialization: Given the treatment history AT = a.
for τ = T − d+ 1 : T do

1. Generate the covariate xτ based on Aτ−1 and Xτ−1 according to (10).
2. Update the covariate Xτ ← xτ .

end for
Generate Y (a) based on AT and XT according to (12).
return Y (a)

equations:

X0 ∼ uniform(0, 1), (9)

Xt = γ0 +

t−1∑
τ=t−d

γt−τAτ +

t−1∑
τ=t−d

γd+t−τXτ , (10)

P{At = 1} = σ(β0 +

t−1∑
τ=t−d

βt−τAτ +

t∑
τ=t−d

βd+t−τXτ ), (11)

Yt = α0 +

t−1∑
τ=t−d

αt−τAt +

t−1∑
τ=t−d

αd+t−τXτ + ϵ, (12)

where ϵ ∼ N (0, 0.05) is the observation noise and σ(·) is a Sigmoid function. The specific coef-
ficients are set according to the values in Table 2 to ensure the generation of valid synthetic data
distributions with diversity:

Adjusting β0 will change the balance of the treatment combinations: when keeping the remaining β
coefficients, treatment variables a, and covariates x unchanged, a smaller value of β0 reduces the
probability of treatment exposure, i.e., P(At = 1). Consequently, this lower probability of treatment
exposure results in a decrease in the occurrence of treatment combinations with exposures, leading to
an imbalanced ratio among different treatment combinations. In Figure. 4, we set β0 = −0.5 which
results in an approximated balanced number of samples per treatment combination. In Appendix H,
we include a figure by setting β0 = −2, as a visualization of imbalanced treatment combinations.

To ensure the validity of our synthetic data generation process, we verify that the three assumptions
outlined in Appendix B are satisfied. Assumptions 1 and 3 are naturally met because the ground truth
model guarantees that the counterfactual outcome equals the observed outcome and that there are no
unmeasured confounders. As for assumption 2, since the conditional probability of treatment is the
Sigmoid function applied to a finite linear combination of historical treatments and covariates, it will
always be positive.

Once the synthetic data is generated, we obtain counterfactual distributions to assess the performance
of our proposed method. Specifically, we use the synthetic data to obtain samples from the coun-
terfactual outcome distribution, Y (a), for any given treatment combination a. This is achieved by
iteratively fixing the treatment sequence in the time series and generating the covariates and response
variables according to equations (10) and (12) for each of the 10, 000 trajectories. The detailed
procedure for obtaining a single counterfactual outcome sample is summarized in Algorithm 2.

G.5 Semi-synthetic time-varying MNIST data

We provide a benchmark based on the MNIST dataset. Specifically, the outcomes are MNIST images
(m = 784). First, we compute a one-dimensional summary, the ϕ score [27], using each MNIST
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Table 3: Real data description
Name Description Min Max Mean Median Std
Y county-wise incremental new cases count ( log10) 0 1.15× 10−1 2× 10−3 1× 10−3 2.7× 10−3

A county-wise mask mandate 0 1× 100 5.35× 10−1 1× 100 4.99× 10−1

X(0) county-wise incremental death cases count ( log10) 0 3.12× 10−3 3× 10−4 0 9× 10−5

X(1) county-wise average retail and recreation −5.45× 101 2.23× 101 −4.27× 100 −3.33× 100 6.16× 100

X(2) county-wise symptom value 0 3.23× 101 9.3× 10−1 8.1× 10−1 5.1× 10−1

a =(0)

a =(1)
fa

Y (a)

True

MSM

G-Net

Plugin+KDE

CVAE

MSCVAE

Figure 8: The estimated and true counterfactual distributions for d = 1 on synthetic datasets.

image. The ϕ value of an image depends on its average light intensity and its digit label. We refer the
readers to [27] for the details on computing ϕ. Here we set the length of history dependence, d, to 3.
We then define a linear model of 1-dimensional latent process to G.4 and simulate 1, 000 trajectories
of the (X,A, Y ) tuples of 100 time points according to the following equations:

X0 ∼ uniform(0, 1), (13)

Xt = γ0 +

t−1∑
τ=t−2

γt−τAτ +

t−1∑
τ=t−2

γt−τ+3Xτ , (14)

P{At = 1} = σ(β0 +

t−1∑
τ=t−2

βt−τAτ +

t∑
τ=t−2

βt−τ+3Xτ ), (15)

ϕt = 0.5

⌈
10σ(α0 +

t−1∑
τ=t−3

αt−τAt +

t−1∑
τ=t−3

αt−τ+3Xτ )− 0.6

⌉
, (16)

Yt ∼ {MNIST(i) : i = argmin |ϕi − ϕt|}, (17)

where σ(·) is a Sigmoid function, ⌈·⌉ is the ceiling function, and MNIST(i) represents the MNIST
image indexed by i. The coefficients are set according to Table 2 to ensure the generation of diverse
data distributions. We generate the counterfactual samples according to Algorithm 2 by replacing
the corresponding propensity and outcome models with the formulations above. The generated
observations and counterfactual samples under the same treatment combinations may correspond
to MNIST images of different labels. This way we can qualitatively assess the performance of an
algorithm by comparing the labels of the MNIST images it generates against the counterfactual
samples, as in as in Figure. 5a.
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Figure 9: The estimated and true counterfactual distributions for d = 5 on synthetic datasets.

G.6 COVID-19 data

Since both the semi-synthetic Pennsylvania COVID-19 mask data and the real nationwide COVID-19
mask datasets are based on the same set of aggregated sources. We first introduce the data sources
and then include the details of each dataset respectively.

The real data used in this study comprises COVID-19-related demographic statistics collected from
3, 219 counties across 56 states/affiliated regions of the United States. The data covers a time period
from 2020 to 2022. We obtained the data from reputable sources including the U.S. Census Bureau
[9], the Center for Disease Control and Prevention [16], Google [19], the CMU DELPHI group’s
Facebook survey [21], and the New York Times [68]. To capture a relevant time window for analysis,
we set the history dependence length d to 3, as most COVID-19 symptoms tend to subside within this
timeframe [38].

In our analysis, the treatment variable A is the state-wise mask mandate indicator variable. A value of
0 indicates no mask mandate, while a value of 1 indicates the enforcement of a mask mandate. Notably,
we observe a pattern in the data where mask mandates are typically implemented simultaneously
across all counties within a state. This synchronization justifies the use of the state-wise mask mandate
count as the treatment variable. As for the covariates X , we choose the county-wise incremental death
count, state-wise the average retail and recreation metric (representing changes in mobility levels
compared to a baseline, which can be negative), the state-wise symptom value, and the state-wise
vaccine dosage.

Pennsylvania COVID-19 mask mandate data For the semi-synthetic dataset, we specifically look
at the data within the state of Pennsylvania because of its long records spanning 106 weeks from 2020
to 2021. We set the four state-level covariates (per 100K people): the number of deaths, the average
retail and recreation mobility, the surveyed COVID-19 symptoms, and the number of administered
COVID-19 vaccine doses. We set the county-level incremental death count to the state level by
computing a state average. We set the state-level mask mandate policy as the treatment variable,
and the county-level number of new COVID-19 cases (per 100K) as the outcome variable, resulting
in m = 67 since there are 67 counties in the state of Pennsylvania. We simulate 2, 000 trajectories
of the (X,A, Y ) tuples of 300 time points (each point corresponding to a week) according to the
following formula:

21



a =(0)

a =(1)
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CVAE
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(a) d = 1

a =(0,0,0) a =(0,0,1) a =(0,1,0) a =(0,1,1)

a =(1,0,0) a =(1,0,1) a =(1,1,0) a =(1,1,1)
fa

Y (a)

(b) d = 3

a =(0,0,0,0,0) a =(0,0,0,0,1) a =(0,0,0,1,0) a =(0,0,0,1,1) a =(0,0,1,0,0) a =(0,0,1,0,1) a =(0,0,1,1,0) a =(0,0,1,1,1)

a =(0,1,0,0,0) a =(0,1,0,0,1) a =(0,1,0,1,0) a =(0,1,0,1,1) a =(0,1,1,0,0) a =(0,1,1,0,1) a =(0,1,1,1,0) a =(0,1,1,1,1)

a =(1,0,0,0,0) a =(1,0,0,0,1) a =(1,0,0,1,0) a =(1,0,0,1,1) a =(1,0,1,0,0) a =(1,0,1,0,1) a =(1,0,1,1,0) a =(1,0,1,1,1)

a =(1,1,0,0,0) a =(1,1,0,0,1) a =(1,1,0,1,0) a =(1,1,0,1,1) a =(1,1,1,0,0) a =(1,1,1,0,1) a =(1,1,1,1,0) a =(1,1,1,1,1)

fa

Y (a)

(c) d = 5

Figure 10: The estimated and true counterfactual distributions across various lengths of history
dependence (d = 1, 3, 5) on synthetic datasets with imbalanced proportions of different treatment
(β0 = −2). Each sub-panel provides a comparison for a specific treatment combination a. We
exclude KDE and G-Net for illustrative purposes.

X0 ∼ Real-World(·), (18)

Xt = P̂(Xt|At, Xt), (19)

P{At = 1} = σ(β0 +

t∑
τ=t−2

βt−τAτ +

t∑
τ=t−2

βt−τ+3Xτ ), (20)

Y base
t = −0.2At−2 − 0.15At−1 − 0.1At + 0.45 + ϵ, (21)

P(Lt = 1) = Bernoulli(
4∏

j=1

Xτ (j)), (22)

Yt(s) = Y base
t +

{
log(N (s, µ = [40.009,−75.133]T ,Σ = I)); if Lt = 1,

log(N (s, µ = [40.470,−79.980]T ,Σ = I)); otherwise.
, (23)
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where P̂(·) is learned with a 2-layer fully-connected neural network using the real data, ϵ ∼
N (0, 0.001) is the observation noise, s is the 2-dimensional coordinate of a entry (county) in Yt, σ(·)
is a Sigmoid function. All other coefficients are set according to Table 2 to ensure the generation
of diverse data distributions. We generate the counterfactual samples according to Algorithm 2
by replacing the corresponding outcome models with the formulations above. In summary, the
hotspot (mode of the Yt vector) is either Philadelphia (Lt = 1) or Pittsburgh (Lt = 0), where the
probability depends on the covariates Xt. The values in the entries of Yt follow the log-likelihood
of a 2-dimensional isotropic Gaussian centered at the hotspot. As a result, the counterfactual and
observed distributions will be bimodally distributed with different hotspot probabilities. We can then
visually assess the performance of the models by comparing the distribution of the hotspot from the
generated outcome samples to those of the counterfactual samples, as in Figure. 5b.

Nationwide COVID-19 Mask data We perform a case study using real data by looking at the
aggregated COVID-19 data sources from 2020 to 2021 spanning 49 weeks due to the limited
availability of the nationwide data. We exclude 89 counties with zero incremental new cases count.
These counties either do not have a significant amount of infectious cases or have small populations,
leading to 3, 130 counties across 56 states/affiliated regions of the United States. For variables that
only have state-level records, we map them to the county level for simplicity.

We analyze the same set of variables as the semi-synthetic COVID-19 dataset but exclude the vaccine
dosage covariate because of missing data in some states. To align the outcome variable with the
covariates and treatment, we set it to measure one week after these variables. Due to the long-tailed
distribution of the outcome variable, we apply a base-10 logarithmic transformation during the
modeling process. Further details regarding the variables can be found in Table 3. We use the
same model architecture described in Appendix G.3 to train the IPTW network and the MSCVAE. We
generate counterfactual outcomes for treatment combinations a = (0, 0, 0) and a = (1, 1, 1). Since
other treatment combinations occur rarely (less than 5% of observations), we exclude them from the
final results.

H Additional synthetic results

In the main paper, we presented a visual comparison of the learned counterfactual distributions and
the true counterfactual distribution for various scenarios (d = 1, 3), as shown in Figure 4. Here,
in Figure 9 we show the case for d = 5. We also provide a similar comparison while setting
β0 = −2 (as opposed to β0 = −0.5,) where the treatment combinations are imbalancedly distributed
(Figure 10). Consistent with the findings in Figure 4, our results in Figures 9 and 10 demonstrate
the superior performance of the MSCVAE model (represented by the orange shading) in accurately
capturing the shape of the true counterfactual distributions (represented by the black line) across all
scenarios. This observation further validates the quantitative comparisons presented in Table 1, where
MSCVAE achieves the smallest mean and Wasserstein distance among all baseline methods. These
results highlight that our algorithm attains competitive performance even when certain treatment
combinations occur less frequently compared to others. This situation is common in real-life scenarios
where certain treatment combinations are favored due to factors such as policy inertia.
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