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Abstract
Argument mining (AM) involves the identi-001
fication of argument relations (AR) between002
Argumentative Discourse Units (ADUs). The003
essence of ARs among ADUs is context-004
dependent and lies in maintaining a coher-005
ent flow of ideas, often centered around the006
relations between discussed entities, topics,007
themes or concepts. However, these rela-008
tions are not always explicitly stated; rather,009
inferred from implicit chains of reasoning010
connecting the concepts addressed in the011
ADUs. While humans can infer such back-012
ground knowledge, machines face challenges013
when the contextual cues are not explicitly014
provided. This paper leverages external re-015
sources, including WordNet, ConceptNet, and016
Wikipedia to identify semantic paths (knowl-017
edge paths) connecting the concepts discussed018
in the ADUs to obtain the implicit chains of019
reasoning. To effectively leverage these paths020
for AR prediction, we propose attention-based021
Multi-Network architectures. Various configu-022
rations of the architecture are evaluated on the023
external resources, and the configuration us-024
ing Wikipedia achieves a new state-of-the-art025
performance with F-scores of 0.85, 0.84, 0.70,026
and 87, respectively, on four diverse datasets.027

1 Introduction028

Argument mining involves identifying the argu-029

mentative structure within a text. It includes030

segmenting arguments into Argumentative Dis-031

course Units (ADUs) (Peldszus and Stede, 2015a),032

distinguishing argumentative units from non-033

argumentative ones, classifying ADUs, labeling034

argument relation (AR) between ADUs, and iden-035

tifying argument schemes (Persing and Ng, 2016;036

Stab and Gurevych, 2017; Lawrence and Reed,037

2020). This study focuses on classifying the AR038

between ADUs into three categories: Inference039

(RA) (when one ADU supports the other), Conflict040

(CA) (when one ADU attacks the other), and None041

(when there is no AR).042

The nature of AR is inherently context- 043

dependent (Potash et al., 2017; Habernal et al., 044

2017; Choi and Lee, 2018; Rinott et al., 2015), 045

relying on maintaining a coherent flow of inter- 046

connected ideas. This cohesion is often centered 047

around the connections between the discussed en- 048

tities, topics, themes or concepts, commonly re- 049

ferred to as Local coherence (Foltz et al., 1998; 050

Marcu, 2000). Local coherence facilitates smooth 051

idea transitions between ADUs by recognising in- 052

herent regularities in entity distribution. Similarly, 053

other entity-based theories of discourse (Givón, 054

1987; Prince, 1981) and Centering Theory (Grosz 055

et al., 1995) propose that these regularities con- 056

tribute to the coherence of discourse by guiding 057

the organisation of ideas around salient entities. 058

Following a similar framework, aspect-based argu- 059

ment mining techniques use the relationships be- 060

tween the concepts discussed in ADUs, to identify 061

argument structures (Misra et al., 2017; Dragoni 062

et al., 2018; Gemechu and Reed, 2019; Trautmann, 063

2020). Yet, the contexts required to link these con- 064

cepts are not always explicit and are often inferred 065

from background knowledge. 066

Pre-trained large language models (LLMs) have 067

transformed NLP, moving from traditional feature 068

engineering to data-driven approaches. Studies in- 069

dicate that these models implicitly capture various 070

types of knowledge, including relational, common- 071

sense, and structural linguistic knowledge, within 072

their parameters (Petroni et al., 2019; Goldberg, 073

2019; Safavi and Koutra, 2021; AlKhamissi et al., 074

2022). While excelling in various NLP tasks, their 075

ability to encode the necessary background knowl- 076

edge for identifying ARs remains uncertain (Kass- 077

ner and Schütze, 2019). For example, Polu et al. 078

(2022) revealed their limitations in chaining multi- 079

ple steps of complex logical reasoning, while Mer- 080

rill et al. (2021) demonstrated they fail to compre- 081

hend the semantics behind commonsense reason- 082

ing tasks. This limitation is critical in AR iden- 083
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tification, as linking ADUs relies on the implicit084

chain of reasoning, often inferred from the chain085

of relations between the concepts discussed in the086

ADUs. This highlights the need for supplementary087

contextual information from external sources to088

establish these connections.089

Consider the ADUs from the 2016 presidential090

election debate corpus (Visser et al., 2019) in Table091

1. Identifying the AR between (1) and (2) relies092

on recognising the relationship between “NAFTA093

agreement” and “USA”, whereas for (4) and (5), it094

requires understanding “building electric grid” is095

an “economic activity”. While these connections096

are straightforward for human experts, computers097

face challenges as such interconnections are often098

implicitly inferred. For example, the AR between099

(3) and (4) is direct as the relation between the100

concepts mentioned in the respective ADUs can101

be obtained from an ontology (Miller, 1995; Speer102

et al., 2017) (“Electric grid; grid” is directly related103

to “power; electrical power” in WordNet (Miller,104

1995)) or by comparing their embeddings (Pilehvar105

et al., 2013; Le and Mikolov, 2014; Reimers and106

Gurevych, 2019). However, identifying the AR107

between (4) and (5) is challenging since the path108

linking “electric grid” to “economic activity” is109

missing in existing knowledge resources includ-110

ing WordNet (Miller, 1995) or ConceptNet (Speer111

et al., 2017) or DBpedia1. However, the concepts112

are indirectly linked in Wikipedia through a chain113

of concepts interlinked using a set of semantic re-114

lation types: “economic activity” involves “innova-115

tion” which constitutes developing “clean energy”116

transmitted by “electric grid”. This study aims to117

identify and leverage the chain of such semantic118

relations between the concepts, to capture implicit119

referential information between ADUs (Asher and120

Lascarides, 2003) and use it for AR prediction.121

No ADUs
1 [USA]C [is in deep trouble]OC

2 [NAFTA agreement]C [is defective]OC

3 [We]C [can have]OC [clean energy]A
4 [We]C [can build]OC a new modern [electric grid]A
5 [This]C [is a lot of]OC new [economic activity]A

Table 1: Examples from 2016 presidential election de-
bate corpus (Visser et al., 2019) to illustrate the rela-
tion between the functional components of ADUs. C
represents the theme of the sentence, A represents the
aspects specialising the theme, while the opinion on C
is represented by OC.

1https://wiki.dbpedia.org/

Leveraging knowledge from external resources 122

has been shown to improve performance in AM 123

(Kobbe et al., 2019; Botschen et al., 2018; Fromm 124

et al., 2019; Plenz et al., 2023) and related tasks, 125

such as semantic plausibility (Wang et al., 2018), 126

identifying inferences (Chen et al., 2017), and de- 127

termining entailment (Glockner et al., 2018). How- 128

ever, existing studies on AR prediction exclusively 129

utilise structured knowledge bases and overlook 130

semi-structured resources like Wikipedia, which 131

contains over 6,805,837 articles (as of April 1, 132

2024), offering richer connections through hyper- 133

links embedded within articles. Moreover, these 134

methods rely on entities, events, and factual infor- 135

mation sourced from structured databases, limiting 136

their applicability to specific domains. In contrast, 137

using generic semantic relation types that encode 138

AR ensures adaptability across domains (refer to 139

Table 7 for examples of such relation types). Fur- 140

thermore, they lack effective method for integrat- 141

ing the external information into model architec- 142

tures, relying instead on conventional feature en- 143

gineering techniques. For instance, Kobbe et al. 144

(2019) leverage features derived from graph rep- 145

resentations of the resources, including the inter- 146

concept distances within the graph. Similarly, 147

Plenz et al. (2023) employ semantic similarity to 148

determine the relevance of external knowledge, in 149

conjunction with traditional features derived from 150

the graph representation of the resources. 151

In this paper, we propose traversing Wikipedia, 152

WordNet, and ConceptNet to find semantic paths 153

linking concepts mentioned in ADU pairs. ARs 154

between ADUs are identified by leveraging these 155

paths using attention-based Multi-Network archi- 156

tectures. To establish a benchmark, we evaluate 157

LLMs across various configurations, comparing 158

the knowledge obtained from external resources 159

with that inherent in LLMs. The evaluation demon- 160

strated that integrating external resources consis- 161

tently enhances performance, achieving new state- 162

of-the-art results. Additionally, we assess the ef- 163

fectiveness of the attention-based Multi-Network 164

architecture in leveraging external knowledge, con- 165

sistently demonstrating its superiority over the stan- 166

dard linear classification baseline. The contribution 167

of this paper is four-fold: (a) the utilisation of both 168

structured and semi-structured external resources 169

for AR prediction, (b) architecture for effectively 170

leveraging external knowledge, (c) features adapt- 171

able across domains, and (d) the state-of-the-art 172

performance. 173
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2 Related Works174

In the literature, AM has been approached using175

various configurations, including dependency pars-176

ing (Peldszus and Stede, 2015b), discourse parsing177

(Muller et al., 2012), sequence tagging (Eger et al.,178

2017; Mayer et al., 2020), and sequence classifi-179

cation configurations (Reimers et al., 2019; Ruiz-180

Dolz et al., 2021; Mayer et al., 2020). Various181

works tackle specific AM tasks. Some focus ex-182

clusively on argument segmentation (Chernodub183

et al., 2019; Ajjour et al., 2017), while others start184

with segmented data and focus solely on AR iden-185

tification (Potash et al., 2016; Gemechu and Reed,186

2019; Ruiz-Dolz et al., 2021). Potash et al. (2016)187

train an encoder-decoder (Sutskever et al., 2014)188

with attention mechanism (Bahdanau et al., 2014)189

to identify AR. Gemechu and Reed (2019) decom-190

pose ADUs into fine-grained components and use191

classifiers to predict AR based on the relations be-192

tween these components. Chakrabarty et al. (2020)193

identify argument components and ARs within194

both inter-turn and intra-turn interactions in dia-195

logues. They classify ARs as a binary prediction,196

determining only the presence of a relation without197

specifying its type. Their findings indicate that us-198

ing distant-labeled data and integrating discourse199

relations from Rhetorical Structure Theory (Mann200

and Thompson, 1988) improve performance.201

End-to-end AM approaches address multiple202

AM tasks, simultaneously. Persing and Ng (2016)203

and Stab and Gurevych (2017) adopt a pipeline204

architecture and train separate models for each205

subtask to then utilise an Integer Linear Program-206

ming (ILP) model to encode global constraints.207

Eger et al. (2017) propose a neural end-to-end ap-208

proach, framing the task in various configurations209

including dependency parsing and token-based se-210

quence tagging. They also employ a multi-task211

setup to leverage the dependencies between AM212

tasks, including component identification and AR213

prediction. Their best-performing configuration214

achieves an F1-score of 0.51 for AR identification215

on the AAEC dataset. Peldszus and Stede (2016)216

aim to map RST trees to argumentation structures217

(Taboada and Mann, 2006) using sub-graph match-218

ing and an evidence graph model. They evaluate219

various features of their system on the AMT dataset220

and achieve an overall F-measure of 0.76 in iden-221

tifying ARs. Similarly, Morio et al. (2022) intro-222

duce an end-to-end cross-corpus training strategy223

that facilitate information transfer between datasets.224

Mayer et al. (2020) address argument component 225

and relation identification on a dataset comprising 226

various disease treatments. The approach involves 227

combining static and dynamic embeddings using 228

various configurations of RNN and CRFs. They 229

demonstrate the efficacy of specialised LLMs like 230

SciBERT (Beltagy et al., 2019), highlighting their 231

relevance in medical domain adaptations. How- 232

ever, most of these works rely on the information 233

explicitly provided in the argument alone. 234

Recent AM works fine-tuned LLMs in sequence 235

classification fashion (Reimers et al., 2019; Ruiz- 236

Dolz et al., 2021). Studies show that such LLMs 237

implicitly capture relational, commonsense, and 238

structural linguistic knowledge (Petroni et al., 239

2019; Goldberg, 2019; Safavi and Koutra, 2021; 240

AlKhamissi et al., 2022). Despite their significant 241

performance, the ability of LLMs to encode the 242

requisite background knowledge for identifying 243

ARs remains uncertain, raising concerns about re- 244

lying solely on LLMs for this task (Kassner and 245

Schütze, 2019). For instance, Polu et al. (2022) 246

exposed their limitations in complex logical rea- 247

soning, while Merrill et al. (2021) showed they 248

struggle in comprehending the semantics of com- 249

monsense reasoning tasks. 250

The works most related to ours are those of 251

Kobbe et al. (2019) and Plenz et al. (2023), as 252

they also leverage external knowledge bases to 253

identify AR. However, their methodologies dif- 254

fer significantly from ours. Firstly, they rely on 255

structured knowledge bases with predefined rela- 256

tion types, while we also use semi-structured re- 257

sources like Wikipedia that cover diverse relations. 258

Furthermore, they struggle to effectively integrate 259

external information into model architectures, re- 260

lying instead on conventional feature engineering 261

techniques that exploit structural features obtained 262

from sub-graph extracted from external knowledge 263

bases. For instance, Kobbe et al. (2019) use fea- 264

tures like the frequency of relations existing be- 265

tween ADUs. Similarly, Plenz et al. (2023) lever- 266

age the similarity between external knowledge and 267

ADUs to identify relevant sub-knowledge graphs 268

and exploit the sub-graph to extract categorical 269

features, such as the number of shared concepts 270

between ADU pairs and the path lengths between 271

the concepts. Additionally, the formalisation of 272

the “concepts” used for alignment with external 273

resources is vague, relying on arbitrary entity men- 274

tioned in the ADUs. Moreover, their approach for 275

AR identification has not been evaluated. 276
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3 Methodology277

3.1 Data278

We use four corpora. The first is AAEC (Stab and279

Gurevych, 2017) which has a total of 402 argu-280

ments. ADUs under each argument are labelled281

as premise, claim or major claim. It has 147,271282

tokens, 6,089 ADUs and 5335 ARs (4841 support283

and 497 attack).284

The second corpus is the Argumentative Micro285

Text (AMT) (Peldszus and Stede, 2013) which is a286

collection of 112 short texts collected from human287

subjects in German translated into English. It is288

annotated following the argumentation structure289

outlined by MicroTextAnnotation. The structure290

consists of a central claim, and supporting ADUs.291

It has a total of 8007 tokens, 576 ADUs and 443292

ARs (272 support and 171 attack).293

The third corpus is part of the US 2016 presi-294

dential election debate corpus (US2016) (Visser295

et al., 2019) which is annotated based on Inference296

Anchoring Theory (IAT) (Budzynska and Reed,297

2011). Argument components are referred to as298

propositions, with the relations between them an-299

notated as default inference for support and default300

conflict for attack. The corpus has a total of 15805301

tokens, 1473 ADUs and 584 ARs (505 support and302

79 attack).303

The fourth corpus is the AbstRCT corpus304

(Mayer et al., 2020) which consists of abstracts305

extracted from the MEDLINE database. Argument306

componenets are categorised into major claim,307

claim, and evidence components, and the relations308

between them are categorised into support, attack,309

and partial-attack. The corpus consists of 100,253310

tokens, 4,679 ADUs, and 2,634 ARs, including311

344 attack relations (combining attack and partial-312

attack relations) and 2,290 support relations.313

As described above, argument components are314

annotated non-uniformly across datasets, based on315

the underlying theoretical framework. For exam-316

ple, in AAEC, argument components are annotated317

as premises, claims, and major claims. However,318

in US2016, the components are not explicitly cate-319

gorised, but the premise-conclusion notion can be320

inferred from the direction of the AR. As our cur-321

rent objective does not involve classifying the com-322

ponents or the direction of the relation, we focus on323

the AR existing between the components without324

classifying the categories of the components (into325

claim/conclusion/major-claim, premise/evidence).326

3.2 External Knowledge Alignment and 327

Paths Extraction 328

Each ADU is annotated into its four functional 329

components, following the framework proposed 330

by Gemechu and Reed (Gemechu and Reed, 2019) 331

(see Appendix A.3 for more details). These com- 332

ponents are used to align the respective ADUs with 333

the external resources. The functional components 334

consist of target concepts (C), aspects (A), opin- 335

ions on C (OC), and opinions on A (OA). (C) refers 336

to the set of concepts related to the ADUs’s topic, 337

while (A) refers to the set of concepts further speci- 338

fying that topic (examples provided in Table 1). In 339

this study, we focus on (C) and (A), which repre- 340

sent the topics and aspects addressed by the ADUs. 341

The statistics of these components can be found in 342

Table 4 in the Appendix. 343

To extract relevant external knowledge, we 344

align these components with two ontological re- 345

sources—WordNet (Miller, 1995) and ConceptNet 346

(Speer et al., 2017)—as well as a semi-structured 347

resource, Wikipedia. The detailed alignment pro- 348

cess is described in Sections 3.2.1 to 3.2.2. 349

3.2.1 Ontology as External Source 350

We traverse WordNet (Miller, 1995) and Concept- 351

Net (Speer et al., 2017) Synset hierarchies and 352

align the components of ADUs with the Synsets, 353

to identify the chain (path) of Synsets that connects 354

the components. The alignment relies on cosine 355

similarity between the embeddings of the compo- 356

nents and Synsets, determined by the cosine simi- 357

larity threshold β. Sentence-transformer (Reimers 358

and Gurevych, 2019) is utilised to identify the em- 359

beddings. For more details on the embeddings and 360

similarity threshold, check Appendix A.3.2. 361

By treating the ontology as a graph, with Synsets 362

as nodes and relation types as edges, we begin the 363

search with one of the components and traverse the 364

knowledge graphs until either the other component 365

is found or the search depth reaches the threshold 366

α = 5. For more details on setting the value of 367

α, refer to Appendix A.3.3. If the search is suc- 368

cessful, we concatenate the Synsets and the type 369

of semantic relation between, otherwise return the 370

concatenation of both components with the con- 371

stant string “None” in between. We use relation 372

types with frequency higher than m=3 to form the 373

paths (see Appendix A.3.5 for more information 374

about the relation filtering process). 375
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3.2.2 Wikipedia as External Source376

We also traverse Wikipedia to identify the chain377

(path) of Wikipedia pages linking the functional378

components of ADUs. For any pair of compo-379

nents (e.g., C1, A2 or C1, C2 or A1, A2) asso-380

ciated with a pair of ADUs (p1, p2), the initial381

step involves aligning these components with cor-382

responding Wikipedia pages. This alignment is383

achieved by computing the similarity between the384

embeddings (Reimers and Gurevych, 2019) of the385

Wikipedia page titles and the components.386

Viewing Wikipedia as a graph (with pages as387

nodes and hyperlinks as edges), we begin a breadth-388

first search from the Wikipedia page of one concept389

(c1), continuing until we locate the second concept390

(c2) or reach a depth threshold, α = 5. During391

this search, we record sentences (S) containing392

Wikipedia page titles of the current page (hl1) and393

the hyperlinks leading to the next Wikipedia page394

(hl2) along the path. These sentences contribute395

to the formation of a tuple: 〈hl1, hl2, keywords〉,396

where the keywords represent the semantic relation397

type linking hl1 and hl2 within the sentences.398

We utilise semantic role labeling (SRL) to iden-399

tify the keywords that connect hl1 and hl2 within400

the sentences (S) containing the hyperlinks. The401

SRL tool from AllenNLP 2 is used for this purpose.402

The process involves extracting subject-predicate403

structures that link hl1 and hl2 in the sentences404

involving the hyperlinks, followed by identifying405

phrases that connect them across the semantic roles406

assigned (see Appendix A.3.4). Top m most fre-407

quent relations are selected to construct the paths.408

3.3 Model409

We propose attention-based Multi-Network to410

leverage the information obtained from external re-411

sources for AR prediction (Section 3.3.1). Section412

3.3.2 presents baseline models that utilise LLMs413

alone as sources of background knowledge.414

3.3.1 Attention-Based Multi-Network415

We investigate two attention-based Multi-Network416

configurations, namely Siamese and Triplet417

(Schroff et al., 2015) networks. Initially, we utilise418

the Siamese network involving two sub-networks,419

where one sub-network encodes the concatenation420

of both ADUs together while the other encodes421

the external information. Furthermore, we exam-422

ine Triplet network, which uses three sub-network423

2 https://docs.allennlp.org/v0.9.0/api/
allennlp.models.semantic_role_labeler.html

Figure 1: Siamese-networked with attention layers.

to encodes each of the ADUs and the external re- 424

sources separately. 425

Siamese Network Architecture with Atten- 426

tion. In this setup, given the two sub-networks 427

(E1 and E2) in Siamese network, E1 processes 428

the concatenation of the pair of ADUs (premise 429

and conclusion), while E2 handles the concatena- 430

tion of the information from external resources. 431

Cross attention layer (ED-att-1) is applied to the 432

outputs of these sub-networks for attending to the 433

external resources relevant to the premise and con- 434

clusion (see Figure 1). Accordingly, the output 435

of (E1) serves as the query, while the output of 436

(E2) is used as keys and values, enabling to query 437

the external information relevant to the premise 438

and conclusion. It employs multi-head attention 439

h, where each head j computes scaled dot-product 440

attention using query Qj , key Kj , and value Vj 441

matrices, which are linear transformations of the in- 442

put hidden state hi. The final attention weight ei is 443

obtained by concatenating over all attention heads. 444

The resulting attention weights are then multiplied 445

with the output of E1, and passed through a fully 446

connected classification layer, for AR classifica- 447

tion. This fusion allows the model to integrate the 448

original representations of the premise and conclu- 449

sion with the extracted external information (see 450

detailed model parameters in the Appendix A.5). 451

Triplet Network Architecture with Atten- 452

tion. In contrast to the Siamese Architecture, the 453

Triplet Network Architecture consists of three sub- 454

networks: E1, E2, and E3 (see Figure 3 in Ap- 455

pendix 3.3.1). Sub-networks E1 and E2 encode 456

the premise and conclusion, respectively, while E3 457

5
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encodes the external knowledge connecting them.458

Two cross-attention layers are introduced (ED-att-459

1 and ED-att-2). ED-att-1 focuses on the relation460

between the premise and conclusion, where the461

output of E1 serves as queries and the output of E2462

is used as keys and values. On the other hand, ED-463

att-2 attends to the external knowledge relevant to464

the premise and conclusion. Specifically, the out-465

put of ED-att-1 acts as the query, while the output466

of E3 is used as keys and values. Similar to the467

Siamese architecture, we combine the output of the468

two attention layers for classification. The ratio-469

nale behind this approach is that ED-att-1 encodes470

the relation between the premise and conclusion,471

while ED-att-2 encodes the relevant external re-472

source, enabling the model to effectively leverage473

both the relationship between the premise and con-474

clusion and the relevant external knowledge for475

AR classification.476

3.3.2 LLMs as Baseline Models477

We establish LLMs without external resources as478

baseline models under two configurations: few-479

shot and fully fine-tuning configurations. We evalu-480

ate these baselines against configurations that lever-481

age external knowledge sources to enhance the per-482

formance of LLMs.483

Zero-shot setup: We prompt GPT-43, a gen-484

erative LLM, to perform two tasks: (a) predict-485

ing ARs for comparative analysis against mod-486

els utilising external resources, and (b) generat-487

ing paths between ADU components for compar-488

ison with models using paths derived from ontol-489

ogy and Wikipedia. Accordingly, GPT-4-generated490

paths are used as external knowledge to train the491

Multi-Network configuration for AR classification.492

This enables a direct comparison between GPT-4-493

generated paths and those obtained from other ex-494

ternal knowledge sources. The experimental setup495

for prompting GPT-4 is provided in A.4.496

Fine-tuning setup: We also fine-tuned BERT497

(Devlin et al., 2018) using various configurations498

for comparison. Initially, we use the vanilla se-499

quence classification setup (SC�V⊕bert), where500

the concatenation of ADUs is presented as an input.501

Furthermore, we fine-tune BERT within Siamese502

architectures, both with (SM�A⊕bert) and with-503

out attention layers (SM�V⊕bert). See A.1 for the504

details of model configuration and experimental505

setups.506

3https://openai.com/chatgpt

4 Experiments 507

4.1 Experimental Setup 508

The dataset is randomly partitioned, with 70%, 509

10%, and 20% allocation for training, valida- 510

tion, and testing respectively, ensuring uniformity 511

throughout the dataset. Refer to Table 3 in the 512

Appendix for the breakdown of ARs accross the 513

datasets. Results represent the average of three 514

runs using different random seeds. Precision (P), 515

recall (R), and F-measure (F) are computed, and 516

macro-averaged P, R, and F are reported for the 517

test dataset (more experimental setup provided in 518

Appendix A.1). The datasets and code utilised in 519

our experiments are available for public access at 520

ANONYNMISED_URL. 521

4.2 Model Configurations 522

We evaluate various configurations of approaches 523

leveraging the two ontological resources (Word- 524

Net, and ConceptNet) and Wikipedia across the 525

four datasets. These configurations encompass 526

three Triplet network architectures: TL�A⊕wp 527

for Wikipedia, TL�A⊕wn for WordNet, and 528

TL�A⊕cn for ConceptNet. Similarly, three 529

Siamese network architectures are evaluated 530

across these ontological resources: SM�A⊕wp, 531

SM�A⊕wn, and SM�A⊕cn. 532

Furthermore, to evaluate the attention layers’ 533

impact on external resources, we compare Triplet 534

and Siamese architectures without attention layers 535

across the three external resources, totaling six con- 536

figurations: TL�V⊕wp, TL�V⊕wn, TL�V⊕cn, 537

SM�V⊕wp, SM� V⊕wn, and SM�V⊕cn. Fi- 538

nally, we evaluate the Triplet architecture on GPT-4 539

generated paths (TL�V⊕gpt, TL�A⊕gpt). 540

4.3 Results and Discussions 541

The evaluation results depicted in Table 2 revealed 542

clear trends in performance. Particularly, the influ- 543

ence of model architecture and the incorporation of 544

external knowledge on AR prediction. This is evi- 545

denced by the performance improvement observed 546

in configurations with such integration compared 547

to those without. 548

Models incorporating external resources outper- 549

formed those lacking such integration, indicating 550

the importance of leveraging additional knowledge 551

sources for AR identification. This led to a notable 552

enhancement, surpassing the baseline by over 5.4% 553

in F-measure. For example, the Siamese architec- 554

ture leveraging Wikipedia achieved an average F- 555
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Configs AAEC AMT US2016 AbstRCT
P R F P R F P R F P R F

Comparison
P2016 n/a n/a 77 n/a n/a 74 n/a n/a n/a n/a n/a n/a
K2019 n/a n/a 59 n/a n/a 67 n/a n/a n/a n/a n/a n/a
PS2016 n/a n/a n/a n/a n/a 76 n/a n/a n/a n/a n/a n/a
E2017 n/a n/a 51 n/a n/a n/a n/a n/a n/a n/a n/a n/a
GPT-4 63±2 48±2 55±2 60±2 47±2 52±2 58±1 43±2 50±1 69±3 58±2 63±2
GR2019 81 74 77 88 66 75 63 61 62 n/a n/a n/a
M2020 n/a n/a n/a n/a n/a n/a n/a n/a 62 n/a n/a 69
LLMs as KB
SC�V⊕bert 78±0.3 73±0.2 75±0.1 79±0.4 67±0.1 72±0.1 56±0.4 64±0.2 60±0.2 84±0 82±0 83±0
SM�V⊕bert 77±0.1 72±0.1 74±0.1 80±0.9 65±0.2 72±0.5 55±0.2 63±0.1 59±0.1 82±0 82±0 82±0
SM�A⊕bert 80±0.2 73±0.3 76±0.2 80±0.1 68±0.3 74±0.2 57±0.1 64±0.2 60±0.1 85±0 83±0 84±0
No Att + Ext P R F P R F P R F P R F
TL�V⊕gpt 77±2 84±2 80±2 74±3 81±2 77±3 54±4 76±3 64±3 72±4 87±3 80±4
SM�V⊕wn 84±0 79±0.2 81±0.1 82±0.4 73±0.3 77±0.3 62±0.1 69±0.1 65±0.1 82±0 82±0 82±0
SM�V⊕cn 83±0.3 76±0.1 80±0.2 82±0.1 72±0.2 77±0.1 61±0.2 71±0.2 66±0.2 84±0 85±0.1 85±0.1
SM�V⊕wp 82±0.2 82±0.1 82±0.1 84±0.2 76±0.3 80±0.2 63±0.3 71±0.6 67±0.3 85±0 85±0 85±0
TL�V⊕wn 83±0.1 79±0.2 81±0.1 84±0.1 75±0.1 80±0.1 61±0 70±0 65±0 83±0.1 82±0.1 82±0.1
TL�V⊕cn 83±0.1 80±0.2 82±0.1 84±0.1 76±0.1 80±0.1 61±0.1 71±0.1 66±0 85±0 85±0 85±0
TL�V⊕wp 84±0 80±0 82±0 82±0.1 76±0.1 79±0.1 64±0.1 70±0.1 67±0.1 86±0.1 85±0 86±0.1
Att + Ext P R F P R F P R F P R F
TL�A⊕gpt 77±3 84±2 80±3 71±4 85±4 77±3 56±3 72±3 63±3 73±2 85±4 79±3
SM�A⊕wn 84±0.1 81±0.1 82±0.1 83±0.1 79±0.1 81±0.1 62±0.1 72±0.1 67±0.1 83±0 82±0 83±0
SM�A⊕cn 83±0.3 81±0.2 82±0.2 81±0.2 82±0.2 81±0.2 65±0.1 72±0.1 68±0.1 85±0.1 85±0 85±0.1
SM�A⊕wp 85±0.2 81±0.1 83±0.1 82±0.2 83±0.2 82±0.1 65±0.2 73±0.2 69±0.2 85±0.1 86±0 86±0
TL�A⊕wn 85±0.1 82±0.1 84±0.1 83±0.2 84±0.2 84±0.1 64±0.2 72±0.3 68±0.2 83±0.1 83±0 83±0
TL�A⊕cn 84±0.1 82±0.2 83±0.1 82±0.1 84±0.1 83±0.1 65±0.2 73±0.3 69±0.2 86±0 85±0 86±0
TL�A⊕wp 86±0.1 83±0.2 85±0.2 83±0.1 85±0 84±0 66±0.1 75±0.1 70±0.1 87±0.1 86±0 87±0

Table 2: Performance of our models and the comparison systems including, (Potash et al., 2016) (P2016), (Eger
et al., 2017) (E2017), (Peldszus and Stede, 2016) (PS16), (Kobbe et al., 2019) (K2019), (OpenAI, 2023) (GPT-4),
(Gemechu and Reed, 2019) (GR2019), (Mayer et al., 2020) (M2020) across the four datasets. The reported results
have been averaged from 3 randomly initialised sequential runs. The table is divided into subsections: Comparison
approaches; LLM-alone; non-attention with external sources; attention-based with external resources.

measure of 80% across datasets, whereas its coun-556

terpart, lacking the external resource, achieved557

74%. This finding aligns with previous research558

demonstrating that while LLMs tend to encode559

world knowledge, LLMs alone may not fully560

present the depth and specificity of knowledge re-561

quired for certain tasks, such as AR identification562

involving structured and chained reasoning (Kass-563

ner and Schütze, 2019; Polu et al., 2022; Merrill564

et al., 2021). Likewise, models equipped with at-565

tention mechanisms consistently surpassed those566

without, demonstrating an average increase in F-567

measure of over 2% across diverse configurations.568

Notably, Triplet Network architecture with atten-569

tion mechanism leveraging Wikipedia as an ex-570

ternal knowledge source, attained an average F-571

measure of 81% across the datasets. This repre-572

sents a new state-of-the-art performance in AR573

identification, showcasing the effectiveness of the574

architecture in integrating external knowledge.575

We also compare our approach to other related 576

works including Potash et al.’s (2016), Eger et al.’s 577

(2017), Peldszus and Stede’s (2016), Kobbe et al.’s 578

(Kobbe et al., 2019), OpenAI’s GPT-4 (OpenAI, 579

2023), Gemechu and Reed’s (2019; 2023) and 580

Mayer et al.’s (2020) work. Please note that di- 581

rect comparisons with some of these works need 582

additional contextual nuance in interpretation due 583

to variations in task setup and complexities. For 584

instance, the works of Eger et al. (2017) and Mayer 585

et al. (2020) involve argument segmentation in ad- 586

dition to AR identification as an end-to-end task. 587

In our case, the goal is to identify AR based on cor- 588

rect segments in the gold datasets. Similarly, Plenz 589

et al. (Plenz et al., 2023) evaluate their approach on 590

several AM tasks, including ValNov Shared Task 591

(Heinisch et al., 2022), which involves assessing 592

the validity and novelty of a conclusion given a 593

premise—a task closely related to AR prediction. 594

They report an F1 score of 70.69% for this task. 595
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As can be seen from Table 2, our approach outper-596

forms the comparison systems, including OpenAI’s597

GPT-4 (OpenAI, 2023) across the datasets.598

Model Architecture Influence. As shown599

in Table 2, incorporating attention layers into600

Multi-Network architectures, brought clear ben-601

efits. Multi-network configurations with attention602

mechanisms outperformed the vanilla sequence603

classification setup, both with and without external604

knowledge, achieving an average F1 gains of 6.4%605

and 1%, respectively. Attention-based configura-606

tions leveraging external resources consistently out-607

perform their counterparts without attention, yield-608

ing an average F1-score improvement of 2%. The609

attention-based Triplet architecture outperformed610

their counterpart Siamese architecture, with an av-611

erage performance increase of 1.2% in leverag-612

ing external knowledge. It is noteworthy that in613

the absence of attention and external resources,614

multi-network configurations (SM�V⊕bert) un-615

derperform as compared to the vanilla sequence616

classification approach (SC�V⊕bert).617

This highlights the efficacy of attention-based618

Multi-Network architectures in leveraging exter-619

nal resources for AR prediction, contrasting with620

standard sequence classification setups. Addition-621

ally, the performance advantage of Triplet archi-622

tecture over Siamese architecture can be attributed623

to its design, enabling each sub-network to focus624

on learning two levels of alignment: between the625

premise and conclusion, and between the external626

resource and the premise-conclusion pair. To ex-627

plore whether the performance gap solely stems628

from the additional parameters in the attention629

layer, we introduced extra linear layers to the Multi-630

Network architecture (without attention layers) and631

observed no change in performance despite the632

additional layers. However, attention analysis is633

required to substantiate this claim.634

External knowledge influence. Wikipedia-635

based models outperformed the baselines and636

ontology-based models across all four datasets.637

The attention-based Triplet-network on Wikipedia638

(TL�A⊕wp) achieved an F-measure of 0.85,639

0.84, 0.70 and 0.87 in identifying AR on AAEC,640

AMT, US2016, and AbstRCT respectively. Upon641

analysis of the paths connecting the components642

of ADUs, we found that 37% of concepts not643

present in ontological resources are connected in644

Wikipedia, while only 7% of concepts absent in645

Wikipedia are covered by ontological resources.646

For further details, please refer to Appendix A.3.6.647

This disparity can be attributed to Wikipedia’s rich 648

network of hyperlinks connecting pages using di- 649

verse relations, unlike ontological resources that 650

only connect Synsets based on predefined sets of 651

semantic relations. 652

Models trained on GPT-4 generated paths outper- 653

formed those without external knowledge, align- 654

ing with other works leveraging LLM-generated 655

commonsense knowledge (Bansal et al., 2022). 656

However, despite exhibiting higher accuracy, they 657

still demonstrated lower precision compared to the 658

approaches used the external knowledge sources. 659

The observed high recall and low precision can 660

be attributed to the models’ inclination to identify 661

unintended paths between concepts. Twenty er- 662

rors were randomly selected for analysis, with two 663

human annotators collaboratively examining the 664

paths. Of these, 14 errors were considered contex- 665

tually irrelevant, despite the logical coherence evi- 666

dent in the generated paths. These paths introduce 667

chains of thought that diverge from the original 668

argument, as previously noted by other studies that 669

rely on LLMs to generate commonsense knowl- 670

edge (Levy et al., 2022). An error analysis can be 671

found in Appendix A.3.6. 672

5 Conclusion 673

Our exploration of various model configurations 674

underscored the importance of external resources 675

and multi-network architecture with attention 676

mechanisms in AR prediction. Models augmented 677

with external resources consistently outperform 678

those relying solely on LLMs. This emphasises 679

the necessity of leveraging supplementary knowl- 680

edge sources to enrich LLMs for AR prediction. 681

Furthermore, multi-network architectures with at- 682

tention mechanisms, notably the attention-based 683

Triplet Network architecture, demonstrates supe- 684

riority across all configurations. Further work is 685

required to delve deeper into attention analysis, to 686

shed-light on its role in encouraging the model to 687

focus in aligning the premise with the conclusion, 688

as well as in linking the premise-conclusion pair 689

with external knowledge. While configurations 690

leveraging Wikipedia outperformed those using 691

other resources, more work is required to evaluate 692

the quality of keywords representing semantic rela- 693

tions between concepts identified from Wikipedia 694

against the standard semantic relation types in on- 695

tologies. Furthermore, alternative methods for ex- 696

tracting these keywords should be explored. 697
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Limitations698

Although our work presents promising advance-699

ments, it also entails the following limitations.700

Cross-Domain Evaluation. Robust evaluation701

involving cross-domain evaluation, where models702

are trained on one domain and evaluated on a new703

domain, is essential for uncovering the robustness704

of the proposed approaches. While our evalua-705

tion has primarily focused on specific domains or706

datasets, cross-domain evaluation can provide in-707

sights into the generalisability and adaptability of708

the models across diverse domains and real-world709

applications.710

External Knowledge Alignment and Rela-711

tion Identification. More work is required in712

aligning the concepts with external resources,713

particularly in disambiguating the senses of the714

Synsets and Wikipedia page titles. Our current715

approach relies on simple similarity measures be-716

tween the embeddings of glosses of the resources717

and the components, which may lead to missing718

alignments and incorrect alignment. Improving719

the alignment procedure to account for semantic720

ambiguity and variability in external resources is721

crucial for enhancing the effectiveness of the pro-722

posed approach. Additionally, sophisticated tech-723

niques are needed to identify the semantic relation724

types existing between Wikipedia hyperlinks. Un-725

like ontologies, Wikipedia does not encode explicit726

semantic relation types between hyperlinks. There-727

fore, developing robust method to identify seman-728

tic relations from Wikipedia articles can improve729

the quality and relevance of external knowledge730

integration in AR prediction.731

Interpretability and Explainability. The ex-732

planations provided regarding the performance of733

the architectures and external resources are based734

on the analysis of empirical results. While empir-735

ical analysis is valuable for understanding model736

behavior, additional techniques beyond the results737

themselves can provide deeper insights into model738

performance. Exploring techniques such as model739

visualisation, attention mechanisms analysis, and740

interpretability methods like LIME (Local Inter-741

pretable Model-Agnostic Explanations) (Ribeiro742

et al., 2016) or SHAP (SHapley Additive exPlana-743

tions) (Lundberg and Lee, 2017) can help uncover744

the underlying reasons behind model decisions and745

configurations. Complementing empirical analysis746

with interpretability techniques can allow a more747

comprehensive understanding of model behavior.748
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A Appendix1032

We provide additional details regarding the method-1033

ology and experimental setups used in our study.1034

A.1 Experiment Setup1035

A.1.1 Training Procedure1036

Hyper-parameters: We employ Adam optimisa-1037

tion (Kingma and Ba, 2014) to minimise the cost1038

function. The learning rate is set to 2e−5 with a1039

batch size of 16. Categorical cross-entropy loss1040

was used as the loss function.1041

Gradient Clipping: To prevent exploding1042

gradients during training, we apply gradient1043

clipping. We use a maximum gradient norm1044

(max_grad_norm) parameter set to 1.0 to deter-1045

mine the threshold for gradient clipping.1046

Warm-up and Learning Rate Schedule: We1047

employed a linear warm-up strategy for the learn-1048

ing rate. The number of warm-up steps is set1049

to 10% of the total training steps. Following the1050

warm-up phase, the learning rate schedule is de-1051

termined by a lambda function. This function lin-1052

early increases the learning rate during the warm-1053

up phase and decreases it linearly thereafter.1054

Early Stopping: We implement early stopping1055

to prevent overfitting and to determine the opti-1056

mal number of epochs. This technique involves1057

continuously monitoring the loss and F-score on1058

the validation set throughout training. If there is a1059

sustained degradation in performance over consec-1060

utive epochs, training is terminated to prevent the1061

model from being influenced by noise present in1062

the training data.1063

Dataset Training Validation Test
RA CA RA CA RA CA

AAEC 4235 411 605 59 1210 117
US2016 353 55 51 8 101 16
MTC 190 120 27 17 55 34
AbstRCT 1603 241 229 34 458 69

Table 3: Distribution of support and attack relations in
the train, validation, and test splits across the datasets.

A.1.2 Input Setup 1064

For the baseline sequence classification configura- 1065

tions, we concatenate the premise to the conclusion 1066

using a special token [SEP]. In the Siamese archi- 1067

tecture, one of the sub-networks takes the concate- 1068

nation of the premise and conclusion based on the 1069

special token [SEP], while the other takes the con- 1070

catenation of the paths. The paths are concatenated 1071

using the special token [SEP]. 1072

The number and length of the paths between the 1073

components of the ADUs vary, with some ADUs 1074

not involving any path at all. For ADU pairs in- 1075

volving a large number of paths exceeding the max- 1076

imum sequence length, we concatenate the paths 1077

until the maximum sequence length is reached. In 1078

such cases, we sort the paths based on their fre- 1079

quency. The concatenation process starts from the 1080

most frequent paths until the maximum sequence 1081

length is reached. 1082

A.1.3 Fully Fine-tuned Baseline LLM 1083

Configuration 1084

For the fully fine-tunned baseline LLM con- 1085

figuration, we utilise the HuggingFace imple- 1086

mentation of BERT for sequence classification 1087

(bert-base-uncased 4). We experimented 1088

with two variants of BERT: bert-base-cased 1089

and bert-large-uncased. Our experiments 1090

revealed that bert-base-uncased consistently 1091

provided better performance compared to 1092

bert-base-cased. In the baseline Siamese 1093

architecture, each sub-network independently 1094

encodes the ADUs. 1095

A.2 External Knowledge Extraction 1096

A.3 ADU Decomposition 1097

To identify the functional components (C and A) 1098

from ADUs, we adopt a sequence labeling ap- 1099

proach following the methodology outlined by 1100

Gemechu and Reed (2019). Unlike Gemechu and 1101

4https://huggingface.co/google-bert/
bert-base-uncased
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Dataset Total C Total A Unique C Unique A
AAEC 9875 6789 5634 4356
US2016 3225 1737 1854 1566
MTC 870 589 756 470
AbstRCT 7343 6432 5554 4546

Table 4: Distribution of target concepts (C) and aspects
(A) across the datasets.

Reed (2019) method, which employs a convolu-1102

tional neural network (CNN), we fine-tune BERT1103

for token classification using their dataset anno-1104

tated with the BIO sequence labeling scheme, out-1105

performing their top-performing method by 3%1106

and achieving a macro F-score of 0.784. We1107

utilise the HuggingFace implementation of BERT1108

( bert-base-uncased 5). The inputs are padded1109

to 256 maximum size. We use the train-test split1110

in the original dataset. Training is conducted over1111

6 epochs, and evaluation is reported as the average1112

performance over 3 runs of the experiment on the1113

test dataset. Using the fine-tuned model, we iden-1114

tify the functional components of ADUs, and the1115

distribution of these components is presented in1116

Table 4.1117

A.3.1 Alignment of Ontologies and1118

Wikipedia1119

For aligning ontologies and Wikipedia with the1120

components of ADUs, the cosine similarity be-1121

tween the embeddings of the components and the1122

Synsets of the ontologies or the corresponding1123

Wikipedia page title is used. Additionally, we1124

utilise the similarity between the concepts and1125

the gloss texts of the respective sources for disam-1126

biguating senses, for concepts involving multiple1127

senses.1128

A.3.2 Similarity Threshold1129

We leverage embeddings derived from Sentence-1130

transformers, particularly the all-roberta-large-v161131

variant, for determining similarity. We set a simi-1132

larity threshold of β = 0.80 based on experimental1133

comparisons of similarity scores between related1134

and unrelated text pairs in the STSB dataset7.1135

The dataset is originally annotated on a scale of1136

0-5 based on the degree of similarity. We trans-1137

form the original 5-class labels into binary labels,1138

5https://huggingface.co/google-bert/
bert-base-uncased

6https://huggingface.co/
sentence-transformers/all-roberta-large-v1

7https://huggingface.co/datasets/nyu-mll/
glue/viewer/stsb/train

where labels below 4 are considered unrelated, and 1139

labels 4 and above are deemed related. In the orig- 1140

inal annotation rubric provided by SemEval-2017 1141

(Cer et al., 2017), label 3 indicates sentences that 1142

are roughly equivalent, but some important infor- 1143

mation differs. However, we found that this defi- 1144

nition allows for a certain degree of looseness in 1145

similarity assessment. Consequently, to impose a 1146

stricter criterion for similarity, we decided to raise 1147

the threshold from label 3 to label 4. To this end, 1148

we calculate the similarity between the sentence 1149

pairs in the training dataset and select the threshold 1150

yielding the highest F1-score. We compute F1- 1151

scores at 20 similarity threshold points (ranging 1152

from 0 to 1 with increments of 0.05), as outlined 1153

in Algorithm 1. 1154

Algorithm 1 Find Optimal Similarity Threshold

Require: List of sentence pairs (s1, s2)
Ensure: Threshold

best_threshold← min_thr
max_f_score← 0
for thr← min_thr to max_thr by thr_step do

tp← 0
fp← 0
fn← 0
for each sentence pair (s1, s2) in data do

sim_score← sim score(s1, s2)
if similarity_score ≥ thr then

if pair is similar then
tp← tp + 1

else
fp← fp + 1

end if
else

if pair is dissimilar then
tn← tn + 1

else
fn← fn + 1

end if
end if

end for
precision← tp

tp+fp

recall← tp
tp+fn

f1_score← 2× precision×recall
precision+recall

if f1_score > max_f_score then
max_f_score← f1_score
best_threshold← thr

end if
end for
return best_threshold
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A.3.3 Search Depth Threshold1155

To estimate the optimal depth threshold for navigat-1156

ing through the knowledge graphs, we employ the1157

following procedure: we randomly select 20 pairs1158

of concepts and initiate a complete search from one1159

concept to identify paths leading to the other. This1160

provides a total of 728 paths with various depths1161

from the three resources. Human annotators then1162

evaluate the relevance of the retrieved paths based1163

on a binary value indicating if the path is relevant1164

to the given AR or not. The cumulative F1-score1165

at each depth is computed based on the total num-1166

ber of relevant paths retrieved up to that depth.1167

The depth with the highest cumulative F-score is1168

chosen as the optimal threshold. Accordingly, the1169

threshold of α = 5 yielded the highest score.1170

A.3.4 Extracting keywords encoding1171

semantic relation types from1172

Wikipedia.1173

The AllenNLP semantic role labeling (SRL)8 is1174

used to parse sentences and assign semantic roles1175

to each word. This enables to extract phrases1176

linking the concepts of interest along the subject-1177

predicate structure of the sentences. To mention, if1178

one concept is identified as the agent and another1179

as the patient, the phrase denoting the action per-1180

formed by the agent on the patient is used as the1181

relation type between them.1182

Consider the concepts exercise and cardiovascu-1183

lar diseases in the sentence:1184

According to the American Heart Associ-1185

ation, exercise reduces the risk of cardio-1186

vascular diseases, including heart attack1187

and stroke.1188

Below is the output of SRL for this sen-1189

tence (the concepts are highlighted in light1190

blue while the keywords representing the re-1191

lation type are highlighted in red): {‘verbs’:1192

[{‘verb’: ‘According’, ‘description’:1193

‘[V:According] to the American Heart1194

Association , exercise reduces the risk1195

of cardiovascular diseases , including1196

heart attack and stroke’, ‘tags’: [‘B-V’,1197

‘O’, ‘O’, ‘O’, ‘O’, ‘O’, ‘O’, ‘O’, ‘O’,1198

‘O’, ‘O’, ‘O’, ‘O’, ‘O’, ‘O’, ‘O’, ‘O’,1199

‘O’, ‘O’, ‘O’]}, {‘verb’: ‘reduces’,1200

‘description’: ‘[ARGM-ADV: According1201

8 https://docs.allennlp.org/v0.9.0/api/
allennlp.models.semantic_role_labeler.html

to the American Heart Association] , 1202

[ARG0: exercise] [V: reduces] [ARG1: 1203

the risk of cardiovascular diseases , 1204

including heart attack and stroke]’, 1205

‘tags’: [‘B-ARGM-ADV’, ‘I-ARGM-ADV’, 1206

‘I-ARGM-ADV’, ‘I-ARGM-ADV’, ‘I-ARGM-ADV’, 1207

‘I-ARGM-ADV’, ‘O’, ‘B-ARG0’, ‘B-V’, 1208

‘B-ARG1’, ‘I-ARG1’, ‘I-ARG1’, ‘I-ARG1’, 1209

‘I-ARG1’, ‘I-ARG1’, ‘I-ARG1’, ‘I-ARG1’, 1210

‘I-ARG1’, ‘I-ARG1’, ‘I-ARG1’]}, {‘verb’: 1211

‘including’, ‘description’: ‘According 1212

to the American Heart Association 1213

, exercise reduces the risk of [ARG2: 1214

cardiovascular diseases] , [V: including] 1215

[ARG1: heart attack and stroke]’, 1216

‘tags’: [‘O’, ‘O’, ‘O’, ‘O’, ‘O’, 1217

‘O’, ‘O’, ‘O’, ‘O’, ‘O’, ‘O’, ‘O’, 1218

‘B-ARG2’, ‘I-ARG2’, ‘O’, ‘B-V’, ‘B-ARG1’, 1219

‘I-ARG1’, ‘I-ARG1’, ‘I-ARG1’]}], 1220

‘words’: [‘According’, ‘to’, ‘the’, 1221

‘American’, ‘Heart’, ‘Association’, ‘,’, 1222

‘exercise’, ‘reduces’, ‘the’, ‘risk’, 1223

‘of’, ‘cardiovascular’, ‘diseases’, ‘,’, 1224

‘including’, ‘heart’, ‘attack’, ‘and’, 1225

‘stroke’]} 1226

We navigate through the SRL output to identify 1227

the predicate-argument structures connecting both 1228

concepts (exercise and cardiovascular diseases in 1229

this case). We then use predefined rules to extract 1230

keywords encoding the semantic relations existing 1231

between the concepts. To mention, if one concept 1232

is part of ARG0 and the other being part of ARG1, 1233

the predicate term is used as the relation type. In 1234

the example output above, the predicate term repre- 1235

senting the semantic relation type is reduces. More 1236

examples are provided below. The pair of concepts 1237

are highlighted in light blue and the relation type 1238

highlighted in red: 1239

1. Concept Pair: Exercise, Cardiovascular 1240

Diseases 1241

• Semantic Relation: increase 1242

• Sentence: "Low levels of physical exer- 1243

cise increase the risk of cardiovascular 1244

diseases mortality." 1245

• Predicate structure: [ARG0: Low lev- 1246

els of physical exercise] [V: increase] 1247

[ARG1: the risk of cardiovascular dis- 1248

eases mortality]. 1249

2. Concept Pair: Exercise, Cardiovascular 1250

Profiles 1251
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• Semantic Relation: leads1252

• Sentence: "Studies have shown that1253

since heart disease is the leading cause1254

of death in women, regular exercise in1255

aging women leads to healthier cardio-1256

vascular profiles."1257

• Predicate structure: Studies have1258

shown that [ARGM-CAU: since heart1259

disease is the leading cause of death in1260

women], [ARG0: regular exercise in ag-1261

ing women] [V: leads] [ARG2: to health-1262

ier cardiovascular profiles].1263

3. Concept Pair: Innovation, Economy1264

• Semantic Relation: is1265

• Sentence: "Given the noticeable effects1266

on efficiency, quality of life, and produc-1267

tive growth, innovation is a key factor in1268

society and economy."1269

• Predicate structure:1270

[ARGM-ADV: Given the noticeable ef-1271

fects on efficiency , quality of life , and1272

productive growth], [ARG1: innovation]1273

[V: is] [ARG2: a key factor in society1274

and economy]1275

4. Concept Pair: Sustainable Energy, Renew-1276

able Energy1277

• Semantic Relation: involves1278

• Sentence: "Sustainable energy involves1279

increasing production of renewable en-1280

ergy, making safe energy universally1281

available, and energy conservation."1282

• Predicate structure: [ARG2: Sustain-1283

able energy] [V: involves] [ARG1: in-1284

creasing production of renewable energy1285

, making safe energy universally avail-1286

able, and energy conservation]1287

A.3.5 Filtering semantic relations.1288

A total of 7959 unique relation types are extracted.1289

Please note that similar relation types like “leads1290

to”, “leads” and “can lead to” are counted as differ-1291

ent relation types, as we only consider surface-level1292

counts. To exclude arbitrary paths between con-1293

cepts only relation types with a frequency greater1294

than “m=3” are considered. This yields a total of1295

1488 unique relation types. However, as can be1296

seen in Table 7, manual analysis revealed similari-1297

ties among certain tuples; for example, the relation1298

type “influences” is similar to other relations like 1299

“contributes to”, “leads to”, and “results in”. 1300

Some concepts are directly related through sin- 1301

gle relation type (one-hop path), while others are 1302

indirectly connected via paths involving multiple 1303

relation types (multi-hop). See examples in Table 6. 1304

The length of these paths ranges from 1 (indicating 1305

direct links between concepts) to 5 (the maximum 1306

search depth), with an average path length of 1.9. 1307

A.3.6 External Resource Evaluations 1308

Ontology and Wikipedia: We analyse the three 1309

resources to showcase their contributions in terms 1310

of coverage and the quality of connections. 1311

Coverage. The aim is to show the proportion 1312

of pairs connected exclusively by one resource but 1313

not by others. To this end, we randomly select 500 1314

unconnected pairs from each resource and generate 1315

a heatmap illustrating the ratio of pairs exclusively 1316

connected by each resource compared to the oth- 1317

ers to identify which resource is most effective in 1318

covering concepts absent in others. On average, 1319

Wikipedia covers 37% of pairs unconnected in both 1320

WordNet and ConceptNet, while only 7% of the 1321

concepts missing in Wikipedia are covered by both 1322

WordNet and ConceptNet. Please note that pairs 1323

of concepts connected by relation types occurring 1324

less than three times are considered unconnected. 1325

Connection quality. We further analyse the 1326

quality of the paths by ranking component pairs 1327

based on the number of paths linking them from 1328

each respective resource. From this ranking, we 1329

select the top 25 most connected and 25 least con- 1330

nected pairs from each resource for detailed eval- 1331

uation. Two annotators independently rate the rel- 1332

evance of these paths by assigning binary labels, 1333

reflecting their subjective assessments of the paths’ 1334

pertinence to the AR between the ADUs. The 1335

evaluation reveals that Wikipedia is the top-rated 1336

source for both well-connected and least connected 1337

paths, followed by ConceptNet. 1338

GPT-generated paths: As shown in Table 2, 1339

configuration utilising GPT-generated paths show 1340

higher accuracy but lower precision. Of the total 1341

errors observed, 79% are identified as false pos- 1342

itives for approaches using GPT-generated paths 1343

in predicting AR, while the average false positive 1344

rate for the other three external resources is 53%. 1345

To further investigate, we randomly select 20 er- 1346

rors and engage two human annotators to jointly 1347

analyse the paths connecting the pair of ADUs. 1348

Out of the 20 errors, the paths for the 14 of the 1349

15



ADUs Components, Chain of Hyperlinks
ADU1 - Trump tax cut is the biggest
since Ronald Reagan; ADU2 - It will
create tremendous numbers of new
jobs

Chain of Hyperlinks for the components, Tax (C), Jobs (A):
- Job→Working hour system→ Income tax→ Tax
- Job→ Labor economics→ Economic policy→ Tax
- Job→ Unemployed→ Tariff→ Tax

ADU1 - Clinton is going to approve
one of the biggest tax cut in history;
ADU2 - Clinton is going to drive busi-
ness out

Chain of Hyperlinks for the components, Business (C), Tax cut (A):
- Business→ Adam Smith→ Economic theory→ Tax cut
- Business→ Adam Smith→ Neoliberalism→ Tax cut
- Business→ Corporate tax→ Effect of taxes and subsidies on price→ Tax cut

Table 5: Examples showing the connection between ADUs via the chain of hyperlinks linking their components.

errors are categorised as contextually irrelevant1350

for the ADU pairs. The primary reason cited by1351

the annotators for the irrelevant paths indicates1352

that while the generated paths make logical sense1353

and provide valid lines of reasoning between the1354

ADUs, there were no AR between these ADUs as1355

originally annotated in the dataset.1356

For example, consider the pair of ADUs "Re-1357

searches into humanities and art still need large1358

amount of money" and "a government should spare1359

effort on young children education as well as uni-1360

versities", taken from the argument graph depicted1361

in Figure 2 (taken from AAEC dataset). GPT iden-1362

tified the following semantic relation paths linking1363

the concepts "money" and "young children educa-1364

tion":1365

• money → facilitates → technology adop-1366

tion→ enables→ digital literacy programs1367

→ encourages→ young children education1368

• money → stimulates → philanthropic en-1369

deavors → cultivates → community part-1370

nerships → fosters → early childhood1371

learning opportunities1372

• money→ fuels→ economic growth→ stim-1373

ulates→ job creation→ expands access to1374

→ early childhood education1375

• money→ drives→ philanthropic activities1376

→ funds→ charitable organisations→ sup-1377

ports → early childhood education initia-1378

tives1379

• money → empowers → local communities1380

→ cultivates→ community engagement→1381

enhances→ early childhood learning envi-1382

ronments1383

• money → encourages → resource alloca-1384

tion→ drives→ research and development1385

→ inspires→ pedagogical advancements1386

Despite these two ADUs not being linked by AR 1387

in the gold dataset, the paths between the concepts 1388

they address mimic the paths typically associated 1389

with ADUs involving AR. However, the reasoning 1390

conveyed by these paths is categorised as unin- 1391

tended, as they involve reasoning diverging from 1392

the original argument, and the AR between these 1393

ADUs is absent in the gold dataset. 1394

The same applies to the paths identified for the 1395

concepts money and future addressed by the pair 1396

of ADUs: "Researches into humanities and art 1397

still need large amounts of money" and "both are 1398

crucial on the way to a brighter future". 1399

• money → allows for → travel experi- 1400

ences→ impacts→ cultural enrichment→ 1401

shapes→ future memories 1402

• money → allows for → excessive spend- 1403

ing → impacts → short-term pleasure → 1404

shapes→ future goals 1405

• money → initiates → investment opportu- 1406

nities→ promotes→ financial stability→ 1407

contributes to→ future security 1408

• money→ used for → educational funding 1409

→ influences→ career advancement→ im- 1410

pacts→ future 1411

• money→ is used for→ investment in prop- 1412

erty→ helps in→ wealth accumulation→ 1413

contributes to→ future 1414

• money → is used for → infrastructure de- 1415

velopment → helps in → urban planning 1416

→ contributes to→ future city growth 1417

• money → allows for → business expan- 1418

sion→ impacts→ economic prosperity→ 1419

shapes→ future 1420

• money→ leads to→ business expansion→ 1421

is linked to→ economic growth→ impacts 1422

→ future prosperity 1423
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Figure 2: Example argument graph.

• money → is essential for → scientific re-1424

search→ contributes to→ technological ad-1425

vancement→ shapes→ future innovation1426

A.4 GPT for Path Generation and AR1427

Prediction1428

A.4.1 Experimental Settings1429

We utilise the chat completion configuration of1430

ChatGPT-4 for two tasks: (a) generating the chain1431

of semantic relation between ADU components,1432

and (b) predicting AR.1433

1. Configurations: We use GPT-4 based on1434

gpt-3.5-turbo-instruct. We set a maxi-1435

mum token limit of 2048, a temperature of1436

0.7, a top-p probability of 0.9.1437

2. Prompts Strategy: We explored two strate-1438

gies: zero-shot and few-shot prompts. In1439

the zero-shot setting, only instruction based1440

prompts without examples are used. Based1441

on the insightful recommendation from the re-1442

views, we also try few-shot setup, where spe-1443

cific examples are provided as part of the in-1444

struction. Interestingly, our analysis revealed1445

that the example-based experiment achieved1446

a 1.3%, 2.1% higher score compared to the1447

zero-shot prompt in the AR prediction and1448

path generation, respectively. As a result,1449

our experiment is based on example-based1450

prompting. We create prompt templates that1451

include instructions and two examples ran-1452

domly selected from a list of examples. These1453

examples consist of ADU pairs, concept pairs1454

identified from the ADUs, and paths obtained 1455

from three external resources. The place- 1456

holder variables in the template are replaced 1457

with the ADUs, concepts, and paths. 1458

Prompt Design for Path Generation. GPT-4 is 1459

tasked with generating paths between components 1460

of ADUs using the following template: 1461

You are a model trained to 1462

identify chains of semantic relations 1463

between a pair of concepts 1464

derived from two sentences (ADU1 and ADU2). 1465

Given concepts c1 and c2 extracted from 1466

ADU1 and ADU2 respectively, 1467

your goal is to identify chains of semantic 1468

relation types connecting 1469

these concepts. These relations may include 1470

meronymy, hypernymy, 1471

hyponymy, cause-effect, or any other valid 1472

semantic relation. 1473

Concepts are often indirectly linked via 1474

intermediate concepts and 1475

their relations. Include both direct and 1476

indirect paths between the concepts whenever 1477

possible, using only the context provided 1478

by the ADU pairs. 1479

Provide up to 10 paths if possible; otherwise, 1480

return an empty list. 1481

Each relation type should be represented as a 1482

tuple in the format 1483

(concept1, relation type, concept2). 1484

For indirect paths involving 1485

multiple tuples, return them as a list of tuples. 1486

Example 1:between the concepts 1487

"USA" and "NAFTA" identified from the pair 1488

of ADUs "USA is in deep trouble" 1489

and "NAFTA agreement is defective", 1490

a valid list of paths could be, 1491

[[("USA,part-of,NAFTA)"], 1492

["(USA, has, trade deal), 1493

(trade deal, instance of, NAFTA")]. 1494

Example 2: between the concepts 1495

{c1} and {c2} identified from the 1496

pair of ADUs {ADU1} and {ADU2}, 1497

the list of paths should include, {list_path}. 1498

Provide your answer as a python list. 1499

Note: In Example 1, we show an actual exam- 1500

ple, but it should be a placeholder variable in the 1501

prompt template, as shown in Example 2. 1502

Prompt Design for Zero-Shot AR Prediction: 1503

We prompt GPT-4 to classify the relationship be- 1504

tween the ADUs as supporting, contradicting, or 1505
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having no clear AR using the following prompt1506

template.1507

You are a 3-class classifier model tasked with1508

assigning a label to the argument1509

relation between two argument units1510

(argument 1 and argument 2).1511

Classify the following pair of arguments,1512

argument 1: {ADU_1}1513

argument 2: {ADU_2},1514

into:1515

"support" (if argument 1 supports1516

argument 2),1517

"contradict" (if argument 1 attacks1518

argument 2),1519

and "None" (if no argument relation exists1520

between argument 1 and argument 2).1521

Please enter:1522

1 - for support,1523

2 - for contradict,1524

0 - for None relation.1525

Examples from each argument1526

relation types are provided below:1527

Example 1: the argument relation between1528

the argument "people feel, when they have1529

been voicing opinions on different matters,1530

that they have been not listened to", and1531

the argument "people1532

feel that they have been treated1533

disrespectfully on all sides of the1534

different arguments and disputes going on"1535

is support, and hence prediction label is 1.1536

Example 2: The argument relation between1537

"there would be no non-tariff barriers1538

with the deal done with the EU" and1539

the argument "there are lots of1540

non-tariff barriers1541

with the deal done with the EU"1542

is contradiction, and1543

hence prediction label is 2.1544

Note: We use the actual examples to show sup-1545

port and contradiction relations, which should be a1546

placeholder variable in the final prompt template.1547

A.5 Multi-Network Architectures1548

The encoder blocks within the multi-networks are1549

constructed using the HuggingFace implementa-1550

tion of BERT (bert-base-uncased) 9. In all con-1551

figurations, we employ 8 attention heads to align1552

with the standard transformers implementations.1553

9https://huggingface.co/google-bert/
bert-base-uncased

Figure 3: Triplet-networked with attention layers.

A.5.1 Attention Mechanisms in 1554

Multi-Network Architectures 1555

The Triplet Network architecture is aimed to en- 1556

code the individual components of ADUs as well 1557

as the external knowledge paths connecting them. 1558

The architecture consists of three sub-networks, 1559

each focusing on a different aspect of the input: 1560

• Sub-Network 1: Encodes the premise. 1561

• Sub-Network 2: Encodes the conclusion. 1562

• Sub-Network 3: Encodes the paths between 1563

components of ADUs. 1564

Two attention layers are used to attend to the 1565

alignment between the inputs (premise, conclusion 1566

and external knowledge). 1567

1. First Attention Layer: This layer attends to 1568

the alignment between the premise and con- 1569

clusion based on the outputs of Sub-Networks 1570

1 and 2, respectively. 1571

2. Second Attention Layer: Building upon the 1572

output of the first attention layer, this layer 1573

aligns the information from the first attention 1574

layer with the external knowledge provided 1575

by Sub-Network 3. 1576

Finally, the outputs of the attention layers are 1577

averaged to obtain a unified representation of the 1578

input, which is then passed through a linear classi- 1579

fication layer to predict AR. We experiment with 1580

two configurations for representing the ADUs and 1581

the external knowledge as input to the attention 1582
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layer: (a) using the final output of the [CLS] token1583

and (b) using the mean of the last hidden layer of1584

all tokens from BERT’s output. Consistently, the1585

mean of the last hidden layer of all tokens yields1586

superior performance compared to the [CLS] to-1587

ken.1588
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Path Path Path Path
related to→ leads to→
affects

related to→ related to synonym involves

related to affects→ associated with
→ impacts

synonym→ related to causes

has is related to leads to is a→ related to→ related
to

impacts related to→ involves contains is a→ involves
is a→ is a→ is a part of related to→ part of causes→ related to
influences→ affects antonym→ hyponym→

hyponym
associated with involves→ related to

leads to→ results in entails→ entails is a→ has can lead to
implies related to→ related to→

related to
affects→ influences causes→ leads to

has→ includes part of→ includes related to→ includes related to→ related to→
causes

supports synonym→ hypernym→
hyponym

entails→ involves related to→ entails

causes→ affects is a→ belongs is associated with→
involves

regulate

related to→ impacts can result in is an umbrella term→ is
related to

leads to→ involves

found in administers→ impacts→
involves

affiliated with→ associated
with

aids→ helps→ helps

developed through→
facilitated by→ leads to

discussed in→ is a→ lead
to

are→ show→ can lead to
→ can result in

assessment of→ measure of
→ related to

associated with→ is a type
of→ can be

be used for→ have quality can be obtained→ is
extended for→ is a type of

occur in→ experiencing→
necessitate

can provide→ may lead to
→ changes

common in→ generally
involves

includes→ example of determines→ affects

empowerment through→
instance of

entails→ sustain entails→ includes→
involves

entails→ is a→ is a→ is a

entails→ is required for→
can lead to→ can result in

experienced→ includes often favours→ which
stems from

fosters→ crucial for

give→ way to impacts→ evaluates influences→ lead to→
affect

influences→ are reflected
by

influences→ is achieved by influences→ importance of
→ includes

involves→ involvement of
→ can come under

involves→ is represented
by

involves→ brings→ used
for

is a factor in→ generates
→ can include

symptom of→ includes→
has code

is a type of→ may require
→ is associated with

is a→ is delivered through
→ facilitates

is essential to→ has an
impact→ results in

is important for→ used in
→ opportunity for

is involved in→ has phase
→ is type for

is often accompanied by→
is similar to

is often associated with→
has effects on→ are linked
to

related→ shapes→
contribute to→ are crucial
for

required→ necessary for

supported by→ promotes
→ reduces→ are important

is the goal of→ can include is type of→ can involve→
is related to

is a→ involves→ relieves

live in→ has may bring→ followed by
→ result in

may lead to→ requires→
found

necessitates→ involves→
category of

offer→ facilitate→
contributes to→ aids in

opposite of→ causes→
leads to

organised by→ hold participates in→ can
involve

provide→ attend provides challenge in provides→ enable provides→ includes→
develops→ can lead to

refers to→ impacts→
affects

related to→ can lead to→
results in→ results in

related to→ improves→
essential→ crucial for

related to→ indicates→
compared to

leads to→ is likely to→
often achieved by

represents→ causes require→ achieved by→
help

shares→ comprises of

duration→ has value used for→ associated with
→ part of

convey→ interpreted by→
part of→ makes up

requires→ causes→ leads
→ necessary

Table 6: Examples of semantic relation paths.
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Relation Relation Relation Relation Relation Relation
related to involves hyponym antonym synonym is a
has results in affects related term leads to can lead to
causes entails associated with part of includes hypernym
influences impacts is related to contributes to include is a type of
instance of can result in requires related connected to contains
have require can be involve used for implies
consists of versus are lead to greater than affect
influence entailment type of causes desire linked to cause effect
opposite of relates to is essential for is similar to impact may lead to
supports provides can involve is crucial for result in is part of
cause essential for may result in symptom of is a form of comparison
facilitates enhances motivated by contribute to can cause similar
used in experience is important for enables influenced by drives
at location provide are part of percentage may involve comprises
synonym of opposite indicates describes attribute attend
refers to is can include determines promotes has instance
use participate in entails action treated with utilises measured by
shapes pertains to is connected to necessitates encourages improves
antonym of is used in similar to measures is used for represents
chain map offers is influenced by treat may cause of
negation has context shape consist of has property example of
motivates are associated with equals can affect location has quality
enhance relate to affected by undergo may include contributes to
belongs to can influence found in addresses impact on create
seek possess increases can impact receive compares
opposes member of feature subset of concerns is required for
derived from is a part of has attribute resulted in comprise is equivalent to
treatment for used by activity treatment regulates correlates with
enable produces is necessary for triggers target ensures
inspires correlated with impacted by inspire helps in has duration
need is a factor in component of is known for modifies related term of
measure treated by is less than characteristic of has numeric value covers
is about is a symptom of employs entail located in has part
located near shows are crucial for focuses on engage in depends on
pursue is needed for brings about motivated by goal cause of can have
can associated with are related to range involved in utilise
targets means attribute of benefits characterised by measured by
spouse of is a measure of side effect of comparative of can be influenced by is vital for
has member occurs in evaluate implement allows for has symptom
is equal to less than belong to linked to involves encourage
fosters component of known for capable of is key to helps
interact with drive constitute relies on comprises of meronym
defines generates correlate with determine has subevent represent
is an umbrella term compare has prerequisite facilitate desires percentage of
a type of acquired through address addressed advocates for agent
agent of are important for aligns with aid in are used in assesses
attract belongs to group belong to boosts achieved through be found in
can be represented can contribute to can create can enhance can develop into can lead to
can occur in can require can stimulate capability of category of caused by
combined with complication of concept in connects conceptually related to deals with
essential for establish evaluated by examines example of exhibit
has percent has range has impact on have activity level helps to get more helps gain
holonym impacts result in implemented by imposes indicate induces
inhibits is a medication is a metric for is a side effect of is a source of is a subclass of
is a symptom of is a unit of time is a way to is beneficial for is critical for is defined by
is fundamental for is funded by is greater than is key to is opposite of is perceived as
is quantified by is significant for has value is the target of is treated with is used to assess
is treated by lack of lacks live in location of made by some
made of manifests as negatively impacts numerical value often involve outcome of
percentage value play a role in plays a role in politician possesses prevents
process of produce promoted by provide access to provided by qualifies
quantity reduces reflect reflects regulated by rely on
restrict results in state show stimulates studies suggests
superlative to be gained by tool for treats treatment includes treated by
treatment involves treatment with trigger utilised for increased expression of yield

Table 7: Examples of semantic relation types. We normalised (lower cased and expanded relation types like IsA,
RelatedTo, HasProperty) the relation types for consistency across the external resources.
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