
Published in Transactions on Machine Learning Research (06/2023)

Numerical Data Imputation for Multimodal Data Sets:
A Probabilistic Nearest-Neighbor Kernel Density Approach

Lalande Florian florian.lalande@oist.jp
Neural Computation Unit
Okinawa Institute of Science and Technology
1919-1 Tancha, Onna-son, Okinawa, JAPAN

Doya Kenji doya@oist.jp
Neural Computation Unit
Okinawa Institute of Science and Technology
1919-1 Tancha, Onna-son, Okinawa, JAPAN

Reviewed on OpenReview: https: // openreview. net/ forum? id= KqR3rgooXb

Abstract

Numerical data imputation algorithms replace missing values by estimates to leverage in-
complete data sets. Current imputation methods seek to minimize the error between the
unobserved ground truth and the imputed values. But this strategy can create artifacts
leading to poor imputation in the presence of multimodal or complex distributions. To
tackle this problem, we introduce the kNN×KDE algorithm: a data imputation method
combining nearest neighbor estimation (kNN) and density estimation with Gaussian kernels
(KDE). We compare our method with previous data imputation methods using artificial
and real-world data with different data missing scenarios and various data missing rates,
and show that our method can cope with complex original data structure, yields lower data
imputation errors, and provides probabilistic estimates with higher likelihood than current
methods. We release the code in open-source for the community1.

1 Background and related work

As sensors are now ubiquitous and the Internet of Things has become widespread and found numerous
applications, Big Data is often referred to as the "Gold of the 21st Century". However, along with the
proliferation of numerical databases, missing data has become a pervasive problem: they can introduce a
bias, lead to wrong conclusions, or even prevent from using data analysis tools that require complete data
sets.

To mitigate this issue, data imputation algorithms have been developed. From the straightforward
mean/mode imputation (Little & Rubin, 2014) to recent generative adversarial networks (GAN) models
(Yoon et al., 2018), a wide range of tools are available to impute incomplete data sets. As the variety
and specificity of available data imputation algorithms can be overwhelming for practitioners, flexible pack-
ages like DataWig allow optimal imputation results by sweeping through several methods and automatically
perform hyper-parameter tuning (Bießmann et al., 2019).

Data imputation most popular application consists of recovering missing parts of an image, also known as
inpainting. Deep learning methods have shown promising results for image inpainting and are therefore
the preferred solutions for image recovery (Xiang et al., 2023). However, typical image features differ from
tabular data. This study focuses on tabular numerical data sets, that is numerical real-valued data arranged
in rows and columns in a form of a matrix. For numerical data sets, recent benchmarks argue that deep-
learning imputation methods do not perform better than simple traditional algorithms (Bertsimas et al.,

1https://github.com/DeltaFloflo/knnxkde

1

https://openreview.net/forum?id=KqR3rgooXb
https://github.com/DeltaFloflo/knnxkde

Published in Transactions on Machine Learning Research (06/2023)

2018; Poulos & Valle, 2018; Jadhav et al., 2019; Woznica & Biecek, 2020; Jäger et al., 2021; Lalande & Doya,
2022; Grinsztajn et al., 2022). These studies show that the kNN-Imputer (Troyanskaya et al., 2001) and
MissForest (Stekhoven & Bühlmann, 2012), in spite of being simple algorithms, generally perform better over
a large range of data sets in various missing data scenarios. In the presence of linear dependencies, Multiple
Imputation using Chained Equations (MICE) and its variants (van Buuren & Groothuis-Oudshoorn, 2011;
Khan & Hoque, 2020) can show good imputation performances.

We denote x ∈ RD the complete ground truth for an observation in dimension D ≥ 2, and m ∈ {0, 1}D the
missing mask. The observed data is presented as x̃ = x⊙m, where ⊙ denotes the element wise product. Data
may be missing because it was not recorded, the record has been lost, degraded, or data may alternatively
be censored. The exercise now consists in retrieving x from x̃, while allowing incomplete data for modeling,
and not only complete data.

The probability distribution of the missing mask, p(m) is referred to as the missing data mechanism (or
missingness mechanism), and depends on missing data scenarios. Following the usual classification of Little
and Rubin, missing data scenarios are split into three types (Little & Rubin, 2014): missing completely at
random (MCAR), missing at random (MAR) and missing not at random (MNAR).

In MCAR the missing data mechanism is assumed to be independent of the data set and we can write
p(m|x) = p(m). In MAR, the missing data mechanism is assumed to be fully explained by the observed
variables, such that p(m|x) = p(m|x̃). The MNAR scenario includes every other possible scenarios, where
the reason why data is missing may depend on the missing values themselves.

Numerical data imputation methods are usually evaluated using the normalized RMSE (NRMSE) between
the imputed value and the ground truth. The higher the average NRMSE, the poorer the imputation re-
sults. This approach is intuitive, but is too restrictive for multimodal data sets: it assumes that there exists
a unique answer for a given set of observed variables, which is not true for multimodal distributions. For
multimodal data sets, density estimation methods like the Kernel Density Estimation (KDE) (Rosenblatt,
1956; Parzen, 1962) appear of interest for data imputation. But despite some attempts (Titterington & Mill,
1983; Leibrandt & Günnemann, 2018), density estimation methods with missing values remain computa-
tionally expensive and not suitable for practical imputation purposes, mostly because they do not generalize
well to real-world data sets in spite of an interesting theoretical framework.

Alternatively, other works have developed Gaussian mixture density estimates with Expectation-
Maximization (EM) training (Delalleau et al., 2012; McCaw et al., 2020) as well as Gaussian processes
for Kernel Principal Component Analysis (KPCA) (Sanguinetti & Lawrence, 2006), but these methods also
do not generalize well do heterogeneous numerical data sets in practice. Also, if the mathematical frame-
work of the Missingness Aware Gaussian Mixture Models (MGMM) of McCaw et al. (2020) is interesting, it
requires to manually search for the optimal number of Gaussians in the mixture, and is primarily focused on
classification tasks. More recently, variants of collaborative filtering algorithms for Matrix Completion prob-
lems have been developed (Lee et al., 2016; Li et al., 2020) and can be used for numerical data imputation
as well. However, these methods do not seem to perform better than the traditional SoftImpute algorithm
(Hastie et al., 2015) for Matrix Completion.

This work focuses on concurrently learning from incomplete data to model and recover missing numerical
values. We first look at three simple data sets to illustrate the shortcomings of current data imputation
methods with multimodal distributions. We address these issues by introducing a local density estimator
that is flexible to accommodate multimodal data structures. By leveraging the convenient properties of
the kNN-Imputer and the KDE framework, we develop the kNN×KDE: a simple yet efficient algorithm for
density estimation and data imputation of missing values in numerical data sets.

Using heterogeneous real-world and simulated data sets, we show that our method performs equally or
better than state-of-the-art numerical imputation methods, while providing better density estimates for
missing values. The code and data used in this work are provided in open-access for the community.

2

Published in Transactions on Machine Learning Research (06/2023)

2 Problems of current imputation methods with multimodal data sets

In this section, we illustrate problems of current numerical data imputation methods with multimodal data
sets. For this purpose, we generate three synthetic data sets in two-dimensional space and qualitatively dis-
cuss the imputation performances of four state-of-the-art numerical imputation algorithms with two bench-
mark methods (column mean and column median).

2.1 Three synthetic data sets

The first data set, called 2d_linear, is a noisy linear distribution. x1 is sampled from a mollified uniform
distribution on [0, 1] with standard deviation σ = 0.05. Then x2 = x1 + ε, where ε ∼ N (0, 0.1).

The second data set, 2d_sine, is a sine wave with noise. We sample x1 = 4πu, where u is drawn from a
mollified distribution on [0, 1] with standard deviation σ = 0.05. Then x2 = sin x1 + ε, where ε ∼ N (0, 0.2).
The noisy surjection allows to show that most imputation algorithms perform well in the unambiguous case
(when x2 is missing), but not with multimodal distributions (when x1 is missing).

Finally, 2d_ring displays a ring with noise. It has been generated in polar coordinates where θ ∼ U [0, 2π]
and r = 1.0 + ε, with ε ∼ N (0, 0.1). Euclidean coordinates are x1 = r cos θ and x2 = r sin θ.

These three simple data sets have N = 500 observations and are plotted in Figure 1. The code used for
generation and the data sets themselves are available on the online repository. We have used a mollified
uniform distribution for x1 in 2d_linear and 2d_sine to prevent from zero likelihood computation problems
at the edges of the uniform distribution.

0.0 0.5 1.0

0.0

0.5

1.0

2d_linear

0 5 10

1

0

1

2d_sine

1 0 1

1

0

1

2d_ring

Figure 1: Three basic synthetic data sets with N = 500 observations. 2d_linear is a bijection,
2d_sine is a surjection, and 2d_ring displays a ring and is therefore not a function in the euclidean space.

2.2 Five state-of-the-art numerical data imputation methods

Here, we present four data imputation methods used in this work: the kNN-Imputer, MissForest, MICE and
GAIN. This choice is of course arbitrary, but illustrates well the current state of affairs regarding tabular
data imputation (Bertsimas et al., 2018; Poulos & Valle, 2018; Yoon et al., 2018; Jadhav et al., 2019; Woznica
& Biecek, 2020; Jäger et al., 2021; Lalande & Doya, 2022; Grinsztajn et al., 2022)

The kNN-Imputer (Troyanskaya et al., 2001) computes distances between pairs of observations using the
NaN-Euclidean distance, which can handle missing values. It imputes missing cells one column at a time by
averaging over the k nearest neighbors that have an observed value for the given feature. Therefore, different
neighbors can be used to impute various missing entries for the same observation. The hyperparameter k
for the number of neighbors is to be optimized.

MissForest (Stekhoven & Bühlmann, 2012) is an iterative imputation algorithm. MissForest starts by
filling all missing values with initial estimates (typically the column mean), and loops through all columns,

3

Published in Transactions on Machine Learning Research (06/2023)

one at a time, performing a regression of that specific column onto all other columns using Random Forests.
It stops when the imputed data set is stable enough (following a user-defined threshold) or when a fixed
number of iterations has been performed. The number of trees used in the Random Forest algorithm is the
hyperparameter to be tuned.

MICE stands for Multiple Imputation Chained Equations (van Buuren & Groothuis-Oudshoorn, 2011).
Similar to MissForest, it is an iterative imputation algorithm. MICE strictly refers to the algorithmic
method which consists of filling missing values using iterative series of regression models one variable at
a time. In this work, we use the standard version of MICE that uses linear regressions as a regressor to
predict each column successively. This algorithm has no hyperparameter to optimize. MICE has shown good
imputation results and is appreciated for its simplicity and absence of hyperparameter tuning, but it fails at
capturing non-linear dependencies.

SoftImpute is a matrix completion algorithm (Hastie et al., 2015). It works by finding a low-rank ap-
proximation of the matrix with missing values while promoting sparsity through a regularization term with
coefficient λ. The algorithm uses an iterative procedure to minimize the objective function. In each iteration,
the observed entries of the matrix are used to estimate the missing entries. The estimated entries are then
used to update the low-rank approximation of the matrix. This process is repeated until convergence.

Finally, GAIN is a GAN artificial neural network tailored for tabular numerical data imputation which
claims state-of-the-art numerical data imputation results (Yoon et al., 2018). GAIN smartly revisits the GAN
architecture by working with individual cells rather than entire observations. It has recently benefited from a
lot of attention for numerical data imputation. However, recent benchmarks show that its performances are
mediocre in practice (Jäger et al., 2021; Lalande & Doya, 2022; Grinsztajn et al., 2022). GAIN has several
hyperparameters to tune: batch size, hint rate (amount of correct labels provided to the discriminator),
number of training iterations, and weight parameter α used in the generator loss.

2.3 Imputation results

We introduce missing values in MCAR setting with 20% missing rate. If an observation has both features
removed, we repeat the process until at least one feature is present. After missing values have been inserted,
we normalize the data set in the range [0, 1] using min/max normalization.

For each data imputation algorithm and for each data set represented as a matrix of size (N, D), we perform
a grid search of the hyperparameter than best minimizes the NRMSE:

NRMSE =

√√√√ 1
Nmiss

N∑
i=1

D∑
j=1

(xij − x̂ij)2 (1−mij) (1)

where mij = 1 if cell (i, j) is observed (mij = 0 if missing) and Nmiss =
∑N

i=1
∑D

j=1(1 −mij) is the total
number of missing entries in the data set. Imputation results provided by the best hyperparameters are
plotted in Figure 2.

Figure 2 provides a concise insight into the current state of numerical data imputation. The scientific con-
sensus is that the kNN-Imputer and MissForest overall provide the best numerical data imputation quality,
which is somewhat recovered here. MICE uses linear regression between features and cannot capture non-
linear dependencies. SoftImpute uses low-rank matrix completion, hence the straight lines as well. Despite
its flexible architecture, GAIN performs poorly, even on 2d_linear. GAIN, like all generative adversarial
networks, is difficult to optimize because of training instabilities, mode collapse problems, potential impos-
sibility to converge, or not well defined loss function (Saxena & Cao, 2020).

Both the kNN-Imputer and MissForest average over several predictions. This is why the imputation of x1
for the 2d_sine data set lies between the two sine waves, and imputed values for both x1 and x2 for the
2d_ring data set are inside the ring. While averaging over several predictions often leads to better estimates,
this strategy deteriorates the imputation quality if the missing values distribution is not unimodal.

4

Published in Transactions on Machine Learning Research (06/2023)

0.0 0.5 1.0

0.0

0.5

1.0

2d
_li

ne
ar

kNN-Imputer

0.0 0.5 1.0

0.0

0.5

1.0

MissForest

0.0 0.5 1.0

0.0

0.5

1.0

MICE

0.0 0.5 1.0

0.0

0.5

1.0

SoftImpute

0.0 0.5 1.0

0.0

0.5

1.0

GAIN

0 5 10

1

0

1

2d
_s

in
e

0 5 10

1

0

1

0 5 10

1

0

1

0 5 10

1

0

1

0 5 10

1

0

1

1 0 1

1

0

1

2d
_r

in
g

1 0 1

1

0

1

1 0 1

1

0

1

1 0 1

1

0

1

1 0 1

1

0

1

Figure 2: Imputation results for the three synthetic data sets by the four selected imputation
methods with optimized hyperparameters. Missing data have been injected in MCAR scenario with
20% missing rate. Blue dots correspond to complete observations; orange dots have observed x2 and imputed
x1; red dots have observed x1 and imputed x2. The kNN-Imputer, MissForest and MICE perform well on
2d_linear. For 2d_sine, the kNN-Imputer and MissForest can impute x2, but fail at recovering x1. No
method can properly impute 2d_ring.

MICE performs imputation by assuming linear relations between features of the data set. It is therefore
no surprise that MICE can very well impute data set 2d_linear, but fails at imputing data sets 2d_sine
and 2d_ring. Similarly, SoftImpute uses linear combinations of the observed values as a matrix completion
algorithm.

GAIN provides surprisingly disappointing imputation results. While deep-learning models are flexible meth-
ods, the generator and the discriminator of GAIN fail to capture the relationship between x1 and x2 in all
data sets. Yet innovative, the complex architecture of GAIN (and GANs is general) is problematic to train.
This leads to bad imputation results as well as large variability between runs.

3 The kNN×KDE algorithm

To address the above-mentioned issues related to multimodal distributions, we propose a local stochastic
imputation algorithm inspired by the kNN-Imputer and kernel density estimation. We adapt the KDE
algorithm to missing data settings such that the conditional density of missing features given observed
features is estimated.

We use a methodology analogous to the kNN-Imputer to look for neighbors, but we work with missing
patterns instead of working column by column. The reason of this choice is that working with one column
at a time may lead to imputation artifacts as the selected neighbors for various imputed features can be
different. Therefore, imputed observations may be incompatible with the original data structure. On the
contrary, we are guaranteed to preserve the original data structure if we impute all missing features of an
observation at once.

5

Published in Transactions on Machine Learning Research (06/2023)

For a data set with D columns, we have up to 2D− 2 possible missing patterns. Indeed, each cell may either
be missing or not (hence 2D choices) but we do not account for complete cases (nothing to impute) and
completely unobserved cases (without even an observed feature).

We first normalize each column of the data set to fit within the range of [0, 1]. We refer to this process as
the min-max normalization. For imputation of the data in row i, we compute the distance dij with all other
rows j, using the distance

dij =
√ ∑

k∈Dobs

(xik − xjk)2 +
∑

k∈Dmiss

σ2
k (2)

where Dobs = {k ∈ J1, DK | mik = mjk = 1} is the set of indices for commonly observed features in
observations i and j, Dmiss = {k ∈ J1, DK | mikmjk = 0} is the set of indices for features where at least one
observation i or j is missing, and σk is the standard deviation of feature k computed over all observed cells. We
call this new distance metric the NaN-std-Euclidean Distance, in contrast to the original NaN-Euclidean
Distance used by the kNN-Imputer (Dixon, 1979). See Appendix D for a discussion on this metric properties.

The pairwise distances are then passed to a softmax function to define probabilities:

pij = e−dij/τ∑
j e−dij/τ

(3)

We use the "soft" version of the kNN algorithm, and introduce the temperature hyperparameter τ which can
be interpreted as the effective neighborhood diameter. Instead of selecting a fixed number of neighbors per
observation, we consider all observations but give nearest neighbors a stronger weight. In a similar fashion
as Frosst et al. (2019), the notion of temperature controls the tightness of each observation’s neighborhood.
See Appendix A.1 for a discussion on the temperature hyperparameter.

Given a missing pattern, we first select all rows to impute and all the rows corresponding to potential donors.
The data to impute is the subset of data which has the current missing pattern, and potential donors are
the subset of data where at least all columns in the current missing pattern are observed. For an incomplete
observation i in the subset of data to impute, pij is the probability of choosing observation j from the subset
of potential donors. We have

∑
j pij = 1. Algorithm 1 shows the pseudo-code of the kNN×KDE.

Algorithm 1: Pseudo-code for the kNN×KDE
Hyper-parameters: Softmax temperature τ ; Kernel bandwidth h; Nb draws Ndraws

Data: Incomplete numerical data set X
min-max normalization in the interval [0, 1];
for each missing pattern do

Ximp ← data_to_impute (X, missing pattern);
Xdon ← potential_donors (X, missing pattern);
dij ← NaN_std_Euclidean_Distance (Ximp, Xdon);
pij ← softmax (−dij/τ);
for each row in Ximp do

r ← sample Ndraws rows from Xdon with probabilities pij ;
e← sample noise Ndraws times from e ∼ N (0, h) with dimension K;
imputation_samples ← Xdon[r] + e;

end
end
min-max denormalization;
Return: imputations_samples

6

Published in Transactions on Machine Learning Research (06/2023)

The kNN×KDE has three hyperparameters: the temperature τ for the softmax probabilities, the (shared)
standard deviation h of the Gaussian kernels, and Ndraws the number of imputed samples to draw for each
missing cell. The effects of these three hyperparameters are discussed in Appendix A.

For observation i with a missing value in column k, the probability distribution of the missing cell xik is
given by

p(xik) =
N∑

j=1
pij N (xik|xjk; h) (4)

where pij are the softmax probabilities defined in Equation 3, with pij = 0 if observation j is not in the subset
of potential donors for observation i, and N (.|µ; σ) denotes the density function of a univariate Gaussian
with mean µ and standard deviation σ:

N (x|µ; σ) = 1√
2πσ2

e− 1
2 (x−µ

σ)2
(5)

If observation i has K missing values, in columns k1, k2, ..., kK , then the subset of potential donors will likely
be smaller and the joined probability distribution for all missing values is given by

p(xik1 , xik2 , ..., xikK
) =

N∑
j=1

pij

K∏
κ=1
N (xikκ

|xjkκ
; h) (6)

where the index κ runs from 1 to K to denote the successive missing columns, and pij = 0 if observation
j is not in the subset of potential donors for observation i like above. As can been seen from Equation 6,
the weights pij are shared such that imputed cells for the same observation have a joined probability that
reflects the structure of the original data set.

Note that the pseudo-code of the kNN×KDE presented in Algorithm 1 uses Ndraws samples for each missing
cell. We could instead use the softmax probabilities pij as weights for the mixture of Gaussians with all
potential donors, which would ideally lead to direct probability distributions. We have tried this approach
but found that this requires a much larger computational cost, and is only tractable in practice with small
data sets. We therefore continue to sample Ndraws times to show the returned probability distributions of
the kNN×KDE.

4 Results on the synthetic toy data sets

We show that the pseudo-code of the algorithm presented the proposed method provides imputation samples
that preserve the structure of the original data sets. For now, missing data are inserted in MCAR scenario
with 20% missing rate, and the hyperparameters of the kNN×KDE are fixed to their default values: h = 0.03,
1/τ = 50.0 and Ndraws = 10, 000.

The upper panels of Figure 3 show the imputation with a sub-sampling size Nss = 10. The sub-sampling size
is only used for plotting purposes. If x1 is missing, we sample Nss possible values given x2 (see the orange
horizontal trails of dots), and if x2 is missing, we draw Nss possible values given x1 (see the red vertical
trails of dots).

Of course, it is worth mentioning that if we decide to average over the returned samples by the kNN×KDE,
then similar artifacts as the ones presented in Figure 2 will arise again. For instance, single point estimates
for the 2d_ring data set will fall inside the ring.

Another way to visualize the imputation distribution for each missing value is to look at the univariate
density provided by the kNN×KDE algorithm. For each data set, we have selected two observations: one
with missing x1 and one with missing x2. The lower panels of Figure 3 show the univariate densities returned
by the kNN×KDE algorithm with default hyperparameters. The upper left corner of each panel shows the
observed value and a thick dashed line indicates the (unknown) ground truth to be imputed. We see that
the ground truth always falls in one of the modes of the estimated imputation density.

7

Published in Transactions on Machine Learning Research (06/2023)

0.0 0.2 0.4 0.6 0.8 1.0
x1

0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2
x 2

2d_linear

0.0 2.5 5.0 7.5 10.0 12.5
x1

1.5

1.0

0.5

0.0

0.5

1.0

1.5

x 2

2d_sine

1.0 0.5 0.0 0.5 1.0
x1

1.0

0.5

0.0

0.5

1.0

x 2

2d_ring

0.0 0.2 0.4 0.6
x1

De
ns

ity
 fo

r x
1 x2 = 0.11

4 6 8 10 12
x1

x2 = -1.28

1.5 1.0 0.5 0.0 0.5 1.0 1.5
x1

x2 = -0.11

0.6 0.7 0.8 0.9 1.0 1.1 1.2
x2

De
ns

ity
 fo

r x
2 x1 = 0.94

1.5 1.0 0.5 0.0 0.5
x2

x1 = 11.77

1.5 1.0 0.5 0.0 0.5 1.0
x2

x1 = -0.51

Figure 3: Imputation results from the kNN×KDE algorithm on the three synthetic data sets.
Missing data are inserted in MCAR setting with 20% missing rate. Each missing entry has been imputed
by the kNN×KDE with default hyperparameters Nss = 10 times for plotting purposes. The imputed values
follow the structure of the original data sets. The histograms in the lower panels have Ndraws = 10000
samples. Thick dashed lines correspond to the (unobserved) ground truth and the observed value is shown
in the the upper-left corner. The kNN×KDE returns a probability distribution for each missing cell which
captures the original data multi-modality structure.

For the 2d_sine data set, when x1 is missing (central middle panel of Figure 3), the kNN×KDE returns
a multimodal distribution. Indeed, given the observed x2 = −0.88, three separate ranges of values could
correspond to the missing x1. Similarly, the 2d_ring data set shows bimodal distributions both for x1 or
x2, corresponding to the two possible ranges of values allowed by the ring structure.

5 Performances on heterogeneous data sets

Now, we assess the practical performances of our method on larger data sets, using both synthetic and
real-world data sets from UCI and other repositories. See Appendix B for a comprehensive description of
the data sets.

We present imputation results using two metrics: Subsection 5.1 presents the normalized root mean square
errors (NRMSE) commonly used for comparing numerical data imputation methods; Subsection 5.2 shows
the mean log-likelihood score of the (unknown) ground truth under each imputation model computed over
the normalized data in the range [0, 1] for fair comparison. In both cases we test four missing data settings:
’Full MCAR’, ’MCAR’, ’MAR’, and ’MNAR’, and six missing rates: 10%, 20%, 30%, 40%, 50%, and 60%.
While ’Full MCAR’ includes missing data from multiple columns as defined in Section 1, ’MCAR’ assumes
only one column missing, as in Jäger et al. (2021). See Appendix C for missing data scenario details. For
each data set, each missing data setting, and each missing rate, we repeat the imputation NB_REPEAT=20
times to compute the mean and the standard deviation of the chosen metric.

8

Published in Transactions on Machine Learning Research (06/2023)

5.1 Imputation results with NRMSE

This subsection presents the imputation results evaluated by the NRMSE, as defined in Equation (1). For the
kNN-Imputer, MissForest, MICE, the Mean, and the Median imputation schemes, we use the implementation
provided by the Python package sklearn2 Pedregosa et al. (2011). For GAIN, we use the original GitHub
repository3 of the authors of GAIN Yoon et al. (2018). As the original package for SoftImpute is in R, we
use a more recent Python4 implementation provided by Muzellec et al. (2020).

When minimizing the NRMSE for a given data set, a given missing data scenario, and a given missing rate,
we perform a hyperparameter search except for MICE, Mean, and Median imputation methods, which do
not have hyperparameters. We consider the following lists for the other 5 methods’ hyperparameters:

• For kNN×KDE, the inverse temperature 1/τ ∈ [10, 25, 50, 100, 250, 500, 1000]
• For the kNN-Imputer, the number of neighbors k ∈ [1, 2, 5, 10, 20, 50, 100]
• For MissForest, the number of regression trees Ntrees ∈ [1, 2, 3, 5, 10, 15, 20]
• For SoftImpute, the regularization term λ ∈ [0.1, 0.2, 0.5, 1.0, 2.0, 5.0, 10.0]
• For GAIN, the number of training epochs Niter. ∈ [100, 200, 400, 700, 1000, 2000, 4000]

When computing the NRMSE for the kNN×KDE, we impute with the imputation sample mean.

Tables 1, 2, 3, and 4 show the mean imputation NRMSE for each method and each data set with the missing
rate 20%. For each data set, the top three methods that achieve lowest imputation NRMSE have been
colored in green, yellow, and orange. We provide the numerical results for the 20% missing rate case as this
is often the default missing rate for tabular data imputation benchmarks. The results for all missing rates
are available in the online repository for this project.

In order to provide a more concise overview of the imputation NRMSE results, we rank the proposed methods
from 1 (best) to 8 (worst) for each data set. For example, looking at the 4th row of Table 1, we have for the
geyser data set in Full MCAR setting with 20% missing rate: the kNN-Imputer (1), the kNN×KDE (2),
MICE (3), MissForest (4), SoftImpute (5), GAIN (6), Mean (7) and Median (8). Now, for each missing data
setting and each missing rate, we compute the mean and the standard deviation for each method ranks over
the 15 data sets. Figure 4 shows the average rank for each method.

These results reinforce the previous reports that Deep Learning methods do not perform better than tradi-
tional methods on tabular numerical data sets (Bertsimas et al., 2018; Poulos & Valle, 2018; Jadhav et al.,
2019; Woznica & Biecek, 2020; Jäger et al., 2021; Lalande & Doya, 2022; Grinsztajn et al., 2022). The
proposed kNN×KDE consistently achieves the best rank, tightly followed by MissForest. The kNN-Imputer
and MICE come next. SoftImpute, GAIN, the column Mean, and the column Median are always in the
group of the four last methods.

Rankings for MissForest show large error bars because this method is confident in the provided imputation.
In other words, the performances of MissForest can vary a lot depending on the nature of the data set (see
the standard deviation in the reported NRMSE results in Tables 1 to 4). Alternatively, the kNN×KDE and
the kNN-Imputer have lower rank error bars, indicating that these methods are more consistent across data
sets. This can been seen in the lower NRMSE standard deviation in Tables 1 to 4.

It is worth noting that the kNN×KDE seems to suffer from the curse of dimensionality, especially in the ’Full
MCAR’ scenario at high missing rate. Looking at Table 1, the kNN×KDE has higher NRMSE compared to
other methods for the breast and the sylvine data sets. Indeed, in ’Full MCAR’ scenario at high missing
rates for data sets in high dimension, the subset of potential donors for a specific missing pattern can be
very low, or even empty therefore preventing from sampling.

While Figure 4 provides the overall ranks, note that the imputation NRMSE can vary greatly between
two consecutive ranks. Using again the abalone data set NRMSE provided in the first row of Table 1 to

2https://scikit-learn.org/stable/modules/impute.html
3https://github.com/jsyoon0823/GAIN
4https://github.com/BorisMuzellec/MissingDataOT

9

https://scikit-learn.org/stable/modules/impute.html
https://github.com/jsyoon0823/GAIN
https://github.com/BorisMuzellec/MissingDataOT

Published in Transactions on Machine Learning Research (06/2023)

10% 20% 30% 40% 50% 60%

1
2
3
4
5
6
7
8

Fu
ll

M
CA

R
ra

nk
s

kNNxKDE
kNN-Imputer
MissForest
SoftImpute
GAIN
MICE
Mean
Median

10% 20% 30% 40% 50% 60%

1
2
3
4
5
6
7
8

M
CA

R
ra

nk
s

10% 20% 30% 40% 50% 60%

1
2
3
4
5
6
7
8

M
AR

 ra
nk

s

10% 20% 30% 40% 50% 60%
Missing rate

1
2
3
4
5
6
7
8

M
NA

R
ra

nk
s

NRMSE rankings

Figure 4: Average NRMSE rank for each data imputation method in various missing data
settings and missing rates. Our proposed method, the kNN×KDE, is consistently the best method,
regardless of the missing rate of missing data setting. Second comes MissForest. The kNN-Imputer and
MICE come next. Besides the column mean or median numerical imputation methods, GAIN and SoftImpute
invariably under-perform every other methods.

exemplify, the NRMSE remains below 4.00 for the top four methods, then jumps to 5.29 for GAIN, and
finally gets close to 15.00 for the column Mean and Median imputation methods.

Finally, we stress that even though the kNN×KDE overall provides minimal NRMSE, the framework used
here computes the distribution mean to return a point estimate. Calculating a point estimate brings back the
original problem of choosing a single estimate to impute missing data, depicted in Figure 2. For instance,
looking at the 2d_ring data set in Table 1, we see that the kNN×KDE does not perform much better
than the kNN-Imputer or MissForest, which are considered state-of-the-art numerical imputation methods.
Therefore, we decide to also measure the performances of the imputation methods with the log-likelihood
score.

10

Published in Transactions on Machine Learning Research (06/2023)

5.2 Performances by log-likelihood score

Next, we look at the log-likelihood of missing values under the probabilistic model provided by each method.
For the kNN×KDE, a probability distribution for each missing cell is obtained as described in Section 3 and
illustrated in Section 4. For the kNN-Imputer, we compute the mean and the standard deviation of the k
selected neighbors, and calculate the log-likelihood of the ground truth assuming a Gaussian distribution.
Similarly for the Mean imputation method, we compute the column mean and standard deviation and assume
a Gaussian distribution. For MICE and MissForest, the stochastic nature of these two Iterative Imputer
methods allows us to repeat the imputation N = 5 times, compute the mean and the standard deviation for
each missing value, and calculate the log-likelihood of the ground truth assuming a Gaussian distribution.

Despite being a generative model, GAIN systematically returns a unique value once trained, such that the
variability in GAIN’s predictions cannot be taken into account. Therefore, we decided not to include GAIN
for the likelihood comparative study. We also do not consider the column Median anymore, as we already
use the Mean for likelihood computation. We finally discard SoftImpute from this section as well because it
showed mediocre performances on the NRMSE rankings and there is no straightforward way to implement
a probabilistic version of the SoftImpute algorithm.

When computing the log-likelihood, we do not perform hyperparameter tuning for MissForest, the
kNN×KDE, and kNN-Imputer. Instead, we choose the hyperparameter that best minimized the imputation
NRMSE in the previous subsection.

Following the same approach as Subsection 5.1, we present the average log-likelihood scores (computed over
all missing cells) for each data set and each method with 20% missing rates in Tables 5, 6, 7, and 8. The
numerical results for other missing rates are available online.

In a similar fashion as before, we compute the ranks of the proposed methods using the mean log-likelihood
for each missing data scenario and missing rate. For example, looking at the abalone data set in Full MCAR
mean log-likelihood provided in the first raw of Table 5, we have the following rankings: kNN-Imputer (1),
kNN×KDE (2), MICE (3), Mean (4), and MissForest (5). We average the ranks over all 15 data sets, and
present the aggregated results in Figure 5

The kNN×KDE provides the overall best mean log-likelihood score, and the kNN-Imputer comes next. In
’Full MCAR’ missing data setting at high missing rates, the kNN-Imputer model returns a higher likelihood
score than the kNN×KDE. A tentative explanation is that high missing rates in ’Full MCAR’ missing
setting create sparse observations from which sampling with the softmax probabilities of the kNN×KDE
can become challenging. In contrast, the kNN-Imputer uses independent Gaussian distributions for each
column, which may lead to better results when a lot of cells are missing. On a similar note, notice how the
column Mean provides greater log-likelihood scores than the MICE algorithm at high missing rates in ’Full
MCAR’ scenario.

As before, the kNN×KDE algorithm can suffer from high missing rates in ’Full MCAR’ scenario for high
dimensional data sets (see Table 5 for instance) as the subset of potential donors can be small, or even
empty. But contrary to the NRMSE case, the log-likelihood score is not as severely affected. Data sets that
exhibit a multi-modality structure tend to have much better log-likelihood score results under the kNN×KDE
probability distribution. These data sets can be identified by looking at the average Dip test p-value for the
test of unimodality (see Appendix B).

Despite MissForest showing interesting results with the NRMSE as performance metric, it now always scores
last when averaging over multiple data sets. This is because the estimates provided by MissForest have a low
variability over different runs. As a consequence, the standard deviation used for the Gaussian distribution
to model the probability distribution for each missing cell is small, and the resulting shape of the probability
distribution is therefore very narrow. In the rare cases where the ground truth falls within 1σ or 2σ of the
mean provided by MissForest, the likelihood will be high; but in most cases, the ground truth is more than
3σ away from the MissForest mean, therefore leading to small likelihood of the (unknown) ground truth
under the MissForest model.

11

Published in Transactions on Machine Learning Research (06/2023)

10% 20% 30% 40% 50% 60%

1

2

3

4

5

Fu
ll

M
CA

R
ra

nk
s

kNNxKDE
kNN-Imputer
MissForest
MICE
Mean

10% 20% 30% 40% 50% 60%

1

2

3

4

5

M
CA

R
ra

nk
s

10% 20% 30% 40% 50% 60%

1

2

3

4

5

M
AR

 ra
nk

s

10% 20% 30% 40% 50% 60%
Missing rate

1

2

3

4

5

M
NA

R
ra

nk
s

Log-likelihood rankings

Figure 5: Average log-likelihood scores rank for each data imputation method in various missing
data settings and missing rates. The kNN×KDE ranks best in all cases, except for the Full MCAR
scenario at high missing rates, where the kNN-Imputer is best. MissForest consistently returns the lowest
log-likelihood score, because its predictions do not allow for much variability.

Looking at Tables 5 to 8, we see that for 20% missing rate, the kNN×KDE provides the best log-likelihood
score, especially for data sets with smaller dimension. As mentioned earlier, both the kNN×KDE and
the kNN-Imputer can suffer from the curse of dimensionality because of the computation of the Euclidean
distance in large dimensional spaces.

6 Discussion

This work proposes the kNN×KDE, a new approach using a soft version of the kNN algorithms to derive
weights for the Kernel Density Estimation method. The kNN×KDE has been developed for numerical
data imputation, especially for low dimensional data sets in the presence of multimodality or complex

12

Published in Transactions on Machine Learning Research (06/2023)

dependencies. Here, we discuss of the limits and strengths of the kNN×KDE, conclude our work, and
provide directions for subsequent works.

6.1 Limits & Strengths

A substantial drawback is that the kNN×KDE becomes computationally expensive in the presence with
large data sets. However, it remains faster than MissForest in practice, since it works with missing patterns
instead of looping through the data set column by column. This strategy enables to compute only necessary
pairwise distances. See Appendix E for quantitative results on computation time.

Another drawback of the kNN×KDE is that it cannot impute certain data sets with too many features in
’Full MCAR’ and when the missing rate is high. Indeed, in ’Full MCAR’ scenario with 60% missing rate
for instance, the subset of potential donors (see Algorithm 1) may be empty. In such cases, working on a
column-by-column basis, like the standard kNN-Imputer, may be an interesting solution.

Now, the great advantage of the kNN×KDE is that it preserves the original data structure, which is of
major importance when working with multimodal data sets. Our method returns an imputation sample that
provides information about the missing data distribution, which is better than a point estimate. By working
with missing patterns and imputing all missing features at the same time, the kNN×KDE provides a sample
of entirely imputed observations that are consistent with the original data set, which is not the case with
Iterative Imputation methods (like MissForest and MICE) or the kNN-Imputer.

Finally, even though our method consistently achieves the average best imputation NRMSE in all missing
data scenarios and at all considered missing rates (see Figure 4), using the sample mean of the returned
imputation samples brings the original problem with multimodal distributions back. Looking at the 2d_ring
data set in Table 2, we see that the kNN×KDE does not perform better than other methods because of
the imputation sample mean. However, we see on Table 6 that the kNN×KDE is the only method capable
of providing a good density estimation (and therefore a high log-likelihood score) for the 2d_ring data set.
This problem essentially boils down to asking why imputation is needed in the first place: are we interested
in subsequent downstream regression or classification tasks ; or are we solely interested in estimating missing
values? The common approach of first imputing and then performing downstream tasks may be sub-optimal
depending on the choosing imputation strategy (Le Morvan et al., 2021). Instead, the conditional probability
distributions returned by the kNN×KDE allow to postpone the decision of imputing or not to a later stage.
Imputation can subsequently be performed freely: with the mean (to minimize the root mean square error),
with the mode (to minimize the absolute mean error), by random sampling (which would prevent from
artifacts in the presence of multimodal datasets), or with any other relevant statistic.

6.2 Future work

We decided to derive a kernel version on the traditional kNN-Imputer, and developed the proposed
kNN×KDE. Alternatively, it could be interesting to look into another kernel method (or at least any other
way to perform density estimation) using Random Forests, since MissForest achieves good results even in its
current form.

Another possible extension of this work would be to include an end-to-end treatment of categorical variables
within the framework of the kNN×KDE. As this study makes use of numerical imputation methods that
cannot handle categorical features (e.g. GAIN or SoftImpute), we decided to exclude categorical variables
from the scope of this paper. However, tabular data imputation can include numerical and categorical
variables in practice and further work may be needed in this direction.

Finally, the NaN-std-Euclidean metric appear to yield better results compared to the commonly used
NaN-Euclidean metric. A possible explanation is that this new metric penalizes sparse observations (with a
large number of missing values) by using the feature standard deviation when the entry is missing, therefore
preventing to use artificially close neighbours for imputation (see Appendix D). Further investigation of this
metric, and experimental results with the standard kNN-Imputer may yield interesting insights.

13

Published in Transactions on Machine Learning Research (06/2023)

6.3 Conclusion

The motivation behind this work was to design an algorithm capable of imputing numerical values in data
sets with heterogeneous structures. In particular, multimodality makes imputation ambiguous, as distinct
values may be valid imputations. Now, if minimizing the imputation RMSE is an intuitive objective for
numerical data imputation, it does not capture the complexity of multimodal data sets. Instead of averaging
over several possible imputed values like traditional methods, the kNN×KDE offers to look at the probability
density of the missing values and choose how to perform the imputation: sampling, mean, median, etc.

Ultimately, this work advocates for a qualitative approach of numerical data imputation, rather than the
current quantitative one. The online repository for this work5 provides all algorithms, all data, and few
Jupiter Notebooks to test the proposed method, and we recommend trying it for practical numerical data
imputation in various domains.

Acknowledgments

We would like to thank the three anonymous referees for their time and helpful remarks during the review
of our manuscript. In addition, we would like to express our gratitude to Alain Celisse and the good people
at the SAMM (Statistique, Analyse et Modélisation Multidisciplinaire) Seminar of the University Paris 1
Panthéon-Sorbonne, for their insightful comments during the development of the kNN×KDE.

This research was supported by internal funding from the Okinawa Institute of Science and Technology
Graduate University to K. D.

5https://github.com/DeltaFloflo/knnxkde

14

https://github.com/DeltaFloflo/knnxkde

Published in Transactions on Machine Learning Research (06/2023)

D
im

.
k

N
N

×
K

D
E

k
N

N
-I

m
pu

te
r

M
is

sF
or

es
t

So
ft

Im
pu

te
G

A
IN

M
IC

E
M

ea
n

M
ed

ia
n

2d
_l

in
ea

r
2

7.
63

±
0.

39
7.

72
±

0.
41

9.
79

±
0.

58
11

.8
2

±
0.

77
20

.7
3

±
5.

62
7.

63
±

0.
34

24
.4

2
±

0.
91

24
.4

9
±

0.
94

2d
_s

in
e

2
18

.8
5

±
0.

94
19

.2
1

±
0.

96
25

.2
9

±
1.

57
43

.2
4

±
1.

97
26

.8
2

±
1.

46
25

.2
2

±
0.

82
26

.2
9

±
1.

11
26

.3
6

±
1.

11
2d

_r
in

g
2

29
.6

7
±

0.
83

29
.7

7
±

0.
84

38
.3

3
±

1.
60

42
.3

7
±

1.
39

30
.2

1
±

1.
92

29
.6

0
±

0.
84

29
.6

0
±

0.
84

29
.7

4
±

0.
87

ge
ys

er
2

10
.7

8
±

0.
93

10
.7

7
±

0.
90

12
.9

8
±

1.
14

17
.8

1
±

0.
97

21
.9

5
±

7.
43

12
.7

4
±

0.
70

29
.0

2
±

1.
10

31
.3

4
±

1.
92

pe
ng

ui
n

4
12

.9
9

±
0.

65
13

.6
4

±
0.

75
14

.4
7

±
0.

78
24

.6
6

±
1.

54
18

.3
7

±
1.

92
15

.1
9

±
0.

61
22

.7
8

±
0.

83
23

.2
8

±
1.

01
po

ll
en

5
10

.4
1

±
0.

21
11

.8
2

±
0.

19
10

.9
8

±
0.

26
17

.5
4

±
0.

28
13

.6
1

±
1.

58
10

.1
3

±
0.

24
14

.2
8

±
0.

21
14

.2
8

±
0.

21
pl

an
et

s
6

9.
77

±
0.

97
11

.1
9

±
0.

77
9.

16
±

1.
02

14
.2

1
±

1.
17

12
.0

7
±

0.
89

10
.2

2
±

0.
77

15
.9

8
±

0.
72

17
.2

9
±

0.
91

ab
al

on
e

7
3.

44
±

0.
39

3.
73

±
0.

36
3.

32
±

0.
39

6.
34

±
0.

19
5.

29
±

0.
70

3.
86

±
0.

33
14

.8
7

±
0.

35
14

.9
8

±
0.

35
su

lf
ur

7
5.

85
±

0.
16

10
.0

1
±

0.
17

6.
58

±
0.

26
14

.9
4

±
0.

14
14

.1
3

±
1.

81
10

.9
3

±
0.

12
17

.8
8

±
0.

14
18

.9
0

±
0.

19
ga

us
si

an
s

8
5.

47
±

0.
09

6.
60

±
0.

11
5.

35
±

0.
11

15
.3

8
±

0.
19

11
.6

1
±

1.
52

9.
24

±
0.

12
21

.9
4

±
0.

11
23

.4
0

±
0.

24
wi

ne
_r

ed
11

9.
78

±
0.

47
10

.5
0

±
0.

44
8.

58
±

0.
30

12
.4

9
±

0.
43

12
.0

3
±

0.
61

10
.0

8
±

0.
43

14
.0

0
±

0.
46

14
.2

2
±

0.
47

wi
ne

_w
hi

te
11

8.
64

±
0.

42
8.

75
±

0.
41

7.
30

±
0.

36
11

.5
1

±
0.

37
10

.8
1

±
0.

63
8.

98
±

0.
30

11
.1

9
±

0.
54

11
.2

8
±

0.
55

ja
pa

ne
se

_v
ow

el
s

12
7.

97
±

0.
06

8.
78

±
0.

08
7.

49
±

0.
11

14
.3

2
±

0.
07

13
.3

5
±

0.
45

11
.4

9
±

0.
08

16
.1

8
±

0.
07

16
.2

1
±

0.
07

sy
lv

in
e

20
18

.6
2

±
0.

13
18

.2
0

±
0.

14
16

.9
8

±
0.

14
18

.8
4

±
0.

09
19

.0
1

±
0.

29
17

.6
4

±
0.

13
19

.6
2

±
0.

13
20

.0
8

±
0.

14
br

ea
st

30
9.

17
±

0.
59

8.
28

±
0.

60
6.

39
±

0.
54

5.
79

±
0.

31
7.

44
±

0.
51

5.
59

±
0.

32
15

.2
9

±
0.

68
15

.7
3

±
0.

71

Ta
bl

e
1:

Im
pu

ta
ti

on
N

R
M

SE
(i

n
%

)
w

it
h

20
%

m
is

si
ng

ra
te

in
Fu

ll
M

C
A

R
sc

en
ar

io
.

M
iss

Fo
re

st
an

d
th

e
k
N

N
×

K
D

E
ov

er
al

lp
er

fo
rm

be
st

at
m

in
im

iz
in

g
th

e
N

R
M

SE
,f

ol
lo

we
d

by
M

IC
E

an
d

th
e

k
N

N
-Im

pu
te

r.
G

A
IN

do
es

no
t

co
m

pe
te

ag
ai

ns
t

ot
he

r
nu

m
er

ic
al

da
ta

im
pu

ta
tio

n
m

et
ho

ds
.

D
im

.
k

N
N

×
K

D
E

k
N

N
-I

m
pu

te
r

M
is

sF
or

es
t

So
ft

Im
pu

te
G

A
IN

M
IC

E
M

ea
n

M
ed

ia
n

2d
_l

in
ea

r
2

6.
80

±
0.

49
6.

83
±

0.
50

8.
73

±
0.

63
12

.4
5

±
1.

39
13

.8
1

±
6.

43
6.

80
±

0.
46

21
.6

2
±

1.
56

21
.6

6
±

1.
57

2d
_s

in
e

2
6.

94
±

0.
57

7.
26

±
0.

70
8.

63
±

0.
75

42
.8

5
±

2.
77

26
.1

3
±

1.
21

24
.6

4
±

1.
12

26
.0

5
±

1.
13

26
.0

9
±

1.
13

2d
_r

in
g

2
29

.5
2

±
1.

42
29

.6
4

±
1.

39
40

.6
1

±
2.

42
43

.5
0

±
1.

10
29

.5
4

±
1.

49
29

.4
5

±
1.

40
29

.4
4

±
1.

40
29

.4
7

±
1.

41
ge

ys
er

2
10

.8
9

±
1.

21
11

.0
1

±
1.

23
12

.5
4

±
1.

18
21

.0
5

±
2.

04
27

.7
2

±
11

.6
0

14
.7

6
±

1.
18

33
.0

0
±

1.
27

36
.1

8
±

2.
71

pe
ng

ui
n

4
9.

00
±

0.
93

9.
20

±
0.

98
9.

94
±

0.
90

13
.0

9
±

1.
31

14
.0

9
±

2.
90

11
.0

1
±

1.
27

23
.0

2
±

2.
04

23
.5

5
±

2.
51

po
ll

en
5

4.
83

±
0.

24
4.

92
±

0.
26

4.
49

±
0.

19
15

.0
4

±
0.

42
9.

11
±

2.
08

4.
10

±
0.

15
14

.8
5

±
0.

64
14

.8
5

±
0.

64
pl

an
et

s
6

7.
60

±
0.

52
7.

58
±

0.
57

6.
97

±
0.

37
10

.1
0

±
0.

83
9.

69
±

1.
18

8.
23

±
0.

57
17

.2
9

±
0.

95
18

.0
4

±
1.

35
ab

al
on

e
7

2.
51

±
0.

17
2.

54
±

0.
17

2.
54

±
0.

16
4.

12
±

0.
13

4.
02

±
1.

00
2.

60
±

0.
19

16
.3

7
±

0.
48

16
.6

0
±

0.
53

su
lf

ur
7

1.
92

±
0.

09
2.

02
±

0.
10

1.
82

±
0.

08
8.

82
±

0.
16

8.
29

±
0.

81
6.

35
±

0.
11

20
.5

2
±

0.
24

20
.5

7
±

0.
24

ga
us

si
an

s
8

4.
69

±
0.

08
4.

61
±

0.
08

4.
55

±
0.

09
8.

02
±

0.
23

9.
05

±
1.

32
6.

30
±

0.
11

18
.9

8
±

0.
29

19
.3

6
±

0.
32

wi
ne

_r
ed

11
5.

43
±

0.
35

6.
36

±
0.

32
5.

04
±

0.
45

7.
69

±
0.

34
8.

83
±

1.
07

5.
48

±
0.

32
15

.4
5

±
0.

70
15

.8
6

±
0.

71
wi

ne
_w

hi
te

11
5.

43
±

0.
65

6.
21

±
0.

67
4.

72
±

0.
58

8.
58

±
1.

46
7.

97
±

1.
06

5.
51

±
1.

13
8.

37
±

0.
89

8.
38

±
0.

88
ja

pa
ne

se
_v

ow
el

s
12

5.
34

±
0.

15
6.

02
±

0.
21

6.
96

±
0.

11
13

.2
6

±
0.

31
14

.2
9

±
0.

70
10

.1
0

±
0.

14
16

.7
9

±
0.

30
16

.8
0

±
0.

30
sy

lv
in

e
20

14
.6

9
±

0.
58

14
.7

0
±

0.
57

15
.2

1
±

0.
55

15
.9

2
±

0.
40

15
.4

3
±

0.
69

14
.6

2
±

0.
57

14
.6

2
±

0.
57

14
.9

3
±

0.
64

br
ea

st
30

4.
39

±
0.

49
4.

37
±

0.
45

0.
87

±
0.

32
0.

75
±

0.
14

2.
99

±
0.

51
0.

31
±

0.
04

16
.6

9
±

1.
29

17
.0

9
±

1.
44

Ta
bl

e
2:

Im
pu

ta
ti

on
N

R
M

SE
(i

n
%

)
w

it
h

20
%

m
is

si
ng

ra
te

in
M

C
A

R
sc

en
ar

io
.

15

Published in Transactions on Machine Learning Research (06/2023)

D
im

.
k

N
N

×
K

D
E

k
N

N
-I

m
pu

te
r

M
is

sF
or

es
t

So
ft

Im
pu

te
G

A
IN

M
IC

E
M

ea
n

M
ed

ia
n

2d
_l

in
ea

r
2

6.
86

±
0.

64
6.

95
±

0.
66

8.
66

±
0.

58
13

.3
8

±
0.

91
18

.0
9

±
7.

46
6.

82
±

0.
57

21
.8

5
±

1.
48

22
.1

8
±

1.
50

2d
_s

in
e

2
7.

10
±

0.
52

7.
55

±
0.

54
8.

85
±

0.
62

38
.7

2
±

2.
03

26
.0

9
±

1.
63

24
.4

0
±

1.
12

25
.8

0
±

1.
05

25
.7

9
±

1.
06

2d
_r

in
g

2
28

.6
5

±
1.

40
28

.8
1

±
1.

45
38

.5
7

±
2.

03
41

.5
5

±
2.

38
28

.9
4

±
1.

64
28

.5
6

±
1.

37
28

.5
6

±
1.

37
28

.6
2

±
1.

39
ge

ys
er

2
11

.0
2

±
1.

10
11

.1
8

±
1.

11
12

.3
8

±
1.

35
22

.0
1

±
1.

57
26

.8
2

±
15

.2
0

13
.9

1
±

1.
02

31
.4

3
±

1.
58

30
.3

2
±

2.
90

pe
ng

ui
n

4
9.

24
±

0.
80

9.
39

±
0.

75
10

.1
8

±
0.

93
15

.4
2

±
2.

28
15

.0
3

±
3.

73
11

.3
0

±
0.

94
24

.8
2

±
2.

05
26

.7
9

±
2.

45
po

ll
en

5
4.

70
±

0.
25

4.
78

±
0.

23
4.

41
±

0.
18

15
.0

5
±

0.
51

8.
94

±
2.

11
4.

07
±

0.
17

14
.6

3
±

0.
68

14
.6

4
±

0.
68

pl
an

et
s

6
7.

40
±

0.
71

7.
38

±
0.

78
6.

96
±

0.
63

9.
95

±
0.

90
9.

50
±

1.
32

7.
91

±
0.

73
15

.9
0

±
0.

87
14

.9
7

±
0.

95
ab

al
on

e
7

2.
59

±
0.

11
2.

61
±

0.
12

2.
60

±
0.

12
4.

08
±

0.
22

4.
00

±
1.

11
2.

61
±

0.
13

15
.9

7
±

0.
43

15
.3

5
±

0.
42

su
lf

ur
7

1.
87

±
0.

08
1.

95
±

0.
09

1.
78

±
0.

07
9.

29
±

0.
14

8.
74

±
1.

53
5.

79
±

0.
12

20
.6

2
±

0.
24

21
.1

6
±

0.
24

ga
us

si
an

s
8

4.
56

±
0.

08
4.

49
±

0.
09

4.
44

±
0.

10
8.

15
±

0.
19

8.
61

±
0.

92
6.

43
±

0.
12

17
.9

0
±

0.
29

17
.6

0
±

0.
31

wi
ne

_r
ed

11
5.

02
±

0.
43

5.
84

±
0.

47
4.

74
±

0.
48

7.
37

±
0.

52
8.

57
±

1.
59

5.
25

±
0.

34
15

.0
7

±
0.

74
15

.1
5

±
0.

92
wi

ne
_w

hi
te

11
5.

58
±

0.
79

6.
41

±
0.

84
4.

74
±

0.
75

8.
67

±
1.

49
8.

00
±

1.
09

6.
07

±
1.

58
8.

63
±

1.
10

8.
64

±
1.

11
ja

pa
ne

se
_v

ow
el

s
12

5.
38

±
0.

16
6.

08
±

0.
19

6.
95

±
0.

13
12

.8
7

±
0.

28
14

.4
6

±
1.

44
10

.1
0

±
0.

20
16

.4
3

±
0.

27
16

.4
7

±
0.

26
sy

lv
in

e
20

14
.7

0
±

0.
36

14
.7

1
±

0.
37

15
.3

0
±

0.
40

16
.0

6
±

0.
29

15
.5

0
±

0.
72

14
.6

4
±

0.
36

14
.6

4
±

0.
36

14
.8

7
±

0.
38

br
ea

st
30

4.
57

±
0.

40
4.

62
±

0.
46

0.
88

±
0.

27
0.

81
±

0.
22

2.
92

±
0.

23
0.

31
±

0.
04

17
.5

1
±

1.
28

18
.3

6
±

1.
40

Ta
bl

e
3:

Im
pu

ta
ti

on
N

R
M

SE
(i

n
%

)
w

it
h

20
%

m
is

si
ng

ra
te

in
M

A
R

sc
en

ar
io

.

D
im

.
k

N
N

×
K

D
E

k
N

N
-I

m
pu

te
r

M
is

sF
or

es
t

So
ft

Im
pu

te
G

A
IN

M
IC

E
M

ea
n

M
ed

ia
n

2d
_l

in
ea

r
2

6.
72

±
0.

65
6.

74
±

0.
70

8.
57

±
0.

62
13

.5
6

±
1.

29
14

.9
2

±
7.

50
6.

67
±

0.
58

21
.7

0
±

1.
70

22
.0

8
±

1.
85

2d
_s

in
e

2
7.

04
±

0.
68

7.
28

±
0.

67
8.

81
±

0.
64

48
.3

8
±

2.
19

26
.4

3
±

1.
20

24
.6

7
±

1.
13

26
.5

2
±

1.
04

26
.9

6
±

1.
18

2d
_r

in
g

2
29

.2
6

±
1.

16
29

.4
1

±
1.

24
39

.3
4

±
2.

40
50

.0
3

±
1.

67
29

.4
2

±
2.

07
29

.0
9

±
1.

09
29

.0
9

±
1.

09
29

.4
2

±
1.

13
ge

ys
er

2
10

.5
5

±
1.

03
10

.6
5

±
1.

02
11

.9
7

±
1.

18
22

.5
8

±
1.

57
25

.9
2

±
12

.4
7

14
.0

6
±

1.
19

32
.3

3
±

0.
98

31
.3

3
±

2.
75

pe
ng

ui
n

4
9.

68
±

0.
95

9.
84

±
0.

97
10

.4
4

±
0.

99
16

.2
6

±
1.

74
14

.9
3

±
2.

61
11

.6
4

±
1.

08
24

.2
6

±
1.

70
26

.3
3

±
1.

95
po

ll
en

5
4.

83
±

0.
28

4.
90

±
0.

28
4.

47
±

0.
20

17
.0

6
±

0.
73

9.
38

±
2.

76
4.

11
±

0.
18

15
.0

7
±

0.
68

15
.0

8
±

0.
67

pl
an

et
s

6
8.

01
±

0.
71

8.
21

±
0.

84
7.

57
±

0.
57

11
.1

8
±

0.
87

9.
75

±
0.

73
8.

59
±

0.
86

16
.6

0
±

0.
92

15
.3

7
±

1.
07

ab
al

on
e

7
2.

66
±

0.
17

2.
68

±
0.

18
2.

67
±

0.
17

4.
08

±
0.

13
3.

43
±

0.
35

2.
68

±
0.

20
16

.1
1

±
0.

62
15

.4
8

±
0.

59
su

lf
ur

7
1.

91
±

0.
14

1.
98

±
0.

14
1.

79
±

0.
09

9.
66

±
0.

13
8.

28
±

1.
30

6.
01

±
0.

10
20

.6
2

±
0.

18
21

.2
7

±
0.

21
ga

us
si

an
s

8
4.

41
±

0.
11

4.
34

±
0.

10
4.

24
±

0.
10

8.
67

±
0.

21
8.

53
±

1.
31

5.
97

±
0.

14
18

.9
0

±
0.

40
18

.0
6

±
0.

38
wi

ne
_r

ed
11

5.
67

±
0.

47
6.

77
±

0.
42

5.
26

±
0.

42
9.

19
±

0.
75

9.
32

±
0.

94
5.

92
±

0.
35

16
.8

4
±

0.
73

18
.2

9
±

0.
72

wi
ne

_w
hi

te
11

6.
34

±
1.

01
7.

21
±

1.
11

5.
51

±
0.

80
9.

97
±

1.
60

9.
47

±
1.

37
5.

99
±

1.
45

9.
65

±
1.

36
10

.0
4

±
1.

41
ja

pa
ne

se
_v

ow
el

s
12

5.
59

±
0.

21
6.

26
±

0.
20

7.
08

±
0.

19
14

.7
6

±
0.

33
14

.8
4

±
2.

36
10

.1
7

±
0.

24
16

.9
9

±
0.

35
16

.9
2

±
0.

34
sy

lv
in

e
20

13
.7

5
±

0.
25

13
.7

7
±

0.
27

14
.5

4
±

0.
28

16
.8

2
±

0.
22

14
.7

3
±

0.
77

13
.6

5
±

0.
26

13
.6

5
±

0.
26

12
.8

5
±

0.
34

br
ea

st
30

4.
61

±
0.

47
4.

75
±

0.
50

1.
17

±
0.

44
0.

96
±

0.
26

2.
92

±
0.

32
0.

34
±

0.
05

18
.5

9
±

1.
21

19
.9

8
±

1.
33

Ta
bl

e
4:

Im
pu

ta
ti

on
N

R
M

SE
(i

n
%

)
w

it
h

20
%

m
is

si
ng

ra
te

in
M

N
A

R
sc

en
ar

io
.

16

Published in Transactions on Machine Learning Research (06/2023)

D
im

.
k

N
N

×
K

D
E

k
N

N
-I

m
pu

te
r

M
is

sF
or

es
t

M
IC

E
M

ea
n

2d
_l

in
ea

r
2

1.
13

±
0.

06
8

1.
11

±
0.

07
7

-5
.4

8
±

0.
58

9
0.

65
±

0.
18

2
0.

02
±

0.
03

0
2d

_s
in

e
2

0.
89

±
0.

07
7

0.
51

±
0.

05
1

-4
.5

4
±

0.
44

5
-0

.6
4

±
0.

17
0

-0
.0

9
±

0.
02

8
2d

_r
in

g
2

0.
28

±
0.

02
7

-0
.0

9
±

0.
03

1
-5

.9
1

±
0.

34
8

-0
.8

2
±

0.
11

7
-0

.2
0

±
0.

02
8

ge
ys

er
2

0.
81

±
0.

05
3

0.
81

±
0.

05
0

-1
0.

67
±

0.
43

2
0.

12
±

0.
25

2
-0

.1
8

±
0.

03
9

pe
ng

ui
n

4
0.

67
±

0.
09

6
0.

64
±

0.
05

4
-4

.6
6

±
0.

34
3

-0
.0

3
±

0.
10

6
0.

06
±

0.
04

8
po

ll
en

5
0.

94
±

0.
02

5
0.

77
±

0.
02

0
-3

.7
1

±
0.

10
2

0.
62

±
0.

02
8

0.
53

±
0.

01
9

pl
an

et
s

6
1.

33
±

0.
09

0
1.

98
±

0.
22

6
-0

.7
1

±
0.

29
4

0.
77

±
0.

05
7

0.
55

±
0.

04
5

ab
al

on
e

7
2.

02
±

0.
01

9
2.

22
±

0.
02

9
-1

.1
8

±
0.

08
6

1.
83

±
0.

04
0

0.
64

±
0.

02
8

su
lf

ur
7

2.
04

±
0.

01
6

1.
24

±
0.

01
7

-0
.6

7
±

0.
05

8
0.

69
±

0.
01

9
0.

58
±

0.
01

2
ga

us
si

an
s

8
1.

50
±

0.
01

3
1.

37
±

0.
01

1
-2

.8
7

±
0.

07
2

0.
53

±
0.

01
8

0.
14

±
0.

01
0

wi
ne

_r
ed

11
1.

20
±

0.
02

2
1.

05
±

0.
02

7
-2

.9
8

±
0.

12
8

0.
60

±
0.

06
2

0.
66

±
0.

02
3

wi
ne

_w
hi

te
11

1.
34

±
0.

04
8

1.
26

±
0.

05
0

-2
.7

7
±

0.
08

1
0.

89
±

0.
05

2
0.

91
±

0.
04

9
ja

pa
ne

se
_v

ow
el

s
12

1.
10

±
0.

01
4

1.
09

±
0.

00
7

-2
.1

0
±

0.
02

6
0.

33
±

0.
01

2
0.

41
±

0.
00

5
sy

lv
in

e
20

0.
50

±
0.

00
9

0.
47

±
0.

00
6

-3
.0

7
±

0.
05

4
0.

18
±

0.
01

3
0.

32
±

0.
00

6
br

ea
st

30
1.

01
±

0.
04

8
1.

17
±

0.
03

4
-1

.5
1

±
0.

11
5

1.
74

±
0.

04
1

0.
55

±
0.

02
3

Ta
bl

e
5:

M
ea

n
lo

g-
lik

el
ih

oo
d

sc
or

es
w

it
h

20
%

m
is

si
ng

ra
te

in
Fu

ll
M

C
A

R
sc

en
ar

io
.

T
he

av
er

ag
e

lo
g-

lik
el

ih
oo

d
of

th
e

m
iss

in
g

ob
se

rv
at

io
ns

is
hi

gh
er

un
de

rt
he

k
N

N
×

K
D

E
de

ns
ity

m
od

el
.

T
he

k
N

N
-Im

pu
te

rc
om

es
ne

xt
.

M
iss

Fo
re

st
,t

he
k
N

N
-Im

pu
te

r,
M

IC
E,

or
th

e
M

ea
n

im
pu

ta
tio

n
m

et
ho

d
ar

e
pr

on
e

to
ge

ne
ra

te
ar

tif
ac

ts
in

th
e

im
pu

te
d

da
ta

se
ts

,t
he

re
fo

re
le

ad
in

g
to

a
lo

we
r

lo
g-

lik
el

ih
oo

d
of

th
e

gr
ou

nd
-t

ru
th

un
de

r
th

ei
r

de
ns

ity
m

od
el

s.

D
im

.
k

N
N

×
K

D
E

k
N

N
-I

m
pu

te
r

M
is

sF
or

es
t

M
IC

E
M

ea
n

2d
_l

in
ea

r
2

1.
19

±
0.

10
2

1.
18

±
0.

11
3

-8
.3

7
±

0.
35

9
0.

81
±

0.
22

8
0.

10
±

0.
08

7
2d

_s
in

e
2

1.
11

±
0.

10
3

1.
13

±
0.

11
3

-8
.4

3
±

0.
45

4
-0

.6
2

±
0.

18
1

-0
.0

7
±

0.
04

6
2d

_r
in

g
2

0.
32

±
0.

05
2

-0
.0

3
±

0.
04

6
-8

.8
5

±
0.

49
0

-0
.6

9
±

0.
18

4
-0

.1
7

±
0.

04
1

ge
ys

er
2

0.
82

±
0.

11
6

0.
81

±
0.

09
7

-1
1.

34
±

0.
17

6
-0

.1
1

±
0.

28
8

-0
.3

0
±

0.
05

0
pe

ng
ui

n
4

0.
85

±
0.

10
2

0.
91

±
0.

10
7

-4
.9

3
±

0.
57

2
0.

34
±

0.
28

6
0.

07
±

0.
07

1
po

ll
en

5
1.

53
±

0.
04

4
1.

59
±

0.
04

7
-3

.5
6

±
0.

22
9

1.
28

±
0.

08
3

0.
51

±
0.

03
8

pl
an

et
s

6
1.

04
±

0.
14

3
1.

09
±

0.
18

0
-3

.4
6

±
0.

57
2

0.
67

±
0.

16
1

0.
35

±
0.

07
6

ab
al

on
e

7
2.

10
±

0.
02

5
2.

30
±

0.
05

2
-2

.2
8

±
0.

19
8

1.
84

±
0.

08
6

0.
38

±
0.

03
7

su
lf

ur
7

2.
36

±
0.

01
3

0.
45

±
0.

11
1

0.
47

±
0.

12
9

0.
89

±
0.

05
3

0.
16

±
0.

01
0

ga
us

si
an

s
8

1.
61

±
0.

01
9

1.
71

±
0.

02
3

-2
.9

7
±

0.
12

2
0.

89
±

0.
05

0
0.

24
±

0.
02

0
wi

ne
_r

ed
11

1.
65

±
0.

07
5

1.
26

±
0.

13
1

-4
.3

2
±

0.
38

1
0.

97
±

0.
10

9
0.

44
±

0.
03

7
wi

ne
_w

hi
te

11
1.

77
±

0.
09

4
-2

.3
7

±
0.

21
8

-4
.5

7
±

0.
42

6
1.

18
±

0.
12

2
1.

06
±

0.
12

3
ja

pa
ne

se
_v

ow
el

s
12

1.
70

±
0.

02
7

-0
.1

4
±

0.
10

6
-2

.0
4

±
0.

10
3

0.
37

±
0.

03
2

0.
36

±
0.

01
8

sy
lv

in
e

20
0.

60
±

0.
02

6
0.

50
±

0.
02

7
-4

.4
9

±
0.

20
8

0.
03

±
0.

06
9

0.
51

±
0.

02
8

br
ea

st
30

1.
56

±
0.

05
6

1.
60

±
0.

13
3

1.
26

±
0.

40
1

3.
37

±
0.

13
4

0.
37

±
0.

04
1

Ta
bl

e
6:

M
ea

n
lo

g-
lik

el
ih

oo
d

sc
or

es
w

it
h

20
%

m
is

si
ng

ra
te

in
M

C
A

R
sc

en
ar

io
.

17

Published in Transactions on Machine Learning Research (06/2023)

D
im

.
k

N
N

×
K

D
E

k
N

N
-I

m
pu

te
r

M
is

sF
or

es
t

M
IC

E
M

ea
n

2d
_l

in
ea

r
2

1.
23

±
0.

06
8

1.
19

±
0.

11
4

-8
.3

7
±

0.
41

0
0.

69
±

0.
21

3
0.

10
±

0.
05

8
2d

_s
in

e
2

1.
12

±
0.

06
8

1.
11

±
0.

10
4

-8
.2

7
±

0.
52

9
-0

.6
5

±
0.

20
4

-0
.0

9
±

0.
04

2
2d

_r
in

g
2

0.
31

±
0.

04
3

-0
.0

5
±

0.
04

2
-8

.6
4

±
0.

48
7

-0
.7

9
±

0.
19

7
-0

.1
8

±
0.

04
1

ge
ys

er
2

0.
83

±
0.

09
8

0.
82

±
0.

11
6

-1
1.

39
±

0.
12

2
0.

04
±

0.
19

6
-0

.2
6

±
0.

03
1

pe
ng

ui
n

4
0.

81
±

0.
12

5
0.

92
±

0.
10

4
-5

.0
2

±
0.

78
3

0.
21

±
0.

25
9

-0
.0

1
±

0.
08

5
po

ll
en

5
1.

52
±

0.
04

6
1.

57
±

0.
05

0
-3

.4
8

±
0.

25
7

1.
28

±
0.

08
0

0.
48

±
0.

04
7

pl
an

et
s

6
1.

13
±

0.
12

8
1.

19
±

0.
11

8
-3

.5
9

±
0.

31
6

0.
63

±
0.

19
6

0.
42

±
0.

04
3

ab
al

on
e

7
2.

08
±

0.
02

4
2.

24
±

0.
03

5
-2

.4
0

±
0.

20
6

1.
79

±
0.

08
0

0.
42

±
0.

02
7

su
lf

ur
7

2.
35

±
0.

01
2

0.
43

±
0.

14
4

0.
32

±
0.

13
8

1.
05

±
0.

05
2

0.
16

±
0.

01
0

ga
us

si
an

s
8

1.
63

±
0.

01
2

1.
74

±
0.

01
7

-2
.8

6
±

0.
14

4
0.

82
±

0.
05

8
0.

30
±

0.
01

2
wi

ne
_r

ed
11

1.
69

±
0.

04
7

-2
.0

3
±

0.
35

7
-4

.3
2

±
0.

36
6

1.
05

±
0.

09
7

0.
48

±
0.

04
2

wi
ne

_w
hi

te
11

1.
70

±
0.

14
7

1.
04

±
0.

16
0

-4
.4

4
±

0.
49

7
1.

13
±

0.
18

6
1.

00
±

0.
16

7
ja

pa
ne

se
_v

ow
el

s
12

1.
67

±
0.

03
2

-0
.1

8
±

0.
10

7
-2

.1
6

±
0.

09
8

0.
36

±
0.

05
2

0.
37

±
0.

02
5

sy
lv

in
e

20
0.

60
±

0.
02

4
0.

50
±

0.
02

8
-4

.4
6

±
0.

13
5

0.
03

±
0.

05
6

0.
50

±
0.

02
8

br
ea

st
30

1.
53

±
0.

06
3

1.
56

±
0.

17
0

1.
40

±
0.

43
3

3.
42

±
0.

14
2

0.
33

±
0.

07
0

Ta
bl

e
7:

M
ea

n
lo

g-
lik

el
ih

oo
d

sc
or

es
w

it
h

20
%

m
is

si
ng

ra
te

in
M

A
R

sc
en

ar
io

.

D
im

.
k

N
N

×
K

D
E

k
N

N
-I

m
pu

te
r

M
is

sF
or

es
t

M
IC

E
M

ea
n

2d
_l

in
ea

r
2

1.
20

±
0.

08
7

1.
18

±
0.

11
8

-8
.2

4
±

0.
59

4
0.

72
±

0.
27

3
0.

09
±

0.
08

0
2d

_s
in

e
2

1.
06

±
0.

12
6

1.
09

±
0.

13
5

-8
.2

5
±

0.
72

0
-0

.5
8

±
0.

16
4

-0
.0

9
±

0.
05

6
2d

_r
in

g
2

0.
31

±
0.

05
6

-0
.0

5
±

0.
05

4
-8

.5
4

±
0.

42
5

-0
.8

2
±

0.
21

8
-0

.1
9

±
0.

04
8

ge
ys

er
2

0.
82

±
0.

07
0

0.
80

±
0.

09
3

-1
1.

39
±

0.
22

1
-0

.0
7

±
0.

24
0

-0
.2

8
±

0.
04

0
pe

ng
ui

n
4

0.
84

±
0.

10
1

0.
90

±
0.

11
3

-4
.4

3
±

0.
83

8
0.

26
±

0.
27

1
-0

.0
3

±
0.

11
3

po
ll

en
5

1.
52

±
0.

04
8

1.
58

±
0.

05
1

-3
.5

1
±

0.
15

5
1.

29
±

0.
08

8
0.

47
±

0.
03

9
pl

an
et

s
6

1.
05

±
0.

11
7

1.
04

±
0.

18
6

-3
.8

1
±

0.
59

5
0.

63
±

0.
16

4
0.

37
±

0.
06

1
ab

al
on

e
7

2.
09

±
0.

02
1

2.
24

±
0.

04
9

-2
.3

6
±

0.
23

4
1.

80
±

0.
08

8
0.

42
±

0.
03

4
su

lf
ur

7
2.

35
±

0.
01

2
0.

48
±

0.
13

6
0.

39
±

0.
12

5
0.

98
±

0.
05

3
0.

16
±

0.
00

7
ga

us
si

an
s

8
1.

65
±

0.
01

9
1.

77
±

0.
02

4
-2

.7
8

±
0.

15
7

0.
94

±
0.

04
0

0.
24

±
0.

01
7

wi
ne

_r
ed

11
1.

61
±

0.
05

0
1.

19
±

0.
09

9
-4

.0
9

±
0.

40
5

0.
96

±
0.

10
8

0.
37

±
0.

05
0

wi
ne

_w
hi

te
11

1.
64

±
0.

13
9

-2
.5

4
±

0.
26

4
-4

.6
2

±
0.

37
8

1.
07

±
0.

20
5

0.
94

±
0.

17
6

ja
pa

ne
se

_v
ow

el
s

12
1.

66
±

0.
03

1
-0

.2
6

±
0.

07
1

-2
.2

0
±

0.
15

1
0.

30
±

0.
04

4
0.

35
±

0.
01

7
sy

lv
in

e
20

0.
70

±
0.

02
0

0.
55

±
0.

02
1

-4
.8

7
±

0.
15

0
0.

10
±

0.
04

0
0.

56
±

0.
01

9
br

ea
st

30
1.

47
±

0.
07

5
1.

43
±

0.
19

4
1.

87
±

0.
35

6
3.

40
±

0.
16

7
0.

25
±

0.
13

3

Ta
bl

e
8:

M
ea

n
lo

g-
lik

el
ih

oo
d

sc
or

es
w

it
h

20
%

m
is

si
ng

ra
te

in
M

N
A

R
sc

en
ar

io
.

18

Published in Transactions on Machine Learning Research (06/2023)

References
R. L. Akeson, X. Chen, D. Ciardi, M. Crane, J. Good, M. Harbut, E. Jackson, S. R. Kane, A. C. Laity,

S. Leifer, M. Lynn, D. L. McElroy, M. Papin, P. Plavchan, S. V. Ramírez, R. Rey, K. von Braun,
M. Wittman, M. Abajian, B. Ali, C. Beichman, A. Beekley, G. B. Berriman, S. Berukoff, G. Bryden,
B. Chan, S. Groom, C. Lau, A. N. Payne, M. Regelson, M. Saucedo, M. Schmitz, J. Stauffer, P. Wyatt,
and A. Zhang. The nasa exoplanet archive: Data and tools for exoplanet research. Publications of the
Astronomical Society of the Pacific, 125, 2013. ISSN 00046280. doi: 10.1086/672273.

A. Azzalini and A. W. Bowman. A look at some data on the old faithful geyser. Applied Statistics, 39, 1990.
ISSN 00359254. doi: 10.2307/2347385.

Kristin P. Bennett and O. L. Mangasarian. Robust linear programming discrimination of two linearly insepa-
rable sets. Optimization Methods and Software, 1, 1992. ISSN 10294937. doi: 10.1080/10556789208805504.

Dimitris Bertsimas, Colin Pawlowski, and Ying Daisy Zhuo. From predictive methods to missing data
imputation: An optimization approach. Journal of Machine Learning Research, 18, 2018. ISSN 15337928.

Felix Bießmann, Tammo Rukat, Phillipp Schmidt, Prathik Naidu, Sebastian Schelter, Andrey Taptunov,
Dustin Lange, and David Salinas. Datawig: Missing value imputation for tables. Journal of Machine
Learning Research, 20, 2019. ISSN 15337928.

Paulo Cortez, António Cerdeira, Fernando Almeida, Telmo Matos, and José Reis. Modeling wine preferences
by data mining from physicochemical properties. Decision Support Systems, 47, 2009. ISSN 01679236.
doi: 10.1016/j.dss.2009.05.016.

Olivier Delalleau, Aaron C. Courville, and Yoshua Bengio. Efficient EM training of gaussian mixtures with
missing data. CoRR, abs/1209.0521, 2012. URL http://arxiv.org/abs/1209.0521.

John K. Dixon. Pattern recognition with partly missing data. IEEE Transactions on Systems, Man and
Cybernetics, 9, 1979. ISSN 21682909. doi: 10.1109/TSMC.1979.4310090.

D. Dua and C Graff. Uci machine learning repository: Data sets. Irvine, CA: University of California,
School of Information and Computer Science., 2019. URL http://archive.ics.uci.edu/ml.

Luigi Fortuna, Salvatore Graziani, Alessandro Rizzo, and Maria G. Xibilia. Soft Sensors for Monitoring and
Control of Industrial Processes. Springer, 2007. doi: 10.1007/978-1-84628-480-9.

Nicholas Frosst, Nicolas Papernot, and Geoffrey Hinton. Analyzing and improving representations with the
soft nearest neighbor loss. In ICML2019, volume 2019-June, 2019.

Leo Grinsztajn, Edouard Oyallon, and Gael Varoquaux. Why do tree-based models still outperform deep
learning on tabular data? OpenAccess, 2022. doi: 10.48550/arXiv.2207.08815.

F. Maxwell Harper and Joseph A. Konstan. The movielens datasets: History and context. ACM Transactions
on Interactive Intelligent Systems, 5, 2015. ISSN 21606463. doi: 10.1145/2827872.

J. A. Hartigan and P. M. Hartigan. The Dip Test of Unimodality. The Annals of Statistics, 13(1):70 – 84,
1985. doi: 10.1214/aos/1176346577. URL https://doi.org/10.1214/aos/1176346577.

Trevor Hastie, Rahul Mazumder, Jason D. Lee, and Reza Zadeh. Matrix completion and low-rank svd via
fast alternating least squares. Journal of Machine Learning Research, 16, 2015. ISSN 15337928.

Allison Marie Horst, Alison Presmanes Hill, and Kristen B Gorman. palmerpenguins: Palmer Archipelago
(Antarctica) penguin data, 2020. URL https://allisonhorst.github.io/palmerpenguins/. R package
version 0.1.0.

Anil Jadhav, Dhanya Pramod, and Krishnan Ramanathan. Comparison of performance of data imputation
methods for numeric dataset. Applied Artificial Intelligence, 33, 2019. ISSN 10876545. doi: 10.1080/
08839514.2019.1637138.

19

http://arxiv.org/abs/1209.0521
http://archive.ics.uci.edu/ml
https://doi.org/10.1214/aos/1176346577
https://allisonhorst.github.io/palmerpenguins/

Published in Transactions on Machine Learning Research (06/2023)

Sebastian Jäger, Arndt Allhorn, and Felix Bießmann. A benchmark for data imputation methods. Frontiers
in Big Data, 4, 2021. ISSN 2624909X. doi: 10.3389/fdata.2021.693674.

Shahidul Islam Khan and Abu Sayed Md Latiful Hoque. Sice: an improved missing data imputation tech-
nique. Journal of Big Data, 7, 2020. ISSN 21961115. doi: 10.1186/s40537-020-00313-w.

Mineichi Kudo, Jun Toyama, and Masaru Shimbo. Multidimensional curve classification using passing-
through regions. Pattern Recognition Letters, 20, 1999. ISSN 01678655. doi: 10.1016/S0167-8655(99)
00077-X.

Florian Lalande and Kenji Doya. Tabular data imputation: Choose knn over deep-learning. SIGKDD, 2022.
doi: 10.48550/arXiv.2007.02837.

Marine Le Morvan, Julie Josse, Erwan Scornet, and Gaël Varoquaux. What’s a good imputation to predict
with missing values? In Advances in Neural Information Processing Systems, volume 14, 2021.

Christina E. Lee, Yihua Li, Devavrat Shah, and Dogyoon Song. Blind regression: Nonparametric regres-
sion for latent variable models via collaborative filtering. In Advances in Neural Information Processing
Systems, 2016.

Richard Leibrandt and Stephan Günnemann. Making kernel density estimation robust towards missing
values in highly incomplete multivariate data without imputation. In SIAM2018, 2018. doi: 10.1137/1.
9781611975321.84.

Yihua Li, Devavrat Shah, Dogyoon Song, and Christina Lee Yu. Nearest neighbors for matrix estimation
interpreted as blind regression for latent variable model. IEEE Transactions on Information Theory, 66,
2020. ISSN 15579654. doi: 10.1109/TIT.2019.2950299.

Roderick J.A. Little and Donald B. Rubin. Statistical analysis with missing data. Wiley, 2014. doi: 10.1002/
9781119013563.

Zachary Ryan McCaw, Hanna Julienne, and Hugues Aschard. Mgmm: An r package for fitting gaussian
mixture models on incomplete data. bioRxiv, 2020.

Boris Muzellec, Julie Josse, Claire Boyer, and Marco Cuturi. Missing data imputation using optimal trans-
port. In International Conference on Machine Learning, pp. 7130–7140. PMLR, 2020.

Warwick Nash, T.L. Sellers, S.R. Talbot, A.J. Cawthorn, and W.B. Ford. 7he population biology of abalone
(haliotis species) in tasmania. i. blacklip abalone (h. rubra) from the north coast and islands of bass strait.
Sea Fisheries Division, Technical Report No, 48, 01 1994.

Emanuel Parzen. On estimation of a probability density function and mode. The Annals of Mathematical
Statistics, 33, 1962. ISSN 0003-4851. doi: 10.1214/aoms/1177704472.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay.
Scikit-learn: Machine learning in Python. Journal of Machine Learning Research, 12:2825–2830, 2011.

Jason Poulos and Rafael Valle. Missing data imputation for supervised learning. Applied Artificial Intelli-
gence, 32, 2018. ISSN 10876545. doi: 10.1080/08839514.2018.1448143.

Murray Rosenblatt. Remarks on some nonparametric estimates of a density function. The Annals of Math-
ematical Statistics, 27, 1956. ISSN 0003-4851. doi: 10.1214/aoms/1177728190.

Guido Sanguinetti and Neil D. Lawrence. Missing data in kernel pca. In Johannes Fürnkranz, Tobias
Scheffer, and Myra Spiliopoulou (eds.), Machine Learning: ECML 2006, pp. 751–758, Berlin, Heidelberg,
2006. Springer Berlin Heidelberg. ISBN 978-3-540-46056-5.

Divya Saxena and Jiannong Cao. Generative adversarial networks (gans): Challenges, solutions, and future
directions. OpenAccess, 2020. doi: 10.48550/arXiv.2005.00065.

20

Published in Transactions on Machine Learning Research (06/2023)

Daniel J. Stekhoven and Peter Bühlmann. Missforest-non-parametric missing value imputation for mixed-
type data. Bioinformatics, 28, 2012. ISSN 13674803. doi: 10.1093/bioinformatics/btr597.

Elizabeth J. Tasker, Matthieu Laneuville, and Nicholas Guttenberg. Estimating planetary mass with deep
learning. The Astronomical Journal, 159:41, 2020. ISSN 1538-3881. doi: 10.3847/1538-3881/ab5b9e.

D. M. Titterington and G. M. Mill. Kernel-based density estimates from incomplete data. Journal of the
Royal Statistical Society: Series B (Methodological), 45, 1983. doi: 10.1111/j.2517-6161.1983.tb01249.x.

Olga Troyanskaya, Michael Cantor, Gavin Sherlock, Pat Brown, Trevor Hastie, Robert Tibshirani, David
Botstein, and Russ B. Altman. Missing value estimation methods for dna microarrays. Bioinformatics,
17, 2001. ISSN 13674803. doi: 10.1093/bioinformatics/17.6.520.

Stef van Buuren and Karin Groothuis-Oudshoorn. mice: Multivariate imputation by chained equations in
r. Journal of Statistical Software, 45, 2011. ISSN 15487660. doi: 10.18637/jss.v045.i03.

Katarzyna Woznica and Przemyslaw Biecek. Does imputation matter? benchmark for predictive models.
Artemiss2020, ICML workshop, 2020. doi: 10.48550/arXiv.2007.02837.

Hanyu Xiang, Qin Zou, Muhammad Ali Nawaz, Xianfeng Huang, Fan Zhang, and Hongkai Yu. Deep learning
for image inpainting: A survey. Pattern Recognition, 134:109046, 2023. ISSN 0031-3203. doi: https://
doi.org/10.1016/j.patcog.2022.109046. URL https://www.sciencedirect.com/science/article/pii/
S003132032200526X.

Jinsung Yoon, James Jordon, and Mihaela Van Der Schaar. Gain: Missing data imputation using generative
adversarial nets. 35th International Conference on Machine Learning, ICML 2018, 13:9042–9051, 2018.

21

https://www.sciencedirect.com/science/article/pii/S003132032200526X
https://www.sciencedirect.com/science/article/pii/S003132032200526X

Published in Transactions on Machine Learning Research (06/2023)

A Discussion on the hyperparameters of the kNN×KDE

This appendix section discusses about the qualitative effects for the three hyperparameters of the kNN×KDE.
We only focus on the 2d_sine data set for visualization purposes. Similar to Figure 3 in the main text, each
figure uses a subsample size Nss = 10 for plotting purposes, complete observations are in blue, observations
where x1 is missing are in orange, and observations where x2 is missing are in red. As before, the subsample
size Nss = 10 leads to red vertical or orange horizontal trails of points.

A.1 Softmax temperature τ

Figure 6 shows the imputation quality as a function of the softmax temperature τ , where the Gaussian kernels
bandwidth is fixed to h = 0.03 and the number of drawn samples is Ndraws = 10000. For interpretability
reason, we report the inverse temperature 1/τ .

0 4 8 12

1.5

1.0

0.5

0.0

0.5

1.0

1.5

1/ = 10.0

0 4 8 12

1.5

1.0

0.5

0.0

0.5

1.0

1.5

1/ = 500.0

0 4 8 12

1.5

1.0

0.5

0.0

0.5

1.0

1.5

1/ = 25000.0

0 4 8 12
0.00

0.05

0.10

0.15

De
ns

ity

0 4 8 12
0.0

0.2

0.4

0 4 8 12
0.0

0.2

0.4

0.6

Figure 6: Change in the imputation quality with varying softmax temperature τ . When 1/τ is too low
(meaning the temperature is too high), the imputation distribution has a higher variance, hence a large
scatter. If 1/τ is too high (meaning the temperature is too low), the imputation distribution will be biased
towards the nearest neighbor. The dashed lines show the ground truth coordinates for a randomly selected
observation (x1, x2) = (7.50, 1.03)

On the top-left panel, we see that the neighborhood of each imputed cell is too broad with 1/τ = 10.0,
resulting in irrelevant neighbors being sampled for imputation and a large scatter. Conversely, the top-right
panel shows the imputed samples with an inverse temperature of 1/τ = 25000.0 which might be too much
and leads to an overfit of the observed data.

The three panels in the bottom focus on a randomly selected observation with with observed x2 and missing
x1. In our case, the ground truth is (x1, x2) = (7.50, 1.03), and x1 is missing. The vertical dashed line in
the upper panels shows the observed x2 = 1.03, and the horizontal dashed line in the lower panels shows the
unknown ground truth x1 = 7.50 to be estimated. The lower panels show the histogram for the returned
distribution by the kNN×KDE for this specific cell. Qualitatively, we see that when the temperature is too
high, the imputation distribution is too broad and bridges appear between the two modes of the distribution.
On the contrary, when the temperature τ is too low, the imputation distribution is biased towards the nearest
neighbor, resulting in a unimodal distribution. For 1/τ = 500.0, the imputation distribution is bimodal which
reflects the original data structure, and the ground truth correctly falls in one of the two modes.

22

Published in Transactions on Machine Learning Research (06/2023)

A.2 Gaussian kernels shared bandwidth h

Figure 7 shows the imputation quality as a function of the shared Gaussian kernel bandwidth h. Here, the
softmax inverse temperature is fixed to 1/τ = 300.0 and the number of drawn samples is Ndraws = 10000.

0 4 8 12

1.5

1.0

0.5

0.0

0.5

1.0

1.5

h = 0.01

0 4 8 12

1.5

1.0

0.5

0.0

0.5

1.0

1.5

h = 0.03

0 4 8 12

1.5

1.0

0.5

0.0

0.5

1.0

1.5

h = 0.1

0 4 8 12
0.0

0.2

0.4

De
ns

ity

0 4 8 12
0.0

0.1

0.2

0 4 8 12
0.00

0.05

0.10

Figure 7: Change in the imputation quality with varying kernel bandwidth h. When h is too small, the
imputation distribution is sharp. When h is too large, the imputation distribution is blurred. The dashed
lines show the ground truth coordinates for a randomly selected observation (x1, x2) = (2.88, 0.34)

The left two panels show the imputation distribution with a kernel bandwidth h = 0.01. A narrow bandwidth
results in a tight fit to the observed data, therefore leading to a "spiky" imputation distribution on the bottom-
left panel. In the limit where h → 0.0, the returned distribution become multimodal with probabilities
provided by the softmax function. On the other hand, the right two panels show the imputation distribution
with a large bandwidth of h = 0.1, leading to a large scatter around the complete observations.

Like above, the bottom three panels work with a randomly selected observation where x2 is observed and x1
is missing. This time, the ground truth is (x1, x2) = (2.88, 0.34). With a narrow bandwidth, we can clearly
see the five possible modes corresponding to x2 = 0.34. As the bandwidth becomes larger, modes get closer
and eventually merge. The bottom-right panel has only three modes left. In any case, the (unobserved)
ground truth x1 = 2.88 always falls in a mode of the imputation distribution returned by the kNN×KDE.

Note that the Gaussian kernel bandwidth is shared throughout the algorithm and is therefore the same for
all features. As the data set is originally min-max normalized in the [0, 1] interval, the bandwidth adapts to
varying feature magnitudes. However, it does not adapt to features scatter, where some features can show
a higher standard deviation than others.

Ultimately, we do not optimize the kernel bandwidth in this work. It has been fixed to its default value
h = 0.03 throughout all experiments in this paper, but could be fine-tuned to obtain higher log-likelihood
scores.

A.3 Number of imputation samples Ndraws

The imputation distribution returned by the kNN×KDE as a function of the number of samples Ndraws is
shown in Figure 8. Now, the softmax temperature is fixed to 1/τ = 300.0 and the Gaussian kernel bandwidth
is fixed to h = 0.03.

23

Published in Transactions on Machine Learning Research (06/2023)

0 4 8 12

1.5

1.0

0.5

0.0

0.5

1.0

1.5
Nb. draws = 200

0 4 8 12

1.5

1.0

0.5

0.0

0.5

1.0

1.5
Nb. draws = 2000

0 4 8 12

1.5

1.0

0.5

0.0

0.5

1.0

1.5
Nb. draws = 20000

0 4 8 12
0.0

0.1

0.2

De
ns

ity

0 4 8 12
0.0

0.1

0.2

0.3

0 4 8 12
0.0

0.1

0.2

Figure 8: Returned distribution as a function of the number of imputation samples Ndraws. The bottom
three imputation distributions have a higher resolution with larger Ndraws. The dashed lines show the ground
truth coordinates for a randomly selected observation (x1, x2) = (9.15, 0.07)

In that case, only the number of samples returned by the kNN×KDE changes. Therefore, there is no
statistical difference between the top three panels besides the random subsamples of size Nss = 10 used for
plotting purposes.

Like with the hyperparameters τ and h, an observation with observed x2 and missing x1 has been randomly
selected. On Figure 8, the ground truth is (x1, x2) = (9.15, 0.07). The dashed lines on the top panels show
that there are five possible values for x1 given that x2 = 0.07. On the bottom panels, we see that the
effect of the number of imputation samples drawn by the kNN×KDE defines the resolution of the returned
probability distribution. In all cases, the (unobserved) ground truth x1 = 9.15 falls in one of the modes of
the imputation distribution.

There is no drawback at setting a large Ndrawn, besides the obvious computational cost. On the lower-
left panel, we see that the value of the probability distribution density can be poorly approximated with
Ndraws = 200. In this work, we always compute the likelihood on the normalized data sets in the [0, 1]
interval, and we use 120 evenly spaced bins from −0.1 to 1.1 to allow for outliers. For the imputation
with the mean of kNN×KDE distributions, we used Ndraws = 1000 since a high resolution of the imputation
distribution is not necessary. However, we used Ndraws = 10000 when computing the likelihood of the ground
truth because a low resolution can lead to likelihood computation error in this case.

B Presentation of the data sets

Both real-world and simulated data sets are used in this work. Eleven real-world data sets have been
downloaded, most of them from the open access UC Irvine Machine Learning Repository (Dua & Graff,
2019) or the OpenML online repository. Four data sets have been simulated.

This appendix provides summary details about the data. Note that all data sets are complete: they originally
do not have missing values. Table 9 presents the data sets name, size, and source. Meaningless rows (like
patient ID or row ID) have been removed for data imputation task. Data sets and their description are
provided in the online GitHub repository.

In addition, Table 10 provides the mean and standard deviation for the Pearson correlation coefficient, the
Spearman correlation coefficient, and the Hartigan Dip Test of unimodality p-value (Hartigan & Hartigan,
1985).

24

Published in Transactions on Machine Learning Research (06/2023)

Table 9: Name, sizes, and origin of the data sets. Sorted by increasing dimension D.
Data set name Size Source

2d_linear (500, 2) Simulated
2d_sine (500, 2) Simulated
2d_ring (500, 2) Simulated
geyser (272, 2) Online (Azzalini & Bowman, 1990)
penguin (342, 4) Online (Horst et al., 2020)
pollen (3848, 5) OpenML
planets (550, 6) NASA Exoplanet Archive (Akeson et al., 2013)
abalone (4177, 7) OpenML (Nash et al., 1994)
sulfur (10081, 6) OpenML (Fortuna et al., 2007)

gaussians (10000, 8) Generated with k = 4 random factors
wine_red (1599, 11) UCI ML (Cortez et al., 2009)

wine_white (4898, 11) UCI ML (Cortez et al., 2009)
japanese_vowels (9960, 12) OpenML (Kudo et al., 1999)

sylvine (5124, 20) OpenML
breast (569, 30) UCI ML (Bennett & Mangasarian, 1992)

Given data set of size (N, D) and two columns k1 and k2 in J1, DK, the Pearson correlation coefficient is
defined as:

rp(Xk1 , Xk2) =
∑N

i=1(xi,k1 − x̄k1)(xi,k2 − x̄k2)√∑N
i=1(xi,k1 − x̄k1)2

√∑N
i=1(xi,k2 − x̄k2)2

where x̄k denotes the mean of column k ∈ J1, DK.

The Spearman correlation coefficient is obtained by computing the Pearson correlation coefficient over the
rank variables. If we denote R(Xk) the rank variable for column k ∈ J1, DK, we can write

rs(Xk1 , Xk2) = rp(R(Xk1), R(Xk2))

The Pearson correlation coefficient measures the linear correlation between two columns, while the Spearman
correlation coefficient quantifies the monotonic relationship (whether linear or not) between two variables.
For each data set, we computed both correlation coefficients between all columns, and took their absolute
values to compute the mean and standard deviation which we report in Table 10.

As for the Dip Test of unimodality, it tries to assess whether a (univariate) distribution is unimodal or
not. The Dip statistic corresponds to the maximum difference between the empirical cumulative distribution
function of a sample and the unimodal cumulative distribution function that minimizes that maximum
difference. The test computes a p-value, which is the probability of obtaining the observed statistic value
under the assumption that the distribution is actually unimodal. Lower p-values indicate that the distribution
of that feature is likely to be multimodal. The last column of Table 10 reports the mean and the standard
deviation of the p-value computed over the D numerical features for each data set.

B.1 Simulated Two-Dimensional Data Sets – 2d_linear, 2d_sine, 2d_ring

Three simple data sets in two-dimension are used in this work, named 2d_linear, 2d_sine, and 2d_ring.
See Section 2.1 for more details.

B.2 Abalone Data Set – abalone

This data set is used to predict the age of abalones (a species of marine snails) from physical measurements:
sex, shell length, shell diameter, shell height, whole weight, weight of meat, viscera weight, shell weight, and

25

Published in Transactions on Machine Learning Research (06/2023)

number of rings which translates to the abalone age (Nash et al., 1994). There are 4,177 observations. The
abalone age (target) and the abalone sex have been removed for this work, leading to 7 features.

B.3 Breast Cancer Wisconsin (Diagnostic) Data Set – breast

Ten features are computed from a digitized image of a fine-needle aspiration of a breast mass (Bennett &
Mangasarian, 1992). The data set contains 596 observations and 32 columns. The first two columns are
removed for numerical data imputation purposes. The other 30 columns are comprised of the mean, the
standard error and the mean of the largest three values of the following ten cell features: radius, texture,
perimeter, area, smoothness, compactness, concavity, concave points, symmetry and fractal dimension.

B.4 Simulated Mixture of Gaussians Data Set – gaussians

We use a mixture of three multivariate gaussians, generated with random factors method using k = 4 factors
in dimension d = 8. The gaussians data set has 10,000 observations and 8 numerical columns.

B.5 Old Faithful Geyser Data Set – geyser

Two features indicate the waiting time between eruptions and the duration of the eruption for the Old
Faithful geyser in Yellowstone National Park, Wyoming, USA (Azzalini & Bowman, 1990). This data set
is commonly used in machine learning and can easily be found online. It has 272 observations and only 2
features.

B.6 Japanese Vowels Data Set – japanese_vowels

The data has been collected to assess the performances of a multidimensional time series classifier. Nine male
speakers uttered two Japanese vowels /ae/ successively. For each utterance, a 12-degree linear prediction
coefficients (LPC) analysis is applied, leading to 12 numerical features. Each speaker has various time series
for each of its LPC features, which amounts to 9,960 observations.

B.7 Palmer Archipelago Antartica Penguin Data Set – penguin

A total of 342 penguins with 4 features (beak length, beak depth, flipper length and body mass) are organized
in 3 classes (Horst et al., 2020). This data set is similar to the famous iris data set.

B.8 NASA Confirmed Exoplanets Archive – planets

All confirmed exoplanets according to the NASA Exoplanet Archive as of January 2020 have been downloaded
(Akeson et al., 2013). This data set has been generated for a study on exoplanets with the intent to retrieve
planetary masses (Tasker et al., 2020). Six planet features have been selected: planet radius, planet mass,
planet orbital period, planet equilibrium temperature, host star mass, and number of planets in the system.
Only complete observations have been kept, resulting in 550 rows and 6 columns.

B.9 Pollen Data Set – pollen

This is a synthetic data set provided by RCA Laboratories at Princeton, New Jersey. This data set contains
5 geometric features from 3,848 generated pollen grains, namely the length along x-dimension, length along
y-dimension, length along z-dimension, pollen grain weight, and pollen density. We could not identify clearly
the origin of this data set.

B.10 Sulfur Recovery Unit Data Set – sulfur

The Sulfur Recovery Unit (SRU) is used to remove environmental pollutants from acid gas stream before
they are released into the atmosphere. The data set provides 5 variables for 10,081 measures from industrial

26

Published in Transactions on Machine Learning Research (06/2023)

processes. These variables describe gas and air flows (Fortuna et al., 2007). The target variables (amount
of sulfur) have been removed for imputation purposes.

B.11 Sulfur Recovery Unit Data Set – sylvine

This data set has been generated for a supervised learning data challenge in machine learning where the
goal was to perform classification and regression tasks without human intervention. These data has been
generated by computing 6 features over a broad variety of other data sets from various domains, which
amounts to 5,124 observations.

B.12 Wine Quality Data Set – wine_red and wine_white

Typical features (e.g. fixed acidity, citric acid, chlorides, pH, alcohol, ...) have been computed for red and
white variants of the Portuguese Vinho Verde wines (Cortez et al., 2009). The red wines data set contains
1,599 observations while the white wines one has 4,989 observations. Both data sets have 11 numerical
features, with an additional column indicating the overall wine quality score. This last column has been
removed for our imputation work.

Table 10: Mean and standard deviation of Pearson and Spearman correlation coefficients for all data sets.
Data set

Name Dim. Pearson
correlation

Spearman
correlation

Dip Test
p-value

2d_linear 2 0.95 ± 0.000 0.952 ± 0.000 0.605 ± 0.268
2d_sine 2 0.323 ± 0.000 0.325 ± 0.000 0.437 ± 0.436
2d_ring 2 0.0117 ± 0.000 0.014 ± 0.000 0.000 ± 0.000
geyser 2 0.901 ± 0.000 0.778 ± 0.000 0.001 ± 0.001
penguin 4 0.569 ± 0.192 0.546 ± 0.193 0.226 ± 0.259
pollen 5 0.297 ± 0.240 0.287 ± 0.236 0.953 ± 0.066
planets 6 0.501 ± 0.200 0.534 ± 0.186 0.390 ± 0.438
abalone 7 0.891 ± 0.058 0.941 ± 0.031 0.337 ± 0.398
sulfur 7 0.239 ± 0.255 0.235 ± 0.236 0.303 ± 0.435

gaussians 8 0.588 ± 0.246 0.499 ± 0.203 0.125 ± 0.331
wine_red 11 0.2 ± 0.187 0.214 ± 0.193 0.022 ± 0.047

wine_white 11 0.178 ± 0.188 0.194 ± 0.203 0.010 ± 0.024
japanese_vowels 12 0.226 ± 0.152 0.228 ± 0.152 0.995 ± 0.003

sylvine 20 0.0512 ± 0.124 0.048 ± 0.121 0.245 ± 0.382
breast 30 0.395 ± 0.264 0.422 ± 0.257 0.925 ± 0.093

C Missing data scenarios

We have noticed that the terminology "Missing Completely At Random" (MCAR) is equivocal. In this work,
we consider 4 types of missing data scenarios, namely ’Full MCAR’, ’MCAR’, ’MAR’, and ’MNAR’.

In ’Full MCAR’, the missing data are inserted completely at random in the entire data set and in all columns.
This follows the definition of "MCAR" in the work presenting GAIN (Yoon et al., 2018) for instance.

For ’MCAR’, ’MAR’, and ’MNAR’, we follow the methodology used by the numerical data imputation
benchmark of Jäger et al. in which only a single column is masked (Jäger et al., 2021). For this purpose, we
select two columns for each data set: the column miss_col will be imputed, and the column cond_col will
be used to compute missing probabilities for the Missing At Random scenario. The selected columns can be
seen in the online code. In ’MCAR’, missing data are inserted completely at random in column miss_col.
In ’MAR’, we use the quantiles of column cond_col to provide conditional probabilities for observations in
miss_col to be missing. In ’MNAR’, the quantiles of column miss_col themselves are used to compute
missing probabilities.

27

Published in Transactions on Machine Learning Research (06/2023)

D Study of the new metric

The kNN-Imputer makes use of the NaN-Euclidean Distance to look for neighbors in the presence of
missing data. Given a data set represented as a matrix of shape (N, D), the NaN-Euclidean Distance is
defined as:

dij =
√

D

|Dobs|
∑

k∈Dobs

(xik − xjk)2

where i, j ∈ J1, NK are row indices, Dobs = {k ∈ J1, DK | mik = mjk = 1} is the set of column indices for
commonly observed features in observations i and j and |Dobs| denotes its cardinality (Dixon, 1979).

The NaN-Euclidean Distance is, in essence, a scaled version of the traditional Euclidean distance which
compute pairwise distance only when possible. However, this metric can generate artificially small distances
when the |Dobs| is low compared to D. For example, let us consider N = 3 partially observed rows in
dimension D = 5. −1 6 4 NaN 8

NaN NaN 3 NaN 4
−1 5 3 −2 NaN

Suppose we are interested in estimating the missing value x3,5 = NaN. With the NaN-Euclidean Distance,
the distances are

d1,3 =
√

5
3(02 + 12 + 12) ≈ 1.83

d2,3 =
√

5
1(02) = 0.0

meaning that observations x2 and x3 are at an artificially small distance of d2,3 = 0.0, and the missing value
will most likely be imputed with x2,5 = 4 rather than with x1,5 = 8 even though commonly observed cells in
rows x1 and x3 appear quite similar. In short, the NaN-Euclidean Distance can lead to erroneously small
distances between observations with few similar commonly observed features.

To address this problem, we introduce the NaN-std-Euclidean Distance defined as:

dij =
√ ∑

k∈Dobs

(xik − xjk)2 +
∑

k∈Dmiss

σ2
k

where Dobs = {k ∈ J1, DK | mik = mjk = 1} is as before, Dmiss = {k ∈ J1, DK | mikmjk = 0} is the
complement of set Dobs, and σk is the standard deviation for column k.

Now suppose that σ1,2,3,4,5 = 1.5, the distances become

d1,3 =
√

02 + 12 + 12 + σ2
4 + σ2

5 ≈ 2.55

d2,3 =
√

σ2
1 + σ2

2 + 02 + σ2
4 + σ2

5 = 3.0

such that row x1 is now the closest neighbor of row x3.

Using the column standard deviation when pairwise distances cannot be computed allows to penalize obser-
vations with a lot of missing values. The standard deviation may be different for each column, which means
that missing data for features with a large variance are more greatly penalized that missing data for features
with small variance.

While this section introduces the idea behind our new metric with a simple example, we have noticed that it
greatly improves the performances of the kNN×KDE in practice. Before the change of metric, the NRMSE
imputation results of the kNN×KDE were closer to the ones from the kNN-Imputer, while they are now
slightly better than MissForest.

28

Published in Transactions on Machine Learning Research (06/2023)

E Experimental computation time

For the computational time evaluation, we only focus on the ’Full MCAR’ scenario with 20% missing rate.
For each data set, and for each numerical data imputation method, we repeat N = 3 times the main loop of
our algorithm. Results are reported in Tables 11 and 12, along with the data set sizes. These results have
been obtained using a 2.3 GHz Dual-Core Intel Core i5 with 16 GB of RAM.

Table 11: Computational time during experiments, in seconds.
Data set name Size kNN×KDE kNN-Imputer MissForest SoftImpute

2d_linear (500, 2) 0.281 ± 0.015 0.026 ± 0.001 0.334 ± 0.026 0.744 ± 0.007
2d_sine (500, 2) 0.267 ± 0.013 0.026 ± 0.001 1.161 ± 0.003 0.733 ± 0.005
2d_ring (500, 2) 0.327 ± 0.043 0.027 ± 0.000 1.172 ± 0.034 0.765 ± 0.015
geyser (272, 2) 0.153 ± 0.006 0.014 ± 0.000 0.238 ± 0.029 0.667 ± 0.008
penguin (342, 4) 0.417 ± 0.013 0.029 ± 0.000 2.153 ± 0.245 0.924 ± 0.036
pollen (3848, 5) 7.843 ± 0.115 3.056 ± 0.043 12.417 ± 0.117 4.062 ± 0.005
planets (550, 6) 1.062 ± 0.047 0.074 ± 0.003 3.323 ± 0.824 1.417 ± 0.054
abalone (4177, 7) 11.962 ± 0.112 5.118 ± 0.109 10.471 ± 1.222 6.066 ± 0.022
sulfur (10081, 7) 38.834 ± 0.052 36.327 ± 0.579 54.081 ± 1.069 13.477 ± 0.096

gaussians (10000, 8) 42.094 ± 0.195 38.594 ± 0.241 54.304 ± 8.646 15.551 ± 0.093
wine_red (1599, 11) 6.744 ± 0.146 0.872 ± 0.023 20.097 ± 0.105 4.328 ± 0.063

wine_white (4898, 11) 22.912 ± 0.051 10.047 ± 0.096 53.790 ± 0.217 11.043 ± 0.066
japanese_vowels (9960, 12) 60.341 ± 0.092 51.194 ± 0.559 136.634 ± 0.514 24.030 ± 0.073

sylvine (5124, 20) 58.984 ± 0.217 16.962 ± 0.105 178.992 ± 0.157 23.380 ± 0.156
breast (569, 30) 6.101 ± 0.064 0.286 ± 0.004 48.564 ± 0.968 5.955 ± 0.170

Table 12: Computational time during experiments, in seconds. (continue)
Data set name Size GAIN MICE Mean Median

2d_linear (500, 2) 13.134 ± 0.125 0.005 ± 0.000 0.000 ± 0.000 0.001 ± 0.000
2d_sine (500, 2) 12.885 ± 0.072 0.003 ± 0.000 0.001 ± 0.000 0.001 ± 0.000
2d_ring (500, 2) 13.025 ± 0.040 0.003 ± 0.000 0.001 ± 0.000 0.001 ± 0.000
geyser (272, 2) 12.876 ± 0.123 0.005 ± 0.000 0.000 ± 0.000 0.001 ± 0.000
penguin (342, 4) 13.174 ± 0.167 0.012 ± 0.002 0.001 ± 0.000 0.001 ± 0.000
pollen (3848, 5) 13.793 ± 0.116 0.023 ± 0.000 0.001 ± 0.000 0.002 ± 0.000
planets (550, 6) 13.349 ± 0.107 0.020 ± 0.000 0.001 ± 0.000 0.001 ± 0.000
abalone (4177, 7) 15.041 ± 0.058 0.041 ± 0.008 0.001 ± 0.000 0.003 ± 0.001
sulfur (10081, 7) 16.010 ± 0.142 0.054 ± 0.001 0.002 ± 0.000 0.007 ± 0.000

gaussians (10000, 8) 15.443 ± 0.273 0.087 ± 0.021 0.003 ± 0.000 0.008 ± 0.001
wine_red (1599, 11) 15.679 ± 0.164 0.046 ± 0.001 0.001 ± 0.000 0.002 ± 0.000

wine_white (4898, 11) 16.008 ± 0.121 0.095 ± 0.021 0.002 ± 0.000 0.004 ± 0.000
japanese_vowels (9960, 12) 16.681 ± 0.069 0.137 ± 0.015 0.003 ± 0.000 0.011 ± 0.000

sylvine (5124, 20) 17.412 ± 0.124 0.275 ± 0.094 0.002 ± 0.000 0.008 ± 0.000
breast (569, 30) 18.793 ± 0.068 0.208 ± 0.008 0.001 ± 0.000 0.002 ± 0.000

For large data sets, the kNN×KDE, the kNN-Imputer, and MissForest become time-consuming. MissForest
becomes particularly slow when using more than 20 regression trees for data sets where number of total cells
(number of variables times number of observations) is large.

29

Published in Transactions on Machine Learning Research (06/2023)

F Benchmark results on the MovieLens dataset

We tested our method on the MovieLens dataset (Harper & Konstan, 2015), which is known for having
inherent missing values with high missing rate. Note that the Matrix Completion problem associated to
the MovieLens dataset includes approximately 6,000 users and 4,000 movies with categorical features, and
the missing rate associated with this problem is about 96%. The kNN×KDE is not designed to work with
categorical features, but we could make it work by treating the gender and the age of the users as numerical
features and looking for neighbours within users.

We used the leave-one-out cross-validation scheme to assess the performances of the kNN×KDE on the
MovieLens dataset. We randomly hide one value (corresponding to one random rating for one random user)
and use all other users having a rating observed for the randomly selected movie. This process is repeated
N = 100, 000 times to compute the average RMSE. The kNN×KDE provides imputation with an average
RMSE = 0.975. We refer the interested readers to the online repository for the script.

30

	Background and related work
	Problems of current imputation methods with multimodal data sets
	Three synthetic data sets
	Five state-of-the-art numerical data imputation methods
	Imputation results

	The kNNxKDE algorithm
	Results on the synthetic toy data sets
	Performances on heterogeneous data sets
	Imputation results with NRMSE
	Performances by log-likelihood score

	Discussion
	Limits & Strengths
	Future work
	Conclusion

	Discussion on the hyperparameters of the kNNxKDE
	Softmax temperature tau
	Gaussian kernels shared bandwidth h
	Number of imputation samples Ndraws

	Presentation of the data sets
	Simulated Two-Dimensional Data Sets – 2d_linear, 2d_sine, 2d_ring
	Abalone Data Set – abalone
	Breast Cancer Wisconsin (Diagnostic) Data Set – breast
	Simulated Mixture of Gaussians Data Set – gaussians
	Old Faithful Geyser Data Set – geyser
	Japanese Vowels Data Set – japanese_vowels
	Palmer Archipelago Antartica Penguin Data Set – penguin
	NASA Confirmed Exoplanets Archive – planets
	Pollen Data Set – pollen
	Sulfur Recovery Unit Data Set – sulfur
	Sulfur Recovery Unit Data Set – sylvine
	Wine Quality Data Set – wine_red and wine_white

	Missing data scenarios
	Study of the new metric
	Experimental computation time
	Benchmark results on the MovieLens dataset

