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Abstract

Interest is rising in Physics-Informed Neural Networks (PINNs) as a mesh-free alternative
to traditional numerical solvers for partial differential equations (PDEs). However, PINNs
often struggle to learn high-frequency and multi-scale target solutions. To tackle this prob-
lem, we first study a strong Boundary Condition (BC) version of PINNs for Dirichlet BCs
and observe a consistent decline in relative error compared to the standard PINNs. We then
perform a theoretical analysis based on the Fourier transform and convolution theorem. We
find that strong BC PINNs can better learn the amplitudes of high-frequency components
of the target solutions. However, constructing the architecture for strong BC PINNs is
difficult for many BCs and domain geometries. Enlightened by our theoretical analysis, we
propose Fourier PINNs — a simple, general, yet powerful method that augments PINNs with
pre-specified, dense Fourier bases. Our proposed architecture likewise learns high-frequency
components better but places no restrictions on the particular BCs or problem domains. We
develop an adaptive learning and basis selection algorithm via alternating neural net basis
optimization, Fourier and neural net basis coefficient estimation, and coefficient truncation.
This scheme can flexibly identify the significant frequencies while weakening the nominal
frequencies to better capture the target solution’s power spectrum. We show the advantage
of our approach through a set of systematic experiments.

1 Introduction

Physics-informed neural networks (PINNs) (Raissi et al., 2019) are innovative, mesh-free approaches for
solving partial differential equations (PDEs). They offer alternatives to traditional mesh-based numerical
methods such as finite elements and finite volumes (Reddy, 2019). The optimization of PINNs involves
softly constraining neural networks (NNs) through customized loss functions designed to adhere to the
governing equations of physical processes. Researchers have successfully applied PINNs in various domains—
for example, they have been used to simulate the radiative transport equation (Mishra & Molinaro, 2021),
which is crucial for radio frequency chip and material design (Chen et al., 2020; Liu & Wang, 2019). Further,
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cardiovascular flow modeling (Kissas et al., 2020) is another application, along with various fluid mechanics
problems (Cai et al., 2021), and high-speed aerodynamic flow modeling (Mao et al., 2020), among many
others (Raissi et al., 2020; Chen et al., 2020; Jin et al., 2021; Sirignano & Spiliopoulos, 2018; Zhu et al.,
2019; Geneva & Zabaras, 2020; Sahli Costabal et al., 2020; Sun et al., 2020; Fang & Zhan, 2019).

Despite these successes, the training of PINNs remains challenging in some instances. Recent studies have
analyzed common failure modes of PINNs, particularly when modeling problems that exhibit high-frequency,
multi-scale, chaotic, or turbulent behaviors (Wang et al., 2022; 2021c;b; 2024b), or when the governing
PDEs are stiff (Krishnapriyan et al., 2021; Mojgani et al., 2023). Rahaman et al. (2019) attributes the slow
convergence to the high-frequency components of the target solution, identifying it as a “spectrum bias” in
standard NNs, while learning low-frequency information from data is straightforward. Wang et al. (2021c)
confirmed that this bias is also present in the PINN setting. These challenges often arise because applying
differential operators over the NN in the residual complicates the loss landscape (Krishnapriyan et al., 2021).
From an optimization perspective, Wang et al. (2021b) highlighted that the imbalance in gradient magnitudes
between the boundary loss and residual loss (with the latter often being much larger) causes the residual loss
to dominate training, leading to a poor fit to the boundary conditions. Wang et al. (2022) confirmed this
conclusion through a neural tangent kernel (NTK) analysis of PINNs with wide networks, finding that the
dominant eigenvalues of the residual kernel matrix often result in the training primarily fitting the residual
loss.

One class of approaches designed to mitigate the training challenges in PINNs involves setting different
weights for the boundary and residual loss terms. For example, Wight & Zhao (2020) suggested incorporating
a large multiplier for the boundary loss term to prevent the residual loss from dominating the training process.
In contrast, Wang et al. (2021b) proposed a dynamic weighting scheme based on the gradient statistics of the
loss terms, and Wang et al. (2022) developed an adaptive weighting approach based on the eigenvalues of the
NTK. Liu & Wang (2021) employed a mini-max optimization to update the loss weights via stochastic ascent,
and McClenny & Braga-Neto (2024) used a multiplicative soft attention mask to dynamically re-weight the
loss term for each data point and collocation point. To alleviate the spectrum bias in NNs, Tancik et al. (2020)
randomly sampled a set of high frequencies from a large-variance Gaussian distribution to construct random
Fourier features as input to the NN. Additionally, Wang et al. (2021c) used multiple Gaussian variances to
sample frequencies for Fourier features, aiming to capture multi-scale solution information within the PINN
framework. While effective, the performance of this method is sensitive to the number and scales of the
Gaussian variances, which are user-specified hyperparameters that are often difficult to optimize.

Another strategy to improve these challenges is to modify the NN architecture to exactly satisfy the boundary
conditions (BCs) (Lu et al., 2021; Lyu et al., 2021; Lagaris et al., 1998; 2000; McFall & Mahan, 2009; Berg &
Nyström, 2018; Lagari et al., 2020; Mojgani et al., 2023). We refer to these approaches as “strong BC PINNs”.
Despite their effectiveness, these approaches face several limitations. They are usually limited to tasks with
relatively simple and well-defined physics, requiring significant craftsmanship and complex implementations
even in straightforward problem settings. Consequently, these strategies are less flexible than the original
PINN framework, which employs a soft constraint approach for boundary condition satisfaction. Additional
complications arise for challenging physical systems governed by invariances or conservation laws, such as
energy or momentum conservation, due to often poorly understood and imprecisely defined physical laws.
Incorporating these laws effectively into the NN architecture makes extending strong BC PINNs to handle
more complex tasks difficult. Further, designing a custom ansatz requires tailoring the NN architecture for
each specific boundary condition and domain, which is often impractical for complicated domains. However,
when properly designed, these techniques can achieve highly accurate solutions.

In our work, we delve deeper into the training challenges of PINNs for learning high-frequency and multi-
scale solutions. We analyze the mechanisms behind the success of strong BC PINNs and explore ways to
incorporate these successful strategies into a more general PINN architecture. Our specific contributions are
as follows:

• We first examine a strong BC PINN architecture for simple Dirichlet boundary conditions as pro-
posed by Lu et al. (2021). This variant integrates a fixed polynomial boundary function into the NN
architecture to exactly satisfy the boundary conditions. While it shows significant improvements

2



Published in Transactions on Machine Learning Research (01/2025)

over the standard PINN, especially for higher frequency problems, it struggles to predict solutions
with frequencies above a certain threshold due to its static nature. To address this limitation, we
propose a new strong BC PINN architecture featuring an adaptive parameter optimized during train-
ing. This parameter adjusts the boundary function’s sharpness to match the true solution, thereby
improving accuracy for higher-frequency solutions compared to the static polynomial variant.

• We conduct a Fourier analysis on both strong BC PINNs compared to the standard PINN. Through
the Fourier series convolution theory, we discovered that multiplying the NN by the strong boundary
function significantly enhances the learning speed and accuracy of the higher frequency coefficients
in the target solution. In contrast, standard PINNs struggle to accurately capture coefficients in the
high-frequency domain. This analysis complements and confirms the aforementioned NTK work.

• Inspired by our Fourier analysis, we develop Fourier PINNs. This novel PINN architecture enhances
frequency learning within the true solution, comparable to strong BC PINNs, regardless of specific
boundary conditions, domain, or underlying physical properties. The Fourier PINN architecture
integrates a standard NN with a linear combination of Fourier bases, with frequencies uniformly
sampled from an extensive pre-set range. We implement an adaptive learning and basis selection
algorithm that alternately optimizes the NN basis parameters and the coefficients of the NN and
Fourier bases while pruning insignificant bases. This approach efficiently identifies significant fre-
quencies, supplements those missed by the NN, and improves frequency amplitude estimation (i.e.,
the basis coefficient) while maintaining computational efficiency. Unlike previous methods, this ap-
proach only requires specifying a sufficiently large range and small spacing for the Fourier bases
without concern for the actual number and scales of frequencies in the true solution.

• We evaluate Fourier PINNs on several benchmark PDEs characterized by high-frequency and multi-
frequency solutions. In all cases, Fourier PINNs consistently achieve low solution errors (e.g., ∼
10−3 or ∼ 10−4). In contrast, standard PINNs invariably fail to achieve comparable accuracy.
PINNs with random Fourier features (RFF-PINNs) often fail across various Gaussian variances
and scales, indicating high sensitivity to these parameters. Additionally, we test spectral methods,
PINNs with large boundary loss weights (Wight & Zhao, 2020), and PINNs with adaptive activation
functions (Jagtap et al., 2020). Fourier PINNs consistently outperform all these methods.

The remainder of this paper is structured as follows: Section 2 provides the necessary background and
notation, while in Section 4, we present our Fourier analysis of strong BC PINNs and explain the success
of the strong boundary ansatz methodology. Our new Fourier PINN architecture and its training routines
are described in Section 5. Section 6 details our numerical experiments and findings, including assessments
of computational cost and accuracy compared to baseline methods. Finally, Section 7 discusses future work
regarding scalability and Section 8 discusses the results and outlines specific future research directions.

2 Background

In this section, we first describe the general optimization problems we are addressing with physics-informed
neural networks (PINNs) following the formulation presented in Raissi et al. (2019). We then discuss the
specifics of strong boundary condition enforcement.

2.1 General Overview of Physics-Informed Neural Networks

The PINN framework uses NNs to estimate solutions to partial differential equations (PDEs). Consider a
PDE of the following general form,

F [u](x) = f(x), x ∈ Ω, (1)

where F is a linear or non-linear differential operator and u represents the unknown solution and Ω is the
problem domain in Rd. The general boundary conditions are then,

B[u](x) = g(x), x ∈ ∂Ω, (2)

3



Published in Transactions on Machine Learning Research (01/2025)

where ∂Ω is the boundary of the domain and B is a general boundary-condition operator.

To solve the PDE, the PINN uses a deep NN, uN (x;θ), to approximate the true solution u(x). For clarity
in later sections, we follow the convention of Cyr et al. (2020) and define the output of the NN with width
W as a linear combination of a set of nonlinear bases such that

uN (x; c,θH) =
W∑

j=1
cjψj(x;θH), (3)

where each ψj are nonlinear activation functions (such as Tanh) acting on the hidden layer outputs. Each cj

for j = 1, ..., w and θH are the weights and biases in the last layer of the NN and hidden layers, respectively.
Therefore, θ = {c,θH} form the set of all network parameters. Then, finding the optimal network parameters
θ∗ involves minimizing the following composite loss function between boundary and residual loss terms,

θ∗ = arg minθ λLb(θ) + Lr(θ). (4)

Here,

Lb(θ) = 1
M

M∑
i=1

(
B[uN ](xi

b)− g(xi
b)

)2
, (5)

is the boundary loss to fit the boundary condition with Lagrange multiplier λ, and

Lr(θ) = 1
N

N∑
i=1

(
F [uN ](xi

r)− f(xi
r)

)2
, (6)

is the residual loss to fit the equation. We minimize Equation 4 by sampling N collocation points {xi
r}N

i=1
from the domain Ω and M points {xi

b}M
i=1 from the boundary of the domain ∂Ω, and iteratively modifying

the network parameters through gradient descent.

2.2 Strong Boundary Condition PINNs

Equation 5 can approximately enforce various types of boundary conditions, including Dirichlet, Neumann,
Robin, and periodic. However, prior analysis by Wang et al. (2021b; 2022) suggests that the instability
in training PINNs likely arises from the competition between the weakly enforced boundary loss (5) and
the residual loss (6) terms during optimization. This competition likely occurs because both loss terms
are minimized simultaneously during training. However, the optimization algorithm tends to prioritize the
minimization of the residual loss, as it typically dominates the gradient of the combined loss function.
Consequently, this can lead to a scenario where the residual loss converges effectively but at the expense of
the boundary loss, which remains inadequately optimized. As a result, the boundary conditions may not be
satisfied, leading to poor model performance on new, unseen data or data at the domain’s boundaries.

One solution to mitigate the competition between the loss terms is to design a surrogate model that inherently
satisfies the boundary conditions. This approach typically works by modifying the network architecture to
satisfy the boundary conditions exactly, thus eliminating the need for a boundary enforcement loss term
and further reducing the computational cost. This method of exact imposition of boundary conditions has
become a standard approach in the PINN literature and is especially prevalent for Dirichlet and periodic
boundary conditions (Lu et al., 2021; Yu et al., 2022; Wang et al., 2024a).

This work primarily focuses on Dirichlet boundary conditions to simplify the analysis and implementations
while addressing a significant and common scenario in physical systems. Dirichlet boundary conditions
provide a clear and straightforward framework to demonstrate the effectiveness of the surrogate model
approach, as they require the solution to take specific values at the boundaries, which is relatively easy to
enforce exactly on simplified domains. To illustrate, we consider the 1D Dirichlet boundary condition defined
as,

x ∈ [a, b], u(a) = u(b) = g(x). (7)
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For this case, the surrogate model is typically defined as,

uθ(x) = g(x) + ϕ(x)uN (x), (8)

such that uθ(x) is the solution function, g(x) is the provided boundary function, uN (x) is the output of
the neural network, and ϕ(x) is a composite distance function that zeroes out on the boundaries, ensuring
the boundary conditions are met without explicit penalty terms. By construction, uθ(a) = uθ(b) = g(x),
and thus the boundary condition in Equation 7 is strictly and automatically satisfied. To estimate the
parameters of uθ, we only need to minimize the residual loss Lr(θ). Most PINN surrogate model designs
rely on distance functions based on the theory of R-functions (Sukumar & Srivastava, 2022), which are
smooth mathematical functions that encode Boolean logic and facilitate the combination of simple shapes
to form complex geometries (Rvachev & Sheiko, 1995). Some meshfree Galerkin methods have utilized the
capability of R-functions to enforce boundary conditions smoothly and exactly to enhance the precision and
robustness of numerical simulations for solving boundary-value problems (Shapiro & Tsukanov, 1999; Akin,
1994; Tsukanov & Posireddy, 2011).
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Figure 1: This figure shows the polynomial distance function ϕpoly(x) and the exponential distance function ϕexp(x)
with different α values. The curves for ϕexp(x) correspond to different α parameters, demonstrating how the shape of
ϕexp(x) “sharpens” around the domain boundaries as α increases.

In this work, we compare the standard PINN to two strong BC PINNs using different distance functions
to enforce Dirichlet boundary conditions exactly. The first distance function we consider is the polynomial
distance function proposed by (Lu et al., 2021), defined as,

ϕpoly(x) = (x− a)(b− x). (9)

This function satisfies the Dirichlet boundary conditions by zeroing out at the x = a and x = b endpoints.
While Lu et al. (2021) demonstrated promising results using this formulation, the polynomial distance
function ϕpoly(x) remains static throughout the training process. The lack of adaptability limits the model’s
ability to handle different problem domains and boundary conditions, which can hinder performance when
faced with varying complexities within the solution space.

To address this limitation, we propose an adaptive distance function that introduces flexibility in enforcing
boundary conditions, which we define as:

ϕexp(x) = (1− eαa(a−x))(1− eαb(x−b)), (10)

where αa and αb are parameters that can be pre-set or optimized during training. These parameters allow
the function to adjust to the characteristics of the problem domain dynamically, ensuring robust enforcement
of boundary conditions across different scenarios. As we demonstrate in subsequent sections, this flexibility
improves accuracy and enhances the efficiency of the training process by enabling the network to adapt
to the complexity of the solution space. Allowing independent values for αa and αb enables additional
flexibility and allows the function to adapt asymmetrically to different boundary conditions. Although the
proposed adaptive distance function in Equation 10 may appear incremental, its primary contribution lies
in demonstrating a scalable and flexible framework for enforcing strong boundary conditions. This method
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significantly improves over traditional PINNs and non-adaptive distance functions, particularly for problems
that require the exact imposition of Dirichlet boundary conditions. Additionally, in later sections, we present
a thorough theoretical analysis that elucidates the mechanisms driving the improvements in enforcing strong
boundary conditions, further highlighting the advantages of the proposed method.

The general form of the adaptive distance function for a d-dimensional rectilinear domain Ω ⊂ Rd, with
spatial coordinates x = (x1, x2, ..., xd), is:

ϕexp(x) =
d∏

i=1

(
1− eαai

(ai−xi)
) (

1− eαbi
(xi−bi)

)
, (11)

where ai, bi represent the boundaries in the i-th dimension, and αai
, αbi

are the corresponding steepness
parameters. This form ensures that the boundary conditions are enforced independently in each dimension,
making the approach easily scalable to higher dimensions in rectilinear domains.

One potential strategy for adaptation for irregular domains is using Fourier extension methods, which allow
non-periodic functions defined on arbitrary domains to be extended into periodic ones. Doing so can enforce
the boundary conditions in a more structured domain, allowing the network to handle irregularities better.
Another promising direction is leveraging custom network layers that map irregular domains to rectilin-
ear spaces, as demonstrated by methods such as the GOFNO network Liu et al. (2023). Extending this
framework to more complex boundary conditions, such as Neumann or Robin conditions, is an important
future direction. The adaptive distance function can be modified for Neumann boundary conditions to have
non-zero slopes at the boundaries, ensuring correctly enforced derivatives. This would require careful and
non-trivial adjustments to the distance function, but the general framework remains applicable.

Figure 1 illustrates the behavior of the polynomial distance function ϕpoly(x) to the exponential distance
function ϕexp(x) with various values of α. As α varies, ϕexp(x) adjusts its shape, showcasing its ability to
conform to different problem domains and complexities. We expect this dynamic adaptability to enhance the
model’s performance by more precisely enforcing boundary conditions across diverse scenarios. We affirm
this through a numerical example in the next section.

3 Boundary Condition Pathologies in PINNs

Recent works have employed strong boundary enforcement strategies (Lu et al., 2021; Yu et al., 2022)
but offer few insights into the specific surrogate model design process. The design and implementation
of the surrogate models are often ad-hoc, with no systematic approach to their architectural design. This
complicates their application and limits their effectiveness across boundary conditions and physical problems,
especially when dealing with complex physics and domains. Moreover, the standard PINNs frequently
encounter difficulties with high-frequency and multi-scale solutions, leading to inaccurate predictions (Wang
et al., 2021c). We show that while the strong BC PINN model improves solution quality for problems with
higher frequency compared to the standard PINN, the solution quality nevertheless degrades with larger
frequencies. In the following, we empirically demonstrate how the standard PINN solution quality degrades
as the actual frequency of the solution increases in both a linear 1D Poisson problem and a non-linear 1D
steady-state Allen-Cahn problem. Specifically, we consider the fabricated solution u(x) = sin(kx) for a range
of frequencies k ∈ [2, 6, 10, 14, 18, 22, 26, 30, 34] and x ∈ [0, 2π]. Therefore, by varying k, we can examine
the performance of the standard PINNs compared to the strong BC PINNs when the solution u includes
different frequency information.

Specifically, we examine the 1D Poisson equation given by,

∆u = f(x) (12)
u(0) = u(1) = 0, (13)
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and derive the forcing function f(x) from the fabricated solution u(x) = sin(kx) which gives f(x) =
−k2 sin(kx). We also consider the 1D Allen-Cahn equation defined as,

uxx + u(u2 − 1) = f(x) (14)
u(0) = u(1) = 0, (15)

which gives the forcing function f(x) = −k2 sin(kx)+sin(kx)(sin2(kx)−1). Both are subject to the Dirichlet
condition in Equation 7 where a = 0 and b = 2π.

We test these problems using a standard PINN, which explicitly incorporates the weakly enforced boundary
loss and residual loss terms. We compare these results to two strong BC PINNs employing different distance
functions (8) and show that this method exhibits slower solution degradation with increased frequency.
Specifically, we tested two neural network architectures, each with 100 neurons per layer and depths of two
and four, and assessed model performance using the relative ℓ2 error, defined as

∥y − ŷ∥2

∥y∥2
=

√∑n
i=1(yi − ŷi)2√∑n

i=1 y
2
i

,

where ŷ is the predicted solution and y is the true solution. All networks used the Tanh activation and are
trained using 10K equally spaced collocation points sampled from the domain. Relative ℓ2 errors are reported
on a separate testing set of 20K points. All experiments used 32-bit floating-point precision (float32) to ensure
computational efficiency. Each model was trained for 100K iterations using the Adam optimizer (Kingma
& Ba, 2015) with an initial learning rate of 10−3, decaying exponentially by 0.9 every 1000 iterations,
followed by L-BFGS optimization until convergence (tolerance 10−9). For the strong BC PINN with ϕexp,
we initialized α to 0.5 and jointly optimized it with all other parameters. Results are averaged over five
random trials and were conducted on a GeForce RTX 3090 GPU with CUDA version 12.3, running on Ubuntu
20.04.6 LTS. Additionally, we implemented a second-order accurate Finite Difference Method (FDM) as a
baseline for solving the 1D Poisson and steady-state Allen-Cahn equations using 1000 discretization points
and central differences. Table 3 in the Appendix provides detailed hyperparameters and experimental design
information.
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Standard PINN (d-2)
Standard PINN (d-4)
Strong BC PINN poly (d-2)

Strong BC PINN poly (d-4)
Strong BC PINN exp (d-2)
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Figure 2: Relative ℓ2 error in predicting the solution u(x) = sin(kx) as a function of frequency k. The plots compare
the performance of the standard PINN, the strong BC PINN with polynomial boundary function ϕpoly, the strong BC
PINN with exponential boundary function ϕexp, and FDM for (left) 1D Poisson and (right) 1D steady-state Allen-
Cahn equations for NN with 2 hidden layers (d-2) and 4 hidden layers (d-4) each with 100 neurons. The shaded
regions represent the error variability.
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Figure 2 demonstrates that both strong BC PINNs, using ϕpoly and ϕexp boundary functions, effectively
suppress high-frequency components, leading to higher accuracy solutions compared to the standard PINN.
The deeper architecture (d=4) consistently reduces errors across most frequencies for both boundary func-
tions, but the static polynomial distance function ϕpoly shows diminishing benefits as the frequency increases.
In contrast, the strong BC PINN with ϕexp maintains superior accuracy, outperforming both the standard
PINN and the strong BC PINN with ϕpoly across a broader frequency range. Although the advantages of
strong boundary enforcement diminish at very high frequencies, ϕexp consistently retains its edge over ϕpoly.

Additionally, the Finite Difference Method (FDM) achieves the lowest relative ℓ2 errors across all frequencies
in both the 1D Poisson and 1D Allen-Cahn problems, serving as a benchmark for evaluating neural network
approaches. The FDM demonstrates exceptional performance, particularly at high frequencies, highlighting
the limitations of PINN-based approaches in capturing rapid oscillations. However, the strong BC PINNs
with ϕexp narrow the gap with FDM at lower and mid-range frequencies, showcasing their robustness com-
pared to standard PINNs.

While the FDM is a reliable and efficient approach for solving partial differential equations, it has notable
limitations that drive the need for advancements in Physics-Informed Neural Networks (PINNs). FDM relies
on structured grids, making it challenging to apply to problems with complex geometries, and it struggles
with scalability in high-dimensional problems due to exponential grid growth. Unlike FDM, PINNs can
also integrate noisy or partial data into their models, making them more flexible for real-world applications.
Furthermore, advancements in machine learning architectures and hardware accelerators have significantly
improved the practicality and efficiency of PINNs. By addressing current challenges, such as resolving high-
frequency solutions and improving convergence, PINNs have the potential to provide a scalable, versatile
alternative to traditional numerical methods like FDM.

Table 1: Training times (in seconds) for various network configurations across 1D Poisson and 1D Allen-Cahn
problems. The values in parentheses represent the standard deviations of training times.

Network 1D Poisson (sec) 1D Allen-Cahn (sec)
Standard PINN (d=2) 202.07 (2.52) 103.11 (0.10)
Standard PINN (d=4) 319.09 (1.61) 200.14 (91.20)
Strong BC PINN ϕpoly (d=2) 204.28 (1.95) 213.41 (78.60)
Strong BC PINN ϕpoly (d=4) 311.83 (10.83) 122.91 (15.90)
Strong BC PINN ϕexp (d=2) 299.56 (2.18) 403.60 (260.00)
Strong BC PINN ϕexp (d=4) 401.63 (1.98) 472.59 (56.00)
FDM < 1 < 1

4 Fourier Analysis of Strong BC PINNs

Both NNs and PINNs are known to exhibit spectral bias, meaning they readily capture low-frequency
components of a target function but struggle with high-frequency details (Basri et al., 2020; Rahaman et al.,
2019; Xu et al., 2020; Wang et al., 2021c). As demonstrated earlier, this bias causes the solution quality
of PINNs to degrade as the target solution’s frequency increases. However, strong BC PINNs appear to
mitigate or delay this issue, achieving better performance for higher-frequency solutions.

This section uses Fourier analysis to investigate why strong BC PINNs outperform standard PINNs in
addressing spectral bias. The infinite Fourier series expresses a periodic function u(x) with period L as:

u∞(x) =
∞∑

n=−∞
û[n]ei2πnx/L, (16)

where the Fourier coefficients are given by:

û[n] = 1
L

∫ L

0
u(x)e−i2πnx/Ldx. (17)
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4.1 Numerical Fourier Analysis of Strong BC PINNs

To analyze spectral bias, we compute the Fourier coefficients for several manufactured solutions: 1. A single
sine wave to demonstrate the baseline frequency handling of PINNs. 2. A combination of sine waves with
differing frequencies to explore how multi-scale components are captured. 3. A Gaussian-modulated sine
wave to evaluate performance on solutions with continuous spectral content. 4. A sine wave and polynomial
combination to examine behavior under non-homogeneous boundary conditions.

For standard PINNs, the frequency spectrum typically shows a pronounced low-frequency peak, reflecting
effective learning of low-frequency components and a gradual decay for higher frequencies, often resulting
in heavy tails. These heavy tails indicate residual noise and the network’s difficulty in accurately filtering
out high-frequency inaccuracies. By contrast, as we will show, strong BC PINNs exhibit faster decay in
the higher-frequency components, enabling better suppression of noise and improved representation of fine
details in the solution.

We trained a standard PINN and a strong BC PINN for each example with four hidden layers, 100 nodes
per layer, and Tanh activations. Table 4 lists the specific training and hyperparameter details. We then
computed the Discrete Fourier Transform (DFT) of the learned solutions uθ(x), which represents their
frequency spectrum. For N equally spaced points xj sampled over the domain [0, 2π], the DFT is defined
as:

ûθ[k] =
N−1∑
n=0

uθ(xn)e−i2πkn/N , k = −N2 , . . . ,
N

2 − 1.
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Figure 3: Frequency spectrum of the learned solution (left) and the convolution operation (right) in the strong BC
PINN and standard PINN. The ground-truth solution is sin(kx) with k = 15. The left graph shows frequency handling
by standard and strong BC PINNs, while the right demonstrates how convolution reduces high-frequency noise.

Figure 3 (left) compares the frequency spectrum of a standard PINN and a strong BC PINN trained on the
1D Poisson problem with the ground-truth solution u(x) = sin(kx), for x ∈ [0, 2π] and k = 15. While the
standard PINN successfully captures the target frequency, it also retains significant high-frequency noise, as
evident in the heavy tails of the spectrum. In contrast, the strong BC PINN exhibits much faster decay in
higher frequencies, effectively reducing high-frequency noise and improving accuracy. This indicates that the
strong BC PINN filters out unnecessary components more efficiently, enhancing the clarity and precision of
the learned solution by isolating the dominant frequency.
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Figure 4: The frequency spectrum of the learned solutions (top) and absolute error of the Fourier coefficients
(bottom) for the strong BC PINN and standard PINN compared to the ground truth. The ground-truth solution is
u(x) = sin(2x) + sin(16x).

Building on the analysis of single-frequency solutions in the previous section, we now examine the performance
of standard and strong BC PINNs on a multi-scale target solution where multiple frequencies are present
simultaneously. This setup provides a more challenging scenario, testing each model’s ability to balance
between capturing dominant low-frequency components and accurately representing higher-frequency details.
For a multi-scale target solution, u(x) = sin(2x)+sin(16x), Figure 4 illustrates the frequency spectrum of the
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learned solutions. To simplify the analysis and focus on the unique information, we transition to visualizing
only the positive frequency components, as the Fourier coefficients are symmetric for real-valued functions.

While the standard PINN captures the primary low-frequency components, it struggles to filter the higher-
frequency components effectively, allowing residual high-frequency noise to persist. The strong BC PINN,
however, captures both frequencies more accurately and suppresses extraneous high-frequency noise, leading
to a lower overall error. This result highlights the strong BC PINN’s advantage in multi-scale problems,
where it can effectively balance between capturing necessary frequencies and eliminating noise.
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Figure 5: The frequency spectrum of the learned solutions (top) and absolute error of the Fourier coefficients
(bottom) for the strong BC PINN and standard PINN compared to the ground truth. The ground-truth solution is
u(x) = e−0.5x2

sin(16x).

To evaluate the strong BC PINN’s performance on solutions with continuous spectral content, we used
a Gaussian-modulated sinusoid, u(x) = e−0.5x2 sin(16x). Figure 5 shows the Fourier spectrum for this
case. The Gaussian modulation introduces a broad spectrum of frequencies, challenging the model’s ability
to suppress irrelevant high frequencies while accurately capturing the primary frequency content. In this
example, the strong BC PINN demonstrates robust noise reduction by filtering unnecessary frequencies,
including low frequencies. This capability is essential for handling continuous spectra. The strong BC PINN
can generalize well to functions with non-discrete frequency components, making it applicable to a broader
range of real-world problems.
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Figure 6: The frequency spectrum of the learned solutions (top) and absolute error of the Fourier coefficients
(bottom) for the strong BC PINN and standard PINN compared to the ground truth. The ground-truth solution is
u(x) = x2 + sin(16x).

Finally, we explore the strong BC PINN’s performance on non-homogeneous boundary conditions using
the manufactured solution u(x) = x2 + sin(16x). Figure 6 illustrates the Fourier spectrum for this non-
homogeneous boundary case. The polynomial term x2 introduces a low-frequency component that is not
harmonically related to the oscillatory term sin(16x). The standard PINN struggles to capture this low-
frequency component fully. At the same time, the strong BC PINN demonstrates improved performance
in accurately representing both the polynomial boundary effect and the oscillatory component. This ex-
ample underscores the strong BC PINN’s effectiveness in handling non-homogeneous boundaries, as it can
accommodate mixed low- and high-frequency components in the solution.

These results collectively illustrate the strong BC PINN’s enhanced ability to manage various frequency
cases, from simple single-frequency cases to continuous spectra and complex non-homogeneous boundary
conditions. The strong BC PINN demonstrates robustness and flexibility by effectively suppressing high-
frequency noise and maintaining accuracy across various spectral components, making it suitable for a wide
array of boundary-conditioned problems in applied settings.

4.2 Analytical Fourier Analysis of Strong BC PINNs

To analyze why multiplying the distance function (ϕ(x)) with the NN in Equation 8 helps to obtain more
accurate coefficients for high frequencies, we first represent the general distance function ϕ(x) as an infinite
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Fourier series in its discrete form1 as in Equation 16,

ϕ(x) = ϕ∞(x) =
+∞∑

n=−∞
ϕ̂[n] · einx (18)

with period L = 2π. We first analyze the polynomial distance function by substituting Equation 9 for ϕ̂
in Equation 18. From Equation 17, we get the Fourier coefficients,

ϕ̂poly[n] = 1
2π

∫
2π

x(2π − x) · e−inxdx = − 2
n2 . (19)

Similarly, to compare against our proposed adaptive distance function, we substitute in Equation 10 for ϕ̂
in Equation 18 and obtain the Fourier coefficients,

ϕ̂exp[n] = 1
2π

∫
2π

(1− e−αx)(1− eα(x−2π)) · e−inxdx = α(1− e2πα)e−2πα

π(α2 + n2) . (20)

Here, we expand the boundary functions ϕ(x) to be periodic (i.e., duplicating its definition in [0, 2π] to other
intervals), and the period is 2π. We can now obtain the Fourier transforms of each ϕ∞(x) by evaluating,

ϕ̂(ω) =
∑+∞

n=−∞
ϕ̂[n] · δ

(
ω − n

2π

)
(21)

where δ(·) is the Dirac delta function and ω is the continuous frequency. Specifically, each ϕ̂(ω) represents
the Fourier transform of ϕ∞(x), meaning F−1

{
ϕ̂(ω)

}
= ϕ∞(x) where F−1 denotes the inverse Fourier

transform.

Since |ϕ̂poly[n]| ∝ 1/n2, the amplitude of the frequencies of ϕpoly(x) decay quadratically fast with the increase
of the absolute frequency value. This rapid decay is beneficial for denoising as it effectively suppresses high-
frequencies, leading to smoother approximations. However, it may result in the loss of fine details, especially
if essential signal components are present at higher frequencies. Alternatively, |ϕ̂exp[n]| ∝ α/(α2 + n2),
indicating that the frequency amplitudes follow Lorentzian decay controlled by the decay rate α. Lorentzian
decay is less aggressive in reducing high-frequency components, which helps preserve fine details and sharp
transitions in the signal. This flexibility helps tune the decay based on signal characteristics. However, the
slower decay rate may lead to less effective noise suppression.

We can now look at the frequency spectrum of the full surrogate model uθ(x) in Equation 8. We use the
convolution theorem (McGillem & Cooper, 1991) to obtain

ûθ(ω) = ϕ̂ ∗ ûN =
∫ ∞

−∞
ϕ̂(ω − ν) ûN (ν) dν (22)

where ∗ denotes convolution, and ûN is the Fourier transform of the NN. Suppose ω > 0, we know that
ϕ̂(ω−ν) is obtained by first reflecting ϕ̂(ν) about the y-axis, and then shifting the frequency ω left along the
spectrum. Then, we integrate ûN (ν) weighted by ϕ̂(ω−ν). The larger the frequency ω, the more ϕ̂ is moved
left to obtain ϕ̂(ω−ν) resulting in a stronger weighting of the high-frequency components during integration.
Since the frequency coefficients of ϕ̂ decay quadratically fast (|ϕ̂[n]| ∝ 1/n2), the larger the portion of the
tail is used, and the smaller the integration result. Specifically, with ϕ, the corresponding amplitude of ûθ(ω)
decrease fast when ω increases2. See Figure 3 for an illustration in the discrete case. During training, the
boundary function pushes the surrogate model in Equation 8 to weaken irrelevant high-frequency components
to reduce large tails and better capture the frequency spectrum.

1While the analysis here is presented in the discrete Fourier series form for clarity and consistency with the numerical
implementation, the results can be extended to the continuous Fourier transform by replacing summations over discrete indices
n with integrals over the continuous frequency domain.

2The same conclusion applies when we consider ω < 0.
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5 Fourier PINNs

Our Fourier analysis in the previous section revealed that the standard PINNs inefficiently capture the true
amplitude of frequencies in the power spectrum of their predicted solutions. Specifically, the analysis showed
that although standard PINNs could identify the true solution frequency, they failed to prune large and
noisy frequencies, as indicated by the large amplitudes assigned at the tail end of the power spectrum in
Figure 3. While the strong BC PINNs address this issue by multiplying the NN with a boundary function—
which helps decay high-frequency amplitudes faster—their overall benefit remains limited. As shown in
Figure 2, performance degrades as k increases, indicating the boundary function’s inability to learn ultra-
high frequency solutions. The strong BC PINNs are also restricted to specific boundary conditions, such as
Dirichlet conditions in Equation 7, limiting their applicability.

5.1 Fourier PINNs

We introduce Fourier PINNs, a novel PINN architecture to overcome these challenges. Fourier PINNs seam-
lessly handle diverse boundary conditions, like the standard PINNs, while emphasizing the true solution
frequencies during training—akin to the strong BC PINNs. Specifically, in order to flexibly yet compre-
hensively capture the frequency spectrum, we first introduce a set of dense frequency candidates, {ωn}K

n=1,
evenly sampled from the range [1,K]. From this set of frequency candidates, we define a set of trainable
Fourier bases uB as,

uB(x; a,b) =
K∑

n=1
an cos(2πωnx) + bn sin(2πωnx). (23)

The Fourier PINN architecture additively combines the outputs of both the NN from Equation 3 and the
Fourier bases from Equation 23 to generate the augmented prediction uF . Specifically, the full output of
Fourier PINNs is,

uF (x;θ) =
W∑

j=1
cjψj(x;θH) +

K∑
n=1

an cos(2πωnx) + bn sin(2πωnx). (24)

We define w = {c1, ..., cW , a1, ..., aK , b1, ..., bK} as the set of all basis coefficients, and θ = {θH ,w} form the
set of all trainable network parameters.

While we present our method in the one-dimensional input case, extending it to multiple dimensions is
straightforward. Consider the two-dimensional input x = [x1, x2] for an example. We use the same set of
frequencies to construct Fourier bases for each input. Specifically, we construct

ϕ(x1) = [cos(2πω1x1), sin(2πω1x1), . . . , cos(2πωKx1), sin(2πωKx1)],

and

ϕ(x2) = [cos(2πω1x2), sin(2πω1x2), . . . , cos(2πωKx2), sin(2πωKx2)].

Then, we apply the cross-product of ϕ(x1) and ϕ(x2) to obtain the tensor-product Fourier bases for x. The
surrogate model is given by,

uθ(x) = uN (x) + β⊤vec
(
ϕ(x1)ϕ(x2)⊤)

(25)

where vec(·) denotes the vectorization, and β are the coefficients of the Fourier bases. Note that the
tensor-product of bases grows exponentially with the problem dimension, quickly becoming computationally
intractable. One potential solution is to generate more sparse Fourier bases, such as total-degree or hyperbolic
cross bases. Another option is to re-organize the coefficients β into a tensor or matrix and introduce a low-
rank decomposition structure to parameterize β to save computational cost (Novikov et al., 2015). These
explorations are left for future work.
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5.2 Adaptive Basis Selection Training Algorithm

Given that the ground-truth solution likely contains significantly fewer frequencies than the augmented
candidate bases (uB), and our previous analysis showed that models often struggle to prioritize learning
necessary frequencies, we developed an adaptive learning and basis selection algorithm. This algorithm
flexibly identifies meaningful frequencies while pruning the inconsequential ones—allowing the model to
focus on learning and improving the bases that significantly contribute to the solution by inhibiting the
learning of unnecessary (and likely noisy) frequencies.

To aid in identifying the significant frequencies, we add an L2 regularization term to the basis parameters
w. While L2 regularization does not promote sparsity, in our specific case, we use L2 regularization with
a pruning strategy, which indirectly promotes sparsity by pruning coefficients after driving them toward a
threshold. Methods such as the SINDy (Sparse Identification of Nonlinear Dynamics) algorithm Zhang &
Schaeffer (2019) have explored this strategy, where L2 regularization helps to stabilize the coefficients during
optimization before pruning—yielding sparse solutions. This combination effectively balances stability and
sparsity, as shown in previous work Wang et al. (2021a). In this case, we chose not to use L1 regularization
due to practical challenges, including the instability it can introduce during training, particularly when
optimizing neural networks for complex systems. L2 regularization, combined with a careful pruning process,
offers more stable convergence while still leading to sparse solutions after pruning the small coefficients.

This additional regularization penalizes large coefficients for the basis functions, thereby promoting sparsity
and encouraging the model to focus on learning the most significant frequencies. The full loss function we
use is similar to PINNs (see Equation 4) but with the addition of the L2 regularization term. Specifically,
the loss function is,

L(θ) = Lb(θ) + Lr(θ) + α

2 ∥w∥
2, (26)

where ∥w∥2 represents the L2 regularization of w and α is the regularization strength defined by the user
before initiating training. This regularization term helps prune or inhibit unnecessary frequencies, allowing
the model to focus more on learning and improving the bases that significantly contribute to the solution.

Linear Operators Our adaptive basis selection algorithm optimizes the regularized loss function in Equa-
tion 26 by building upon the hybrid least squares gradient descent method proposed by Cyr et al. (2020).
Cyr et al. (2020) formulates the output of a neural network as a linear combination of nonlinear basis func-
tions, as shown in Equation 3. Their algorithm alternates between optimizing the hidden weights (θH) via
gradient descent and the final layer coefficients (c) of the NN through the least squares problem of the form,

arg minc ∥Ac− y∥2
ℓ2
, (27)

such that yi = L[u](xi) for the data points {xi}M
i=1, Aij = L[ψj(xi; θH)] for j = 1, ...,W , and L is some linear

operator. Equation 27 extends to problems with multiple operators, such as those defined by Equation 1
and Equation 2 when F and B are linear operators.

Representing the output of Fourier PINNs in Equation 23 as a linear combination of both adaptive bases
(i.e., the hidden layers of the NN) and an augmented Fourier series ensures our model’s compatibility with
the general approach of the alternating least squares and gradient descent optimization. While Cyr et al.
(2020) hold the coefficients of the last layer in the NN (c) constant while optimizing the bases θH through
gradient descent, we alternatively choose to jointly optimize both the Fourier PINN’s basis coefficients w
(which are comprised of both the NN basis coefficients c along with the Fourier basis coefficients a1, ..., aK

and b1, ..., bK) and the adaptive bases θH during the gradient descent step. During the least squares step,
we solve a similar problem to Equation 27 modified to suit the Fourier PINN architecture. Specifically, we
solve the least squares problem of the form,

arg minw ∥A′w− y∥2
ℓ2
, (28)
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such that yi = L[u](xi) for the data points {xi}M
i=1, and

A′
ij =


L[ψj(xi;θH)] for j = 1, ...,W,
L[cos(2πωjxi)] for j = W + 1, ...,W +K,

L[sin(2πωjxi)] for j = W +K + 2, ...,W + 2K.
(29)

We define Equation 28 for one operator L, but the method extends to multiple operators. Additionally, we
extend our least-squares method to nonlinear operators, unlike many works that focus only on linear cases.

Non-Linear Operators When the operator L is nonlinear, updating the coefficients w requires addi-
tional care to ensure the method accurately handles the nonlinearities and achieves convergence. Nonlinear
operators can often be decomposed into a combination of linear and nonlinear components, simplifying the
process of updating w during optimization. Specifically, we decompose the operator L as follows:

L[·] = G[·] + S[·] (30)

where G represents the linear part of the operator, and S denotes the nonlinear component.

To illustrate this, consider the Allen-Cahn equation, where the operator L contains both linear and nonlinear
terms. In this case, the linear part G is uxx, and the nonlinear term S[u] is u(u2 − 1), leading to the
decomposition:

G[u] = uxx, S[u] = u(u2 − 1). (31)

We solve this system by incorporating the Fourier PINN formulation. For the least squares solution of the
system, the nonlinear operator S is applied at each iteration using the current approximation of u, which is
based on the current coefficients w and is given as,

si = S[uF ](xi) = uF (xi; w)(uF (xi; w)2 − 1) (32)

Here, uF (xi; w) is the Fourier PINN’s evaluation at point xi, using the current parameters w. The linear
part G is handled directly in the least squares system, and the matrix A′ is defined as:

A′
ij =


G[ψj(xi;θH)] for j = 1, ...,W,
G[cos(2πωjxi)] for j = W + 1, ...,W +K,

G[sin(2πωjxi)] for j = W +K + 2, ...,W + 2K.
(33)

The nonlinear terms si are included in the target vector such that yi = L[u](xi) − si, which is updated
iteratively and reduces the problem to a linear least-squares system. As this method incorporates the
current values of w into calculating the nonlinear components, the optimization process can be viewed as
a form of fixed-point iteration. We note that for cases where L consists primarily of nonlinear terms or
does not include a linear operator, the optimization problem might need to be handled using continuous
optimization algorithms such as L-BFGS, which effectively updates w based on the entire system to ensure
convergence.

We integrate a custom basis pruning routine into the optimization algorithm to eliminate insignificant bases
and refine model training. Our modified loss function defined in Equation 26 enhances this hybrid optimiza-
tion algorithm with an L2 regularization term to identify and prioritize significant frequencies. Algorithm 1
outlines our adaptive learning routine. The algorithm begins with a joint optimization of θH and w to
provide a warm start to the model parameters. Next, we fix θH while alternating between solving for
the coefficients w using the least squares method and truncating bases with coefficients below a predefined
threshold. Specifically, bases corresponding to |wj | ≤ 10−3 are removed along with wj . After completing
the alternating solve and truncating steps for a set number of iterations, the algorithm jointly optimizes all
remaining parameters and bases using the Adam optimization algorithm. We repeat this routine for a fixed
number of iterations, followed by L-BFGS optimization until the final convergence.
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Algorithm 1: Adaptive Basis Selection Hybrid Least Squares/Gradient Descent
Input: θH

0 (initialized hidden parameters)
Output: Optimized parameters θH and weights w
w ← LS(θH

0 ) ; // Solve LS problem for w

θH ,w ← ADAM(θH
0 ,w) ; // Initialize θH and w

for i = 1, ... do
for k = 1, ... do

w ← LS(θH) ; // Solve LS problem for w
if |wj | < δ for each wj then

Prune the corresponding basis;
Delete wj from w;

end
end
θH ,w ← ADAM(θH ,w) ; // Jointly optimize all parameters using ADAM

end
Run L-BFGS until convergence;

6 Experiments

This section comprehensively evaluates our methods across a diverse set of partial differential equation (PDE)
problems. The test cases include the 1D and 2D Poisson equations, which serve as canonical examples of
linear elliptic PDEs, and the 1D and 2D steady-state Allen-Cahn equations, representing nonlinear elliptic
PDEs with a nonlinear reaction term. To further challenge the models, we analyze the 1D one-way Wave
equation, which incorporates a first-order time derivative, and the 1D non-steady-state Allen-Cahn equation,
a stiff PDE with non-harmonic characteristics. We first describe the baseline methods for comparing Fourier
PINNs and then outline the experimental setup. Finally, we present and discuss the results, highlighting the
relative performance of each method on the benchmark problems.

6.1 Baselines

We benchmarked against the following state-of-the-art PINN models for solving high-frequency and multi-
scale solutions:

(1) (PINN) standard PINNs as formulated in (Raissi et al., 2017);

(2) (RFF-PINN) Random Fourier Feature PINNs (Wang et al., 2021c) with dynamically re-weighted
loss terms derived from the NTK eigenvalues as in Wang et al. (2022),

(3) (W-PINN) Weighted PINNs that down-weight the residual loss term to reduce its dominance and
to fit the boundary loss Wang et al. (2022) better;

(4) (A-PINN) Adaptive PINNs with parameterized activation functions to increase the NN capacity and
to be less prone to gradient vanishing and exploding Jagtap et al. (2020); and

(5) (Spectral) A single Fourier layer comprised of Fourier bases and trainable coefficients. Basis coeffi-
cients are optimized through the same gradient descent routines as all other baselines3.

We do not test against the conceptually similar Fourier Neural Operators (FNOs) (Li et al., 2021), as they
are designed for inverse problems and rely on a data loss term. In contrast, our method focuses on solving
forward problems and does not require training data within the domain. Additionally, while the methods
listed above represent widely-used PINN architectures, we acknowledge the existence of alternative neural

3Throughout the experiments, we used the same set of Fourier bases for the spectral method and Fourier PINNs.

15



Published in Transactions on Machine Learning Research (01/2025)

network approaches based on random features and random projections, such as Random Vector Functional
Link networks (RVFLNs) (Zhang & Suganthan, 2016), Extreme Learning Machines (ELMs) (Ding et al.,
2013; Fabiani et al., 2021; Calabrò et al., 2021), Random Projection Neural Networks (RPNNs) (Rahimi &
Recht, 2008), Reservoir Computing (Pathak et al., 2018), and recent advancements like RandONet (Fabiani
et al., 2025). While methods such as RandONets and RVFLNs demonstrate significant computational
efficiency and excel in inverse problem-solving tasks, their ability to address spectral bias in forward high-
frequency problems remains underexplored.

By contrast, the proposed Fourier PINN architecture directly targets spectral bias—a key limitation of exist-
ing PINN approaches in learning high-frequency and multi-scale solutions. Unlike conventional architectures,
the Fourier PINN framework is both modular and adaptable, with the integration of Fourier bases capable of
enhancing or complementing any of these alternative methods. Given its flexibility and minimal downsides,
exploring how Fourier PINNs could be combined with these approaches to improve scalability and accuracy
remains an exciting direction for future work.

Table 2: The number and corresponding scales of Gaussian variances utilized in the RFF-PINN. Scales were selected
randomly from a set range of [1, 200]. Preference was given to the subset [1, 20, 50, 100] to ensure a balanced distribution
across the available range.

Number Scales
1 (20), (50), (84), (100)
2 (1, 50), (3, 20), (19, 71), (39, 69), (50, 100)
3 (44, 47, 165), (1, 20, 194), (20, 50, 100), (1, 50, 189), (38, 112, 119)
5 (1, 20, 49, 50, 100), (1, 20, 50, 85, 100)

(1, 20, 104, 197, 199), (6, 36, 67, 79, 136), (50, 65, 83, 104, 139)

6.2 Hyperparameters and experimental details

For each experiment, we trained the models in two stages: first using the Adam optimizer (Kingma & Ba,
2015), followed by L-BFGS optimization (Liu & Nocedal, 1989) until convergence, with the tolerance set to
10−9. Specific hyperparameters and training details are provided in the following tables: Table 5 for the 1D
Poisson and 1D Allen-Cahn experiments, Table 6 for the 1D Wave equation experiments, Table 7 for the 2D
Poisson and 2D (steady-state) Allen-Cahn experiments, and Table 8 for the 1D (non-steady-state) Allen-Cahn
experiment. All experiments use 32-bit floating-point precision (float32) to ensure computational efficiency
and consistency across models and were conducted on a GeForce RTX 3090 GPU with CUDA version 12.3,
running on Ubuntu 20.04.6 LTS. In Fourier PINNs, we determined the range of frequency candidates for
the Fourier bases by setting a maximum frequency K and including all equally spaced frequencies in the set
{1, 2, ...,K}. For the alternating optimization algorithm (Algorithm 1), we set the basis truncation threshold
δ = 10−4 and the regularization strength parameter α = 10−4. Optimization used the same number of
Adam iterations across experiments, with pauses at every 1000th iteration, to solve the LS problem for five
iterations. RFF-PINNs required specifying the number and scales of Gaussian variances used to construct
the random features. To evaluate the effects of these hyperparameters, we tested 20 different settings, varying
the number of scales (one, two, three, and five) and using variances suggested in (Wang et al., 2021c) along
with randomly sampled values. Table 2 provides the exact sets of scales. For W-PINN, we varied the weight
of the residual loss from {10−1, 10−3, 10−4} and reported the configuration achieving the best results. For
A-PINN, we introduced a learned parameter for the activation function in each layer and updated these
parameters jointly. We ran every method for five random trials and reported the five number summaries
obtained on seperate testing datasets for each experiment in boxplot form. All code is implemented using
the PyTorch C++ library Paszke et al. (2019)4.

4Code is available at https://github.com/VarShankar/KernelPack/tree/sciml
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6.3 1D Numerical Experiments

This section evaluates Fourier PINNs on three progressively challenging 1D Poisson and Allen-Cahn bench-
marks, demonstrating their superior performance and robustness over the baseline methods. These bench-
marks systematically assess the models’ ability to handle high-frequency, multi-scale, and hybrid-frequency
solutions for linear and non-linear elliptic PDEs. The analysis includes relative ℓ2 error comparisons, conver-
gence dynamics, and frequency spectrum decomposition to highlight the strengths of Fourier PINNs. Table 5
in the Appendix lists each example’s hyperparameters and experimental details.

6.3.1 1D Poisson Problem

The 1D Poisson problem evaluates the ability of Fourier PINNs to capture high-frequency signals within a
linear context. We test the following manufactured solutions with increasing frequency complexity:

u(x) = sin(100x), (34)
u(x) = sin(x) + 0.1 sin(20x) + 0.05 cos(100x), (35)
u(x) = sin(6x) cos(100x). (36)

The boundary conditions are derived directly from the true solutions. These tests progressively introduce
multi-scale and hybrid frequency components used to study the robustness and scalability of each model.
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Figure 7: Results for the single-scale true solution u(x) = sin(100x). (a) Boxplot showing the relative ℓ2 errors for
Fourier PINNs and the top-performing baseline methods. (b) Convergence plots comparing the relative ℓ2 error across
iterations (top) and training time (bottom) for selected models. Vertical lines indicate when each model reached an
error of 10−2. (c) Frequency spectrum of the solution u(x) compared to PINN and Fourier PINN approximations. (d)
Decomposition of the frequency components in Fourier PINNs between the NN output and the Fourier layer output,
highlighting differences in spectral representation.

Single-Scale Solution Results. Figure 7a shows the relative ℓ2 error distributions for Fourier PINNs
and top baseline models, while Figure 15a in the Appendix includes results for all models. Fourier PINNs
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consistently achieve significantly lower errors than baselines, including RFF-PINNs and spectral methods.
Notably, RFF-PINNs demonstrate sensitivity to the chosen scale configurations, which impacts their overall
performance. Figure 7b illustrates the convergence behavior across iterations and training time to analyze
training dynamics. Fourier PINNs exhibit rapid and stable convergence due to the alternating optimization
and basis truncation routine. In contrast, standard PINNs plateau at higher errors, struggling to approximate
the high-frequency features of the solution accurately.

As shown in Figure 7c, the frequency domain analysis compares the Discrete Fourier Transform (DFT) of
the solutions from standard PINNs and Fourier PINNs against the ground truth. Fourier PINNs generate
frequency spectra almost identical to the ground truth, effectively capturing the high-frequency features.
Conversely, standard PINNs fail to resolve the high-frequency components, underscoring their limitations
for high-frequency problems. To further dissect Fourier PINN solutions, we decomposed the predicted
solution, uF = uN +uB , into its neural network (NN) and Fourier layer components. Figure 7d presents the
frequency spectra of each component. The absence of green bars (representing the NN component) indicates
no contribution from the NN basis. This result aligns with the basis truncation outcome, where all NN
bases were truncated during training, leaving only a single Fourier basis. This observation confirms that the
optimization algorithm accurately captures the frequency components of the true solution.
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Figure 8: (1D Poisson) Results for the multi-scale true solution u(x) = sin(x) + 0.1 sin(20x) + 0.05 cos(100x). (a)
Boxplot showing the relative ℓ2 errors for Fourier PINNs and the top-performing baseline methods. (b) Convergence
plots comparing the relative ℓ2 error across iterations (top) and training time (bottom) for selected models. Vertical
lines indicate when each model reached an error of 10−3. (c) Frequency spectrum of the solution u(x) compared to
PINN and Fourier PINN approximations. (d) Decomposition of the frequency components in Fourier PINNs between
the NN output and the Fourier layer output, highlighting differences in spectral representation.

Multi-Scale Solution Results. The multi-scale problem introduces a combination of low- and high-
frequency components, presenting a greater challenge for baseline methods. Figure 8a shows the relative ℓ2
error distributions for Fourier PINNs and top baseline models, while Figure 15b in the Appendix includes
results for all models. Fourier PINNs outperform most baseline methods; however, a subset of RFF-PINN
configurations achieves slightly better results. These cases highlight the sensitivity of RFF-PINNs to scale
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selection, whereas Fourier PINNs demonstrate robust performance across all tested basis configurations.
RFF-PINNs exhibit more significant variability across configurations, with inconsistent performance due to
their reliance on precise scale tuning.

The frequency spectrum comparison in Figure 8c illustrates that Fourier PINNs accurately reconstruct both
low- and high-frequency components, highlighting their adaptability to multi-scale structures. In contrast,
the spectrum of the standard PINN output shows that it accurately captures low-frequency components
but struggles to resolve the solution’s high-frequency features. Figure 8d further analyzes the frequency
decomposition of the Fourier PINN solution. The Fourier layer captures all high-frequency components of
the target solution (e.g., sin(20x) and cos(100x) in Equation 35), while the neural network (NN) output
contributes to modeling the low-frequency component (sin(x)). This result aligns with the basis truncation
outcomes: three Fourier bases were retained, and approximately 10% of the NN basis functions were trun-
cated during training. These findings demonstrate that the hybrid architecture of Fourier PINNs, combined
with the alternating optimization and truncation algorithm, effectively balances the modeling of both smooth
and oscillatory components in multi-scale solutions.
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Figure 9: (1D Poisson) Results for the single-scale true solution u(x) = sin(6x) cos(100x). (a) Boxplot showing the
relative ℓ2 errors for Fourier PINNs and the top-performing baseline methods. (b) Convergence plots comparing the
relative ℓ2 error across iterations (top) and training time (bottom) for selected models.

Hybrid Solution Results. This hybrid-frequency example introduces closely spaced high-frequency com-
ponents, which increases the complexity of disentangling and modeling each frequency. Figure 9a illustrates
the relative ℓ2 error distributions for Fourier PINNs and top baseline models, while Figure 15c in the Ap-
pendix presents results for all models. To specifically evaluate the impact of the alternating optimization
algorithm on Fourier PINNs, we tested multiple basis configurations using the alternating optimization
method described in Algorithm 1, as well as traditional optimization routines (i.e., without the least-squares
(LS) basis coefficient optimization).

The results demonstrate that Fourier PINNs, when combined with the alternating optimization strategy,
consistently achieve the lowest ℓ2 errors across all tested configurations, highlighting their ability to effec-
tively model solutions with coupled and closely spaced frequency components. In contrast, Fourier PINNs
without alternating optimization fail to accurately capture the true solution, emphasizing the critical role of
the LS basis coefficient updates in resolving hybrid-frequency structures. The convergence behavior shown
in Figure 9b further underscores the efficiency of Fourier PINNs in learning hybrid solutions. Their rapid
convergence and stable performance across iterations showcase their robustness and adaptability to challeng-
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ing problem setups with complex frequency interactions. Additionally, there is little variation in training
time with increasing Fourier basis sizes.

6.3.2 1D Steady-State Allen-Cahn Problem

Next, we examine the 1D steady-state Allen-Cahn equation, which is a nonlinear reaction-diffusion system.
This problem serves as a more complex PDE benchmark for evaluating Fourier PINNs and baseline models.
To ensure consistency, we test the same manufactured solutions used in the 1D Poisson case, defined by
Equation 34, Equation 35, and Equation 36.

Results. Figure 16 presents the relative ℓ2 error distributions for Fourier PINNs and the top-performing
baseline models across all manufactured solutions, while detailed results for all models can be found in
Figure 16 in the Appendix. Across all configurations, Fourier PINNs consistently achieve lower relative ℓ2
errors. Additionally, their faster convergence, as highlighted in Figure 11, underscores the efficiency of the
Fourier PINN framework for solving the 1D steady-state Allen-Cahn problem.
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Figure 10: (1D Allen-Cahn) Boxplot of relative ℓ2 errors for Fourier PINNs and top-performing baseline methods
across the manufactured solutions: left, u(x) = sin(100x); middle, u(x) = sin(x) + 0.1 sin(20x) + 0.05 cos(100x); and
right, u(x) = sin(6x) cos(100x).
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Figure 11: Convergence behavior of select models on the 1D steady-state Allen-Cahn problems, showing the mean
relative ℓ2 error as a function of iterations (left) and training time (right). Results are presented for u(x) = sin(100x)
(left two plots) and u(x) = sin(x) + 0.1 sin(20x) + 0.05 cos(100x) (right two plots).

6.4 2D Numerical Experiments

We evaluate Fourier PINNs on two 2D PDEs: the 2D Poisson problem and the steady-state Allen-Cahn
equation. These examples test the model’s scalability, ability to capture high-frequency components, and
approximation of multi-scale solutions in higher dimensions. Table 7 in the Appendix lists each example’s
hyperparameters and experimental details.
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6.4.1 2D Poisson Problem

The 2D Poisson problem is given by:

∆u = f(x, y), x, y ∈ [0, 2π], (37)

with the following ground-truth solutions:

u(x, y) = sin(100x) sin(100y), (38)
u(x, y) = sin(6x) cos(20x) + sin(6y) cos(20y). (39)
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Figure 12: Convergence behavior of select models on the 2D Poisson problems, showing the mean relative ℓ2 error
as a function of iterations (left) and training time (right). Results are presented for Equation 38 (left two plots) and
Equation 39 (right two plots).

Results. For the high-frequency solution (Equation 38), Fourier PINNs achieve an average relative ℓ2 error
of 0.0384, outperforming all baseline methods, with the spectral method being the closest competitor at
0.0423. The Appendix provides detailed results for all models in Figure 17. Notably, other methods fail
to capture the high-frequency features, with errors exceeding 1. For the multi-scale solution (Equation 39),
Fourier PINNs demonstrate a significant advantage, achieving an average relative ℓ2 error of 0.00085, far
surpassing the performance of all other baselines. Figure 12 highlights the superior convergence behavior
of Fourier PINNs in both scenarios, underscoring their ability to handle challenging high-frequency and
multi-scale problems effectively.

6.4.2 2D Steady-State Allen-Cahn Equation

The Allen-Cahn problem is defined as:

uxx + uyy + u(u2 − 1) = f(x, y), x, y ∈ [0, 2π], (40)

with the ground-truth solution:

u(x, y) = (sin(x) + 0.1 sin(20x) + cos(100x)) · (sin(y) + 0.1 sin(20y) + cos(100y)) . (41)

Results: The Allen-Cahn example highlights Fourier PINNs’ challenges with nonlinear PDEs. The model
achieves a relative ℓ2 error of 0.9, outperforming all other methods (> 1). In the Appendix, Figure 18
provides detailed results for all models. This suggests the need for further optimization for highly nonlinear
problems.

6.5 1D One-Way Wave Problem

We next tested the 1D One-Way Wave equation of the form,

ut + 10ux = v(x, t), x ∈ [0, 1], t ∈ [0, 1] (42)
u(x = 0, t) = u(x = 1, t) = 0
u(x, t = 0) = sin(πx) + sin(2πx)
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Figure 13: (1D One-Way Wave) Boxplot of relative ℓ2 errors for Fourier PINNs and top-performing baseline methods.

with a true solution of,

u(x, t) = sin(πx) cos(10πt) + sin(2πx) cos(20πt). (43)

This problem introduces a time-dependent component, testing the ability of models to handle first-time
derivatives within a high-frequency context. We conducted an ablation study to assess the roles of basis
pruning and regularization by evaluating Fourier PINNs without these mechanisms. This study highlights
the distinct contributions of basis pruning and regularization to model accuracy and computational efficiency.
Table 6 in the Appendix lists all hyperparameters and experimental details.

Figure 13 shows the relative ℓ2 error distributions for Fourier PINNs and top-performing baseline models
across all manufactured solutions. Detailed results for all models are provided in Figure 19 in the Appendix.
As expected, Fourier PINNs with both basis regularization and pruning (denoted as "reg + prune") achieve
the best results, while the configuration using neither (denoted as "no reg + no prune") yields the worst
performance.

Fourier-PINN Without Basis Pruning. In configurations without basis pruning, all frequency candi-
dates up to the maximum frequency K were allowed to contribute to the solution. Two variations were
tested: with basis regularization ("reg + no prune") and without regularization ("no reg + no prune"). Both
configurations resulted in worse relative ℓ2 errors than the pruned counterparts, although the regularized
version performed slightly better than the unregularized one.

Fourier-PINN Without Regularization. To further evaluate the impact of regularization, we tested
configurations without the regularization term. Two setups were compared: with basis pruning ("no reg +
prune") and without pruning ("no reg + no prune"). The configuration without regularization but with basis
pruning ("no reg + prune") achieved better relative ℓ2 errors than the setup using regularization but no basis
pruning ("reg + no prune"). This result suggests that basis pruning has a slightly more significant influence
on solution quality than regularization.

6.6 1D Non-Steady-State Allen-Cahn Problem

The time-dependent Allen-Cahn equation is a well-established benchmark for testing the limitations of PINN
models, particularly due to its stiffness, sharp transitions, and nonlinear dynamics (Wight & Zhao, 2020;
Wang et al., 2024b). For simplicity, we focus on a one-dimensional case with periodic boundary conditions
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over t ∈ [0, 1] and x ∈ [−1, 1]:

ut − 0.0001uxx + 5u3 − 5u = 0,
u(0, x) = x2 cos(πx),
u(t,−1) = u(t, 1), ux(t,−1) = ux(t, 1).

This problem is particularly challenging because the Allen-Cahn PDE introduces complex, multi-scale dy-
namics driven by a combination of stiff reaction terms and spatial diffusion. Unlike problems with harmonic
solutions, the nonlinear terms generate sharp transitions and localized structures in both space and time,
testing the model’s adaptability to varying frequency components and its robustness to sharp gradients.
Table 8 in the Appendix outlines the hyperparameter and experimental settings used in the example. In this
experiment, we randomly sampled 8192 collocation points within the domain at each iteration. Figure 14
compares the convergence behavior of Fourier PINNs with baseline models (standard PINN and RFF-PINN).
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Figure 14: Convergence behavior of different models on the 1D non-steady-state Allen-Cahn equation. Fourier
PINNs achieve superior accuracy and convergence, effectively capturing sharp transitions and localized structures,
while baseline methods falter.

Results. As shown in Figure 14, the Fourier PINN significantly outperforms both the standard PINN
and RFF-PINN. The relative ℓ2 error decreases steadily for Fourier PINNs, reaching values below 10−3

after sufficient training iterations, while the baseline models plateau at higher error levels. Specifically, the
standard PINN struggles with stiffness, failing to reduce the error below 10−1 even after extended training.
The RFF-PINN shows some improvement over the standard PINN but is highly sensitive to scale settings,
resulting in slower convergence and larger errors compared to Fourier PINNs. Fourier PINNs leverage the
augmented Fourier layer structure to efficiently represent both smooth and sharp features, as evidenced by
their rapid convergence and low final error. This experiment underscores the potential of Fourier PINNs to
handle challenging nonlinear PDEs with sharp transitions, where conventional PINN architectures struggle.

6.7 Discussion

The 1D and 2D problems results reveal that standard PINN, W-PINN, and A-PINN consistently fail to
achieve reasonable solutions, with relative ℓ2 errors remaining large (∼ 1.0) across all cases. This indicates
that these methods struggle to capture high-frequency signals effectively. While RFF-PINNs achieve lower
relative errors under specific scale configurations, they exhibit significant sensitivity to the choice of the
number and range of scales. For most configurations (60–70% of the 20 tested settings listed in Table 2), RFF-
PINNs failed with large solution errors. Notably, even in the single-scale solution case (Figure 15a), successful
configurations often involved multi-scale settings (e.g., (1, 20, 194)), whereas all single-scale settings failed.
These findings highlight the lack of a clear relationship between scale configurations and solution accuracy,
posing a significant challenge for RFF-PINNs. In contrast, Fourier PINNs consistently delivered accurate
results, with relative ℓ2 errors ranging from 10−3 to 10−4 across almost all test cases. A key advantage
of Fourier PINNs is their robustness to the choice of the frequency range K. Provided K is sufficiently
large, the method reliably selects the target frequencies, achieving comparable solution accuracy across
cases. It is important to note that Fourier PINNs do not employ advanced loss re-weighting schemes (e.g.,
NTK re-weighting used in RFF-PINNs or mini-max updates) in this study, as the focus was on evaluating
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the core algorithm. However, such enhancements could be seamlessly integrated into the Fourier PINN
framework to further improve accuracy. Additionally, Fourier PINNs outperform baseline methods in higher-
dimensional problems, demonstrating scalability and the ability to handle high-frequency and multi-scale
solutions. However, their performance on (some) nonlinear, higher-dimensional PDEs, such as the 2D Allen-
Cahn example in Equation 41, highlights areas for future work. Specifically, improving training efficiency
and refining the network architecture to better address the challenges posed by nonlinear dynamics and
stiffness could further enhance the applicability of Fourier PINNs.

We finally visualize the solution of each method in solving a 2D Poisson equation (see Figure 17b) to visualize
the point-wise errors for each method within the two-dimensional domain. The ground-truth solution is given
in Figure 20, and the solution obtained by each method is shown in Figure 21. While the spectral method
also obtains good results, the point-wise error biases much on the regions close to the boundary, and the
relative ℓ2 error is two orders of magnitude larger than Fourier PINN’s. RFF-PINN (with the best number
and scale choice) can roughly capture the solution structure, but the accuracy is far worse than that of
Fourier PINNs and the spectral method. For example, in Figure 17b, RFF-PINN nearly failed with every
choice of the number and scale set. We can see that Fourier PINNs best recover the original solution.

7 Future Work: Improving Scalability with Tensor Decomposition Techniques

One limitation of our current approach is its scalability in higher-dimensional settings. The computational
cost grows exponentially with the problem’s dimensionality, making it infeasible for very high-dimensional
cases. Future work could explore tensor decomposition techniques, such as Tensor-Train (TT) decomposition
and Tucker decomposition, to reduce the computational complexity and memory requirements.

Specifically, in high-dimensional spaces, the solution u(x1, x2, . . . , xd) can be represented as a tensor-product
over basis functions ϕ(xi), with the weights forming a high-dimensional tensor U :

u(x1, x2, . . . , xd) ≈
n1∑

i1=1

n2∑
i2=1
· · ·

nd∑
id=1
Ui1,i2,...,id

ϕi1(x1)ϕi2(x2) · · ·ϕid
(xd). (44)

Without decomposition, storing and computing with U requires
∏d

j=1 nj parameters, which is impractical
in high dimensions.

One promising approach to mitigate this is through Tucker decomposition, where U is decomposed into a
core tensor C and a set of factor matrices {Aj}:

Ui1,i2,...,id
≈

r1∑
j1=1

r2∑
j2=1
· · ·

rd∑
jd=1
Cj1,j2,...,jd

A1(i1, j1) A2(i2, j2) · · ·Ad(id, jd), (45)

where each factor matrix Aj ∈ Rnj×rj maps the original tensor to a lower-dimensional representation. This
decomposition reduces the number of parameters to

∑d
j=1 njrj +

∏d
j=1 rj , allowing scalability as it grows

linearly with d under fixed ranks rj . Another promising approach is Tensor-Train (TT) decomposition,
where U is expressed as a chain of lower-order tensors, known as TT-cores:

Ui1,i2,...,id
=

r1∑
α1=1

r2∑
α2=1

· · ·
rd−1∑

αd−1=1
G1(i1, α1) G2(α1, i2, α2) · · ·Gd(αd−1, id), (46)

where G1 ∈ Rn1×r1 , Gd ∈ Rrd−1×nd , and intermediate cores Gj ∈ Rrj−1×nj×rj for j = 2, . . . , d − 1. The
TT-ranks rj control the complexity of the representation, enabling a linear scaling of parameters with d for
fixed ranks.

8 Conclusion

We have presented Fourier PINNs, a novel extension to capture high-frequency and multi-scale solution in-
formation. Our adaptive basis learning and selection algorithm can automatically identify target frequencies
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and truncate useless ones without tuning the number and scales. We assume the spacing (granularity) of
the candidate frequencies is fine-grained enough, which can be overly optimistic. In the future, we plan to
develop adaptive spacing approaches to capture this granularity. Applying tensor decomposition techniques,
such as Tucker and Tensor-Train, to the weight tensor U over basis functions could provide a viable path
for extending our approach to higher dimensions. By reducing the effective dimensionality of the param-
eter space, these methods offer a promising direction to overcome scalability challenges and maintain the
advantages of meshless approaches in high-dimensional spaces.
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9 Additional Experimental Details and Results

Table 3: Hyper-parameter configurations for 1D Poisson and 1D Steady-State Allen-Cahn frequency sweep experi-
ments.

Parameter Value

Architecture
Number of layers 2,4
Number of channels 100
Activation Tanh

Learning rate schedule
Initial Adam learning rate 10−3

Initial LBFGS learning rate 10−2

Decay rate 0.9
Decay steps every 1000
Decay type exponential

Training
Training steps 100K
Collocation points 10K
Testing points 20K
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Table 4: Hyper-parameter configurations for 1D Poisson analysis experiments.

Parameter Value

Architecture
Number of layers 4
Number of channels 100
Activation Tanh

Learning rate schedule
Initial Adam learning rate 10−3

Initial LBFGS learning rate 10−2

Decay rate 0.9
Decay steps every 1000
Decay type exponential

Training
Training steps 1× 105

Collocation points 10K

Table 5: Hyper-parameter configurations for 1D Poisson and 1D Steady-State Allen-Cahn experiments.

Parameter Value

Architecture
Number of layers 2
Number of channels 100
Activation Tanh

Learning rate schedule
Initial Adam learning rate 10−3

Initial LBFGS learning rate 10−2

Decay rate 0.9
Decay steps every 1000
Decay type exponential

Training
Training steps 4× 104

Collocation points 10K
Testing points 20K
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Table 6: Hyper-parameter configurations for 1D Wave experiments.

Parameter Value

Architecture
Number of layers 3
Number of channels 128
Activation Tanh

Learning rate schedule
Initial Adam learning rate 10−3

Initial LBFGS learning rate 10−2

Decay rate 0.9
Decay steps every 1000
Decay type exponential

Training
Training steps 4× 104

Collocation points 5K
Initial condition points 256
Boundary points 200
Testing points 100K

Table 7: Hyper-parameter configurations for 2D Poisson and 2D Steady-State Allen-Cahn experiments.

Parameter Value

Architecture
Number of layers 3
Number of channels 100
Activation Tanh

Learning rate schedule
Initial Adam learning rate 10−3

Initial LBFGS learning rate 10−2

Decay rate 0.9
Decay steps every 1000
Decay type exponential

Training
Training steps 4× 104

Collocation points 12K
Boundary points 400
Testing points 100K
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Table 8: Hyper-parameter configurations for 1D (non-Steady-State) Allen-Cahn experiments.

Parameter Value

Architecture
Number of layers 4
Number of channels 128
Activation Tanh

Learning rate schedule
Initial Adam learning rate 10−3

Initial LBFGS learning rate 10−2

Decay rate 0.9
Decay steps every 1000
Decay type exponential

Training
Training steps 105

Batchsize 8192
Boundary points 200
Initial condition points 256
Testing points 100K

Weighting
Weighting scheme Gradient Norm Wang et al. (2022)
Causal training True, Wang et al. (2024b)
Causal tolerance 1.0
Number of chunks 32
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Figure 15: Combined figures for different 1D Poisson configurations.
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(c) 1D Allen-Cahn equation with true solution u(x) = sin(6x) cos(100x)

Figure 16: Combined figures for different 1D Allen-Cahn configurations.
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Figure 17: Combined figures for different 2D Poisson configurations.
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Figure 18: 2D Allen-Cahn with u(x, y) = (sin(x) + 0.1 sin(20x) + cos(100x)) · (sin(y) + 0.1 sin(20y) + cos(100y))
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Figure 19: 1D One-Way Wave equation with true solution u(x, t) = sin(πx) cos(10πt) + sin(2πx) cos(20πt)
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Figure 21: Predicted solutions (left) and absolute errors (right) of each method on the 2D Poisson equation with
true solution u(x, y) = sin(6x) cos(20x) + sin(6y) cos(20y)
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