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ABSTRACT

Diffusion models have made remarkable progress in solving various inverse prob-
lems, attributing to the generative modeling capability of the data manifold. Pos-
terior sampling from the conditional score function enable the precious data con-
sistency certified by the measurement-based likelihood term. However, most pre-
vailing approaches confined to the deterministic deterioration process of the mea-
surement model, regardless of variational unpredictable disturbance in real-world
sceneries. To address this obstacle, we show that the measurement-based likeli-
hood can be replaced with restoration-based likelihood in the opposite probabilis-
tic graphic direction, licencing the patronage of various off-the-shelf restoration
models and extending the strict deterministic deterioration process to the tolerant
cluster process with supposed prototype, in what we call restorer guidance. Par-
ticularly, assembled with versatile prototypes optionally, we can resolve inverse
problems with bunch of choices for assorted sample quality and realize the pro-
ficient deterioration control with assured realistic. We show that our work can
be formally analogous to the transition from classifier guidance to classifier-free
guidance in the field of inverse problem solver. Experiments on multifarious in-
verse problems demonstrate the effectiveness of our method, including image de-
hazing, rain streak removal, and motion deblurring. Code will be available soon.

1 INTRODUCTION
“Mille viae ducunt homines per saecula Romam.”

Liber Parabolarum Ālani

Diffusion models Sohl-Dickstein et al. (2015); Ho et al. (2020); Song et al. (2020) have recently
emerged as impressive generative models with promising performance on various applications such
as image generation Rombach et al. (2022); Zhang & Agrawala (2023); Saharia et al. (2022), image
editing Meng et al. (2021); Brooks et al. (2023); Ruiz et al. (2023), video generation Ho et al. (2022),
speech synthesis Huang et al. (2022), and 3D generative modeling Poole et al. (2022); Tewari et al.
(2023). Apart from that, diffusion models are also served as competitive candidates for inverse prob-
lem solver, which aim at reversing the deterioration process from the contaminated measurement y
to original complete signal x Chung et al. (2022; 2023b); Song et al. (2023).

Solving inverse problems with diffusion models can be crafted in multiform frameworks. Bayesian
approach incorporates the gradients from the measurement-based likelihood, i.e., ∇x log p(y|x),
forming the conditional score function for posterior sampling, and the data consistency can be en-
sured with the dependency derived from the measurement modelH. Representative methods Chung
et al. (2022; 2023b); Song et al. (2023) progressively extend the diffusion solvers with linear, non-
linear, or even non-differentiable measurement models for increasingly complicated inverse prob-
lems. Beyond the Bayes’ formula, there are broad range of alternatives delivering the balance be-
tween data fidelity and realistic for solving inverse problems, such as range-null space decomposi-
tion Wang et al. (2023) and heuristic energy function with configured properties Fei et al. (2023);
Zhao et al. (2022). These methods can be comfortably adapted to multifarious inverse problems
without retraining the diffusion model. However, it is worth noting that most prevailing approaches
confined to the deterministic deterioration process of the measurement model, mostly involving the
digitized deterioration such as image inpainting, image colorization, and phase retrieval, regardless
of variational unpredictable disturbance in real-world sceneries, including but not limited to varia-
tional weather conditions Zhu et al. (2023) or manual destruction Köhler et al. (2012).
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Figure 1: Visual illustration of various likelihood terms in prevailing diffusion-based inverse prob-
lem solvers. Compared to the deterministic deterioration process of the measurement-based like-
lihood, the generative-based and restoration-based likelihood are capable of handling variational
deterioration process with reliable likelihood derived from the congruous deterioration process and
the measurement, while the generative-based likelihood further restricted to the rigid formulation.

Another line of works Stevens et al. (2023); Chung et al. (2023a) introduce the generative-based
likelihood with parallel diffusion models for signal x and deterioration parameters in measurement
model H, and jointly estimate their score functions for posterior sampling, which release the defi-
ciency of the deterministic deterioration process with bestowed variational capability. Additionally,
Laroche et al. (2023) alternately estimates the measurement parameters and data distribution under
the traditional iterative optimization framework in the same spirit. However, these methods re-
main in the paradigm of the measurement-based likelihood, and confined to the rigid formulation of
the measurement model for signal formation, a.k.a., convolution, addition, and multiplication, with
merely estimated deterioration parameters, which inevitably restricts their variational capability for
more complicated sceneries. Moreover, it is noteworthy that aside from the aforementioned pros.
and cons. of various likelihood terms, the coupled learning of the measurement model is necessary
to be realized on-the-fly, which is substantially time-consuming and inconvenient to deploy.

In this work, we extend prevailing diffusion solvers for variational inverse problems beyond the re-
striction of deterministic deterioration process without any extra training. In the context of Bayes’
framework, we show that the measurement-based likelihood can be replaced with restoration-based
likelihood in opposite probabilistic graphic direction, forming the reliable conditional score func-
tion for posterior sampling, in what we call restorer guidance. Compared with measurement-based
likelihood, restorer guidance licences the patronage of various off-the-shelf restoration models, and
implicitly extends the strict deterministic process in measurement-based likelihood to a cluster of
deterioration processes with supposed restorer prototype for variational inverse problem solver. In
Fig. 1, we further illustrate that the devil in measurement-based likelihood resides in the incon-
gruous dependency between the forward deterioration process and the contaminated measurement,
which can be properly resolved with tolerant cluster process derived from the restorer prototype for
reliable likelihood. Assembled with versatile restorer prototypes optionally, we can resolve inverse
problems with bunch of choices for assorted sample quality and realize the proficient deterioration
control with assured realistic. We show that our work can be formally analogous to the transi-
tion from classifier guidance Dhariwal & Nichol (2021) to classifier-free guidance Ho & Salimans
(2022) in the field of inverse problem solver. Note that our method is also compatible with other
frameworks beyond Bayesian, such as range-null space decomposition (see Appendix B).

Empirically, we demonstrate the effectiveness of our method on various variational inverse prob-
lems, including image dehazing, rain streak removal, and motion deblurring, and show that our
restorer guidance is a competitive inverse problem solver. The restorer guidance is not only capa-
ble of exploiting the restoration capability conserved in restorers losslessly, but rather breaking the
upper bound of the restorer for superior sample quality (Fig. 3). Moreover, restorer guidance is also
favourable to the out-of-distribution deterioration with augmented cluster process.

2 BACKGROUND

2.1 SCORE-BASED DIFFUSION MODELS

Score-based diffusion models smoothly transform data distribution to spherical Gaussian distribu-
tion with a diffusion process, and reverse the process with score matching to synthesize samples.
The forward process {x(t)}t∈[0,T ], x(t) ∈ RD, can be represented with the following Itô stochastic
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differential equation (SDE) Song et al. (2020):
dx = f(x, t)dt+ g(t)dw, (1)

where f(·, t) : RD → RD is the drift coefficient, g(t) ∈ R is the diffusion coefficient, and w ∈ RD

is the standard Wiener process (a.k.a., Brownian motion). Let pt(x) denotes the marginal distribu-
tion of x(t). The data distribution is defined when t = 0, i.e. x(0) ∼ pdata, and the tractable prior
distribution is approximated when t = T , e.g. x(T ) ∼ N (0, I). p0t(xt|x0) denotes the transition
kernel from x(0) to x(t). Note that we always have p0 = pdata by forward definition 1.

Samples from pt(x) can be simulated via the associated reverse-time diffusion process of 1, solving
from t = T to t = 0, given by the following SDE Anderson (1982); Song et al. (2020)

dx = [f(x, t)− g(t)2∇x log pt(x)]dt+ g(t)dw̄, (2)
where w is the reverse-time standard Wiener process, and dt is an infinitesimal negative timestep.
The reverse process of 2 can be derived with the score function ∇x log pt(x) at each time t, which
is typically replaced with∇x(t) log p0t(x(t)|x(0)) in practice, and is approximated via score-based
model sθ(x(t), t) trained with denoising score matching objective Vincent (2011):
θ∗ = argmin

θ
t∼U(ε,1),x(t)∼p0t(x(t)|x(0)),x(0)∼pdata

[
∥sθ(x(t), t)−∇x(t) log p0t(x(t)|x(0))∥22

]
,

(3)
where ε ≃ 0 is a small positive constant. Score matching 3 ensure the optimal solution θ∗ converges
to∇x log pt(x) ≃ sθ∗(x(t), t) with sufficient data and model capability. One can replace the score
function in 2 with sθ∗(xt, t) to calculate the reverse-time diffusion process Song et al. (2020) and
solve the trajectory with numerical samplers, such as Euler-Maruyama, Ancestral sampler Ho et al.
(2020), probability flow ODE Song et al. (2020), DPM-Solver Lu et al. (2022), amounts to sampling
from the data distribution pdata(x) with the goal of generative modeling.

2.2 SOLVING INVERSE PROBLEM WITH DIFFUSION MODELS

Solving inverse problem with diffusion model leverage the implicit prior of the underlying data dis-
tribution that the diffusion model have been learned Chung et al. (2022; 2023b); Song et al. (2023);
Stevens et al. (2023). Formed in the Bayes’ framework, we have p(x|y) = p(y|x)p(x)/p(y). Let
y denotes the contaminated observation derived from the complete measurement x, we can straight-
forward modify the unconditional score function in 2 with the following posterior formula, which
similar to the classifier guidance Dhariwal & Nichol (2021):

∇xt
log pt(xt|y) = ∇xt

log pt(xt) +∇xt
log pt(y|xt), (4)

where the prior term can be approximated via the pre-trained score model sθ∗(xt, t), and the like-
lihood term can be acquired via the compound of the Tweedie’s formula Efron (2011) and the mea-
surement model from x to y to ensure the data consistency. Simply replacing the score function in
2 with 4 enable the conditional reverse-time diffusion process for posterior sampling:

dx =
[
f(x, t)− g(t)2(∇xt

log pt(xt) +∇xt
log pt(y|xt))

]
dt+ g(t)dw̄, (5)

where the first term promise the realistic powered by diffusion manifold constraint, and the second
term ensure the data fidelity. It is worth noting that the likelihood can be further approximated with
heuristic energy function with configured properties Zhao et al. (2022); Fei et al. (2023).

3 METHODS

3.1 APPROXIMATING THE MEASUREMENT-BASED LIKELIHOOD

Recall that the posterior sampling from the conditional score function 5 require the likelihood term
∇xt

log pt(y|xt) to provide the guidance which is intractable to compute. Pioneer works typically
factorize pt(y|xt) with the marginalization over x0, considering the underlying graphic model:

p(y|xt) =

∫
x0

p(y|x0,xt)p(x0|xt)dx0 =

∫
x0

p(y|x0)p(x0|xt)dx0, (6)

Note that xt is independent of the measurement y when conditioned on x0. In this way, we
can accordingly approximating the p(x0|xt) via one-step denoising process with Tweedie’s for-
mula Efron (2011), and solving the p(y|x0) from the measurement model. Unfortunately, the preva-
lent measurement-based likelihood is restricted to the deterministic deficiency of the measurement
model, impeding the diffusion solvers for variational inverse problems; detailed in Appendix D.
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3.2 RESTORER GUIDANCE

To address the abovementioned limitations, we show that the measurement-based likelihood can be
replaced with restoration-based likelihood for data consistency, in what we call restorer guidance.
Compared with measurement-based likelihood, the restorer guidance licencing the patronage of var-
ious off-the-shelf restoration models for powerful diffusion solvers, considering their comprehensive
sensitivity to multifarious deterioration process. We first write the factorized restoration-based likeli-
hood p̂(xt|y) as the following for comparison, and the modified conditional score function together
with the restorer guided posterior sampling will be introduced later.

p̂(xt|y) =
∫
x0

p(xt|x0,y)p(x0|y)dx0 =

∫
x0

p(xt|x0)p(x0|y)dx0, (7)

Figure 2: Probabilistic graphic model.
The direction of restoration-based
likelihood is opposite to the prevail-
ing measurement-based likelihood.

where the measurement y is independent of xt when condi-
tioned on x0. Note that the probabilistic graphic direction
of Eq. 7 is opposite to the measurement-based likelihood
(Eq. 6) for confident data consistency, as shown in Fig. 2.
Solving p(x0|y) with assorted restoration modelsR enable
the establishment of variational cluster process. While the
p(xt|x0) can be directly derived from the forward process,
e.g., p(xt|x0) ∼ N (

√
ᾱ(t)x0, (1− ᾱ(t))I), in the case of

VP-SDE or DDPM Ho et al. (2020). Therefore, we have
p̂(xt|y) ∼ N (

√
ᾱ(t)R(y), (1 − ᾱ(t))I), considering the

deterministic process of p(x0|y). The score of the restoration-based likelihood can be written as:

∇xt
log p̂(xt|y) ≃ −

1

σ2
t

∇xt
∥xt −

√
ᾱ(t)R(y)∥22 (8)

where σt is exactly the standard deviation of p(xt|y), and we discard it to transform the underlying
distribution of the mean-reverting error (Eq. 8) from time-constant ϵt ∼ N (0, I) to time-dependent
ϵt ∼ N (0, σ2

t ) for adaptive restorer guidance with relaxation related to the noise schedule. Another
perspective is provided in Appendix A. Once we obtain the ∇xt log p(xt|y), we can freely plug it
into the modified conditional score function for restorer guided posterior sampling.

3.3 POSTERIOR SAMPLING FROM RESTORER GUIDANCE

To enable the posterior sampling from the restorer guidance and forming the branded conditional
score function, we rewrite the likelihood term in Eq. 4 as following via Bayes’ rule:

∇xt
log pt(y|xt) = ∇xt

log p̂t(xt|y)−∇xt
log pt(xt), (9)

which translates the measurement-based likelihood∇xt
log pt(y|xt) to restoration-based likelihood

∇xt
log p̂t(xt|y), where the resulting∇xt

log p̂t(y|xt) is then used in∇xt
log pt(y|xt) when pos-

terior sampling from diffusion solvers. Therefore, the conditional score function can be simply
accessed by plugging in the derivation from Eq. 9 to Eq. 4. Considering the typical parameters w
that controls the strength of the measurement-based guidance, i.e., w∇xt

log pt(y|xt), we have:

∇xt
log pt(xt|y) = (1− w)∇xt

log pt(xt) + w∇xt
log p̂t(xt|y), (10)

where w is generally a positive number for smooth control between data consistency and realistic. In
the context of the restoration-based likelihood, the data consistency is further exteriorized as restorer
intensity to flexibly release the power of the restoration model. Substituting the derived restoration-
based likelihood in Eq. 8 enable the posterior sampling from the restorer guidance. The conditional
score function in Eq. 10 formally comes to be:

∇xt
log pt(xt|y) ≃ ηsθ∗(xt, t)− ρ∇xt

∥xt −
√

ᾱ(t)R(y)∥22, (11)

where we release the strict constrain in Eq. 10 and set the parameters η and ρ as harmonic step size
for the unconditional prior term and restoration-based likelihood term, considering the complicated
balance between restorer intensity and data realistic countered by the diffusion model.

Related to the classifier-free guidance. It is worth noting that the prevailing measurement-based
likelihood is homologous to the classifier guidance Dhariwal & Nichol (2021), considering the same
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Algorithm 1 DDPM - Posterior Sampling
Require: N , y, η, ρ, ζ, {σ̃t}Nt=1,R(·)
1: xN ∼ N (

√
ᾱNy, (1− ᾱN )I)

2: for t = N − 1 to 0 do
3: ŝ← sθ(xt, t)
4: x̂0|t ← 1√

ᾱt
(xt + (1− ᾱt)ŝ)

5: z ∼ N (0, I)

6: x′
t−1 ←

√
αt(1−ᾱt−1)

1−ᾱt
xt+

√
ᾱt−1βt

1−ᾱt
R(x̂0|t)

+σ̃tz
7: rt ← ρ∇x′

t−1
∥x′

t−1 −
√
ᾱtR(y)∥22

8: mt ← ζ∇x′
t−1
∥x′

t−1 −
√
ᾱty∥22

9: xt−1 ← ηx′
t−1 − rt +mt

10: end for
11: return x0

Algorithm 2 DDIM - Posterior Sampling
Require: N , y, η, ρ, ζ, {σ̃t}Nt=1,R(·)
1: xN ∼ N (

√
ᾱNy, (1− ᾱN )I)

2: for t = N − 1 to 0 do
3: ŝ← sθ(xt, t)
4: x̂0|t ← 1√

ᾱt
(xt + (1− ᾱt)ŝ)

5: z ∼ N (0, I)
6: x′

t−1 ← −
√
1− ᾱt

√
1− ᾱt−1 − σ̃t−1ŝ +

R(x̂0|t) + σ̃tz
7: rt ← ρ∇x′

t−1
∥x′

t−1 −
√
ᾱtR(y)∥22

8: mt ← ζ∇x′
t−1
∥x′

t−1 −
√
ᾱty∥22

9: xt−1 ← ηx′
t−1 − rt +mt

10: end for
11: return x0

role of the classifier and the measurement model played in the conditional score function 4. Beyond,
we show that the restorer guidance is formally analogous to the classifier-free guidance Ho & Sal-
imans (2022) in terms of the likelihood decomposition (Eq. 9). While the difference lies in the
conditional prior term∇xt log pt(xt|y) assumed in Eq. 4, resulting in the following score:

∇xt
log pt(xt|y) = (w + 1)∇xt

log p̂t(xt|y)− w∇xt
log pt(xt), (12)

which is exactly the classifier-free guidance that sampling from the linear combination of the un-
conditional score and conditional score estimates. Compared with restorer guidance, the conditional
score in Eq. 12 is provided by extra-trained conditional diffusion model, rather than arbitrary off-the-
shelf restorers. It also explains why the constrain in Eq. 10 need to be released as the data realistic
cannot be guaranteed by the restorer-based likelihood term, compared to the diffusion guidance.

3.4 EXTENSION OF THE RESTORER GUIDANCE

The restorer guidance of Eq. 11 presents conceptual transition from measurement-based likelihood
to restoration-based likelihood ideologically, and we show that it can be further extended to release
the great potential of alternative restorers for constructing powerful diffusion solvers. We here pro-
vide three major extensions for original restorer guidance in the following.

Step 1: Gradient orientation. Apart from the measurement-based likelihood that the conditional
gradients from∇xt log pt(y|xt) are traced back to the current xt, the likelihood gradients in restorer
guidance ∇xt log pt(xt|y) can be solely dependent on the unconditional diffusion update, in virtue
of the opposite probabilistic graphic direction. Therefore, the parallel gradient update in conditional
score function can be replaced with serial update for efficient gradient orientation. Let x′

t−1 denotes
the unconditional update of xt, we can rewrite the Eq. 11 as following:

∇xt
log pt(xt|y) ≃ ηsθ∗(xt, t)− ρ∇x′

t−1
∥x′

t−1 −
√
ᾱ(t)R(y)∥22, (13)

where we remain the weighting parameter
√

ᾱ(t), considering the harmonic step size of the uncon-
ditional diffusion model, and Eq. 13 can be approximately regarded as serial update for brevity,

Step 2: Restorer traveling. The likelihood in original restorer guidance only involvedR(y) for the
application of the restoration model, which is insufficient to release the great potential of alternative
restorers for powerful solvers. Proceed from this limitation, we show that the restorer can be invoked
recursively for optional choice, with the escort of the diffusion model. Besides the guidance provided
from restorers, we explicitly apply the restoration model on the one-step denoising result x̂0|t for
reliable data consistency, forming the unconditional update of x′

t−1 in case of DDPM sampling as
following:

x′
t−1 ←

√
αt(1− ᾱt−1)

1− ᾱt
xt +

√
ᾱt−1βt

1− ᾱt
R(x̂0|t) + σ̃tz, z ∼ N (0, I), (14)

where we denote the α(t) as αt for simplicity, and βt ≜ 1−αt, σ̃t is the reverse diffusion variance.
It is worth noting that the explicit restoration of x̂0|t will not hinder the likelihood gradients from the
restorer guidance, which can be solely dependent on the unconditional update x′

t−1 (Eq. 13). We

5



Under review as a conference paper at ICLR 2024

Table 1: Quantitative comparison of solving variational inverse problems with competitive solvers.
The baseline results of restorer prototype are in brown. Bold: best, underline: second best.

Image Dehaze Rain streak removal Motion Deblur

Method PSNR ↑ SSIM ↑ FID ↓ LPIPS ↓ PSNR ↑ SSIM ↑ FID ↓ LPIPS ↓ PSNR ↑ SSIM ↑ FID ↓ LPIPS ↓

NAFNet (Chen et al., 2022) 30.12 0.973 4.88 0.015 33.13 0.951 26.93 0.079 33.71 0.947 8.82 0.078
MPRNet (Zamir et al., 2021) 27.33 0.962 8.46 0.023 34.95 0.959 26.86 0.073 32.66 0.936 10.98 0.089
IR-SDE (Luo et al., 2023) 24.90 0.924 9.45 0.039 34.20 0.964 10.30 0.019 30.63 0.901 6.33 0.062
DPS (Chung et al., 2023b) 17.29 0.650 58.78 0.276 23.18 0.627 142.55 0.340 24.86 0.742 83.96 0.371
DDNM (Wang et al., 2023) 12.68 0.556 31.72 0.217 12.96 0.453 178.24 0.366 25.52 0.752 60.83 0.304

Restorer guidance - Bayesian 30.21 0.975 4.58 0.013 33.54 0.957 25.71 0.071 34.28 0.953 7.59 0.064
Restorer guidance - Null-space 30.17 0.973 4.71 0.014 33.42 0.952 26.15 0.074 33.96 0.951 8.23 0.076

provide this extension for optional and the lightweight restorers will cause negligible computational
burden, compared to the unconditional score model sθ∗(xt, t).

Step 3: Measurement boosting. The restorer guidance presented so far only depend on the in-
formation provided from the restoration model, ignoring the original information possessed in the
measurement y, which prone to lead the suboptimal prototype-biased solving results. To this end,
we reformulate the conditional score function in Eq. 11 to incorporate the information across both
sides of the restorer. Combining with above two extensions, we have the following complete condi-
tional score function of the restorer guidance:

∇xt
log pt(xt|y) ≃ ηsθ∗(xt, t)− ρ∇x′

t−1
∥x′

t−1 −
√
ᾱtR(y)∥22 + ζ∇x′

t−1
∥x′

t−1 −
√
ᾱty∥22,

(15)
where ζ is a parameter that controls the strength of score derived from the measurement, ζ ≪ ρ, and
we perform the gradient ascent in this term to boost the performance of the diffusion solver.

We provide the full version of the posterior sampling from the complete conditional score function
of the restorer guidance with DDPM sampler and DDIM sampler in Algorithm 1 and 2.

3.5 APPLICATION OF THE RESTORER GUIDANCE

The restorer guidance release the deficiency of the measurement-based likelihood for variational
inverse problems, with the acceding of assorted restoration models considering their comprehensive
sensitivity to multifarious deterioration process. Aside from this, we show that the restorer guidance
can further be applied to other cases with promising sample quality and advanced performance.

Deterioration control. The step parameter of the restoration-based likelihood provides us the abil-
ity to flexibly control the restorer intensity with desired deterioration removal extent; see Fig. 4.
Additionally, we show that the deterioration can further be strengthened with simply reversing the
gradient directions of the likelihood terms in Eq. 15, resulting in the proficient deterioration control
of both sides. The extension of the restorer traveling will be disabled in the case of deterioration con-
trol, while the sample realistic in deterioration strengthen can be assured with the diffusion model.

Out-of-distribution processing. The restorer guidance is capable of handling out-of-distribution
deterioration beyond the alternative restorers. Formally, in that case, the conditional gradients pro-
vided from the restoration-based likelihood is unreliable, on account of the unstable results ofR(y).
We show that through restorer traveling and amplified measurement boosting, the performance of
diffusion solvers on out-of-distribution deterioration can be significantly advanced; see Tab. 2 3.

4 EXPERIMENTS

We experimentally evaluate our restorer guidance on three variational inverse problems, including
image dehazing, rain streak removal, and motion deblurring. The evaluated datasets include 500
images in SOTS-Outdoor Li et al. (2018a), 100 images in Rain100L Yang et al. (2017), and 1111
images in GoPro Nah et al. (2017). The unconditional diffusion model is publicly available that
pre-trained on ImageNet of size 256 × 256 without any finetuning Dhariwal & Nichol (2021). We
adopt the DDIM sampler here, and our method can be accomplished within 10 steps for gratified
sample quality. The alternative restorers can be selected from various image restoration models that
pre-trained on the suggested problem-specific datasets for proficient guidance, including RESIDE-
OTS Li et al. (2018a), Rain-combine Zamir et al. (2021), and GoPro Nah et al. (2017) in our exper-
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Figure 3: Visual comparison of restorer guidance with other inverse problem solvers on variational
deterioration processes, including image dehazing, rain streak removal, and motion deblurring. The
restorer prototype is deployed with NAFNet for comparison. Best viewed zoomed in.

iments. We consider the following metrics including the Learned Perceptual Image Patch Similarity
(LPIPS) Zhang et al. (2018) and Fréchet Inception Distance (FID) Heusel et al. (2017) for percep-
tual measurement, and Peak Signal to Noise Ratio (PSNR) and Structural Similarity Index Measure
(SSIM) for distortion evaluation. The purpose of experiments is to understand the behavior and
potential of the restorer guidance, and extend the prevailing diffusion solvers for unprecedented in-
verse problems beyond the measurement-based likelihood, not necessarily to push the sample quality
metrics to state-of-the-art on these benchmarks.

We perform comparison with following methods: Diffusion posterior sampling (DPS) Chung et al.
(2023b), denoising diffusion null-space model (DDNM) Wang et al. (2023), Image restoration SDE
(IR-SDE) Luo et al. (2023), NAFNet Chen et al. (2022), and MPRNet Zamir et al. (2021). NAFNet
and MPRNet are general image restoration backbone, and IR-SDE is a task-specific diffusion solver.
DPS and DDNM are measurement-based diffusion solvers for conditional posterior sampling under
different frameworks. Considering the inherent deficiency, we parameterize the handcrafted mea-
surement model in DPS and DDNM with network (i.e., NAFNet) for forward variational deteriora-
tion process, and the same network architecture is deployed as restorer prototype for comparison.

4.1 QUANTITATIVE RESULTS

We show quantitative comparison results in Tab. 1, while the restorer guidance is steadily boost-
ing the performance of the baseline restorer prototype, i.e., NAFNet, on all tasks, regardless of
frameworks in Bayesian or range-null space decomposition Wang et al. (2023). This is far be-
yond exploiting the restoration capability conserved in restorers losslessly for visual applications,
but rather breaking the upper bound of the restorer for more powerful inverse problem solvers, and
also validates the compatibility of the restorer guidance with existing unconditional score model.
On the other hand, despite the impressive performance the measurement-based methods achieved in
solving deterministic inverse problems, the inherent diffciency is manifested when confronted with
variational unpredictable deterioration processes. The likelihood derived from the incongruous mea-
surement model and variational contaminated measurements in DPS and DDNM disable the solver
behavior completely, compared to the restorer guidance which resolved with opposite probabilistic
graphic direction of the likelihood. Note we refer the Bayesian version as default in the following.

As presented in Sec. 3.5, the restorer guidance is capable of handling out-of-distribution deteri-
oration beyond the incorporated restorers. We present the results of out-of-distribution validation
in Tab. 2 and 3 for rain streak removal and motion deblurring, respectively. While the result for
image dehazing can be found in Appendix C. In Tab. 2, the comparison methods are trained on
Rain100L Yang et al. (2017) while evaluated on Rain100H Yang et al. (2017), differing from the
deterioration strength. In Tab. 3, the comparison methods are trained on GoPro Nah et al. (2017)
while evaluated on RealBlur-J Rim et al. (2020), differing from the underlying deterioration proto-
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type. Observing that the restorer guidance is expert at deterioration within the process prototype of
the restorer, while releasing the constrain of the deterioration strength (Tab. 2). Moreover, deteri-
orations beyond the supposed process prototype can also be handled well (Tab. 3), with relatively
modest improvement compared to the strength variation. Generally, restorer guidance extends the
deterministic deterioration process to a cluster of deterioration processes with supposed prototype of
the restorer, and enables the sustained release of the restorer capability for augmented cluster space.

Table 2: Out-of-distribution validation of the re-
storer guidance. The comparison methods are
trained on Rain100L Yang et al. (2017) while
evaluated on Rain100H Yang et al. (2017).

Methods PSNR↑ SSIM↑ FID↓ LPIPS↓

NLEDN Li et al. (2018b) 13.93 0.441 228.5 0.516
Restorer guidance 16.06 0.458 215.2 0.454
PreNet Ren et al. (2019) 16.48 0.565 177.8 0.401
Restorer guidance 19.00 0.587 159.9 0.352

Table 3: Out-of-distribution validation of the re-
storer guidance. The comparison methods are
trained on GoPro Nah et al. (2017) while eval-
uated on RealBlur-J Rim et al. (2020).

Methods PSNR↑ SSIM↑ FID↓ LPIPS↓

MPRNet Zamir et al. (2021) 26.46 0.820 34.26 0.156
Restorer guidance 26.70 0.823 29.87 0.142
Restormer Zamir et al. (2022) 26.57 0.824 33.08 0.152
Restorer guidance 26.74 0.826 29.65 0.143

4.2 QUALITATIVE RESULTS AND VISUAL APPLICATIONS

We provide the visual comparison in Fig. 3 to validate the effectiveness and peculiarity of the
restorer guidance qualitatively. Compared to the baseline restorer, the restorer guidance has fol-
lowing merits: (i) Rendering the reconstructed sample with visual pleasing sample quality (e.g., red
tricycle), ascribing to the unconditional score model. (ii) Endowing the restoration process with
generation capacity that synthesis the nebulous region heuristically (e.g., girl’s eye). (iii) Liberating
the capability of the restorer continuously for obstinate deterioration (e.g., rain streaks) with ensured
data realistic. Compared to measurement-based solvers, the restorer guidance is capable to provide
more reliable likelihood guidance in variational deterioration process.

Figure 4: Visual results of out-of-distribution
validation of the restorer guidance. First row:
Rain100H with PreNet restorer. Second row:
RealBlur-J with Restormer restorer.

In Fig. 4, we provide the visual comparison of
restorer guidance on out-of-distribution deteriora-
tion. The comparison methods are exemplified as
PreNet Ren et al. (2019) for rain streak removal and
Restormer Zamir et al. (2022) for motion deblur-
ring. The samples drawn from the restorer guidance
exhibit the greater robustness to out-of-distribution
deterioration, compared to the baseline restorers.
The proficient deterioration control achieved by re-
storer guidance is shown in Fig. 5. While one can
smoothly controls the restorer intensity via the har-
monic step size for desired deterioration extent, and
even reverses the restoration process for amplified
deterioration. This also provides another perspective for constructing the variational measurement
model with reversed restorers rather than handcraft deterministic preferences. Generally, restorer
guidance provides us a workbench to fabricate the restoration process more flexiblely.

4.3 ABLATION STUDIES

Table 4: Ablation experiments on major exten-
sions attached to the restorer guidance. RT.: Re-
storer traveling. MB.: Measurement boosting.

Rain streak removal Motion Deblur

RT. MB. PSNR ↑ FID ↓ PSNR ↑ FID ↓

✗ ✗ 33.06 26.98 33.67 8.91
✓ ✗ 33.42 26.17 34.06 7.96
✗ ✓ 33.27 26.68 33.84 8.62
✓ ✓ 33.54 25.71 34.28 7.59

We present the ablation experiments to vali-
date the effectiveness of the suggested exten-
sions attached to the restorer guidance. The ab-
lations are performed on problems of rain streak
removal and motion deblurring, with reported
PSNR and FID metrics. In Tab. 4, we can see
that restorer guidance attached with extensions
further bursts the potential for powerful inverse
problem solvers, which is also the key to break
the upper bound of the incorporated restorer pro-
totype. Note that the extension of the gradient
orientation is adopted as default option to enable the restorer traveling and efficient sampling.
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5 RELATED WORK

Figure 5: Restorer guidance provides us a workbench to fab-
ricate the restoration process more flexible and controllable
with proficient deterioration expertise preserved in restorer
rather than obstreperous black-box mapping.

Image restoration is the classical in-
verse problem with nondeterministic
degradation process imposed on the
complete signal, reversing the pro-
cess with contaminated measurement
poses challenges for the solver. Tra-
ditional methods incorporated vari-
ous natural image priors to regularize
the underlying solution space, includ-
ing but not limited to sparse and low-
rank prior Lefkimmiatis & Koshelev
(2023), dark channel prior He et al.
(2010), and deep generative pri-
ors Pan et al. (2021); Ulyanov et al.
(2018). There methods confined to
the deficiency of characterizing the
natural image distribution compre-
hensively, and often resolve the inverse problem with insufficient regularization.

Since Sohl-Dickstein et al. (2015) modeling intricate data distribution with inspired non-equilibrium
thermodynamics, two successful classes of probabilistic generative models, denoising diffusion
probabilistic models (DDPMs) Ho et al. (2020) and score matching with Langevin dynamics
(SMLDs) Song & Ermon (2019) have been innovatively developed, which gradually perturb data
with noise until tractable distribution and reverse the process with score matching or noise prediction
for sampling. Song et al. (2020) amalgamates above two paradigms into a continuous generalized
framework with stochastic differential equations. Aside from various generative applications, diffu-
sion models have also been widely appreciated in solving inverse problems. The supervised works
typically run the diffusion in the efficient space for deterioration modeling and efficient sampling,
including residual space Luo et al. (2023); Yue et al. (2023), frequency space Cao et al. (2022), and
latent space Xia et al. (2023). Another line of works adopt diffusion models as regularized priors
for zero-shot problem solving, and inject the likelihood for conditional posterior sampling. Pioneer
works Chung et al. (2022; 2023b); Song et al. (2023) embrace the Bayes’ framework and construct
the measurement-based likelihood or generative-based likelihood Chung et al. (2023a); Stevens et al.
(2023) for data consistency. Beyond that, Wang et al. (2023) leverage the framework of range-null
space decomposition to deliver the balance between realistic and data consistency. However, these
methods are confined to the deterministic deterioration process characterized by the measurement
model, and impotent to variational unpredictable disturbance in real-world sceneries.

6 CONCLUSION AND DISCUSSION

In this work, we proposed the restorer guidance for solving variational inverse problems, and shown
that the measurement-based likelihood can be replaced with restoration-based likelihood in the op-
posite probabilistic graphic direction. The restorer guidance licencing the patronage of various
off-the-shelf restoration models for powerful diffusion solvers, extending the strict deterministic
deterioration process to the tolerant cluster process, while attached with extensions further release
the great potential of our method. We show that our work is theoretically analogous to the transi-
tion from the classifier guidance to classifier-free guidance in the field of inverse problem solver.
Extensive experiments illustrate the effectiveness of the restorer guidance.

Despite the competitive performance and delightful convenience achieved by restorer guidance, it
highly depends on the capability of the alternative restorer prototype as baseline performance, which
prone to lead the suboptimal prototype-biased solving results. Beyond that, it supposed to incorpo-
rate miscellaneous restorer prototypes efficiently with allocated deterioration process to construct
the unbiased restorer guidance and release the strong dependency from the single prototype in the
future. Moreover, restorer guidance provides us a workbench to fabricate the restoration process
more flexible and controllable with proficient deterioration knowledge, and it supposed to accom-
plish the interconnected deterioration process with discretionary user inclination in the future.
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A SCORE OF THE RESTORATION-BASED LIKELIHOOD

We here provide another perspective of the score of the restoration-based likelihood, which has been
presented in Sec. 3.2. Considering the inevitable deviation between x0 andR(y), which is so-called
restorer bias, the p(x0|y) can be approximated with the following Gaussian:

p(x0|y) ∼ N (R(y), I), (16)

where the mean is obtained from the R(y), with the assumption that the underlying distribution of
the mean-reverting error between x0 and R(y) follows the Normal Gaussian, which is exactly the
training objective of the restorer R. While the p(xt|x0) can be derived from the forward process,
which is a linear transform on x0 and adds independent Gaussion noise:

xt =
√

ᾱ(t)x0 +
√
1− ᾱ(t)ϵ, ϵ ∼ N (0, I). (17)

Thus, we have the following approximation to the score, with the consideration that the linear trans-
formation of a Gaussian distribution is still following Gaussian,

p(xt|y) ∼ N (
√

ᾱ(t)R(y),
√

ᾱ(t)
√

ᾱ(t)I +
√

1− ᾱ(t)I), (18)

which can be simplified as:
p(xt|y) ∼ N (

√
ᾱ(t)R(y), I). (19)

Note that the above formulation of the p(xt|y) is exactly what we derived in Sec. 3.2, and we here
provided another perspective with the broken assumption of the deterministic p(x0|y). The score of
the restoration-based likelihood can be written as the following:

∇xt log p(xt|y) ≃ −∇xt∥xt −
√

ᾱ(t)R(y)∥22, (20)

where the same formulation of the likelihood score function is derived, as presented in Sec. 3.2.

B RESTORER GUIDANCE IN RANGE-NULL SPACE DECOMPOSITION

Denoising diffusion null-space model (DDNM) Wang et al. (2023) leveraged the framework of
range-null space decomposition to delivering the balance between the data consistency and realistic.
Considering the noise-free inverse problems first:

y = Hx, (21)

where, y is the contaminated measurement, x is the original complete signal, H is the forward
measurement model. We adopt the same notations as the what we presented in restorer guidance
for convenient comparison. Thus, the range-null space decomposition presented that any complete
signal x can be decomposed into two parts as following, according to measurement model H:

x ≡ H†Hx+ (I−H†H)x. (22)

where H† denotes the pseudo-inverse of H, and I is the identity matrix. Thus, the first part is in the
range-space of H that response for the data consistency, and another part is in the null-space of H
that responsible for data realistic, considering the following formula:

Hx ≡ HH†Hx+H(I−H†H)x ≡ Hx+ 0 ≡ y. (23)

While we can further simplify the formulation in Eq. 24 with Eq. 21 as:

x ≡ H†y + (I−H†H)x. (24)

To solve inverse problems with diffusion models, DDNM performs the decomposition on the one-
step denosing result x0|t to enforce the data consistency on range-space and correct the harmonic
data realistic on null-space, given by the following formation:

x̂0|t = H†y + (I−H†H)x0|t, (25)

where x0|t is obtained from the Tweedie’s formula. Thereby, Eq. 25 delivers the delighted balance
between data consistency and data realistic in solving inverse problems.
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Algorithm 3 DDPM - Null-space sampling
Require: N , y, {Σt}Nt=1, {Φt}Nt=1,R(·)
1: xN ∼ N (

√
ᾱNy, (1− ᾱN )I)

2: for t = N − 1 to 0 do
3: ŝ← sθ(xt, t)
4: x0|t ← 1√

ᾱt
(xt + (1− ᾱt)ŝ)

5: x̂0|t = x0|t −Σt(x0|t −Ry)
6: z ∼ N (0, I)

7: xt−1 ←
√
αt(1−ᾱt−1)

1−ᾱt
xt +

√
ᾱt−1βt

1−ᾱt
x̂0|t +

Φtz
8: end for
9: return x0

Algorithm 4 DDIM - Null space Sampling
Require: N , y, {Σt}Nt=1, {Φt}Nt=1,R(·)
1: xN ∼ N (

√
ᾱNy, (1− ᾱN )I)

2: for t = N − 1 to 0 do
3: ŝ← sθ(xt, t)
4: x0|t ← 1√

ᾱt
(xt + (1− ᾱt)ŝ)

5: x̂0|t = x0|t −Σt(x0|t −Ry)
6: z ∼ N (0, I)
7: xt−1 ← −

√
1− ᾱt

√
1− ᾱt−1 − σ̃t−1ŝ +

x̂0|t +Φtz
8: end for
9: return x0

Directly applying Eq. 25 to noisy inverse problem leads to the inferior performance, due to the
incongruous signal formation, i.e., y = Hx + n, where n represents the additive Gaussian noise.
While the incongruous phenomenon can be formulated as following:

x̂0|t = H†y + (I−H†H)x0|t = x0|t −H†(Hx0|t −Hx) +H†n, (26)

where H†n is the extra noise introduced in x̂0|t, which is undesirable. To this end, DDNM+ modify
the Eq. 26 as following to enforce the constrain on the decomposition:

x̂0|t = x0|t −ΣtH
†(Hx0|t − y), (27)

where Σt is set as step size for range-space correction to ensure the data consistency. It is noted
that Eq. 29 falls into the the similar formation as measurement-based likelihood in Bayes’ frame-
work, which inevitable suffer from the deficiency of the deterministic deterioration process of the
measurement model H, and unable to handle variational inverse problems.

Considering the restoration model as R, which supposed to be the exact pseudo-inverse of the un-
derlying variational measurement model H, and vice versa. Therefore, we can rewrite the Eq. 29 as
following without any bells and whistles:

x̂0|t = x0|t −Σt(RR†x0|t −Ry). (28)

Exploiting the pseudo-inverse trick where RR†x0|t ∼= x0|t, we have the following formation:

x̂0|t = x0|t −Σt(x0|t −Ry), (29)

which is exactly the principle formation of the restorer guidance in range-null space decomposition
framework. We provide the complete sampling scheme of restorer guidance applied in range-null
space decomposition with DDPM sampler and DDIM sampler in Algorithm 3 and 4.

C MORE VALIDATION OF OUT-OF-DISTRIBUTION DETERIORATION

We present the results of out-of-distribution validation in Tab. 5 for image dehazing. The compar-
ison methods are trained on RESIDE-OTS Li et al. (2018a) while evaluated on NH-Haze Ancuti
et al. (2020), significantly differing from the underlying deterioration prototype. While the same
conclusion can be derived from the validation result as presented in Sec. 4.1. The restorer guidance
handles the deterioration beyond the cluster process of the restorer prototype with relatively modest

Table 5: Out-of-distribution validation of the restorer
guidance. The comparison methods are trained on
RESIDE-OTS Li et al. (2018a) while evaluated on NH-
Haze Ancuti et al. (2020).

Methods PSNR↑ SSIM↑ FID↓ LPIPS↓

MSBDN Dong et al. (2020) 12.76 0.448 299.6 0.549
Restorer guidance 12.95 0.451 291.3 0.545
FFANet Qin et al. (2020) 12.06 0.423 296.1 0.565
Restorer guidance 12.36 0.433 292.6 0.553

Figure 6: Qualitative results of out-of-
distribution validation on NH-Haze.
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Figure 7: Visual comparison of restorer guidance with other inverse problem solvers on variational
deterioration processes, including image dehazing, rain streak removal, and motion deblurring. The
restorer prototype is deployed with NAFNet for comparison. Best viewed zoomed in.

improvement, compared to the deterioration strength variation. Fig. 6 presents the qualitative results
of the out-of-distribution validation on NH-Haze dataset, where the first row is MSBDN restorer and
the second row is FFANet restorer. The restorer guidance has slightly improvement compared to
the incorporated restorer prototype, albeit the deterioration is far beyond the cluster processes.

D DETAILED COMPARISON OF VARIOUS MEASUREMENT MODELS

We provide the detailed comparison of various measurement models and the restorer guidance in
Tab. 6. Considering the measurement model H with parameters ϕ, the forward measurement pro-
cess to the signal x can be formulates as y = H(x;ϕ), where y is the contaminated measurement.
Typically, the architecture of the measurement model determines the prototype of the measurement
process, and the parameters enable the variability in the surrounding. Handcrafted measurement
model Chung et al. (2022; 2023b); Song et al. (2023) restrict to the rigid formulation ofH, i.e., the
measurement process from x to y is assumed to be the fixed formation such as convolution, addi-
tion, and multiplication. While the stationary measurement parameters further restrict the measure-
ment model to the deterministic forward process without any variability. Generated measurement
model Chung et al. (2023a); Stevens et al. (2023) remain in the constrain of the rigid formula-
tion of H with fixed measurement formation, however, the measurement parameters can be jointly
estimated with the signal from the generative score model, endowing the variability for handling
variational unpredictable measurement process. Parameterized measurement model Fei et al. (2023)
extend the handcrafted measurement model with neural networks, breaking the rigid formulation of
the measurement process. Albeit the learnable parameters for measurement model, the relaxation
for the variability is still restricted, since the non-trivial implementation of the one to many map-
ping, considering the ill-posed peculiarity of the variational inverse problems. Restorer guidance
resolves above obstacles with opposite probabilistic graphic direction of the likelihood, compared
to the measurement-based methods. The restorer prototype implicitly enable a cluster of measure-
ment processes with desired variability, rather than strict deterministic forward process. Note that
except for the handcrafted H, both generated H and parameterized H require the extra training of
the coupled measurement model, which is time-consuming and inconvenient.

Table 6: Comparison of different measurement modelsH and the restorer guidance. The expression
involved in the likelihood term are provided. ∗sθ

denotes the deterioration parameters are estimated
by generative score model. ∗nn denotes the deterioration process is formulated by network.

Measurement model Likelihood term. Open formula Variability Training free

HandcraftedH Chung et al. (2023b) H(x;φ) + n ✗ ✗ ✓
GeneratedH Stevens et al. (2023) H(x;φsθ

) + nsθ
✗ ✓ ✗

ParameterizedH Fei et al. (2023) Hnn(x; θ) ✓ ✗ ✗

Restorer guidance Rnn(y; θ) ✓ ✓ ✓
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E ADDITIONAL VISUAL RESULTS

We provide additional visual results in Fig. 7 to further illustrate the effectiveness and the behavior
of the restorer guidance. More visual results of the proficient deterioration control of the restorer
guidance are provided in Fig. 8 and 9, where we can fabricate the restoration process more flexible
and controllable with proficient deterioration expertise preserved in restorer. It is supposed to ac-
complish the interconnected deterioration process with discretionary user inclination in the future.

Figure 8: Restorer guidance provides us a workbench to fabricate the restoration process more
flexible and controllable with proficient deterioration expertise preserved in restorer rather than ob-
streperous black-box mapping.

Figure 9: Restorer guidance provides us a workbench to fabricate the restoration process more
flexible and controllable with proficient deterioration expertise preserved in restorer rather than ob-
streperous black-box mapping.
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