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ABSTRACT

In light of the widespread success of generative models, a significant amount of
research has gone into speeding up their sampling time. However, generative mod-
els are often sampled multiple times to obtain a diverse set incurring a cost that is
orthogonal to sampling time. We tackle the question of how to improve diversity
and sample efficiency by moving beyond the common assumption of independent
samples. We propose particle guidance, an extension of diffusion-based genera-
tive sampling where a joint-particle time-evolving potential enforces diversity. We
analyze theoretically the joint distribution that particle guidance generates, how to
learn a potential that achieves optimal diversity, and the connections with meth-
ods in other disciplines. Empirically, we test the framework both in the setting
of conditional image generation, where we are able to increase diversity with-
out affecting quality, and molecular conformer generation, where we reduce the
state-of-the-art median error by 13% on average.

1 INTRODUCTION

Deep generative modeling has become pervasive in many computational tasks across computer vi-
sion, natural language processing, physical sciences, and beyond. In many applications, these mod-
els are used to take a number of representative samples of some distribution of interest like Van
Gogh’s style paintings or the 3D conformers of a small molecule. Although independent samples
drawn from a distribution will perfectly represent it in the limit of infinite samples, for a finite num-
ber, this may not be the optimal strategy. Therefore, while deep learning methods have so far largely
focused on the task of taking independent identically distributed (I.I.D.) samples from some dis-
tribution, this paper examines how one can use deep generative models to take a finite number of
samples that can better represent the distribution of interest.

In other fields where finite-samples approximations are critical, researchers have developed various
techniques to tackle this challenge. In molecular simulations, several enhanced sampling methods,
like metadynamics and replica exchange, have been proposed to sample diverse sets of low-energy
structures and estimate free energies. In statistics, Stein Variational Gradient Descent (SVGD) is an
iterative technique to match a distribution with a finite set of particles. However, these methods are
not able to efficiently sample complex distributions like images.

Towards the goal of better finite-samples generative models, that combine the power of recent ad-
vances with sample efficiency, we propose a general framework for sampling sets of particles using
diffusion models. This framework, which we call particle guidance (PG), is based on the use of a
time-evolving potential to guide the inference process. We present two different strategies to instan-
tiate this new framework: the first, fixed potential particle guidance, provides ready-to-use potentials
that require no further training and have little inference overhead; the second, learned potential par-
ticle guidance, requires a training process but offers better control and theoretical guarantees.

The theoretical analysis of the framework leads us to two key results. On one hand, we obtain
an expression for the joint marginal distribution of the sampled process when using any arbitrary
guidance potential. On the other, we derive a simple objective one can use to train a model to
learn a time-evolving potential that exactly samples from a joint distribution of interest. We show
this provides optimal joint distribution given some diversity constraint and it can be adapted to the
addition of further constraints such as the preservation of marginal distributions. Further, we also
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Figure 1: Comparison of I.I.D. and particle guidance sampling. The center figure represents each
step, with the distribution in pink and the samples as yellow crosses, where particle guidance uses
not only the score (in blue) but also the guidance from joint-potential (red), leading it to discover
different modes (right-hand samples vs those on the left). At the bottom, Van Gogh cafe images
samples generated with Stable Diffusion with and without particle guidance. A more detailed dis-
cussion on the suboptimality of I.I.D. sampling is presented in Appendix B.1.

demonstrate the relations of particle guidance to techniques for non-I.I.D. sampling developed in
other fields and natural processes and discuss its advantages.

Empirically, we demonstrate the effectiveness of the method in both synthetic experiments and two
of the most successful applications of diffusion models: text-to-image generation and molecular
conformer generation. In the former, we show that particle guidance can improve the diversity of
the samples generated with Stable Diffusion [Rombach et al., 2021] while maintaining a quality
comparable to that of I.I.D. sampling. For molecular conformer generation, applied to the state-of-
the-art method Torsional Diffusion [Jing et al., 2022], particle guidance is able to simultaneously
improve precision and coverage, reducing their median error by respectively 19% and 8%. In all
settings, we also study the critical effect that different potentials can have on the diversity and sample
quality.

2 BACKGROUND

Diffusion models Let p(x) be the data distribution we are interested in learning. Diffusion models
[Song et al., 2021] define a forward diffusion process that has p as the initial distribution and is
described by dx = f(x, t)dt + g(t)dw, where w is the Wiener process. This forward diffusion
process is then reversed using the corresponding reverse diffusion SDE dx = [−f(x, T − t) +
g(T − t)2∇x log pT−t(x)]dt+ g(T − t)dw (using the forward time convention) where the evolving
score ∇x log pt(x) is approximated with a learned function sθ(x, t).

One key advantage of diffusion models over the broad class of energy-based models [Teh et al.,
2003] is their finite-time sampling property for taking a single sample. Intuitively, by using a
set of smoothed-out probability distributions diffusion models are able to overcome energy barri-
ers and sample every mode in finite time as guaranteed by the existence of the reverse diffusion
SDE [Anderson, 1982]. In general, for the same order of discretization error, reverse diffusion
SDE can efficiently sample from data distribution in much fewer steps than Langevin dynamics in
energy-based models. For instance, Theorem 1 of Chen et al. [2022] shows that, assuming accurate
learning of score, the convergence of diffusion SDE is independent of the isoperimetry constant of
the target distribution. Langevin dynamics mixing speed can be exponentially slow if the spectral
gap/isoperimetry constant is small. This critical property is orthogonal to the efficiency in the num-
ber of samples one needs to generate to cover a distribution; in this work, we aim to achieve sample
efficiency while preserving the finite-time sampling of diffusion models.
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Diffusion models were extended to Riemannian manifolds by De Bortoli et al. [2022], this formula-
tion has found particular success [Jing et al., 2022; Corso et al., 2022; Yim et al., 2023] in scientific
domains where data distributions often lie close to predefined submanifolds [Corso, 2023].

Classifier guidance (CG) [Dhariwal & Nichol, 2021] has been another technical development that
has enabled the success of diffusion models on conditional image generation. Here a classifier
pθ(y|xt, t), trained to predict the probability of xt being obtained from a sample of class y, is used
to guide a conditional generation of class y following:

dx = [−f(x, t′) + g(t′)2(sθ(x, t
′) + α∇x log pθ(y|x, t′))]dt+ g(t′)dw where t′ = T − t

where α in theory should be 1, but, due to overspreading of the distribution, researchers often set it
to larger values. This, however, often causes the collapse of the generation to a single or few modes,
hurting the samples’ diversity.

3 PARTICLE GUIDANCE

Our goal is to define a sampling process that promotes the diversity of a finite number of samples
while retaining the advantages and flexibility that characterize diffusion models. Let p(x) be some
probability distribution of interest and∇x log pt(x) be the score that we have learned to reverse the
diffusion process dx = f(x, t)dt + g(t)dw. Similarly to how classifier guidance is applied, we
modify the reverse diffusion process by adding the gradient of a potential. However, we are now
sampling together a whole set of particles x1, ..., xn, and the potential log Φt is not only a function
of the current point but a permutation invariant function of the whole set:

dxi =

[
− f(xi, t

′) + g2(t′)

(
∇xi

log pt′(xi) +∇xi
log Φt′(x1, ...,xn)

)]
dt+ g(t′)dw. (1)

where the points are initially sampled I.I.D. from a prior distribution pT . We call this idea particle
guidance (PG). This framework allows one to impose different properties, such as diversity, on the
set of particles being sampled without the need to retrain a new score model operating directly on
the space of sets.

We will present and study two different instantiations of this framework:

1. Fixed Potential PG where the time-evolving joint potential is handcrafted, leading to very
efficient sampling of diverse sets without the need for any additional training. We present
this instantiation in Section 5 and show its effectiveness on critical real-world applications
of diffusion models in Section 6.

2. Learned Potential PG where we learn the time-evolving joint potential to provably opti-
mal joint distributions. Further, this enables direct control of important properties such as
the preservation of marginal distributions. We present this instantiation in Section 7.

4 CONNECTIONS WITH EXISTING METHODS

As discussed in the introduction, other fields have developed methods to improve the tradeoff be-
tween sampling cost and coverage of the distribution of interest. In this section, we will briefly
introduce four methods (coupled replicas, metadynamics, SVGD and electrostatics) and draw con-
nections with particle guidance.

4.1 COUPLED REPLICAS AND METADYNAMICS

In many domains linked to biochemistry and material science, researchers study the properties of the
physical systems by collecting several samples from their Boltzmann distributions using molecular
dynamics or other enhanced sampling methods. Motivated by the significant cost that sampling each
individual structure requires, researchers have developed a range of techniques to improve sample
efficiency and speed by, for example, reducing the correlation of subsequent samples from slow-
mixing Markov chains. The most popular of these techniques are parallel sampling with coupled
replicas and sequential sampling with metadynamics.

As the name suggests, replica methods involve directly taking n samples of a system with the dif-
ferent sampling processes, replicas, occurring in parallel. In particular, coupled replica methods
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[Hummer & Köfinger, 2015; Pasarkar et al., 2023] create a dependency between the replicas by
adding, like particle guidance, an extra potential Φ to the energy function to enforce diversity or
match experimental observables. This results in energy-based sampling procedures that target:

p̃(x1, . . . ,xn) = Φ(x1, . . . ,xn)

n∏
i=1

p(xi).

Metadynamics [Laio & Parrinello, 2002; Barducci et al., 2008] was also developed to more ef-
ficiently sample the Boltzmann distribution of a given system. Unlike replica methods and our
approach, metadynamics is a sequential sampling technique where new samples are taken based
on previously taken ones to ensure diversity, typically across certain collective variables of interest
s(x). In its original formulation, the Hamiltonian at the kth sample is augmented with a potential as:

H̃k = H − ω
∑
j<k

exp

(
−
∥s(x)− s(x0

j )∥2

2σ2

)
where H is the original Hamiltonian, x0

j are the previously sampled elements and ω and σ param-
eters set a priori. Once we take the gradient and perform Langevin dynamics to sample, we obtain
dynamics that, with the exception of the fixed Hamiltonian, resemble those of particle guidance in
Eq. 4 where

∇xi
log Φt(x1, · · · ,xn)← ∇xi

ω
∑
j<i

exp

(
−
∥s(xi)− s(x0

j )∥2

2σ2

)
.

Although they differ in their parallel or sequential approach, both coupled replicas and metadynam-
ics can be broadly classified as energy-based generative models. As seen here, energy-based models
offer a simple way of controlling the joint distribution one converges to by simply adding a poten-
tial to the energy function. On the other hand, however, the methods typically employ an MCMC
sampling procedure, which lacks the critical finite-time sampling property of diffusion models and
significantly struggles to cover complex probability distributions such as those of larger molecules
and biomolecular complexes. Additionally, the MCMC typically necessitates a substantial number
of steps, generally proportional to a polynomial of the data dimension [Chewi et al., 2020]. With
particle guidance, we instead aim to achieve both properties (controllable diversity and finite time
sampling) at the same time. We can simulate the associated SDE/ODE with a total number of steps
that is independent of the data dimension.

4.2 SVGD

Stein Variational Gradient Descent (SVGD) [Liu & Wang, 2016] is a well-established method in the
variational inference community to iteratively transport a set of particles to match a target distribu-
tion. Given a set of initial particles {x0

1 . . .x
0
n}, it updates them at every iteration as:

xℓ−1
i ← xℓ

i + ϵℓψ(x
ℓ
i) where ψ(x) =

1

n− 1

n∑
j=1

[k(xℓ
j ,x)∇xℓ

j
log p(xℓ

j) +∇xℓ
j
k(xℓ

j ,x)] (2)

where k is some (similarity) kernel and ϵℓ the step size. Although SVGD was developed with the
intent of sampling a set of particles that approximate some distribution p without the direct goal of
obtaining diverse samples, SVGD and our method have a close relation.

This relation between our method and SVGD can be best illustrated under specific choices for drift
and potential under which the probability flow ODE discretization of particle guidance can be ap-
proximated as (derivation in Appendix A.5):

xt+∆t
i ≈ xt

i + ϵt(xi)ψt(x
t
i) where ψ(x) =

1

n− 1

n∑
j=1

[kt(x
t
j ,x)∇x log pt(x) +∇xt

j
kt(x

t
j ,x)] (3)

Comparing this with Eq. 2, we can see a clear relation in the form of the two methods, with some
key distinctions. Apart from the different constants, the two methods use different terms for the total
score component. Interestingly both methods use smoothed-out scores, however, on the one hand,
particle guidance uses the diffused score at the specific particle xi, ∇xi log pt(xi), while on the
other, SVGD smoothes it out by taking a weighted average of the score of nearby particles weighted
by the similarity kernel (

∑
j k(xi,xj)∇xj

log p(xj))/(
∑

j k(xi,xj)).
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The reliance of SVGD on other particles for the “smoothing of the score”, however, causes two
related problems, firstly, it does not have the finite-time sampling guarantee that the time evolution
of diffusion models provides and, secondly, it suffers from the collapse to few local modes near
the initialization and cannot discover isolated modes in data distribution [Wenliang & Kanagawa,
2020]. This challenge has been theoretically [Zhuo et al., 2018] and empirically [Zhang et al.,
2020] studied with several works proposing practical solutions. In particular, relevant works use
an annealing schedule to enhance exploration [D’Angelo & Fortuin, 2021] or use score matching
to obtain a noise-conditioned kernel for SVGD [Chang et al., 2020]. Additionally, we empirically
observe that the score smoothing in SVGD results in blurry samples in image generation.

4.3 ELECTROSTATICS

Recent works [Xu et al., 2022; 2023b] have shown promise in devising novel generative models
inspired by the evolution of point charges in high-dimensional electric fields defined by the data dis-
tribution. It becomes natural therefore to ask whether particle guidance could be seen as describing
the evolution of point charges when these are put in the same electric field such that they are not
only attracted by the data distribution but also repel one another. One can show that this evolution
can indeed be seen as the combination of Poisson Flow Generative Models with particle guidance,
where the similarity kernel is the extension of Green’s function in N+1-dimensional space, i.e.,
k(x, y) ∝ 1/||x− y||N−1. We defer more details to Appendix A.6.

5 FIXED POTENTIAL PARTICLE GUIDANCE

In this section, we will present and study a simple, yet effective, instantiation of particle guidance
based on the definition of the time-evolving potential as a combination of predefined kernels. As
we will see in the experiments in Section 6, this leads to significant sample efficiency improvements
with no additional training required and little inference overhead.

To promote diversity and sample efficiency, in our experiments, we choose the potential log Φt

to be the negative of the sum of a pairwise similarity kernel k between each pair of particles
log Φt(x1, ...xn) = −αt

2

∑
i,j kt(xi,xj) obtaining:

dxi =

[
− f(xi, t

′) + g2(t′)

(
∇xi

log pt′(xi)− αt′∇xi

n∑
j=1

kt′(xi,xj)

)]
dt+ g(t′)dw (4)

Intuitively, the kernel term will push our different samples to be dissimilar from one another while
at the same time the score term will try to match our distribution. Critically, this does not come
at a significant additional runtime as, in most domains, the cost of running the pairwise similarity
kernels is very small compared to the execution of the large score network architecture. Moreover,
it allows the use of domain-specific similarity kernels and does not require training any additional
classifier or score model. We can also view the particle guidance Eq. (4) as a sum of reverse-time
SDE and a guidance term. Thus, to attain a more expedited generation speed, the reverse-time SDE
can also be substituted with the probability flow ODE [Song et al., 2021].

5.1 THEORETICAL ANALYSIS

To understand the effect that particle guidance has beyond simple intuition, we study the joint dis-
tribution of sets of particles generated by the proposed reverse diffusion. However, unlike methods
related to energy-based models (see coupled replicas, metadynamics, SVGD in Sec. 4) analyzing
the effect of the addition of a time-evolving potential log Φt in the reverse diffusion is non-trivial.

While the score component in particle guidance is the score of the sequence of probability distri-
butions p̃t(x1, . . . ,xn) = Φt(x1, . . . ,xn)

∏n
i=1 pt(xi), we are not necessarily sampling exactly p̃0

because, for an arbitrary time-evolving potential Φt, this sequence of marginals does not correspond
to a diffusion process. One strategy used by other works in similar situations [Du et al., 2023] relies
on taking, after every step or at the end, a number of Langevin steps to reequilibrate and move the
distribution back towards p̃t. This, however, increases significantly the runtime cost (every Langevin
step requires score evaluation) and is technically correct only in the limit of infinite steps leaving
uncertainty in the real likelihood of our samples. Instead, in Theorem 1, we use the Feynman-Kac
theorem to derive a formula for the exact reweighting that particle guidance has on a distribution
(derivation in Appendix A.1):
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Theorem 1. Under integrability assumptions, sampling xT
1 , ...,x

T
n from pT and following the par-

ticle guidance reverse diffusion process, we obtain samples from the following joint probability
distribution at time t = 0:

p̂0(x1, . . . ,xn) = E[Z exp[−
∫ T

0
g(t)2{⟨∇ log Φt(Xt),∇ log p̂t(Xt)⟩+∆ logΦt(Xt)}dt]],

with Z (explicit in the appendix) such that∏N
i=1 p0(xi) = E[Z],

(Xt)t∈[0,T ] is a stochastic process driven by the equation

dXt = {f(Xt, t)− g(t)2∇ log pt(Xt)}dt+ g(t)dw, X0 = {xi}Ni=1.

Hence the density p̂0 can be understood as a reweighting of the random variable Z that represents
I.I.D. sampling.

Riemannian Manifolds. Note that our theoretical insights can also be extended to the manifold
framework. This is a direct consequence of the fact that the Feynman-Kac theorem can be extended
to the manifold setting, see for instance Benton et al. [2022].

5.2 PRESERVING INVARIANCES

The objects that we learn to sample from with generative models often present invariances such as
the permutation of the atoms in a molecule or the roto-translation of a conformer. To simplify the
learning process and ensure these are respected, it is common practice to build such invariances in
the model architecture. In the case of diffusion models, to obtain a distribution that is invariant to
the action of some group G such as that of rotations or permutations, it suffices to have an invariant
prior and build a score model that is G-equivariant [Köhler et al., 2020; Xu et al., 2021]. Similarly,
in our case, we are interested in distributions that are invariant to the action of G on any of the set
elements (see Section 6.2), we show that a sufficient condition for this invariance to be maintained
is that the time-evolving potential Φt is itself invariant to G-transformations of any of its inputs (see
Proposition 1 in Appendix A.4).

6 EXPERIMENTS

Fixed potential particle guidance can be implemented on top of any existing trained diffusion model
with the only requirement of specifying the potential/kernel to be used in the domain. We present
three sets of empirical results in three very diverse domains. First, in Appendix C, we work with
a synthetic experiment formed by a two-dimensional Gaussian mixture model, where we can vi-
sually highlight some properties of the method. In this section instead, we consider text-to-image
and molecular conformer generation, two important tasks where diffusion models have established
new state-of-the-art performances, and show how, in each of these tasks, particle guidance can pro-
vide improvements in sample efficiency pushing the diversity-quality Pareto frontier. The code is
available at https://github.com/gcorso/particle-guidance.

6.1 TEXT-TO-IMAGE GENERATION

In practice, the most prevalent text-to-image diffusion models, such as Stable Diffusion [Rombach
et al., 2021] or Midjourney, generally constrain the output budget to four images per given prompt.
Ideally, this set of four images should yield a diverse batch of samples for user selection. However,
the currently predominant method of classifier-free guidance [Ho, 2022] tends to push the mini-batch
samples towards a typical mode to enhance fidelity, at the expense of diversity.

To mitigate this, we apply the proposed particle guidance to text-to-image generation. We use Stable
Diffusion v1.5, pre-trained on LAION-5B [Schuhmann et al., 2022] with a resolution of 512× 512,
as our testbed. We apply an Euler solver with 30 steps to solve for the ODE version of particle
guidance. Following [Xu et al., 2023a], we use the validation set in COCO 2014 [Lin et al., 2014]
for evaluation, and the CLIP [Hessel et al., 2021]/Aesthetic score [Team, 2022] (higher is better) to
assess the text-image alignment/visual quality, respectively. To evaluate the diversity within each
batch of generated images corresponding to a given prompt, we introduce the in-batch similarity
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score. This metric represents the average pairwise cosine similarity of features within an image
batch, utilizing the pre-trained DINO [Caron et al., 2021] as the feature extractor. Contrasting the
FID score, the in-batch similarity score specifically measures the diversity of a batch of images
generated for a given prompt. We use a classifier-free guidance scale from 6 to 10 to visualize
the trade-off curve between the diversity and CLIP/Aesthetic score, in line with prior works [Xu
et al., 2023a; Saharia et al., 2022]. For particle guidance, we implement the RBF kernel on the
down-sampled pixel space (the latent space of the VAE encoder-) in Stable Diffusion, as well as the
feature space of DINO. Please refer to Appendix E.1 for more experimental details.

0.318 0.319 0.320 0.321 0.322
CLIP score (ViT-g/14)

0.59

0.60

0.61

0.62

0.63

0.64

In
-b

at
ch

 s
im

ila
rit

y 
sc

or
e I.I.D.

PG (pixel)
PG (feature)

(a) In-batch similarity versus CLIP score

5.34 5.35 5.36 5.37 5.38 5.39 5.40 5.41
Aesthetic score

0.59

0.60

0.61

0.62

0.63

0.64

In
-b

at
ch

 s
im

ila
rit

y 
sc

or
e I.I.D

PG (pixel)
PG (feature)

(b) In-batch similarity versus Aesthetic score

Figure 2: In-batch similiarity score versus (a) CLIP ViT-g/14 score and (b) Aesthetic score for text-
to-image generation at 512 × 512 resolution, using Stable Diffusion v1.5 with a varying guidance
scale from 6 to 10.

(a) I.I.D. (b) PG (c) Training data (d) I.I.D. (e) PG

Figure 3: Text prompt: (a,b) “A baby eating a cake with a tie around his neck with balloons in the
background” (COCO); (c,d,e) “VAN GOGH CAFE TERASSE copy.jpg”, with original training data
in (c).

As shown in Fig. 2(a) and Fig. 2(b), particle guidance (PG) consistently obtains a better (lower)
in-batch similarity score in most cases, given the same CLIP/Aesthetic score, with a classifier-free
guidance scale ranging from 6 to 10. Conversely, we observe that while in-batch similarity score of
I.I.D. sampling improves with the reduced classifier-free guidance scale, particle guidance continues
to surpass I.I.D. sampling in terms of CLIP/Aesthetic score given the same in-batch similarity. When
the potential is the similarity kernel applied in the feature space, particle guidance notably attains
a lower in-batch similarity score compared to I.I.D. sampling or to the approach in the original
downsampled pixel space. This suggests that utilizing a semantically meaningful feature space is
more appropriate for determining distances between images.

In Fig. 3, we further visualize generated batches of four images per prompt by I.I.D. sampling
and particle guidance (feature) with the same random seeds, when fixing the classifier-free guid-
ance scale to 9. We can see that particle guidance improves the visual diversity in the generated
batch. Interestingly, particle guidance can also help to alleviate the memorization issue of Stable
Diffusion [Somepalli et al., 2023]. For example, given the text prompt of a painting from LAION
dataset, particle guidance (Fig. 3(e)) avoids the multiple replications of the training data in the I.I.D.
setting (the top-left and the bottom-right images in Fig. 3(d)). We provide extended samples in Ap-
pendix F, and additionally show that SVGD (Eq. 2) fails to promote diversity, instead yielding a set
of blurry images.

6.2 MOLECULAR CONFORMER GENERATION

Molecular conformer generation is a key task in computational chemistry that consists of finding the
set of different conformations that a molecule most likely takes in 3D space. Critically it is often
important to find all or most of the low-energy conformers as each can determine a different behavior
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Table 1: Quality of generated conformer ensembles for the GEOM-DRUGS test set in terms of
Coverage (%) and Average Minimum RMSD (Å). We follow the experimental setup from [Ganea
et al., 2021], for experimental details and introduction of the baselines please refer to Appendix D.

Recall Precision
Coverage ↑ AMR ↓ Coverage ↑ AMR ↓

Method Mean Med Mean Med Mean Med Mean Med

RDKit ETKDG 38.4 28.6 1.058 1.002 40.9 30.8 0.995 0.895
OMEGA 53.4 54.6 0.841 0.762 40.5 33.3 0.946 0.854
GeoMol 44.6 41.4 0.875 0.834 43.0 36.4 0.928 0.841
GeoDiff 42.1 37.8 0.835 0.809 24.9 14.5 1.136 1.090
Torsional Diffusion 72.7 80.0 0.582 0.565 55.2 56.9 0.778 0.729

TD w/ particle guidance 77.0 82.6 0.543 0.520 68.9 78.1 0.656 0.594

(e.g. by binding to a protein). This necessity is reflected in the metrics used by the community that
look both at coverage (also called recall) and precision over the set predictions.

Over the past few years, molecular conformer generation has been extensively studied by the ma-
chine learning community, with well-established benchmarks [Axelrod & Gomez-Bombarelli, 2022]
and several generative models designed specifically for this task [Ganea et al., 2021; Xu et al., 2021;
Jing et al., 2022]. However, all these methods are based on training a generative model to generate
single samples and then running this model several times (more than 200 on average in the standard
GEOM-DRUGS dataset) to generate a large number of I.I.D. samples.

As discussed before, however, this strategy is suboptimal to generate representative sets of samples
and cover the distribution. Therefore, we take the state-of-the-art conformer generation model,
torsional diffusion, and, without retraining the model itself, we show that we can obtain significant
improvements in both coverage and precision via particle guidance.

Torsional diffusion [Jing et al., 2022] defines the diffusion process over the manifold defined by
changes in torsion angles from some initial conformer because of the relative rigidity of the remain-
ing degrees of freedom. Given this observation, we also define the guidance kernel on this manifold
as an RBF kernel over the dihedral angle differences.

Another important consideration when dealing with molecular conformers is given by the permuta-
tion symmetries that characterize several molecules: conformers that appear different might be very
similar under permutations of the order of the atoms that do not change the bond structure. To max-
imize the sample efficiency and avoid generating similar conformers, we make the kernel invariant
to these transformations. For this, we employ the simple strategy to take the minimum value of the
original kernel under the different perturbations (formalized in Appendix D).

Table 1 shows that by applying particle guidance to SDE-based reverse process of torsional dif-
fusion (see Appendix D for details) we are able to balance coverage and precision being able to
obtain, without retraining the model, significantly improved results on both metrics with 8% and
19% simultaneous reductions respectively in recall and precision median AMR.

7 LEARNED POTENTIAL PARTICLE GUIDANCE

While the fixed potential particle guidance seen so far is very effective in improving the diversity of
samples with little overhead, it is hard to argue about the optimality of the resulting joint distribution.
This is because of the complexity of the expression obtained in Theorem 1 and its dependence on
the data distribution itself. Furthermore, in some domains, particularly in scientific applications,
researchers need to control the distribution that they are sampling. This is necessary, for example,
to apply correct importance weights or compute free energy differences. While Theorem 1 allows
us to theoretically analyze properties of the distribution, the joint and marginal distributions remain
largely intractable.

In this section, we analyze how we can sample from desired joint probability distribution by learn-
ing a tailored time-evolving potential for particle guidance. Using the maximum entropy theorem
[Csiszár, 1975], we can show that the distribution satisfying a bound on the expected value of a

8
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(diversity) metric Φ0 while minimizing the KL divergence with the independent distribution is:

p̂0(x1, ...,xn) ∝ Φ0(x1, ...,xn)
β(α)

n∏
i=1

p(xi) (5)

where β is a function of α, the value of the bound on Ep̂[log Φ0].

7.1 TRAINING PROCEDURE

We now have to learn a time-evolving potential Φt that when used as part of the particle guidance
framework generates p̂0 (we assume Φ0 is chosen such that β(α) = 1). To achieve this, we mandate
that the generation process of particle guidance in Eq. 1 adheres to the sequence of marginals
p̂t(x

t
1, ...,x

t
n) = Φt(x

t
1, ...,x

t
n)

∏n
i=1 pt(x

0
i ) and learn Φθ

t to satisfy this evolution. Under mild
assumptions, using Doob h-theory (derivation in Appendix A.2), we show that we can learn the Φθ

t
by the following objective:

θ∗ = argmin
θ

Ex0
1,...,x

0
n∼p0

Ext
i∼pt|0(·|x0

i )
[∥Φ0(x

0
1, ...,x

0
n)− Φθ

t (x
t
1, ...,x

t
n)∥2] (6)

where pt|0 is the Gaussian perturbation kernel in diffusion models. Importantly, here the initial x0
i

are sampled independently from the data distribution so this training scheme can be easily executed
in parallel to learning the score of pt.

7.2 PRESERVING MARGINAL DISTRIBUTIONS

While the technique discussed in the previous section is optimal in the maximum entropy perspec-
tive, it does not (for arbitrary Φ0) preserve the marginal distributions of individual particles, i.e.
marginalizing xi over p̂ does not recover p. Although not critical in many settings and not re-
spected, for a finite number of particles, neither by the related methods in Section 4 nor by the fixed
potential PG, this is an important property in some applications.

Using again the maximum entropy theorem, we can show that the distribution satisfying a bound
on the expected value of a (diversity) metric Φ′

0 and preserving the marginal distribution while
minimizing the KL divergence with the independent distribution can be written as:

p̂0(x1, ...,xn) ∝ Φ′
0(x1, ...,xn)

β(α)
n∏

i=1

p(xi)γθ(xi) (7)

for some scalar function over individual particles γθ. In Appendix A.3, we derive a new training
scheme to learn the parameters of γθ. This relies on setting the normalization constant to an arbitrary
positive value and learning values of θ that respect the marginals. Once γθ is learned, its parameters
can be frozen and the training procedure of Eq. 6 can be started.

8 CONCLUSION

In this paper, we have analyzed how one can improve the sample efficiency of generative models
by moving beyond I.I.D. sampling and enforcing diversity, a critical challenge in many real appli-
cations that has been largely unexplored. Our proposed framework, particle guidance, steers the
sampling process of diffusion models toward more diverse sets of samples via the definition of a
time-evolving joint potential. We have studied the theoretical properties of the framework such as
the joint distribution it converges to for an arbitrary potential and how to learn potential functions
that sample some given joint distribution achieving optimality and, if needed, preserving marginal
distributions. Finally, we evaluated its performance in two important applications of diffusion mod-
els text-to-image generation and molecular conformer generation, and showed how in both cases it
is able to push the Pareto frontier of sample diversity vs quality.

We hope that particle guidance can become a valuable tool for practitioners to ensure diversity and
fair representation in existing tools even beyond the general definition of diversity directly tackling
known biases of generative models. Further, we hope that our methodological and theoretical con-
tributions can spark interest in the research community for better joint-particle sampling methods.

9
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A DERIVATIONS

A.1 JOINT DISTRIBUTION UNDER PARTICLE GUIDANCE

In this section, we provide the proof of Theorem 1. First, we restate the Feynman-Kac theorem. Let
u : [0, T ]× Rd such that for any t ∈ [0, T ] and x ∈ Rd we have

∂tu(t, x) + ⟨b(t, x),∇u(t, x)⟩+ (1/2)⟨Σ(t, x),∇2u(t, x)⟩ − V (t, x)u(t, x) + f(t, x) = 0, (8)

with u(T, x) = Φ(T, x). Then, under integrability and regularity assumptions, see Karatzas &
Shreve [1991] for instance, we have

u(0, x) = E[
∫ T

0
exp[−

∫ r

0
V (τ,Xτ )dτ ]f(r,Xr)dr+exp[−

∫ T

0
V (τ,Xτ )dτ ]Φ(T,XT ) |X0 = x],

(9)
with u(T, x) = Φ(T, x) and dXt = b(t,Xt)dt+Σ(t,Xt)dBt. In the rest of this section, we derive
the specific case of Theorem 1.

We recall that the generative model with particle guidance is given by (p̂t)t∈[0,T ] and is associated
with the generative model

dŶt = {−f(Ŷt, T − t) + g(T − t)2(sθ(Ŷt, T − t) +∇ log ΦT−t(Ŷt))}dt+ g(T − t)dw. (10)

We also recall that the generative model without particle guidance is given by (qt)t∈[0,T ] and is
associated with the generative model

dYt = {−f(Yt, T − t) + g(T − t)2sθ(Yt, T − t)}dt+ g(T − t)dw. (11)

Using the Fokker-Planck equation associated with equation 11 we have for any x ∈ (Rd)N

∂tqt(x) + div({−f(T − t, ·) + g(T − t)2sθ(T − t, ·)}qt)(x)− (g(T − t)2/2)∆qt(x) = 0. (12)

This can also be rewritten as

∂tqt(x) + ⟨−f(T − t, x) + g(T − t)2sθ(x, T − t),∇qt(x)⟩ − (g(T − t)2/2)∆qt(x) (13)

+ div({−f(·, T − t) + g(T − t)2sθ(T − t, ·)})(x)qt(x) = 0 (14)

Denoting ut = qT−t we have

∂tut(x) + ⟨f(x, t)− g(t)2sθ(x, t),∇ut(x)⟩+ (g(t)2/2)∆ut(x) (15)

− div({−f(t, ·) + g(t)2sθ(·, t)})(x)ut(x) = 0. (16)

Note that since ut = qT−t, we have that ut = pt with the conventions from 3. Now combining this
result with equation 8 and equation 9 with V (t, x) = div({−f(·, t) + g(t)2sθ(t, ·)})(x) and f = 0
we have that

u0(x) = E[Z], (17)
with

Z = exp[−
∫ T

0
V (τ,Xτ )dτ ]p0(XT ), (18)

and
dXt = {f(t,Xt)− g(t)2sθ(Xt, t)}dt+ g(t)dw. (19)

with X0 = x. We now consider a similar analysis in the case of the generative with particle guid-
ance. Using the Fokker-Planck equation associated with equation 10 we have for any x ∈ (Rd)N

∂tq̃t(x)+div({−f(·, T−t)+g(T−t)2(sθ(·, T−t)+∇ log ΦT−t)}q̃t)(x)−(g(T−t)2/2)∆q̃t(x) = 0.
(20)

This can also be rewritten as

∂tq̃t(x) + ⟨−f(x, T − t) + g(T − t)2sθ(x, T − t),∇q̃t(x)⟩ − (g(T − t)2/2)∆q̃t(x) (21)

+ div({−f(·, T − t) + g(T − t)2sθ(·, T − t)})(x)q̃t(x) (22)

+ g(T − t)2(⟨log ΦT−t(x),∇ log q̃t(x)⟩+∆ logΦT−t(x))q̃t(x) = 0. (23)

Denoting ût = q̃T−t we have

∂tût(x) + ⟨f(t, x)− g(t)2sθ(x, t),∇ût(x)⟩+ (g(t)2/2)∆ût(x) (24)

− div({−f(·, t) + g(t)2sθ(t, ·)})(x)ût(x) (25)

− g(t)2(⟨∇ log Φt(x),∇ log q̃T−t(x)⟩+∆ logΦt(x))ût(x) = 0. (26)
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Following the convetion of 3, we have that ût = p̂0. Now combining this result
with equation 8 and equation 9 with V̂ (t, x) = div({−f(·, t) + g(t)2sθ(·, t)})(x) +
g(t)2(⟨∇ log Φt(x),∇ log p̃T−t(x)⟩+∆ logΦt(x)) and f = 0 we have that

û0(x) = E[Ẑ], (27)

with
Ẑ = exp[−

∫ T

0
V̂ (τ,Xτ )dτ ]p0(XT ), (28)

and
dXt = {f(Xt, t)− g(t)2sθ(Xt, t)}dt+ g(t)dw. (29)

again with X0 = x. We conclude the proof upon noting that

Ẑ = Z exp[−
∫ T

0
g(t)2(⟨∇ log Φt(Xt),∇ log ût(Xt)⟩+∆ logΦt(Xt))dt]. (30)

Interpretation An interpretation of this reweighting term can be given through the lens of SVGD.
We introduce the Stein operator as in Liu & Wang [2016] given by for any Ψ : (Rd)N → (Rd)N

by
Ap̂t

(Ψt) = ∇ log p̂tΨ
⊤
t +∇Ψt. (31)

Using Ψt = ∇ log Φt, we get that

Tr(Ap̂t
(Ψt)) = ⟨∇ log Φt,∇ log p̂t⟩+∆ logΦt. (32)

The squared expectation of this quantity w.r.t. a distribution q on (Rd)N is the Kernel Stein Discrep-
ancy (KSD) between q and p̂t given the kernel log Φt.

A.2 SAMPLING A PREDEFINED JOINT DISTRIBUTION

For ease of derivation via the Doob h-transform, we temporarily reverse the time from t to T − t.
Here, pT is treated as the data distribution, and ΦT is regarded as the potential, as specified by users.
We now consider another model. Namely, we are looking for a generative model p̂t with t ∈ [0, T ]
such that for any t ∈ [0, T ] we have p̂t = ptΦt with ΦT given by the user. In layman’s terms, this
means that we are considering a factorized model for all times t with the additional requirement that
at the final time T , the model is given by pT = p̂TΦT with ΦT known. This is to be compared with
Theorem 1. Indeed in Theorem 1 while the update on the generative dynamics is explicit (particle
guidance term), the update on the density is not. In what follows, we are going to see, using tools
from Doob h-transform theory, that we can obtain an expression for the update of the drift in the
generative process when considering models of the form p̂t = ptΦt.

More precisely, we consider the following model. Let p̂T = pT and for any s, t ∈ [0, T ] with s < t
and x1:n

s = {xi
t}ni=1 ∈ (Rd)n and x1:n

t = {xi
t}ni=1 ∈ (Rd)n we define

p̂t|s(x
1:n
t |x1:n

s ) = pt|s(x
1:n
t |x1:n

s )Φt(x
1:n
t )/Φs(x

1:n
s ), (33)

with Φt which satisfies for any x1:n
t ∈ (Rd)n

∂tΦt(x
1:n
t )+⟨−fT−t(x

1:n
t )+g(T−t)2∇ log pt(x

1:n
t ),∇Φt(x

1:n
t )⟩+(g(T−t)2/2)∆Φt(x

1:n
t ) = 0,

(34)
with ΦT given. Note that equation 34 expresses that Φt satisfies the backward Kolmogorov equation.
Under mild assumptions, using Doob h-theory, we get that there exists (X̂t)t∈[0,T ] such that for any
t ∈ [0, T ] we have Ŷt ∼ p̂t and for any t ∈ [0, T ]

dŶt = {−fT−t(Ŷt) + g(T − t)2[∇ log pt(Ŷt) +∇ log Φt(Ŷt)]}dt+ g(T − t)dw. (35)

The main difficulty is to compute Φt for any t ∈ [0, T ]. Under mild assumptions, solutions to the
backward Kolmogorov equation 34 are for any t ∈ [0, T ] by

Φt(x
1:n
t ) = E[ΦT (YT )|Yt = x1:n

t ] =
∫
ΦT (YT = x1:n

T )pT |t(x
1:n
T |x1:n

t )dx1:n
T , (36)

where we have

dYt = {−fT−t(Yt) + g(T − t)2∇ log pt(Yt)}dt+ g(T − t)dw. (37)
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This means that (Yt)t∈[0,T ] is given by the original generative model, with time-dependent
marginals pt. The expression equation 36, suggests to parameterize Φt by Φθ

t and to consider the
loss function

ℓt(θ) = EYT
EYt∼pt|T (·|YT )[∥ΦT (YT )− Φθ

t (Yt)∥2]. (38)

Then, we can define a global loss function L(θ) =
∫ T

0
λ(t)ℓt(θ)dt where λt is some weight. One

problem with this original loss function is that it requires sampling and integrating with respect to
Yt which requires sampling from the generative model.

Recall that we reverse the time from t to T − t at the beginning. Reverse back to the original
convention in the main text, Eq. (39) can be expressed as

ℓt(θ) = EX0∼p0
EXt∼pt|0(·|XT )[∥Φ0(X0)− Φθ

t (Xt)∥2]. (39)

A.3 PRESERVING MARGINAL DISTRIBUTIONS

For arbitrary time evolving potentials Φt(x1, ...,xn) sampling using particle guidance does not pre-
serve the marginals p(xi) ̸=

∫
x1,...,xi−1,xi+1,...,xn

p̂(x1, ...,xn)dx1...dxi−1dxi+1...dxn. In many
domains this is not required and none of the methods discussed in Section 4 have this property for
finite number of particles, however, in domains where, for example, one wants to obtain unbiased
estimates of some function this property may be useful.

While the technique discussed in Section 7 allows us to use any potential Φ0(x1, ...,xn) choosing Φ0

in such a way that preserves marginals is hard for non-trivial potentials and distributions. Therefore,
we propose to learn a non-trivial marginal preserving Φθ

0 from the data in the following way. Let
Φθ

0(x1, ...,xn) = Φ′
0(x1, ...,xn)

∏
i γθ(xi) where Φ′

0 is some predefined joint potential that, for
example, encourages diversity in the joint distribution and γθ is a learned scalar function operating
on individual points that counterbalances the effect that Φ′

0 has on marginals while maintaining its
effect on sample diversity.

How do we learn such scaling function γθ to preserve marginals? By definition, the individual
marginal distribution is (consider i = 1 w.l.o.g.):

p̂1(x1) =

∫
x2,...,xn

Φ′
0(x1, ...,xn)

∏
i p(xi)γθ(xi)dx2...dxn∫

x′
1,...,x

′
n
Φ′

0(x
′
1, ...,x

′
n)

∏
i p(x

′
i)γθ(x

′
i)dx

′
1...dx

′
n

=

=
p(x1)Ex2,...,xn∼

∏
i>1 p(xi)

[
Φ′

0(x1, ...,xn)
∏

i γθ(xi)
]

Ex′
1,...,x

′
n∼

∏
i p(x

′
i)

[
Φ′

0(x
′
1, ...,x

′
n)

∏
i γθ(x

′
i)
] =

= p(x1)
Ex2,...,xn∼

∏
i>1 p(xi)

[
Φθ

0(x1, ...,xn)
]

Ex′
1,...,x

′
n∼

∏
i p(x

′
i)

[
Φθ

0(x
′
1, ...,x

′
n)
]

Therefore p̂1 = p if and only if the fraction is always equal to 1 (intuitively for the marginal
to be maintained on average the potential should have no effect). Assuming that the joint po-
tential Φ′

0 is invariant to the permutation to its inputs. Then one can also prove that, p̂1 = p
if and only if Ex2,...,xn∼

∏
i>1 p(xi)

[
Φθ

0(x1, ...,xn)
]

is equal to a positive constant C for any x1.
We can then minimize the following regression loss to learn the scalar function γθ, by matching
Ex2,...,xn∼

∏
i>1 p(xi)

[
Φθ

0(x1, ...,xn)
]

and C:

min
θ

Ex1
(Ex2,...,xn∼

∏
i p(xi)

[
Φ′

0(x1, ...,xn)
∏
i̸=1

γθ(xi)
]
− C

γθ(x1)
)2

However, achieving this objective necessitates costly Monte Carlo estimations for the expectation
over n − 1 independent samples. Moreover, obtaining an unbiased estimator for the full-batch gra-
dient in a mini-batch setup is challenging. To bypass this issue, we implement a greedy update
rule that optimizes the value γθ(x1) on the single sample x1. The greedy update can be viewed as
continuous extension of the Iterative Proportional Fitting (IPF) for symmetry matrices. The essence
of the IPF algorithm lies in determining scaling factors for each row and column of a given ma-
trix, ensuring that the sum of each row and column (the marginals) aligns with a specified target
value. IPF is known for its uniqueness and convergency guarantees [Sinkhorn, 1964]. Let’s denote
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ϕi(x1, ...,xn) = stop grad(Φ′
0(x1, ...,xn)

∏
j ̸=i γθ(xj)), the objective for the greedy update rule

is as follows:

min
γθ(x1)

Ex1
(Ex2,...,xn∼

∏
i̸=1 p(xi)ϕ1(x1, ...,xn)−

C

γθ(x1)
)2

The gradient w.r.t θ in the objective above is:

θ′ = θ − βEx1,x2,...,xn∼
∏

i p(xi)

[
2C

γ2θ (x1)

(
ϕ1(x1, ...,xn)−

C

γθ(x1)

)]
∇θγθ(x1) (40)

where β is the learning rate. The corresponding update by stochastic gradient is:

θ′ =θ − β 1

n

n∑
i=1

[
2C

γ2θ (xi)

(
ϕi(x1, ...,xn)−

C

γθ(xi)

)]
∇θγθ(xi) (41)

=θ − β 1

n

n∑
i=1

[
2C

γ3θ (xi)

(
Φθ

0(x1, ...,xn)− C
)]
∇θγθ(xi) (42)

for x1, ...,xn ∼
∏

i p(xi). The stochastic gradient is an unbiased estimator of the gradient in
Eq. (40).

A.3.1 EMPIRICAL SYNTHETIC EXPERIMENTS

We demonstrate this training paradigm in a synthetic experiment using a mixture of Gaussian dis-
tributions in 2D. In particular, we set p to be a mixture of 7 Gaussians with the same variance with
placed as shown in Figure 4.A. The middle Gaussian has a weight that is four times that of the
others.

Figure 4: Synthetic experiment on learning a potential that preserves marginal distributions. The
description of each plot can be found in the text.

Figure 4.B shows the marginal distribution when sampling 10 particles with joint distribution:

p̃0(x1, ...,xn) ∝ Φ′
0(x1, ...,xn)

n∏
i=1

p(xi)

where Φ′
0 is a measure of diversity that in this case we take to be the exponential of the negative

of the mean of pairwise Euclidean RBF similarity kernels. Table 2 highlights how sampling from
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this modified joint distribution significantly increases the diversity of the samples, especially when
it comes to the expected value of log Φ′

0 itself. However, as clear from Figure 4.B, the marginal
distribution is significantly changed with the middle mode being sampled only 13% of the times
instead of 40% and even the shape of the outer modes being altered.

To fix this we learn a function γθ, here parameterized simply as the set of values on a grid repre-
senting the domain. We follow the training scheme presented in Eq. (41) obtaining the function
presented in Figure 4.D. As evident from the plot, this has the effect of overweighing samples in the
central mode, while downsampling samples in the outside modes, especially when coming from the
outer parts. In Figure 4.C we plot the marginal of the resulting distribution:

p̂0(x1, ...,xn) ∝ Φ′
0(x1, ...,xn)

n∏
i=1

p(xi)γθ(xi).

Although the marginals closely match, p̂0 still has more diversity in its sets of samples compared to
I.I.D. sampling of p, however, as seen in Table 2 the level of diversity in p̂0 is lower than that of p̃0,
highlighting the “cost” of imposing the preservation of marginals.

Table 2: Values of different observables under different joint probability distributions. For every
method we take 5000 samples (of 10 particles), samples from p̃0 and p̂0 were obtained reweighting
50000 samples of the independent I.I.D. distribution.

Observable I.I.D. p p̃0 p̂0

Number of modes recovered at every sample 4.9 5.9 5.3
Expected value of log Φ′

0 -37.3 -31.8 -36.3

A.4 INVARIANCE OF PARTICLE GUIDANCE

Proposition 1. Let G be the group of rotations or permutations of a set of vectors. Assuming that
pT (x) is a G-invariant distribution, the learned score s(x, t) and f(x, t) are G-equivariant and the
potential log Φt(x1 . . .xn) is G-invariant to a transformation of any of its inputs, then the resulting
distribution we sample from will also be G-invariant to a transformation of any of the elements of
the set.

Note that in this section we will derive this specific formulation for the group of rotations or permu-
tations and the Brownian motion in Euclidean space. For a more general statement on Lie groups
G and Brownian motions associated with a given metric, one could generalize the result from Yim
et al. [2023] Proposition F.2.

Proof. For simplicity, we will consider Euler discretization steps going with time from T to 0 (as
used in our experiments), however, the proposition applies in the continuous setting too:

pθ(x
(t−1)
i |x(t)

1:n) = pz(x
(t−1)
i − x

(t)
i + f(x

(t)
i , t)− g2(sθ(x(t)

i , t) +∇
x
(t)
i

log Φt(x
(t)
1:n)))

where z ∼ N(0, g2I). Without loss of generality since the whole method is invariant to permutations
of the particles, consider xn to be the particle to which we apply Tg the transformation of an arbitrary
group element g.

Since by assumption log Φt(x
(t)
1:n) = log Φt(x

(t)
1:n−1, Tg(x

(t)
n )) we have pθ(x

(t−1)
i |x(t)

1:n) =

pθ(x
(t−1)
i |x(t)

1:n−1, Tg(x
(t)
n )).

On the other hand, since log Φt(x
(t)
1:n) is invariant to G transformations of x(t)

n , its gradient w.r.t. the
same variable will be G-equivariant. Therefore:

pθ(Tg(x
(t−1)
n )|x(t)

1:n−1, Tg(x
(t)
n )) =

= pz(Tg(x
(t−1)
n )− Tg(x(t)

n ) + f(Tg(x
(t)
n ), t)− g2(sθ(Tg(x(t)

n ), t) +∇
x
(t)
n

log Φt(x
(t)
1:n−1, Tg(x

(t)
n ))))

= pz(Tg(x
(t−1)
n )− Tg(x(t)

n ) + Tg(f(x
(t)
n , t))− g2(Tg(sθ(x(t)

n , t)) + Tg(∇x
(t)
n

log Φt(x
(t)
1:n))))

= pz(Tg(x
(t−1)
n − x(t)

n + f(x(t)
n , t)− g2(sθ(x(t)

n , t) +∇
x
(t)
n

log Φt(x
(t)
1:n)))) = pθ(x

(t−1)
n |x(t)

1:n)
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where between lines 2 and 3 we have used the equivariance assumptions and in the latter two the
properties of elements of G.

Putting these together, we follow a similar derivation of Proposition 1 from Xu et al. [2021]:

pθ(x
(0)
1:n−1, Tg(x

(0)
n )) =

=

∫
p(x

(T )
1:n−1, Tg(x

(T )
n ))

T∏
t=1

pθ(x
(t−1)
1:n−1, Tg(x

(t−1)
n )|x(t)

1:n−1, Tg(x
(t)
n )) =

=

∫ (∏
i<n

p(x
(T )
i )

)( T∏
t=1

∏
i<n

pθ(x
(t−1)
i |x(t)

1:n−1, Tg(x
(t)
n ))

)
·

·
(
p(Tg(x

(T )
n ))

T∏
t=1

pθ(Tg(x
(t−1)
n )|x(t)

1:n−1, Tg(x
(t)
n ))

)
=

=

∫ (∏
i<n

p(x
(T )
i )

)( T∏
t=1

∏
i<n

pθ(x
(t−1)
i |x(t)

1:n)

)(
p(x(T )

n )

T∏
t=1

pθ(x
(t−1)
n |x(t)

1:n)

)
= pθ(x

(0)
1:n)

A.5 PARTICLE GUIDANCE AS SVGD

In this section, we derive the approximation of Eq. 3 starting from the probability flow ODE equiv-
alent of Eq. 4 under the assumptions of no drift f(x, t) = 0 and using the following form for
Φt(x1, ..., xn) = (

∑
i,j kt(xi, xj))

−n−1
2 where kt is a similarity kernel based on the Euclidean

distance (e.g. RBF kernel).

dxi =

[
f(xi, t)−

1

2
g2(t)

(
∇xi log pt(xi) +∇xi log

(∑
ij

kt(xi, xj)
)−n−1

2

)]
dt

= −1

2
g2(t)dt

(
∇xi

log pt(xi)−
1
2∇xi

∑
ij kt(xi, xj)

1
n−1

∑
ij kt(xi, xj)

)
Now we can simplify the numerator using the fact that kt is symmetric and approximate the denom-
inator assuming that different particles will have similar average distances to other particles:

≈ −1

2
g2(t)dt

(
∇xi

log pt(xi)−
∇xi

∑
j kt(xi, xj)∑

j kt(xi, xj)

)

= − g
2(t)dt

2 S(xi)

(∑
j

kt(xi, xj)∇xi log pt(xi)−∇xikt(xi, xj)

)
where S(xi) =

∑
j kt(xi, xj). Now we can use the fact that ∇xi

kt(xi, xj) = −∇xj
kt(xi, xj)

because the kernel only depends on the Euclidean distance between the two points:

= −n g
2(t)dt

2 S(xi)

(
1

n− 1

∑
j

kt(xi, xj)∇xi
log pt(xi) +∇xj

kt(xi, xj)

)

Letting ϵt(xi) =
n g2(t)∆t
2 S(xi)

, we obtain Eq. 3:

xt−∆t
i ≈ xti + ϵt(xi)ψt(x

t
i) where ψ(x) =

1

n− 1

n∑
j=1

[kt(x
t
j , x)∇x log pt(x) +∇xt

j
kt(x

t
j , x)]
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A.6 PARTICLE GUIDANCE IN POISSON FLOW GENERATIVE MODELS

In this section, we consider the more general Poisson Flow Generative Models++ [Xu et al., 2023b]
framework in which the N -dimensional data distribution is embedded into N + D-dimensional
space, where D is a positive integer (D = 1/D → ∞ recover PFGM [Xu et al., 2022]/diffusion
models). The data distribution is interpreted as a positive charge distribution. Each particle indepen-
dently follows the electric field generated by the N -dimensional data distribution p(x) embedded
in a N +D-dimensional space. One can similarly do particle guidance in the PFGM++ scenarios,
treating the group of particles as negative charges, not only attracted by the data distribution but also
exerting the mutually repulsive force. Formally, for the augmented data the ODE in PFGM++ (Eq.4
in Xu et al. [2023b]) is

dx

dr
=
E(x, r)x
E(x, r)r

where Ex and Er are the electric fields for different coordinates:

E(x, r)x =
1

SN+D−1(1)

∫
x− y

(∥x− y∥2 + r2)
N+D

2

p(y)dy

E(x, r)r =
1

SN+D−1(1)

∫
r

(∥x− y∥2 + r2)
N+D

2

p(y)dy

Note that when r = σ
√
D,D → ∞, the ODE is dx

dr = E(x,r)x
E(x,r)r

= − σ√
D
∇x log pσ(x) and the

framework degenerates to diffusion models.

Now if we consider the repulsive forces among a set of (uniformly weighted) particles with the same
anchor variables r, {(xi, r)}ni=1, only the electric field in the x coordinate changes (the component
in the r coordinate is zero). Denote the new electric field in x component as Êx:

Ê(xi, r)x = E(xi, r)x︸ ︷︷ ︸
attractive force by data

+
1

SN+D−1(1)

1

n− 1

∑
j ̸=i

xj − xi
(∥xj − xi∥2)

N+D
2︸ ︷︷ ︸

repulsive force between particles

The corresponding new ODE for the i-th particle is

dxi
dr

=
Ê(xi, r)x
E(xi, r)r

=
E(xi, r)x
E(xi, r)r

+

1
SN+D−1(1)

1
n−1

∑
j ̸=i

xj−xi

(∥xj−xi∥2)
N+D

2

E(xi, r)r

=
E(xi, r)x
E(xi, r)r︸ ︷︷ ︸

predicted by pre-trained models

+

1
n−1

∑
j ̸=i

xj−xi

(∥xj−xi∥2)
N+D

2∫
r

(∥x−y∥2+r2)
N+D

2

p(y)dy︸ ︷︷ ︸
particle guidance

=
E(xi, r)x
E(xi, r)r

+

1
n−1

∑
j ̸=i

xj−xi

∥xj−xi∥N+D

SN+D−1

rD−1SD−1
pr(xi)

where pr is the intermidate distribution, and Sn is the surface area of n-sphere. Clearly, the direction
of the guidance term can be regarded as the sum of the gradient of N + D-dimensional Green’s
function G(x, y) ∝ 1/||x− y||N+D−2, up to some scaling factors:

∇xiG(xi, xj) =
xi − xj

∥xj − xi∥N+D
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A.7 COMBINATORIAL ANALYSIS OF SYNTHETIC EXPERIMENTS

Proposition 2. Let us have a random variable taking a value equiprobably between N distinct bins.
The expectation of the proportion of bins discovered (i.e. sampled at least once) after N samples is
1− (N−1

N )N which tends to 1− 1/e as N tends to infinity.

Proof. Let ni be the number of samples in the iit bin. The proportion of discovered bins is equal to:

1

N
E
[ N∑

i=1

Ini>0

]
=

1

N

N∑
i=1

E[Ini>0] = P (ni > 0) = 1− P (ni = 0) = 1−
(
N − 1

N

)N

In the limit of N →∞:

lim
N→∞

1−
(
N − 1

N

)N

= 1− y = 1− 1

e

since (using L’Hôpital’s rule):

log y = lim
N→∞

N log

(
N − 1

N

)
= lim

N→∞

log(N−1
N )

1/N
= lim

N→∞

1/N2

−1/N2
= −1

Therefore for N = 10 we would expect 10 ∗ (1 − 0.910) ≈ 6.51, which corresponds to what is
observed in the empirical results of Section C.
Proposition 3. (Coupon collector’s problem) Let us have a random variable taking a value
equiprobably between N distinct bins. The expectation of the number of samples required to dis-
cover all the bins is N HN , where HN is the Nth harmonic number, which is Θ(N logN) as N
tends to infinity.

Proof. Len Li|j be the number of samples it takes to go from j to i bins discovered. We are therefore
interested in E[LN |0].

E[Lj|j−1] =
N − (j − 1)

N
∗ 1 + j − 1

N
[E[Lj|j−1] + 1] =⇒ E[Lj|j−1] =

N

N − (j − 1)

Therefore:

E[LN |0] = E
[ N∑

j=1

Lj|j−1

]
=

N∑
j=1

E[Lj|j−1] = N

N∑
j=1

1

N − (j − 1)
= N

N∑
j=1

1

j
= N HN

Since HN is Θ(logN), then E[LN |0] is Θ(N logN).

For N = 10, E[L10|0] ≈ 29.29.

B DISCUSSIONS

B.1 SUBOPTIMALITY OF I.I.D. SAMPLING

Combinatorial analysis Let us consider again the setting of a random variable taking a value
equiprobably between N distinct bins. In Fig. 5, we plot the expected number of modes (or bins)
captured as a function of the number of steps as derived in Appendix A.7. This suggests that the
region where I.I.D. sampling is considerably suboptimal in these regards (capturing the modes of
the distribution) is when the number of samples is comparable with the number of modes: if the
number of modes is much larger than I.I.D. samples are still likely to capture separate modes, and if
the number of samples is much larger the number of uncaptured modes is likely to be small.
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Figure 5: Plot of the functions y = N(1− (N−1
N )x) and y = min(x,N) for N = 1000 represent-

ing, respectively, the expected number of modes captured by I.I.D. sampling a distribution with N
equiprobable modes and the optimal coverage.

Literature There is a vast literature that has studied the suboptimality of I.I.D. sampling from
a statistical perspective and proposed different solutions. For example, in the field of Bayesian
inference, antithetic sampling [Geweke, 1988] has been proposed as a way to reduce the variance of
Monte Carlo estimates. Determinantal Point Processes [Kulesza et al., 2012] have also been widely
studied as a technique to improve the diversity of samples.

B.2 RUNTIME AND MEMORY OVERHEAD

The runtime overhead due to the addition of particle guidance to the inference procedure largely de-
pends on the potential that is used and on the size of the set n. In particular, while computing kernels
tends to be significantly cheaper than running the score model, the number of kernel computations
scales quadratically with n while the number of score model executions at every step is n.

In terms of memory, particle guidance does not create any significant overhead since the kernel
computations can be aggregated per element. However, when running inference on GPU if n is
larger than the batch size that fits the GPU memory when running score model inference, the data
might have to be moved back and forth between RAM and GPU memory to enable synchronous
steps for particle guidance, causing further overhead.

In the case of our experiments on Stable Diffusion, the number of samples extracted (4) does not
create significant overhead. However, in the setting of conformer generation on DRUGS different
molecules can have very different numbers of conformers with some even having thousands of them.
For efficiency, we therefore cap the size of n in particle guidance to 128 and perform batches of 128
samples until the total number of conformers is satisfied.

Figure 6: Example of a too large
PG weight causing aliasing arti-
facts.

Other limitations A badly chosen potential or in general
one with a guidance weight too high can overly change the
marginal likelihood and negatively impact the sampling qual-
ity. As an example in Fig. 6 the use of a particle guidance
parameter four times larger than the best one caused various
aliasing artifacts on the image.

However, in fixed potential particle guidance, its parameters
can be easily fit at inference time, therefore, it is typically rela-
tively inexpensive to test the optimal value of the guidance for
the application of interest and the chosen potential. This leads
to the prevention of too high guidance weights and the simple
detection of bad potential when the optimal weight is close to
0.
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C SYNTHETIC EXPERIMENTS

To show visually the properties of particle guidance and its effect on sample efficiency, we use a
two-dimensional Gaussian mixture model. In particular, we consider a mixture of N = 10 identical
Gaussian distributions whose centers are equally spaced over the unit circle and whose variance is
0.005. These Gaussians form a set of approximately disjoint equal bins. As we are interested in
inference, no model is trained and the true score of the distribution is given as an oracle.

As expected if one runs normal I.I.D. diffusion, the sample falls in one bin at random. Taking ten
samples, as shown in Fig. 7, some of them will fall in the same bin and some bins will be left
unfound. The empirical experiments confirm the combinatorial analysis (see Appendix A.7) which
shows that the expected number of bins discovered with N = 10 samples is only 6.5 and it takes on
average more than 29 samples to discover all the bins.

Radial
kernel

I.I.D.
sampling

Radial kernelEuclidean kernel

Figure 7: Left: plot of random samples (in blue) of the two-dimensional Gaussian mixture distribu-
tion (density depicted in red). I.I.D. samples often recover the same modes, while particle guidance
with a radial kernel captures all modes. Right: average number of modes recovered with 10 samples
as a function of the weight given by the diffusion noising terms and the potential weight when using
an RBF kernel with Euclidean and radial distances respectively. As expected with little weight to
the potential terms we obtain approximately 6.5 modes recovered in line with the I.I.D. diffusion
performance. Further increasing the potential weight on the Euclidean creates instability.

In many settings this behavior is suboptimal, and we would want our model to discover all the
modes of the distribution with as few samples as possible. Using the straightforward application of
particle guidance with a simple RBF kernel based on the squared Euclidean distance, we are able
to encourage diversity obtaining, on average, the discovery of nearly 9 bins on average from 10
samples (see Fig. 7).

Intrinsic diffusion models [Corso, 2023] have shown significant improvements when diffusion mod-
els operate on the submanifold where the data lies. Similarly, here building into the kernel the
degrees of freedom over which the diversity lies helps the particle guidance to effectively distribute
the samples over the distribution. We know that the different modes are distributed in a radial fash-
ion, and thus we build an RBF kernel based on the angle difference w.r.t. the origin. Using this
lower-dimensional kernel enables us to consistently discover all modes of the distribution. This
submanifold observation aligns well with the practice of methods such as metadynamics where the
kernels are defined over some lower-dimensional collective variables of interest.

D MOLECULAR CONFORMER GENERATION EXPERIMENTS

D.1 DATASET, METRICS AND BASELINES

Dataset We evaluate the method for the task of molecular conformer generation using the data
from GEOM [Axelrod & Gomez-Bombarelli, 2022], a collection of datasets that has become the
standard benchmark for this task in the machine learning community. In particular, we focus on
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GEOM-DRUGS, the largest, most pharmaceutically relevant and widely used dataset in GEOM
which consists of 304k drug-like molecules. For each of these molecules, an ensemble of conformers
was generated with metadynamics in CREST [Pracht et al., 2020], a procedure that gives accurate
structures but is prohibitive in high-throughput applications, costing an average of 90 core-hours
per molecule. To be able to use existing pretrained models we rely on the experimental setup and
splits introduced by Ganea et al. [2021] and used by several papers afterward. As we do not retrain
the score model, we do not use the training set, instead, we finetune the inference parameters for
particle guidance and the other ablation experiments on a random subset of 200 molecules out of
30433 from the validation set.

Evaluation metrics To evaluate conformer generation methods we want to test the ability of a
method to generate a set of conformers that are both individually good poses (precision) and as a set
cover the distribution of true conformers (recall). For this we employ the same evaluation setup and
metrics used by several papers in the field starting from Ganea et al. [2021]. In this setup, methods
are asked to generate twice as many conformers as in the original ensemble and then the so-called
Average Minimum RMSD (AMR) and Coverage (COV) are measured for precision (P) and recall
(R). For K = 2L let {C∗

l }l∈[1,L] and {Ck}k∈[1,K] be respectively the sets of ground truth and
generated conformers:

COV-R :=
1

L

∣∣∣∣{l ∈ [1..L] : ∃k ∈ [1..K],RMSD(Ck, C
∗
l ) < δ

∣∣∣∣
AMR-R :=

1

L

∑
l∈[1..L]

min
k∈[1..K]

RMSD(Ck, C
∗
l )

(43)

where δ is the coverage threshold (set to 0.75Å for the GEOM-DRUGS experiments). Swapping
ground truth and generated conformers in the equations above we obtain the precision metrics.

Baselines As baselines we report the performances of previous methods as measured by Ganea
et al. [2021] and Jing et al. [2022]. Cheminformatics conformer prediction methods rely on rules
and heuristics derived from chemical structures to fix the local degrees of freedom and then use
a combination of search and template techniques to set the more flexible degrees of freedom like
torsion angles. The most accurate and widely used such methods include the open-source software
RDKit ETKDG [Landrum et al., 2013] and the commercial tool OMEGA [Trott & Olson, 2010;
Hawkins & Nicholls, 2012].

Before the already introduced Torsional Diffusion [Jing et al., 2022], a number of other machine
learning approaches were proposed for this task, among these: GeoMol [Ganea et al., 2021] uses
a GNN to sample directly from a random seed local structures around each atom and then torsion
angles, GeoDiff [Xu et al., 2021] defines a equivariant diffusion model over atom coordinates, and
CGCF [Shi et al., 2021] learns an energy-based model over the space of pairwise distance matrices.

D.2 PARTICLE GUIDANCE SETUP

Reverse diffusion As discussed in Section 6.2, we applied particle guidance to torsional diffusion,
as this is currently considered to be state-of-the-art and it uses, like most ML-based methods before,
I.I.D. sampling during inference. We define the particle guidance kernel to operate directly on the
implicit hypertorus manifold where torsional diffusion defines the diffusion process, this, at the
same time, makes the kernel lower dimensional and it involves a minor modification to the existing
inference procedure. The reverse diffusion process that we apply is:

dτi =
1

2
g2(T − t) s(τi, L, T − t) dt︸ ︷︷ ︸

diffusion ODE

+βT−t

(
1

2
g2(t) s(τi, L, T − t) dt+ g(T − t) dw

)
︸ ︷︷ ︸

Langevin diffusion SDE

+
γT−t

2
g2(T − t) ∇τi log ΦT−t(τ1, ..., τn)dt︸ ︷︷ ︸

particle guidance
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where we follow the idea from Karras et al. [2022] of dividing the different components of the
reverse diffusion and tuning their individual parameters. The potential was chosen to be:

log Φt(τ1, ...τn) = −
αt

2n

∑
i,j

kt(τi, τj) where kt(τi, τj) = exp(−||τi − τj ||2

ht
) (44)

where the difference of each torsion angle is computed to be in (−π, π]. αt, βt, γt and ht are
inference hyperparameters that are ’logarithmically interpolated’ between two end values chosen
with hyperparameter tuning (using T = 1), e.g. αt = exp(t log(α1) + (1− t) log(α0)).

Permutation invariant kernel Since the kernel operates on the torsion angle differences it is
naturally invariant to SE(3) transformations, i.e. translations or rotations, of the conformers in space.
Moreover, as illustrated in Fig. 2 of Jing et al. [2022], while exact torsion angle values depend on
arbitrary choices of neighbors or orientation (to compute the dihedral angle) differences in torsion
angles are invariant to these choices. However, one transformation that the kernel in Equation 44 is
not invariant to are permutations of the atoms in the molecule. Many of these permutations lead to
isomorphic molecular graphs where however each of the torsion angles may now refer to a different
dihedral. To maximize the sample efficiency we make the kernel invariant to these by taking the
minimum over the values of the kernel under all such permutations:

k′t(τi, τj) = min
π∈Π

kt(τi, Pπτj)

where Π is the set of all permutations that keep the graph isomorphic (but do change the torsion
angles assignment) and Pπ is the permutation matrix corresponding to some permutation π. In
practice, these isomorphisms can be precomputed efficiently, however, to limit the overhead from
applying the kernel multiple times, whenever there are more than 32 isomorphic graphs leading to a
change in dihedral assignments we subsample these to only keep 32.

Batch size The number of conformers one has to generate is given, for every molecule, by the
benchmark (2L) and can vary significantly. To avoid significant computational overheads, we use
batches of up to n = 128 until all the conformers for that particular molecule are generated.

D.3 FULL RESULTS

We provide in Table 3 again the results reported in Table 1 with the additions of other baselines and
ablation experiments. In particular, as ablations, on top of running non-invariant particle guidance
i.e. without the minimization over the permutations described in the previous section, we also test
low-temperature sampling, another variation of the inference-time procedure that has been proposed
for diffusion models that we applied as described below.

Low-temperature sampling. Low-temperature sampling of some distribution p(x) with tem-
perature λ−1 < 1 consists of sampling the distribution pλ(x) ∝ p(x)λ. This helps mitigate the
overdispersion problem by concentrating more on high-likelihood modes and trading off sample
diversity for quality. Exact low-temperature sampling is intractable for diffusion models, however,
various approximation schemes exist. We use an adaptation of Hybrid Langevin-Reverse Time SDE
proposed by Ingraham et al. [2022]:

dτ = −
(
λt +

λ ψ

2

)
sθ,G(C, t) g

2(t) dt+
√

1 + ψ g(t) dw with λt =
σd + σt
σd + σt/λ

where λ (the inverse temperature), ψ and σd are parameters that can be tuned.

E EXPERIMENTAL DETAILS ON STABLE DIFFUSION

E.1 SETUP

In this section, we detail the experimental setup on Stable Diffusion. We replace the score func-
tion (∇xi

log pt′(xi)) in the original particle guidance formula (Eq. (4)) with the classifier-free
guidance formula [Ho, 2022]:

s̃(xi, c, t
′) = w∇xi log pt′(xi, c) + (1− w)∇xi log pt′(xi)
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Table 3: Quality of generated conformer ensembles for the GEOM-DRUGS test set in terms of
Coverage (%) and Average Minimum RMSD (Å). Minimizing recall and precision refers to the
hyperparameter choices that minimize the respective median AMR on the validation set.

Recall Precision
Coverage ↑ AMR ↓ Coverage ↑ AMR ↓

Method Mean Med Mean Med Mean Med Mean Med

RDKit ETKDG 38.4 28.6 1.058 1.002 40.9 30.8 0.995 0.895
OMEGA 53.4 54.6 0.841 0.762 40.5 33.3 0.946 0.854
CGCF 7.6 0.0 1.247 1.225 3.4 0.0 1.837 1.830
GeoMol 44.6 41.4 0.875 0.834 43.0 36.4 0.928 0.841
GeoDiff 42.1 37.8 0.835 0.809 24.9 14.5 1.136 1.090

Torsional Diffusion 72.7 80.0 0.582 0.565 55.2 56.9 0.778 0.729

TD w/ low temperature
- minimizing recall 73.3 77.7 0.570 0.551 66.4 73.8 0.671 0.613
- minimizing precision 68.0 69.6 0.617 0.604 72.4 81.3 0.607 0.548

TD w/ non-invariant PG
- minimizing recall 75.8 81.5 0.542 0.520 66.2 72.4 0.668 0.607
- minimizing precision 58.9 56.8 0.730 0.746 76.8 88.8 0.555 0.488
TD w/ invariant PG
- minimizing recall 77.0 82.6 0.543 0.520 68.9 78.1 0.656 0.594
- minimizing precision 72.5 75.1 0.575 0.578 72.3 83.9 0.617 0.523

where c symbolizes the text condition, w ∈ R+ is the guidance scale, and
∇xi

log pt′(xi, c)/ log pt′(xi) is the conditional/unconditional scores, respectively. As prob-
ability ODE with classifier-free guidance is the prevailing method employed in text-to-image
models [Saharia et al., 2022], we substitute the reverse-time SDE in Eq. (4) with the marginally
equivalent ODE. Assuming that f(xi, t

′) = 0, the new backward ODE with particle guidance is

dxi =

[
1

2
g2(t′)

(
s̃(xi, c, t

′)− αt′∇xi

n∑
j=1

kt′(xi,xj)

)]
dt

Following SVGD [Liu & Wang, 2016], we employ RBF kernel kt(τi, τj) = exp(− ||τi−τj ||2
ht

) with
ht = m2

t/ log n, where mt is the median of particle distances. We implement the kernel both in the
original down-sampled pixel space (the latent of VAE) or the feature space of DINO-VIT-b/8 [Caron
et al., 2021]. Defining the DINO feature extractor as gDINO, the formulation in the feature space
becomes:

dxi =

[
1

2
g2(t′)

(
s̃(xi, c, t

′)− αt′∇x0
i

n∑
j=1

kt′
(
gDINO(x

0
i ), gDINO(x

0
j )
))]

dt

where we set the input to the DINO feature extractor gDINO to the x0-prediction: x0
i = xi +

σ(t′)2s̃(xi, c, t
′), as x0-prediction lies in the data manifold rather than noisy images. σ(t) is the

standard deviation of Gaussian perturbatio kernel given time t in diffusion models. The gradient
w.r.t. x0

i can be calculated by forward-mode auto-diff. We hypothesize that defining Euclidean
distance in the feature space is markedly more natural and effective compared to the pixel space,
allowing the repulsion in a more semantically meaningful way. Our experimental results in Fig. 6.1
corroborate the hypothesis.

To construct the data for evaluation, we randomly sample 500 prompts from the COCO validation
set [Lin et al., 2014]. For each prompt, we generate a batch of four images. To get the aver-
age CLIP score/Aesthetic score versus in-batch similarity score curve, for I.I.D. sampling, we use
w ∈ {6, 7.5, 8.5, 9}. We empirically observed that particle guidance achieved a much lower in-
batch similarity score (better diversity) than IID sampling. As diversity typically improves with
smaller guidance weights [Ho, 2022; Saharia et al., 2022], we chose a set of smaller guidance
weights for I.I.D. sampling to further improve its diversity, keeping it in the relatively similar
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range as particle guidance. Hence for particle guidance, we use a set of larger guidance scales:
w ∈ {7.5, 8, 9, 9.5, 10}. Indeed, the experimental results suggest that even though I.I.D. sampling
used a smaller guidance weight to promote diversity, its in-batch similarity score was still worse than
that of particle guidance. . We set the hyper-parameter αt′ to 8σ(t) in particle guidance (feature)
and 30σ(t)2 in particle guidance (pixel). We use an Euler solver with 30 NFE in all the experiments.

E.2 IN-BATCH SIMILARITY SCORE

We propose in-batch similarity score to capture the diversity of a small set of generated samples
{x1, . . . ,xn} given a prompt c:

In-batch similarity score(x1, . . . ,xn) =
1

n(n− 1)

∑
i ̸=j

gDINO(xi)
T gDINO(xj)

||gDINO(xi)||2||gDINO(xj)||2

To save memory, we use the DINO-VIT-s/8 [Caron et al., 2021] as the feature extractor gDINO.

F EXTENDED IMAGE SAMPLES

In Fig. 8-Fig. 12, we visualize samples generated by the I.I.D. sampling process, particle guidance
in the pixel space, and particle guidance in the DINO feature space, on four different prompts. For
Fig. 8-Fig. 10, we select the prompts in Somepalli et al. [2023], with which Stable Diffusion is
shown to replicate content directly from the LAION dataset. We also include the generated samples
of SVGD-guidance, in which we replace the particle guidance term with SVGD formula (Eq. (2)).
In Fig. 13, we observe that SVGD generally leads to blurry images when increasing the guidance
scale αt. This is predictable as the guidance term in SVGD involves a weighted sum of scores of
nearby samples, which will steer the samples toward the mean of samples.

Further, we provide at this URL https://anonymous.4open.science/r/pg-images/
the (non-cherry picked) images generated from the first 50 text prompts of COCO using the same
hyperparameters, the same random seed. We set the guidance scale to commonly usedw = 8. When
comparing visually the differences are subjective, but, to our eyes, many of the generations with PG
show clear improvements in sample diversity. For example, for the first prompt “A baby eating a
cake with a tie around his neck with balloons in the background.”, conventional iid sampling tends to
generate a brown-haired white child, while particle guidance generates diverse depictions of babies
with varying hair and skin colors.
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(a) I.I.D. (b) particle guidance (pixel) (c) particle guidance (feature)

Figure 8: Text prompt: Captain Marvel Exclusive Ccxp Poster Released Online By Marvel

(a) I.I.D. (b) particle guidance (pixel) (c) particle guidance (feature)

Figure 9: Text prompt: Portrait of Tiger in black and white by Lukas Holas

(a) I.I.D. (b) particle guidance (pixel) (c) particle guidance (feature)

Figure 10: Text prompt: VAN GOGH CAFE TERASSE copy.jpg
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(a) I.I.D. (b) particle guidance (pixel) (c) particle guidance (feature)

Figure 11: Text prompt: A transparent sculpture of a duck made out of glass

(a) I.I.D. (b) particle guidance (pixel) (c) particle guidance (feature)

Figure 12: Text prompt: A unicorn in a snowy forest

(a) αt = 0.1 (b) αt = 0.3 (c) αt = 1 (d) αt = 2

Figure 13: SVGD guidance, with varying αt
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