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Abstract

Distribution variations in machine learning, driven by the dynamic nature of deploy-
ment environments, significantly impact the performance of learning models. This
paper explores endogenous distribution shifts in learning systems, where deployed
models influence environments, which in turn alters the data distributions that the
learning models rely on. This phenomenon is formulated by a decision-dependent
distribution mapping within the recently introduced framework of performative
prediction (PP) (Perdomo et al., 2020). Our study investigates the performative
effect in a decentralized noncooperative game, where players aim to minimize
private cost functions while simultaneously managing coupled inequality con-
straints. In this context, we examine two equilibrium concepts for the studied game:
performative stable equilibrium (PSE) and Nash equilibrium (NE), and establish
sufficient conditions for their existence and uniqueness. Notably, we provide the
first upper bound on the distance between the PSE and NE in the literature, which
is challenging to evaluate due to the absence of strong convexity on the joint cost
function. Furthermore, we develop a decentralized stochastic primal-dual algorithm
for efficiently computing the PSE point. By rigorously bounding the performative
effect, we prove that the proposed algorithm achieves sublinear convergence rates
for both performative regret and constraint violations and maintains the same order
of convergence rate as the case without performativity. Numerical experiments
further confirm the effectiveness of our algorithm and theoretical results.

1 Introduction

Machine learning aims to generalize models trained on given datasets to make accurate predic-
tions or decisions on new, unseen data (El Naqa and Murphy, 2015). The effectiveness of those
models depends on the alignment between the training datasets and deployment environments
(Quinonero-Candela et al., 2008). However, real-world environments are seldom static and often
exhibit fluctuations that can severely degrade model performance (Zhou, 2022). In particular, shifts
in data-generating distributions, driven by the dynamic nature of real-world conditions, present
significant challenges for model deployment.

Distribution shifts in machine learning can occur exogenously or endogenously. Exogenous distri-
bution shifts are driven by external factors beyond the control of the learning platforms, such as
environmental changes (Chan et al., 2020) or policy amendments (Wu et al., 2021). In contrast,
endogenous shifts arise from the system’s inherent dynamics and interactions, where the deployed
models affect environments, which in turn alters the data distributions that the learning models rely
on (Dong et al., 2018). For instance, an increase in commodity prices may decrease user interest,
thereby impacting sales. The key distinction lies in the controllability of endogenous shifts, providing
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an opportunity for designers to either exploit these shifts for improved performance or mitigate
unintended consequences (Dean et al., 2023).

While substantial efforts have been made to address exogenous distribution changes, such as covariate
shift (Chan et al., 2020), label shift (Wu et al., 2021), and concept drift (Lu et al., 2018), relatively
little attention has been paid to the challenges posed by endogenous distribution shifts. Tackling
these endogenous shifts is particularly challenging as data distributions are intrinsically linked to
the decisions made by the learning model itself (Perdomo et al., 2020). As a result, addressing
endogenous shifts may require the explicit modeling of feedback loops, consideration of causal
relationships, and the adaptation of models to dynamic environments.

A notable advancement in this area is the recently proposed framework of “performative prediction
(PP)” (Perdomo et al., 2020), also referred to as “decision-dependent learning” (Drusvyatskiy and
Xiao, 2023). This framework elegantly captures the dynamic interplay between decisions and
data distributions through a decision-dependent mapping, denoted by D(θ) where θ represents the
decision variable. By linking θ to the data distribution, this formulation bridges the gap between
model deployment and parameter optimization. Following the seminal work of (Perdomo et al., 2020),
a growing body of research has emerged, focusing on stability and optimality analysis (Piliouras
and Yu, 2023; Miller et al., 2021), as well as algorithmic design for various settings, including
reinforcement learning (Mandal et al., 2023), online learning (Wood et al., 2021), bandit problems
(Jagadeesan et al., 2022), and bilevel optimization (Lu, 2023).

This paper investigates endogenous distribution shifts in a decentralized noncooperative game, where
players aim to minimize private cost functions while simultaneously managing coupled inequality
constraints. To contextualize this setting, consider scenarios where strategic responses exhibit in
learning environments and competitive interactions occur among players. For example, in autonomous
vehicular networks, multiple vehicles compete to select their routes under constraints such as road
capacities, traffic congestion, and travel costs. The route choices of each vehicle influence traffic
patterns and consequently affect the travel times experienced by other vehicles (Mori et al., 2015).
Similarly, in finance, traders compete to maximize profits under constraints like market capacities
and inventory levels. The trading strategies of these participants impact market volatility and the
distribution of asset prices, creating a dynamic pricing landscape (Fattouh and Mahadeva, 2014).
These dynamics extend to other domains, such as electricity market competition (Moshari et al.,
2010), ride-sharing platforms (Narang et al., 2023), natural resource extraction (Cust and Poelhekke,
2015), and online advertising auctions (Varian, 2009).

Despite its pervasiveness, this performative phenomenon has largely been overlooked in the studies of
decentralized noncooperative games. This paper addresses the problem by formulating performativity
using coupled decision-dependent distributions, following the PP framework of (Perdomo et al.,
2020). However, the intricate interplay between decentralized players and endogenous distribution
shifts presents challenging theoretical and algorithmic questions: How do strategic responses in
learning environments influence the game’s equilibrium? How can players adapt their strategies
effectively when confronted with coupled decision-dependent distributions? How can we design
algorithms to exploit these dynamics for optimal decision-making? These questions form the core
of our investigation, guiding us toward more resilient, adaptive, and efficient learning outcomes in
decentralized games, especially in environments characterized by continuously evolving data and
decision-making processes. Our main contributions are summarized below:

• We initially formulate the problem of decentralized noncooperative games with data perfor-
mativity, where selfish players seek to minimize individual costs while managing coupled
inequality constraints. Under this setting, we examine two equilibrium concepts: performa-
tive stable equilibrium (PSE) and Nash equilibrium (NE), and establish sufficient conditions
for their existence and uniqueness. Compared to conventional games, this examination is
more complicated due to the interplay between decision-making and distribution changes.
Notably, we make a significant contribution by providing the first upper bound on the
distance between the PSE and NE in the literature. Computing this distance in PP games is
challenging due to the absence of strong convexity on the joint cost function, an essential
property for determining the optimality gap of performative stable points in previous work.
Instead, we characterize the distance by leveraging relations from strong duality and derive
a result comparable to the findings of the prior work (Perdomo et al., 2020; Lu, 2023).
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• To compute the PSE point of the PP-game, we propose a decentralized stochastic primal-dual
algorithm based on repeated risk minimization (RRM). The development and convergence
analysis of this algorithm face two primary challenges. First, there is a complex interaction
between decentralized competition and endogenous distribution shifts. Second, players only
have partial observation, as they communicate solely with neighbors, despite their private
cost functions being influenced by the strategies of all players. We evaluate the performance
of our algorithm by two commonly used metrics: performative regret, which measures the
suboptimality of the strategy sequence generated by RRM relative to the PSE point, and
constraint violation. By rigorously bounding the performative effect, we prove that the
proposed algorithm achieves sublinear convergence rates for both metrics. Furthermore,
our results show that while the performative effect slows down convergence, it does not
degrade the order of performative regret compared to the case without performativity (Lu
et al., 2020).

Finally, we conduct numerical experiments on a networked Cournot game and a ride-share market.
The simulation results confirm the sublinear convergence of our algorithm. Furthermore, the results
demonstrate that while greater performative strength leads to a wider gap between the PSE and NE,
the discrepancy between these two equilibria remains marginal. This verifies both the effectiveness
of the PSE solutions and the accuracy of our distance analysis between the PSE and NE.

Related Work: Among the numerous existing studies, two closely related works (Narang et al.,
2023) and (Wang et al., 2023) have considered performative behaviors in games. A key distinction in
our work is that our model requires all players’ collective strategies to adhere to the constraints of the
learning system, whereas both (Narang et al., 2023) and (Wang et al., 2023) address unconstrained
settings. This difference results in fundamentally distinct algorithmic designs and convergence
analyses. Our approach employs a primal-dual technique and requires consensus, whereas their
methods only rely on local stochastic gradient descent. Additionally, we consider a mathematically
richer model compared to (Wang et al., 2023), whose framework is structured in a specific form
involving local costs dependent solely on individual strategies and a regularizer quantifying similarity
among neighboring strategies. Furthermore, our algorithm design accounts for practical constraints
where players can only communicate with their immediate neighbors, while (Narang et al., 2023)
assumes full accessibility to all players’ strategies across the entire network. Importantly, our work
makes a significant contribution by providing the first upper bound on the distance between the
performative stable equilibrium (PSE) and Nash equilibrium (NE)—a gap not previously addressed.
Other related works such as (Li et al., 2022) and (Piliouras and Yu, 2023), have studied performative
prediction in decentralized multi-agent optimization. The former focuses on consensus-seeking
agents, while the latter is restricted to location-scale families. Finally, (Yan and Cao, 2024b)
considers the constrained performative prediction problem in a single-agent setting, whereas our
paper addresses decentralized noncooperative games. A more comprehensive literature review is
provided in Appendix A.

2 Problem Formulation
Consider a decentralized noncooperative game with n players. Each player i selects a strategy (or,
interchangeably, decision, action), denoted as θi, from its feasible set Ωi ⊆ Rd. Let the collective
decisions of all players be denoted as θ := col (θ1, · · · ,θn), and the collective decisions of all players
except player i be represented as θ−i := col (θ1, · · · ,θi−1,θi+1, · · · ,θn), for any i ∈ [n], where
[n] denotes the set of integers {1, 2, . . . , n}. Each player i has a private cost function Ji(ξi;θi,θ−i),
which depends on the random variable ξi ∈ Ξi, the player’s private decision θi, and the decisions of
all other players θ−i. This paper considers a scenario where the underlying populations strategically
respond to the players’ decisions, causing shifts in data distributions. This interplay is modeled by
a decision-dependent distribution mapping ξi ∼ Di (θi,θ−i) for all i ∈ [n]. The objective of each
player i is to selfishly minimize its performative risk Eξi∼Di(θi,θ−i)Ji(ξi;θi,θ−i) (abbreviated as
PRi(θi,θ−i)), subject to a coupled constriant

∑n
i=1 gi(θi) � 0, i.e.,

min
θi∈Ωi

Eξi∼Di(θi,θ−i)Ji (ξi;θi,θ−i)

subject to gi(θi) +
∑
j 6=i gj(θj) � 0.

(1)

Both Ji(·) and gi(·) are only locally accessible to player i for all i ∈ [n]. In the game (1), each player
solves its private optimization problem to determine the best strategy, given the current strategies

3



of all the other players. An equilibrium of the game (1) corresponds to a set of strategies where no
player can improve its performance by deviating unilaterally from its strategy.

Denote by ξ := col (ξ1, · · · , ξn) the concatenation of the variables ξi and by J (ξ;θ) :=
col (J1 (ξ1;θ) , · · · , Jn (ξn;θ)) the concatenation of the cost functions Ji(·) for all i ∈
[n]. A stochastic pseudogradient mapping of J (ξ;θ) is defined as ∇J (ξ;θ) :=
col (∇θ1J1 (ξ1;θ) , · · · ,∇θnJn (ξn;θ)). We have the following assumption on∇J (ξ;θ).
Assumption 2.1. There exists a constant µ > 0 such that the stochastic gradient mapping ∇J (ξ;θ)
is µ-strongly monotone, i.e.,

〈
∇J (ξ;θ)−∇J

(
ξ;θ′

)
,θ − θ′

〉
≥ µ‖θ − θ′‖22,∀ξ ∈ Ξ,θ,θ′ ∈ Ω,

where Ξ := Ξ1 × · · · ×Ξn and Ω := Ω1 × · · · ×Ωn.

Assumption 2.1 is commonly made in the literature of game theory. It suffices to guarantee the
existence of Nash equilibrium for a stochastic game with fixed data distributions (Facchinei and Pang,
2003, Theorem 2.3.3(b)). However, in our paper, since the data distributions are decision-dependent,
Assumption 2.1 does not imply the monotonicity of the gradient mapping of the joint performative
risk, denoted by PR(·) := col (PR1(·), · · · ,PRn(·)). Therefore, the existence and uniqueness
(E&U) conditions for the Nash equilibrium of the game (1) need further investigation.

We define a graph G(P) to represent the impact of players’ decisions on the data distributions of
different players. In G(P), the weight pij > 0 if player j’s decision affects player i’s data distribution,
and pij = 0 otherwise. Particularly, pii represents the weight of self-influence. These weights are
normalized as

∑n
j=1 pij = 1, for all i ∈ [n]. Clearly, the larger the weight pij , the stronger the effect

of player j’s decision on the data distribution of player i.

LetW1 (D,D′) represent the Wasserstein-1 distance between two probability measures D and D′.
Following (Wang et al., 2023), we impose the following assumption on the distributions {Di}i∈[n].
Assumption 2.2. For any i ∈ [n], there exists a constant εi ≥ 0 such that, ∀θ,θ′ ∈ Ω, the

distribution mapping Di is constrained byW1

(
Di (θ) ,Di

(
θ′
))
≤ εi

√∑n
j=1 pij

∥∥θj − θ′j∥∥22.

For any i ∈ [n], the parameter εi bounds the sensitivity of player i’s distribution with respect to (w.r.t.)
the decision variations of all players. This ε-sensitivity property of distributions is conceptually akin
to the Lipschitz continuity of functions that quantifies the variation of function values w.r.t argument
changes. We also require the following assumptions.
Assumption 2.3. For any i ∈ [n], the non-empty feasible set Ωi is closed, convex, and bounded, i.e.,
there exists a constant C ≥ 0 such that, ∀θi ∈ Ωi, ‖θi‖2 ≤ C.
Assumption 2.4. For any i ∈ [n] and θi ∈ Ωi, the cost function Ji(ξi;θi,θ−i) is convex
w.r.t. θi. Moreover, there exists a constant Li ≥ 0 such that Ji (ξi;θ) is Li-smooth, i.e,∥∥∇Ji (ξi;θ)−∇Ji

(
ξ′i;θ

′)∥∥
2
≤ Li

(∥∥ξi − ξ′i∥∥2 +
∥∥θ − θ′∥∥

2

)
,∀ξi, ξ

′
i ∈ Ξi,θ,θ

′ ∈ Ω.

Assumption 2.5. For any i ∈ [n] and θi ∈ Ωi, the constraint function gi(θi) is convex w.r.t. θi.
Moreover, there exist a constant Gg ≥ 0 such that gi(·) is Gg-Lipschitz, i.e.,

∥∥gi(θi)− gi(θ′i)∥∥2 ≤
Gg‖θi − θ′i‖2,∀θi,θ

′
i ∈ Ωi.

Assumptions 2.3 and 2.5 are widely used in constrained optimization (Bertsekas, 2014; Yan and Cao,
2024a), and Assumption 2.4 is standard in the PP literature. From Yan and Cao (2024a, Proposition 1),
under Assumptions 2.3 and 2.4, the cost function Ji(ξi;θ), ∀i ∈ [n] is Lipschitz continuous, i.e., there
exist a constantGi ≥ 0 such that |Ji(ξi;θ)−Ji(ξ′i;θ

′)| ≤ Gi
(∥∥ξi − ξ′i∥∥2 +

∥∥θ − θ′∥∥
2

)
,∀ξi, ξ

′
i ∈

Ξi,θ,θ
′ ∈ Ω. Moreover, Assumptions 2.3 and 2.5 imply the boundedness of ‖gi(θi)‖2, i.e., there

exists a constant B ≥ 0 such that ‖gi(θi)‖2 ≤ B, ∀θi ∈ Ωi, i ∈ [n].

3 Equilibrium of the PP-Game
This section examines two fundamental equilibrium concepts of the performative game (1): Nash
equilibrium (NE) and performative stable equilibrium (PSE), as defined below.
Definition 3.1 (Nash Equilibrium). A vector θne := col (θne1 , . . . ,θ

ne
n ) achieves an NE of the game

(1) if it holds for any i ∈ [n] that

θnei ∈ arg min
θi∈Ωi

Eξi∼Di(θi,θne
−i)
Ji
(
ξi;θi,θ

ne
−i
)

subject to gi(θi) +
∑
j 6=i gj(θ

ne
j ) � 0.
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Definition 3.2 (Performative Stable Equilibrium). A vector θpse := col (θpse1 , . . . ,θpsen ) achieves a
PSE of the game (1) if it holds for any i ∈ [n] that

θpsei ∈ arg min
θi∈Ωi

Eξi∼Di(θpse)Ji
(
ξi;θi,θ

pse
−i
)

subject to gi(θi) +
∑
j 6=i gj(θ

pse
j ) � 0.

NE is a fundamental concept in game theory. At NE, each player’s strategy optimally aligns with
its own interest, given the strategies of other players. Hence, no player has an incentive to deviate
from its strategy unilaterally. In the case of performative games, the computation of NE needs to take
into account the data distributions Di(·) for all i ∈ [n], as they are parameterized by the optimization
variable θ. However, this information is often unavailable in practice. Instead, at PSE, the data
distribution of each player i ∈ [n] is fixed at Di (θpse) and the PSE point achieves an NE of the game
(1) under the fixed data distribution of its own deployment. This formulation draws benign properties
akin to problems with fixed data distributions, facilitating the adaptation of existing algorithms.
Therefore, PSE is more frequently chosen as a performance metric in the literature of PP.

3.1 Existence and Uniqueness of PSE

We first establish the condition for the E&U of the PSE of the game (1). Our approach relies on
repeated risk minimization (RRM) for closed-loop retraining. First, we define a mapping T (θ) :=
{Ti(θ)}i∈[n] that, for any i ∈ [n],

θ′i = Ti(θ) := arg min
ui∈Ωi

Eξi∼Di(θi,θ−i)Ji
(
ξi;ui,θ

′
−i
)

subject to gi(ui) +
∑
j 6=i gj

(
θ′j
)
� 0.

The mapping T (θ) outputs the NE of the game (1) under the fixed data distributions Di(θi,θ−i) for
all i ∈ [n]. With Assumption 2.1, the E&U of this NE is guaranteed, thereby ensuring the validity of
the mapping T (θ). Based on T (θ), the RRM updates θti at each iteration t by

θt+1
i = Ti(θt),∀i ∈ [n]. (2)

Clearly, θt+1 is an NE of the game (1) under the deployment of θt. Additionally, we have that
any fixed point of (2) achieves an PSE for the game (1), i.e., θpse = T (θpse). By investigating the
convergence the iterative equation (2), we have the following sufficient condition for the E&U of the
PSE of the game (1).
Theorem 3.3. Suppose that Assumptions 2.1-2.5 hold. Then, for any θ, δ ∈ Ω, the mapping T (θ)
satisfies

‖T (θ)− T (δ)‖2 ≤ 1
µ

√∑n
i=1 L

2
i ε

2
i maxj∈[n] pij ‖θ − δ‖2 .

Thus, if it is satisfied that

1
µ

√∑n
i=1 L

2
i ε

2
i maxj∈[n] pij < 1, (3)

the sequence generated by the RRM (2) converges to a unique PSE point θpse at a linear rate that

‖θt+1 − θpse‖2 ≤
(

1
µ

√∑n
i=1 L

2
i ε

2
i maxj∈[n] pij

)t ∥∥θ1 − θpse∥∥
2
.

The proof of Theorem 3.3 is provided in Appendix B. According to Theorem 3.3, under Assumptions
2.1-2.5, when condition (3) holds, we have that: (i) the game (1) admits a unique PSE, and (ii) the
RRM method (2) converges linearly to the PSE.

Since the influence weights {pij}j∈[n] are normalized, with
∑n
j=1 pij = 1 for all i ∈ [n], we

generally have that pij = O( 1
n ). Therefore, the contraction condition (3) exhibits good scalability

w.r.t. the number of players. Moreover, according to the proof in Appendix B, if for any player
i ∈ [n], its distribution Di(·) depends only on its own decision θi, i.e., pij = 0 for all j 6= i, then we
have

‖T (θ)− T (δ)‖2 ≤ 1
µ maxi∈[n] Liεi ‖δ − θ‖2 .

5



The contraction of the above iterative equation only requires that 1
µ maxi∈[n] Liεi < 1. Furthermore,

if all players exhibit equivalent model parameters that L1 = · · · = Ln = L and ε1 = · · · = εn = ε
and pij = 1

n for all i, j ∈ [n], condition (3) reduces to Lε
µ < 1, recovering the contraction requirement

of (Perdomo et al., 2020) for a single-agent PP case.

3.2 Existence and Uniqueness of NE

First, we define a gradient mapping G(i)
θ (δi, δ−i) := Eξi∼Di(θ)∇δiJi (ξi; δi, δ−i) for any i ∈ [n],

and Gθ(δ) := col
(
G

(1)
θ (δ), · · · , G(n)

θ (δ)
)

. Moreover, for any i ∈ [n], define

H
(i)
θi,θ−i

(δ) := ∇uiEξi∼Di(ui,θ−i) [Ji (ξi; δ)]
∣∣
ui=θi

and Hθ(δ) := col
(
H

(1)
θ1,θ−1

(δ), · · · , H(n)
θn,θ−n

(δ)
)

. Then, for any i ∈ [n], the gradient of the
performative risk PRi(θi,θ−i) w.r.t. θi is given by

∇θiPRi(θi,θ−i) = G
(i)
θi,θ−i

(θi,θ−i) +H
(i)
θi,θ−i

(θi,θ−i).

Define ∇PR(θ) := col (∇θ1
PRi(θ), · · · ,∇θnPRn(θ)), we further have

∇PR(θ) = Gθ(θ) +Hθ(θ).

From Facchinei and Pang (2003, Theorem 2.3.3(b)), to prove the E&U of the NE of the (1), we
require the strongly monotonivity of the gradient mapping∇PR(θ). Therefore, we have the following
sufficient condition for the E&U of the NE of the game (1).
Theorem 3.4. Suppose that Assumptions 2.1-2.5 hold. If it is satisfied that

µ−
∑n
i=1 Liεi maxj∈[n]

√
pij −

√∑n
i=1 L

2
i ε

2
i pii > 0, (4)

then, the PP-game (1) is strongly monotone and admits a unique NE.

The proof of Theorem 3.4 is presented in Appendix C. Since pij characterizes the influence of
player j’s decision on the data distribution of player i, we typically have pij ≤ pii for j 6= i and
thus maxj∈[n] pij = pii for all i ∈ [n]. Then, the condition (4) reduces to µ −

∑n
i=1 Liεipii −√∑n

i=1 L
2
i ε

2
i pii > 0. Similarly, when L1 = · · · = Ln = L, ε1 = · · · = εn = ε, and pij = 1

n for
all i, j ∈ [n], we require that µ− 2Lε > 0, i.e., ε ≤ µ

2L , which recovers the condition to guarantee
the convexity of the performative risk PR(·), and thereby the E&U of the performative optimal point
of (Miller et al., 2021) for single-agent PP.

3.3 Distance Between PSE and NE

Theorem 3.5. Define µ̃ := µ −
∑n
i=1 Liεi maxj∈[n]

√
pij and α :=∑n

i=1Gi
(
1 + εi maxj∈[n]

√
pij
)
. Suppose that Assumptions 2.1-2.5 hold and µ̃ > 0. Then,

for every PSE point and NE point, we have the following relations:

‖θpse − θne‖2 ≤ 1
µ̃

√∑n
i=1G

2
i ε

2
i pii and |PR(θpse)− PR(θne)| ≤ α

µ̃

√∑n
i=1G

2
i ε

2
i pii.

The proof of Theorem 3.5 is presented in Appendix D. According to Theorem 3.5, the distance
between the PSE and NE of the game (1) depends on the cost functions’ parameters µ, {Gi}, {Li},
as well as the sensitivity of the data distributions {εi}. Larger sensitivity parameters widen the gap
between the PSE and NE, while a bigger monotonicity parameter µ reduces it. Notably, when the
sensitivity parameter εi = 0 for all i ∈ [n], the game (1) reduces to a conventional stochastic game
with fixed data distributions, and as a result, the PSE and NE converge to the same point.

To the best of our knowledge, this is the first result on the distance between PSE and NE of PP-games.
Characterizing this distance is challenging in games due to the lack of strong convexity on the joint
cost function J(·), which is an essential property for determining the optimality gap of performative
stable points in previous work (Perdomo et al., 2020; Lu, 2023). In this paper, we characterize
this gap by leveraging relations from strong duality (Boyd and Vandenberghe, 2004; Facchinei and
Pang, 2010). Our result is comparable to the findings in (Perdomo et al., 2020) for single-agent PP
problems wherein this optimality gap is bounded by 2Lε

µ . In our case, when G1 = · · · = Gn = G,
ε1 = · · · = εn = ε and pij = 1

n for all i, j ∈ [n], we have ‖θpse − θne‖2 ≤ Gε
µ−Lε .
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Algorithm 1 Decentralized Stochastic Primal-Dual Algorithm: The Procedures at Player i, ∀i ∈ [n]:

1: Initialize θ1i ∈ Ξi arbitrarily. Set λ1
i = 0 and θ̂

1

ih = 0 for all h 6= i.
2: for t = 1 to T do
3: Exchange θti, θ̂

t

i, and λti with all neighbors;

4: Update the estimate θ̂
t

ih for all h 6= i by: θ̂
t+1

ih =
∑
k 6=h aikθ̂

t

kh + aihθ
t
h;

5: Deploy the model θti and sample ξti ∼ Di(θ
t
i,θ

t
−i);

6: Update the primal variable by: θt+1
i = PΩi

[
θti − γt

(
∇θiJi

(
ξti;θ

t
i, θ̂

t

i

)
+ γt∇gi(θ

t
i)
>λti

)]
;

7: Update the dual variable by: λt+1
i =

[(
1− γ2t

)∑
j∈Ni aijλ

t
j + γtgi

(
θti
)]

+
.

8: end for

4 Computation of the PSE

Although RRM theoretically has the capability to find a PSE point, how to perform risk minimization
at its each update remains unknown. Moreover, RRM requires the computation of an NE for each
deployment, which is computationally intensive. In this section, we present a decentralized stochastic
primal-dual algorithm for efficiently computing the PSE of the game (1). Theoretical analysis is also
provided on the convergence of the proposed algorithm.

4.1 Algorithm Development

For each player i ∈ [n], define a regularized Lagrangian as

L(i)
δ (θi,θ−i,λ) = Eξi∼Di(δ)Ji (ξi;θi,θ−i) +

〈
λ, gi(θi) +

∑
j 6=i gj (θj)

〉
,

where λ ∈ Rm+ is the dual variable. Denote by ∇gi(·) the Jacobian matrix of gi(·). From the
primal-dual theory (Boyd and Vandenberghe, 2004; Facchinei and Pang, 2010), for any γ > 0, there
exists a bounded Lagrangian multiplier λpse such that the following condition holds:

θpsei =PΩi

[
θpsei − γ

(
G

(i)
θpse (θpse,λpse) + γ∇gi(θ

pse
i )>λpse

)]
, ∀i ∈ [n],

λpse =
[
λpse + γ

(
gi(θ

pse
i ) +

∑
j 6=i gj

(
θpsej

))]
+
,

where γ is a control parameter. Thus, given θpse−i and under ξi ∼ Di(θ
pse), (θpsei ,λpse) is a saddle

point of the Lagrangian L(i)
θpse(θi,θ

pse
−i ,λ) for any i ∈ [n]. The joint saddle point (θpse,λpse) achieve

the PSE of the game (1) under strong duality (Boyd and Vandenberghe, 2004).

In the decentralized noncooperative game (1), each player can only communicate with its neighbors.
We use G(A) to denote the communication graph of the network, where A = (aij)n×n represents a
weight matrix. In G(A), aij = aji > 0 if there is a communication link between player i and play j,
and aij = aji = 0 otherwise. Let Ni be the set containing player i and all its neighbors such that
j ∈ Ni if aij > 0. We assume that the communication graph G(A) is connected and the weight
matrix A is doubly stochastic.

To find the saddle point (θpse,λpse), we develop a decentralized stochastic primal-dual algorithm,
as presented in Algorithm 1. The basic idea of Algorithm 1 is to perform gradient update on the
primal variables θi for all i ∈ [n] and the dual variable λ. In the decentralized noncooperative game,
each player i ∈ [n] only observes information from its neighbors. However, its private cost funtion
Ji(ξi;θi,θ−i) involves all players’ strategies. To solve this problem, we let each player i store an
estimate for the strategies of all the other players, denoted by θ̂ih, for all h 6= i. Define a vector θ̂i
that concatenates all the estimates θ̂ih. In each iteration t, neighbors exchange strategy θti, estimate

θ̂
t

i, and dual varible λti with each other. Then, each player i updates the estimates θ̂ih, for all h 6= i
by weighted average in Step 4. The primal variable θti is updated by gradient descent by Step 6, and
the dual variable λti is updated by gradient ascent by Step 7. The coefficient γt is the stepsize at the
tth iteration for all t ∈ [T ].
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4.2 Performance Analysis

Before analyzing the performance of Algorithm 1, we define the performance metrics adopted in this
paper. The first metric is performative regret. For any player i ∈ [n], its performative regret over T
iterations is defined as

Ri(T ) :=
∑T
t=1

(
Eξi∼Di(θpse)Ji

(
ξi;θ

t
i,θ

pse
−i
)
−PRi (θpse)

)
.

The regretRi(T ) measures the suboptimality of the sequence of decisions {θ1i , · · · ,θ
T
i } taken by

play i relative to θpsei . Besides, since the decisions of all players are subject to constraints, another
performance metric of constraint violation, denoted byRg(T ), is required, defined as

Rg(T ) =

∥∥∥∥[∑T
t=1

∑n
i=1 gi

(
θti
)]

+

∥∥∥∥
2

.

Any online or learning algorithm is regarded as “good” if both the time-average regret and the
time-average constraint violation are sublinear, i.e., limT→∞Ri(T )/T ≤ o(1) for any i ∈ [n] and
limT→∞Rg(T )/T ≤ o(1).

For analysis, we make the following assumption on the variance of the stochastic gradient
∇θiJi (ξi; δ), ∀i ∈ [n].
Assumption 4.1. The stochastic gradient ∇δiJi (ξi; δi, δ−i) is unbiased that
Eξi∼Di(θ)∇δiJi (ξi; δi, δ−i) = G

(i)
θ (δi, δ−i) and there exist constants σ0, σ1 ≥ 0 such

that
∑n
i=1 Eξi∼Di(θ)

∥∥∥∇δiJi (ξi; δi, δ−i)−G
(i)
θ (δi, δ−i)

∥∥∥2
2
≤ σ2

0 + σ2
1 ‖θ − θ

pse‖22 ,∀θ, δ ∈ Ω.

Theorem 4.2. Define µ̃ := µ −
∑n
i=1 Liεi maxj∈[n]

√
pij and ν :=

3
(
σ2
1 + 3

∑n
i=1 L

2
i

(
1 + ε2i maxj∈[n] pij

))
. Suppose that Assumptions 2.1-2.5 and 4.1 hold

and µ̃ > 0. By Algorithm 1, if the stepsize satisfies supt∈[T ] γt ≤
µ̃
ν , then, the performative regret of

the game (1) is bounded by

Ri(T ) ≤ O
(√

T
µ̃

(
1
γT

+
∑T
t=1 γt

))
,∀i ∈ [n].

Further, the constraint violation is bounded by

Rg(T ) ≤ O
(

1
γT

√(
1
γT

+
∑T
t=1 γt

)(
1 +

∑T
t=1 γ

2
t

))
.

For a sequence of diminishing stepsize γt = τη1 (τ2t+ τ1)−η, where τ1, τ2 > 0 and 0 < η < 1, we
have that: 1)

∑T
t=1 γt ≤ O

(
T 1−η); 2)

∑T
t=1 γ

2(t) ≤ O
(
T 1−2η). Plugging the above results into

Theorem 4.2 yields

Ri(T ) ≤ O
(
T

1+η
2 + T 1− η2

)
, i ∈ [n] and Rg(T ) ≤ O

(
T

3
2η + T

1+η
2 + T 1− η2

)
.

Based on the above two inequalities, the best choice of η is 1
2 such thatRi(T ) ≤ O(T

3
4 ),∀i ∈ [n]

and Rg(T ) ≤ O(T
3
4 ). This convergence speed matches that of the decentralized noncooperative

game without performativity (Lu et al., 2020).

The proof of Theorem 4.2 is provided in Appendix E. According to Theorem 4.2, the performative
effect reduces the convergence rate by amplifying the coefficient 1

µ̃ in the regret bounds. Specifically,
as the sensitivity parameters εi increase, the coefficient µ̃ decreases, leading to a slower convergence
rate of Ri(T ) for all i ∈ [n]. This occurs because a larger εi indicates a stronger performative
influence, which more significantly impacts the algorithm’s convergence. Nevertheless, the perfor-
mative effect does not degrade the convergence order of Algorithm 1 compared to the case without
performativity (Lu et al., 2020).

5 Numerical Experiments

In this section, we evaluate the effectiveness of our algorithm and theoretical results by conducting
numerical experiments on a networked Cournot game (Abolhassani et al., 2014), which is a founda-
tional model in economic theory (Allaz and Vila, 1993) for analyzing oligopolistic competitions. We
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Figure 1: Convergence of time-average regrets and time-average constraint violations.

Figure 2: (a). Normalized distance between θt and θne. (b). Total revenue at PSE and NE.

consider a networked Cournot game with five firms selling a single commodity across three markets.
Each firm aims to maximize its profit by determining the quantities it serves in all markets. The total
accommodated quantity in each market is limited by its market capacity. The simulation details and
additional numerical results are presented in Appendix F.1. We also provide an additional experiment
on a ride-share market in Appendix F.2.

Fig. 1 illustrates the convergence of the time-average regrets of five firms, denoted by Ri(t)/t,
∀i ∈ [5], and the convergence of the time-average constraint violations of three markets, de-
noted by 1

t

∑t
t′=1

∑n
i=1 gij(θ

t′

i ), ∀j ∈ [3]. The results demonstrate that both Ri(t)/t and
1
t

∑t
t′=1

∑n
i=1 gij(θ

t′

i ) approach zero as the iterations increase. This verifies the sublinear con-
vergence of the regrets and constraint violations in Theorem 4.2.

Fig. 2 (a) compares the normalized distance between θt, generated by Algorithm 1, and the NE
point θne, denoted as ‖θt − θne‖2/‖θt‖2. The NE point is computed based on perfect knowledge
of {Di}i∈[n]. We consider three different performative strengths: ε = 0.2, 0.4, and 0.6. It is
observed that ‖θt − θne‖2/‖θt‖2 stabilizes at values approximately equal to or smaller than 10−1

with iterations, varifying the effectiveness of Algorithm 1. Additionally, a larger performative strength
leads to a wider normalized distance between the convergent point of θt and θne. In Fig. 2 (b),
we compare the total revenues, denoted by −

∑5
i=1 PRi(θ

t) under the same three ε settings. We
consider two scenarios: 1). “pse”, where θt is generated by Algorithm 1; 2). “ne”, where θt is
generated by performing the same procedures as Algorithm 1 but with perfect information on the
distributions {Di(θ)}i∈[n]. The result demonstrates the close performance of the “pse” approach and
the “ne” approach. More numerical results can be found in Appendix F.

Conclusions: We have studied the performative phenomenon in a decentralized noncooperative game
where selfish players seek to maximize their individual profits while adhering to coupled inequality
constraints. We have derived sufficient conditions for the E&U of both PSE and NE and provided the
first upper bound on the distance between these two equilibria. Furthermore, we have developed a
decentralized stochastic primal-dual algorithm for efficiently computing of the PSE point. Theoretical
analysis has demonstrated the same order of convergence speed of our algorithm as the case without
performativity. Finally, numerical simulations have been provided to verify the effectiveness of our
algorithm and theoretical results.
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A Related Work

In recent years, the exploration of distribution shifts in machine learning systems has been extended
beyond traditional exogenous shifts (Quinonero-Candela et al., 2008), such as covariate (Chan
et al., 2020), label (Wu et al., 2021), and concept (Lu et al., 2018) drifts, to include endogenous
shifts resulting from strategic behaviors within the learning platforms themselves. Perdomo et al.
(2020) introduced the framework of performative prediction, which captures the platform’s strategic
responses using decision-dependent distribution mappings. Following this seminal work, significant
research effort has been dedicated to investigating the phenomenon of performativity in various
scenarios. In particular, (Shan et al., 2023) studied the endogenous distribution change in open
environments, where data are obtained from a corrupted decision-dependent distribution. They
proposed an effective algorithm with theoretical guarantees by decoupling the two sources of effects.
Lu (2023) investigated the presence of performativity in bilevel optimization. They first established
sufficient conditions for the existence of performatively stable solutions and then developed a
stochastic algorithm to find the PS point. In (Mandal et al., 2023), the authors examined the
performative effect in a regularized reinforcement learning problem and showed that repeatedly
optimizing this objective converges to a performatively stable policy under reasonable assumptions
on the transition dynamics. It is demonstrated in (Drusvyatskiy and Xiao, 2023) that typical gradient-
based stochastic algorithms can be applied to find performative stable equilibria with a biased gradient
oracle.

While most existing work focused on finding performative stable points, there are studies aimed at
identifying the optimal solutions for performative prediction problems (Miller et al., 2021; Izzo et al.,
2021; Jagadeesan et al., 2022). The optimality gap of performative stable points was first presented
in (Perdomo et al., 2020), where their bound is proportional to the strong convexity parameter and
inversely proportional to the smoothness parameter of cost functions and the sensitivity parameter
of the decision-dependent distributions. The primary challenges in computing optimal points in
performative prediction problems lie in the unknown decision-dependent data distributions. To
address this challenge, a commonly used method is to make parametric assumptions on the data
distributions and then design algorithms to estimate them. For instance, (Miller et al., 2021) proposed
a two-stage algorithm to find the performative optima for distribution maps in the location family. Izzo
et al. (2021) proposed a PerfGD algorithm by exploiting the exponential structure of the underlying
distribution maps.

Among the numerous existing studies, (Narang et al., 2023) and (Wang et al., 2023) are, at a
conceptual level, the closest papers to our own since they have considered performative behaviors in
games. On a technical level, however, these two works are quite distinct from ours since we study
completely different problem settings. One defining distinction is that, in our model, the collective
strategies of all players must adhere to the learning system’s constraints, whereas both (Narang
et al., 2023) and (Wang et al., 2023) are unconstrained. Constraints are unavoidable in certain game
scenarios, such as safety and cost constraints in transportation, relevance and diversity constraints in
advertising, and risk tolerance and portfolio constraints in financial trading. The constrained problem
in our work results in a fundamentally different algorithm design and convergence analysis from
these two papers. Our work utilizes the primal-dual technique and necessitates consensus, whereas
their approach only requires local stochastic gradient descent. Additionally, there are distinctions in
the problem settings. In (Wang et al., 2023), the private cost function of each player is structured
in a specific form, involving a local cost depending solely on its own strategy and a regularizer
quantifying the similarity of strategies among neighbors. In contrast, we consider a mathematically
richer setting where each player’s private cost function depends on the strategies of all players in the
game, thus encompassing the model in (Wang et al., 2023). Moreover, our algorithm design takes
into account the practical implementation where players can only communicate with their neighbors,
while (Narang et al., 2023) assumes that the strategies of all players are publicly accessible across the
entire network. This more practical setting poses challenges for each player in observing the entire
network. More importantly, although (Narang et al., 2023) and (Wang et al., 2023) demonstrated the
existence and uniqueness of the PSE and NE for their respective game settings, neither of them offers
insights into the distance between these two equilibria. This paper makes a significant contribution
by presenting the first upper bound on this distance.

Furthermore, there are works on decentralized optimization of multiagent performative prediction
(Li et al., 2022; Piliouras and Yu, 2023). Specifically, (Li et al., 2022) focused on decentralized
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optimization with consensus-seeking agents, where the data distribution of each agent depends only
on its own decision. Although (Piliouras and Yu, 2023) considers multiagent, their study is in a
centralized fashion and their data distributions are restricted to location-scale families. Lastly, it is
worth mentioning that one paper (Yan and Cao, 2024b) has considered constrained optimization in
the context of performative prediction. However, (Yan and Cao, 2024b) studied the single-agent case,
while this work considers a more complex model with decentralized noncooperative players and
partially observed information about competitors’ strategies. Additionally, this paper contributes to
the evaluation of equilibria, whereas such analysis has not been involved in (Yan and Cao, 2024b).

B Existence and Uniqueness of Performative Stable Equilibrium

From the definition of the mapping T (θ), we have that

θ′i = Ti(θ) = arg min
ui∈Ωi

Eξi∼Di(θ)Ji
(
ξi;ui,θ

′
−i
)

s.t. gi(ui) +
∑
j 6=i

gj
(
θ′j
)
≤ 0, ∀i ∈ [n],

δ′i = Ti(δ) = arg min
ui∈Ωi

Eξi∼Di(δ)Ji
(
ξi;ui, δ

′
−i
)

s.t. gi(ui) +
∑
j 6=i

gj
(
δ′j
)
≤ 0, ∀i ∈ [n].

Define Eξi∼Di(θ)∇θiJi
(
ξi;θ

′
i,θ
′
−i
)

:= G
(i)
θ (θ′i,θ

′
−i). From the optimality condition of constrained

optimization, we have 〈
G

(i)
θ

(
θ′
)
,θ′i − δ

′
i

〉
≤ 0, ∀i ∈ [n].

Define a vector Gθ(θ′) := col
(
G

(1)
θ (θ′), · · · , G(n)

θ (θ′)
)

that concatenates all the G(i)
θ (θ′), i ∈ [n].

Then, we have 〈
Gθ
(
θ′
)
,θ′ − δ′

〉
≤ 0. (A1)

Similarly, we have 〈
Gδ
(
δ′
)
,θ′ − δ′

〉
≥ 0. (A2)

Further, from the monotoniticy of the gradient mapping∇J (ξ;θ) in Assumption 2.1, we have〈
Gθ(θ′)−Gθ(δ′),θ′ − δ′

〉
= Eξ∼D(θ)

〈
∇J

(
ξ;θ′

)
−∇J

(
ξ; δ′

)
,θ′ − δ′

〉
≥ µ‖θ′ − δ′‖22,

(A3)

where D(θ) := D1(θ)× · · · × Dn(θ). Plugging (A1) and (A2) into (A3) gives

µ‖θ′ − δ′‖22 ≤
〈
−Gθ

(
δ′
)
,θ′ − δ′

〉
≤
〈
Gδ
(
δ′
)
−Gθ

(
δ′
)
,θ′ − δ′

〉
≤
∥∥Gδ (δ′)−Gθ (δ′)∥∥2 ∥∥θ′ − δ′∥∥2 . (A4)

From Assumption 2.2,W1

(
Di (θ) ,Di

(
θ′
))
≤ εi

√∑n
j=1 pij

∥∥θj − θ′j∥∥22. Along with Assumption
2.4, we have that ∥∥Gδ (δ′)−Gθ (δ′)∥∥22 ≤ n∑

i=1

n∑
j=1

L2
i ε

2
i pij ‖δj − θj‖

2
2

≤
n∑
i=1

L2
i ε

2
i max
j∈[n]

pij ‖δ − θ‖22 .

Plugging the above result into (A4) yields

‖θ′ − δ′‖2 ≤
1

µ

√√√√ n∑
i=1

L2
i ε

2
i max
j∈[n]

pij ‖δ − θ‖2 .
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From the RRM procedure, we know that θt+1 = T (θt) and the PSE satisfies θpse = T (θpse). Then,
we have

∥∥θt+1 − θpse
∥∥
2
≤ 1

µ

√√√√ n∑
i=1

L2
i ε

2
i max
j∈[n]

pij
∥∥θt − θpse∥∥

2

≤

 1

µ

√√√√ n∑
i=1

L2
i ε

2
i max
j∈[n]

pij

t ∥∥θ1 − θpse∥∥
2
.

Further, if for any player i, its distribution Di depends only on its own decision θi, i.e., pij = 0 and
pii = 1 for all i, j ∈ [n] and j 6= i, then, we have

∥∥(Gδ (δ′)−Gθ (δ′))∥∥2 ≤
√√√√ n∑

i=1

L2
i ε

2
i ‖δi − θi‖

2
2 ≤ max

i∈[n]
Liεi ‖δ − θ‖2 . (A5)

Plugging (A5) into (A4) yields

‖θ′ − δ′‖2 ≤
1

µ
max
i∈[n]

Liεi ‖δ − θ‖2 .

Correspondingly, we have∥∥θt+1 − θpse
∥∥
2
≤
(

1

µ
max
i∈[n]

Liεi

)t ∥∥θ1 − θpse∥∥
2
.

C Existence and Uniqueness of Nash Equilibrium

Based on the results in Facchinei and Pang (2003, Theorem 2.3.3(b)), to show the existence and
uniqueness of NE, we need to prove that the gradient mapping∇PR(θ) of the performative game
(1) is strongly monotone, i.e., there exists a α > 0 such that 〈∇PR(θ)−∇PR(θ),θ − δ〉 ≥
α ‖θ − δ‖22, where α denotes the strongly-monotone parameter. Since∇PR(θ) = Gθ(θ) +Hθ(θ),
we have

〈∇PR(θ)−∇PR(δ),θ − δ〉 = 〈Gθ(θ)−Gδ(δ),θ − δ〉+ 〈Hθ(θ)−Hδ(δ),θ − δ〉 .

From Assumption 2.2, we have

〈Gθ(θ)−Gδ(θ),θ − δ〉 ≥ −
n∑
i=1

Liεi max
j∈[n]

√
pij ‖θ − δ‖22 .

Moreover, from the monotonicity of the gradient mapping∇J (ξ;θ) in Assumption 2.1, we have

〈Gδ(θ)−Gδ(δ),θ − δ〉 = Eξ∼D(δ) 〈∇J(ξ;θ)−∇J(ξ; δ),θ − δ〉 ≥ µ ‖θ − δ‖22 .

Combining the above two inequalities yields

〈Gθ(θ)−Gδ(δ),θ − δ〉 = 〈Gθ(θ)−Gδ(θ),θ − δ〉+ 〈Gδ(θ)−Gδ(δ),θ − δ〉

≥

(
µ−

n∑
i=1

Liεi max
j∈[n]

√
pij

)
‖θ − δ‖22 . (A6)

Further, let γ(s) = θ′ + s
(
θ − θ′

)
for s ∈ (0, 1). Then, we have

Ji (ξi;θ)− Ji
(
ξi;θ

′) =

∫ 1

0

〈
∇Ji

(
ξi;θ

′ + s
(
θ − θ′

))
,θ − θ′

〉
ds

=

∫ 1

0

〈
∇Ji (ξi; γ(s)) ,θ − θ′

〉
ds. (A7)
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From the definition of H(i)
θ (δ) that H(i)

θ (δ) := ∇uiEξi∼Di(ui,θ−i) [Ji (ξi; δ)]
∣∣
ui=θi

, we have that

H
(i)
θ (θ)−H(i)

θ (θ′) = ∇uiEξi∼Di(ui,θ−i)
[∫ 1

0

〈
∇Ji (ξi; γ(s)) ,θ − θ′

〉
ds

]∣∣∣∣
ui=θi

=

∫ 1

0

∇uiEξi∼Di(ui,θ−i)
〈
∇Ji (ξi; γ(s)) ,θ − θ′

〉∣∣∣∣
ui=θi

ds. (A8)

From Assumption 2.4, we have∥∥Eξi∼Di∇Ji (ξi;θ)− Eξ′i∼D′i∇Ji
(
ξ′i;θ

)∥∥
2
≤ LiW1(Di,D′i).

Along with Assumption 2.2, we know that the function Eξi∼Di(θi,θ−i)∇Ji
(
ξi;θ

′) is Liεipii-
Lipschitz continuous w.r.t θi, and thus its gradient satisfies∥∥∥∇uiEξi∼Di(ui,θ−i) [∇Ji (ξi; γ(s))]

∣∣
ui=θi

∥∥∥
2
≤ Liεipii. (A9)

Combing (A8) and (A9) gives∥∥∥H(i)
θ (θ)−H(i)

θ (θ′)
∥∥∥
2
≤
∫ 1

0

∥∥∥∇uiEξi∼Di(ui,θ−i) [∇Ji (ξi; γ(s))]
∣∣
ui=θi

∥∥∥
2

∥∥θ − θ′∥∥
2

ds

≤ Liεipii
∥∥θ − θ′∥∥

2
,

where the first inequality holds due to the Cauchy-Schwartz inequality. This further implies that

∥∥Hθ(θ)−Hθ(θ′)
∥∥
2

=

√√√√ n∑
i=1

∥∥∥H(i)
θ (θ)−H(i)

θ (θ′)
∥∥∥2
2

≤

√√√√ n∑
i=1

L2
i ε

2
i pii

∥∥θ − θ′∥∥
2
.

Following prior work (Narang et al., 2023) and (Wang et al., 2023) on performative games, we assume
that the mapping Hδ(θ) is monotone w.r.t δ, i.e., 〈Hθ(θ)−Hδ(θ),θ − δ〉 ≥ 0. Then, we have that

〈∇PR(θ)−∇PR(δ),θ − δ〉 = 〈Gθ(θ)−Gδ(δ),θ − δ〉+ 〈Hθ(θ)−Hδ(δ),θ − δ〉
= 〈Gθ(θ)−Gδ(θ),θ − δ〉+ 〈Hθ(θ)−Hδ(θ),θ − δ〉

+ 〈Gδ(θ)−Gδ(δ),θ − δ〉+ 〈Hδ(θ)−Hδ(δ),θ − δ〉

≥

µ− n∑
i=1

Liεi max
j∈[n]

√
pij −

√√√√ n∑
i=1

L2
i ε

2
i pii

 ‖θ − δ‖22 .
Based on the classical result that a strongly monotone game over a non-empty, closed, and convex set
admits a unique NE Facchinei and Pang (2003, Theorem 2.3.3(b)), we have the E&U condition for
the NE of the game (1) as given in theorem 3.4.

D Distance Between PSE and NE

The computation on the distance between the PSE and NE of the game (1) is based on the strong
duality (Boyd and Vandenberghe, 2004; Facchinei and Pang, 2010). Recall the definitions in Section
4.1 that

L(i)
δ (θi,θ−i,λ) := Eξi∼Di(δ)Ji (ξi;θi,θ−i) +

〈
λ, gi(θi) +

∑
j 6=i

gj (θj)

〉
.

Moreover, define a gradient mapping φi(ξi;θ,λ) := ∇θiJi (ξi;θ)+∇gi(θi)>λ and a concatenation
vector φ := [φ1, · · · , φn]>. For any i ∈ [n], since (θpsei ,λpse) is a saddle point of the Lagrangian
L(i)
θpse(θi,θ

pse
−i ,λ) under ξi ∼ Di(θ

pse), we have that

L(i)
θpse

(
θpsei ,θpse−i ,λ

)
≤ L(i)

θpse

(
θpsei ,θpse−i ,λ

pse
)
≤ L(i)

θpse

(
θi,θ

pse
−i ,λ

pse
)
∀θi ∈ Ωi,λ ∈ Rm+ .
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Similarly, for any i ∈ [n], (θnei ,λ
ne) the saddle point of the regularized Lagrangian

L(i)
θi,θne

−i
(θi,θ

ne
−i,λ) with decision-dependent distribution ξi ∼ Di(θi,θ

ne
−i). Setting λ = λne

in the first part of the proceeding inequality, we obtain

0 ≤ L(i)
θpse

(
θpsei ,θpse−i ,λ

pse
)
− L(i)

θpse

(
θpsei ,θpse−i ,λ

ne
)

= (λpse − λne)
>
g (θpse) ,∀i ∈ [n],

where (λpse − λne)
>
g (θpse) =

∑m
j=1

(
λpsej − λnej

)
(
∑n
i=1 gji (θpsei )). By the convexity of gji(·)

for all j ∈ [m], i ∈ [n], we have that
n∑
i=1

gji (θpsei ) ≤
n∑
i=1

(gji (θnei ) + 〈∇gji (θpsei ) ,θpsei − θnei 〉)

≤
n∑
i=1

〈∇gji (θpsei ) ,θpsei − θnei 〉 ,∀j ∈ [m],

where the last inequality follows from that gj(θne) =
∑n
i=1 gji (θnei ) ≤ 0. Multiplying the preceding

inequality with λpsej and adding over all j ∈ [m], we obtain

m∑
j=1

n∑
i=1

λpsej gji (θpsei ) = (λpse)
>
g (θpse) ≤

n∑
i=1

〈
m∑
j=1

λpsej ∇gji (θpsei ) ,θpsei − θnei

〉

=

n∑
i=1

〈
∇gi(θ

pse
i )>λpse,θpsei − θnei

〉
. (A10)

By the definition of the mapping φi(·), for any ξi ∈ Ξi, we have that,

∇gi(θ
pse
i )>λpse = φi(ξi;θ

pse,λpse)−∇θiJi (ξi;θ
pse) ,∀i ∈ [n]. (A11)

Plugging (A11) into (A10) gives

(λpse)
>
g (θpse) ≤

n∑
i=1

〈φi(ξi;θ
pse,λpse)−∇θiJi (ξi;θ

pse) ,θpsei − θnei 〉 ,∀i ∈ [n]. (A12)

Likewise, we have the following inequality based on the convexity of the functions {gji(·)}:

gji (θpsei ) ≥ gji (θnei ) + 〈∇gji (θnei ) ,θpsei − θnei 〉 ,∀j ∈ [m], i ∈ [n].

Multiplying the preceding inequality with −λnej and summing over j ∈ [m], we obtain

−
m∑
j=1

λnei

n∑
i=1

gji (θpsei ) ≤ −
m∑
j=1

λnej

n∑
i=1

gji (θnei )−
n∑
i=1

〈
m∑
j=1

λnej ∇gji (θnei ) ,θpsei − θnei

〉

=

n∑
i=1

〈
∇gi (θnei )

>
λne,θnei − θ

pse
i

〉
,

where the equality follows from that
∑m
j=1 λ

ne
j

∑n
i=1 gji (θnei ) = (λne)

>
g (θne) = 0, which holds

by the complementary slackness condition of the Lagrangian L(i)
θi,θne

−i
(θi,θ

ne
−i,λ) for all i ∈ [n].

Similar to (A12), we have

− (λne)
>
g (θpse) ≤

n∑
i=1

〈φi(ξi;θ
ne,λne)−∇θiJi (ξi;θ

ne) ,θnei − θ
pse
i 〉 . (A13)

Combining (A12) and (A13) yields

(λpse − λne)
>
g (θpse) ≤

n∑
i=1

〈φi(ξi;θ
pse,λpse)− φi(ξi;θ

ne,λne),θpsei − θnei 〉

−
n∑
i=1

〈∇θiJi (ξi;θ
pse)−∇θiJi (ξi;θ

ne) ,θpsei − θnei 〉 .
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Taking expectation on both sides of the above inequality over the distribution Di(θpse) for all i ∈ [n]
gives

(λpse − λne)
>
g (θpse) ≤

n∑
i=1

Eξi∼Di(θpse) 〈φi(ξi;θ
pse,λpse)− φi(ξi;θ

ne,λne),θpsei − θnei 〉

−
n∑
i=1

〈
G

(i)
θpse (θpse)−G(i)

θpse (θne) ,θpsei − θnei
〉
. (A14)

Since (θpsei ,λpse) is a saddle point of the Lagrangian L(i)
θpse(θ

pse,λpse) given ξi ∼ Di(θ
pse), we

have that

Eξi∼Di(θpse) 〈φi(ξi;θ
pse,λpse),θpsei − θnei 〉 ≤ 0,∀i ∈ [n]. (A15)

Furthermore, for any i ∈ [n], we have

Eξi∼Di(θpse)φi(ξi;θ
ne,λne) = G

(i)
θpse (θne) +∇gi(θ

ne
i )>λne

+∇θiPRi(θ
ne
i ,θ

ne
−i)−∇θiPRi(θ

ne
i ,θ

ne
−i). (A16)

Since (θnei ,λ
ne) is a saddle point of the Lagrangian L(i)

θi,θne
−i

(θi,θ
ne
−i,λ

ne) with decision-dependent
distribution Di(θi,θne−i), we have that

−
〈
∇θiPRi(θ

ne
i ,θ

ne
−i) +∇gi(θ

ne
i )>λne,θpsei − θnei

〉
≤ 0,∀i ∈ [n]. (A17)

Plugging (A15), (A16), and (A17) into (A14) yields

0 ≤ (λpse − λne)
>
g (θpse)

≤
n∑
i=1

〈
∇iPRi(θ

ne
i ,θ

ne
−i)−G

(i)
θpse (θne) ,θpsei − θnei

〉
−

n∑
i=1

〈
G

(i)
θpse (θpse)−G(i)

θpse (θne) ,θpsei − θnei
〉

=

n∑
i=1

〈
H

(i)
θne(θ

ne) +G
(i)
θne (θne)−G(i)

θpse (θpse) ,θpsei − θnei
〉
.

Then, we have

〈Gθpse (θpse)−Gθne (θne) ,θpse − θne〉 ≤ 〈Hθne(θne),θpse − θne〉 .
From the result in (A6) and the Cauchy-Schwarz inequality, we have(

µ−
n∑
i=1

Liεi max
j∈[n]

√
pij

)
‖θpse − θne‖22 ≤ ‖Hθne(θne)‖2‖θpse − θne‖2.

Since the cost function Ji(·) is Gi Lipschitz for any i ∈ [n], along with Assumption 2.2, we have

‖Hθne(θne)‖2 =

√√√√ n∑
i=1

‖H(i)
θne
i ,θ

ne
−i

(θnei ,θ
ne
−i)‖22 ≤

√√√√ n∑
i=1

G2
i ε

2
i pii.

Combining the above results yields

‖θpse − θne‖2 ≤
√∑n

i=1G
2
i ε

2
i pii

µ−
∑n
i=1 Liεi maxj∈[n]

√
pij

.

Further, from Assumption 2.2, we have

|PRi(θ
pse)− PRi(θ

ne)| ≤ Gi‖θpse − θne‖2 +Giεi

√√√√ n∑
j=1

pij
∥∥θpsej − θnej

∥∥2
2

≤ Gi
(

1 + εi max
j∈[n]

√
pij

)
‖θpse − θne‖2.
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Then, we have

|PR(θpse)− PR(θne)| =
n∑
i=1

|PRi(θ
pse)− PRi(θ

ne)|

≤

(
n∑
i=1

Gi

(
1 + εi max

j∈[n]

√
pij

)) √∑n
i=1G

2
i ε

2
i pii

µ−
∑n
i=1 Liεi maxj∈[n]

√
pij

.

E Convergence of the Decentralized Stochastic Primal-Dual Algorithm

The proof of this section utilizes the following supporting lemmas.
Lemma E.1. Based on the update rule of the dual variable λ in Algorithm 1, for any γt ≥ 0,
λti ∈ Rm+ , i ∈ [n], and t ∈ [T ], we have that

∑n
i=1 ‖γtλ

t
i‖22 ≤ nB2.

Lemma E.2. Define λ
t

:= 1
n

∑n
i=1 λ

t
i the average of the dual variable over all players at the tth

iteration. Then, for any γt ≥ 0 and t ∈ [T ], we have the following relationship:

−
T∑
t=1

n∑
i=1

γt(λ
t
i)
>gi(θ

t
i) ≤−

T∑
t=1

n∑
i=1

γtλ
>gi

(
θti
)

+
n

2

(
1 +

T∑
t=1

γ2t

)
‖λ‖22 +

9

2

T∑
t=1

n∑
i=1

∥∥∥λti − λt∥∥∥2
2

+ 2(1 +
√
n)B

T∑
t=1

γt

n∑
i=1

∥∥∥λti − λt∥∥∥
2

+ 4nB2
T∑
t=1

γ2t .

Moreover, we require the following Lemma on the weight matrix A.
Lemma E.3. Let σ2(A) denote the second-largest eigenvalue of the weight matrix A. Since A is
assumed to be doubly stochastic, it holds that σ2(A) < 1 (Horn and Johnson, 2012). Furthermore,
for any i ∈ [n], we construct a weight matrix A−i by removing the ith row and column of A. Let β
represent the maximum eigenvalue of A−i for all i ∈ [n]. It has been established in Hong et al. (2006,
Lemma 3) that β < 1.

With Lemma E.3, we have the following results.

Lemma E.4. Define etih := θ̂
t

ih − θ
t
h the estimation error of player i on the decision of player

h at the tth iteration, for all i, h ∈ [n] and t ∈ [T ]. Let eth denote the concatenation of etih that

eth := col
(
et1h, · · · , et(h−1)h, e

t
(h+1)h, · · · , e

t
nh

)
. Then, the sum of ‖eth‖2 over h ∈ [n] and t ∈ [T ]

satisfies

T∑
t=1

n∑
h=1

E‖eth‖2 ≤
nC

1− β
+
n
√
n− 1(G+

√
nBGg)

1− β

T∑
t=1

γt = O

(
T∑
t=1

γt

)
.

Moreover, the sum of ‖etih‖22 over h ∈ [n] and t ∈ [T ] satisfies

T∑
t=1

n∑
h=1

E‖eth‖22 ≤
2nC2

1− β
+

2n(n− 1)(G+
√
nBGg)

2

(1− β)2

T∑
t=1

γt = O

(
T∑
t=1

γt

)
.

Lemma E.5. With the definition λ
t

:= 1
n

∑n
i=1 λ

t
i, we have the following relationship on the

consensus error of the dual variable λti, given by λti − λ
t
, for all i ∈ [n] and t ∈ [T ]:

T∑
t=1

n∑
i=1

∥∥∥λti − λt∥∥∥
2
≤ 2(n+

√
n)B

1− σ2(A)

T∑
t=1

γt = O

(
T∑
t=1

γt

)
,

T∑
t=1

n∑
i=1

∥∥∥λti − λt∥∥∥2
2
≤ 4(n+

√
n)2B2

(1− σ2(A))2

T∑
t=1

γt = O

(
T∑
t=1

γt

)
.
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Next, we start the proof of Theorem 4.2. For ease of proposition, we define the following gra-
dient mappings: for any t ∈ [T ], φti(ξi;θi,θ−i,λ) := ∇iJi (ξi;θi,θ−i,θ) + γt∇gi(θi)>λ,
φt(·) := [φt1(·), · · · , φtn(·)]>, Φi,tδ (θ,λ) := G

(i)
δ (θ) + γt∇gi(θi)>λ, and Φtδ(θ,λ) :=[

Φ1,t
δ (θ,λ), · · · ,Φn,tδ (θ,λ)

]>
. Then, we have

E
∥∥θt+1 − θpse

∥∥2
2

=

n∑
i=1

E
∥∥∥PΩi

[
θti − γtφti

(
ξti;θ

t
i, θ̂

t

i,λ
t
i

)]
− PΩi

[
θpsei − γtΦi,tθpse (θpse,λpse)

]∥∥∥2
2

≤ E
∥∥θt − θpse∥∥2

2
+ γ2t

n∑
i=1

E
∥∥∥φti (ξti;θti, θ̂ti,λti)− Φi,tθpse (θpse,λpse)

∥∥∥2
2

− 2γt

n∑
i=1

E
〈
θti − θ

pse
i , φti

(
ξti;θ

t
i, θ̂

t

i,λ
t
i

)
− Φi,tθpse (θpse,λpse)

〉
. (A18)

The second term on the right side of (A18) is handled as follows.

γ2t

n∑
i=1

E
∥∥∥φti (ξti;θti, θ̂ti,λti)− Φi,tθpse (θpse,λpse)

∥∥∥2
2

= γ2t

n∑
i=1

E
∥∥∥φti (ξti;θti, θ̂ti,λti)− Φi,t

θt

(
θti, θ̂

t

i,λ
t
i

)
+ Φi,t

θt

(
θti, θ̂

t

i,λ
t
i

)
− Φi,tθpse (θpse,λpse)

∥∥∥2
2

≤ 3γ2t

n∑
i=1

E
∥∥∥φti (ξti;θti, θ̂ti,λti)− Φi,t

θt

(
θti, θ̂

t

i,λ
t
i

)∥∥∥2
2︸ ︷︷ ︸

(a)

+ 3γ2t

n∑
i=1

E
∥∥∥G(i)

θt

(
θti, θ̂

t

i

)
−G(i)

θpse (θpse)
∥∥∥2
2︸ ︷︷ ︸

(b)

+ 3γ4t

n∑
i=1

E
∥∥∥∇gi (θti)> λti −∇gi (θpsei )

>
λpse

∥∥∥2
2︸ ︷︷ ︸

(c)

. (A19)

We have the following results on these three terms in the last inequality of (A19).

(a) = 3γ2t

n∑
i=1

E
∥∥∥∇θiJi (ξti;θti, θ̂ti)−G(i)

θt

(
θti, θ̂

t

i

)∥∥∥2
2

≤ 3γ2t

(
σ2
0 + σ2

1E
∥∥θt − θpse∥∥2

2

)
.

(b) = 3γ2t

n∑
i=1

E
∥∥∥G(i)

θt

(
θti, θ̂

t

i

)
−G(i)

θt

(
θt
)

+G
(i)

θt

(
θt
)
−G(i)

θt
(θpse) +G

(i)

θt
(θpse)−G(i)

θpse (θpse)
∥∥∥2
2

≤ 9γ2t

n∑
i=1

E
(∥∥∥G(i)

θt

(
θti, θ̂

t

i

)
−G(i)

θt

(
θt
)∥∥∥2

2
+
∥∥∥G(i)

θt

(
θt
)
−G(i)

θt
(θpse)

∥∥∥2
2

+
∥∥∥G(i)

θt
(θpse)−G(i)

θpse (θpse)
∥∥∥2
2

)

≤ 9γ2t

n∑
i=1

E
(
L2
i

∥∥∥θ̂ti − θt−i∥∥∥2
2

+ L2
i

∥∥θt − θpse∥∥2
2

+ L2
i ε

2
i max
j∈[n]

pij
∥∥θt − θpse∥∥2

2

)
,

where the last inequality is based on Assumptions 2.2 and 2.4. Further, since the constriant function
gi(·) is Gg Lipschitz for all i ∈ [n], we have that

(c) ≤ 6γ4t

n∑
i=1

E
∥∥∥∇gi (θti)> λti∥∥∥2

2
+ 6γ4t

n∑
i=1

E
∥∥∥∇gi (θpsei )

>
λpse

∥∥∥2
2

≤ 6γ2tG
2
g

n∑
i=1

E‖γtλti‖22 + 6γ4t nG
2
g‖λ

pse‖22

≤ 6γ2t nB
2G2

g + 6γ4t nG
2
g‖λ

pse‖22,
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where the last inequality is based on Lemma E.1.

Plugging the results of (a), (b), and (c) into (A19) gives

γ2t

n∑
i=1

E
∥∥∥φti (ξti;θti, θ̂ti,λti)− Φi,tθpse (θpse,λpse)

∥∥∥2
2

≤ 3γ2t σ
2
0 + 3γ2t

(
σ2
1 + 3

n∑
i=1

L2
i

(
1 + ε2i max

j∈[n]
pij

))
E
∥∥θt − θpse∥∥2

2

+ 9γ2t

n∑
i=1

L2
iE
∥∥∥θ̂ti − θt−i∥∥∥2

2
+ 6γ2t nB

2G2
g + 6γ4t nG

2
g‖λ

pse‖22. (A20)

Next, we deal with the last term on the right side of (A18). First, we have the following inequality:

E
[
φti

(
ξti;θ

t
i, θ̂

t

i,λ
t
i

)
− Φi,tθpse (θpse,λpse)

]
= E

[
G

(i)

θt

(
θti, θ̂

t

i

)
−G(i)

θpse (θpse)
]

+ γtE
[
∇gi

(
θti
)>
λti −∇gi (θpsei )

>
λpse

]
.

Moreover, we have

− 2γt

n∑
i=1

E
〈
θti − θ

pse
i , G

(i)

θt

(
θti, θ̂

t

i

)
−G(i)

θpse (θpse)
〉

= −2γt

n∑
i=1

E
〈
θti − θ

pse
i , G

(i)

θt

(
θti, θ̂

t

i

)
−G(i)

θt

(
θt
)〉
− 2γtE

〈
θt − θpse, Gθt

(
θt
)
−Gθt (θpse)

〉
− 2γtE

〈
θt − θpse, Gθt (θpse)−Gθpse (θpse)

〉
≤ 4Cγt

n∑
i=1

LiE
∥∥∥θ̂ti − θt−i∥∥∥

2
− 2µγtE

∥∥θt − θpse∥∥2
2

+ 2γt

n∑
i=1

Liεi max
j∈[n]

√
pijE

∥∥θt − θpse∥∥2
2
,

(A21)

where the last inequality is from Assumptions 2.2, 2.3, 2.4 and the Cauchy-Schwarz inequality.

Further, we have

− 2γ2t

n∑
i=1

E
〈
θti − θ

pse
i ,∇gi

(
θti
)>
λti −∇gi (θpsei )

>
λpse

〉
≤ 2γ2t

n∑
i=1

E
〈
θpsei − θti,∇gi

(
θti
)>
λti

〉
+ 4γ2tCGg‖λ

pse‖2

≤ 2γ2t

n∑
i=1

E
[(
gi (θpsei )− gi

(
θti
))>

λti

]
+ 4γ2tCGg‖λ

pse‖2

≤ 2γ2t E

[
n∑
i=1

gi (θpsei )
>
(
λti − λ

t
)

+ g (θpse)
>
λ
t −

n∑
i=1

gi
(
θti
)>
λti

]
+ 4γ2tCGg‖λ

pse‖2

≤ 2γ2t

n∑
i=1

E
[
‖gi (θpsei )‖2

∥∥∥λti − λt∥∥∥
2
− gi

(
θti
)>
λti

]
+ 4γ2tCGg‖λ

pse‖2, (A22)

where the last inequality uses the fact that g (θpse)
>
λ
t ≤ 0.

Define µ̃ := µ −
∑n
i=1 Liεi maxj∈[n]

√
pij , ν := 3

(
σ2
1 + 3

∑n
i=1 L

2
i

(
1 + ε2i maxj∈[n] pij

))
, and

π := 3σ2
0 + 6nB2G2

g + 6nG2
g‖λ

pse‖22 + 4CGg‖λpse‖. Plugging the results in (A20), (A21), and
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(A22) into (A18) yields

E
∥∥θt+1 − θpse

∥∥2
2

≤
(
1− 2γtµ̃+ νγ2t

)
E
∥∥θt − θpse∥∥2

2
+ 4Cγt

n∑
i=1

LiE
∥∥∥θ̂ti − θt−i∥∥∥

2
+ 9γ2t

n∑
i=1

L2
iE
∥∥∥θ̂ti − θt−i∥∥∥2

2

+ 2γ2t

n∑
i=1

E
[
B
∥∥∥λti − λt∥∥∥

2
− gi

(
θti
)>
λti

]
+ πγ2t . (A23)

Let supt≥1 γt ≤
µ̃
ν , then 1− 2µ̃γt + νγ2t ≤ 1− µ̃γt. Thus, we have

E
∥∥θt − θpse∥∥2

2

≤ 1

µ̃γt

(
E
∥∥θt − θpse∥∥2

2
− E

∥∥θt+1 − θpse
∥∥2
2

)
+

4C

µ̃

n∑
i=1

LiE
∥∥∥θ̂ti − θt−i∥∥∥

2

+
9γt
µ̃

n∑
i=1

L2
iE
∥∥∥θ̂ti − θt−i∥∥∥2

2
+

2γt
µ̃

n∑
i=1

E
[
B
∥∥∥λti − λt∥∥∥

2
− gi

(
θti
)>
λti

]
+
πγt
µ̃
.

Summing the above inequality over t ∈ [T ] and plugging into the result of Lemma E.2 yields
T∑
t=1

E
∥∥θt − θpse∥∥2

2
≤

T∑
t=1

1

µ̃γt

(
E
∥∥θt − θpse∥∥2

2
− E

∥∥θt+1 − θpse
∥∥2
2

)
+

4C

µ̃

T∑
t=1

n∑
i=1

LiE
∥∥∥θ̂ti − θt−i∥∥∥

2

+
9

µ̃

T∑
t=1

γt

n∑
i=1

L2
iE
∥∥∥θ̂ti − θt−i∥∥∥2

2
+

2

µ̃

(
3 + 2

√
n
)
B

T∑
t=1

γt

n∑
i=1

E
∥∥∥λti − λt∥∥∥

2

+
9

µ̃

T∑
t=1

n∑
i=1

∥∥∥λti − λt∥∥∥2
2

+
π

µ̃

T∑
t=1

γt +
8nB2

µ̃

T∑
t=1

γ2t

− 2

µ̃

T∑
t=1

n∑
i=1

γtλ
>gi(θ

t
i) +

n

µ̃

(
1 +

T∑
t=1

γ2t

)
‖λ‖22. (A24)

Since
∥∥θt − θpse∥∥2

2
≤ 4C2, we have that

T∑
t=1

1

γt

(
E
∥∥θt − θpse∥∥2

2
− E

∥∥θt+1 − θpse
∥∥2
2

)
=

1

γ1
E
∥∥θ1 − θpse∥∥2

2
− 1

γT
E
∥∥∥θT+1 − θpse

∥∥∥2
2

+

T∑
t=2

(
1

γt
− 1

γt−1

)
E
∥∥θt − θpse∥∥2

2

≤ 1

γ1
4C2 +

T∑
t=2

(
1

γt
− 1

γt−1

)
4C2 ≤ 4C2

γT
, (A25)

where in the last inequality is based on the fact that 1
γt
− 1

γt−1
≥ 0 because γt is a non-increasing

sequence. Further, we have the following relations:
n∑
i=1

L2
iE
∥∥∥θ̂ti − θt−i∥∥∥2

2
≤ max

i
Li

n∑
i=1

∑
h6=i

∥∥∥θ̂tih − θth∥∥∥2
2

= max
i
Li

n∑
h=1

‖eth‖22, (A26)

n∑
i=1

LiE
∥∥∥θ̂ti − θt−i∥∥∥

2
≤ max

i
Li

n∑
i=1

√∑
h6=i

∥∥∥θ̂tih − θth∥∥∥2
2

≤ max
i
Li

√√√√n

n∑
i=1

∑
h6=i

∥∥∥θ̂tih − θth∥∥∥2
2

≤ max
i
Li
√
n

n∑
h=1

‖eth‖2, (A27)
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where the last inequality is based on the fact that
√
a+ b+ c ≤

√
a+
√
b+
√
c for any a, b, c ≥ 0.

Plugging (A25), (A26) and (A27) into (A24) and utilizing the results in Lemmas E.4 and E.5, we
have that

T∑
t=1

E
∥∥θt − θpse∥∥2

2
+

2

µ̃

T∑
t=1

n∑
i=1

γtλ
>gi

(
θti
)
− n

µ̃

(
1 +

T∑
t=1

γ2t

)
‖λ‖22

≤ O

(
1

µ̃γT
+

1

µ̃

T∑
t=1

γt

)
. (A28)

Since any λ ∈ Rm+ satisfies the above inequality, by setting λ =
[
∑T
t=1 γt

∑n
i=1 gi(θ

t
i)]+

n(1+
∑T
t=1 γ

2
t )

, we have that

2

µ̃
λ>

(
T∑
t=1

γt

n∑
i=1

gi
(
θti
))
− n

µ̃

(
1 +

T∑
t=1

γ2t

)
‖λ‖22 =

∥∥∥∥[∑T
t=1 γt

∑n
i=1 gi

(
θti
)]

+

∥∥∥∥2
2

µ̃n
(

1 +
∑T
t=1 γ

2
t

) . (A29)

As the terms in (A29) is non-negative, omitting it in (A28) gives

T∑
t=1

E
∥∥θt − θpse∥∥2

2
≤ O

(
1

µ̃γT
+

1

µ̃

T∑
t=1

γt

)
.

Furthermore, since Eξi∼D(θpse)|Ji(ξi;θ
t
i,θ

pse
−i )− Ji(ξi;θ

pse)| ≤ Gi
∥∥θti − θpsei

∥∥
2
, for any i ∈ [n],

we have that

Ri(T ) =

T∑
t=1

(
Eξi∼D(θpse)

[
J
(
ξi;θ

t
i,θ

pse
−i
)
− J (ξi;θ

pse)
])

≤ Gi
T∑
t=1

∥∥θti − θpsei

∥∥
2

≤ Gi

√√√√T

T∑
t=1

∥∥θti − θpsei

∥∥2
2

≤ O


√√√√T

µ̃

(
1

γT
+

T∑
t=1

γt

) ,∀i ∈ [n].

On the other hand, plugging (A29) into (A28) and omitting the non-negtive term∑T
t=1 E

∥∥θt − θpse∥∥2
2
, we have∥∥∥∥[∑T

t=1 γt
∑n
i=1 gi

(
θti
)]

+

∥∥∥∥2
2

µ̃n
(

1 +
∑T
t=1 γ

2
t

) ≤ O

(
1

µ̃γT
+

1

µ̃

T∑
t=1

γt

)
.

∥∥∥∥∥
[
T∑
t=1

γt

n∑
i=1

gi
(
θti
)]

+

∥∥∥∥∥
2

≤ O


√√√√( 1

γT
+

T∑
t=1

γt

)(
1 +

T∑
t=1

γ2t

) .

Then, we prove that

Rg(T ) ≤ O

 1

γT

√√√√( 1

γT
+

T∑
t=1

γt

)(
1 +

T∑
t=1

γ2t

) .
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E.1 Proof of Lemma E.1

From the update rule of the dual variables, for any λti ∈ Rm+ , i ∈ [n], and t ∈ [T ], we have that

n∑
i=1

∥∥λt+1
i

∥∥2
2
≤

n∑
i=1

∥∥∥∥∥∥
n∑
j=1

aij
[(

1− γ2t
)
λtj + γtgi(θ

t
i)
]∥∥∥∥∥∥

2

2

≤
n∑
i=1

n∑
j=1

aij

∥∥∥∥(1− γ2t )λtj + γ2t
gi(θ

t
i)

γt

∥∥∥∥2
2

≤
n∑
i=1

n∑
j=1

aij

[
(1− γ2t )

∥∥λtj∥∥22 +
∥∥gi(θti)∥∥22]

≤(1− γ2t )

n∑
i=1

∥∥λti∥∥22 +

n∑
i=1

∥∥gi(θti)∥∥22
≤(1− γ2t )

n∑
i=1

∥∥λti∥∥22 + nB2.

We next bound
∑n
i=1

∥∥λti∥∥22, ∀t ∈ [T ] by deduction. First, since λ1
i = 0, γ1 ≤ 1, and ‖gi(θ

1
i )‖22 ≤

B2, ∀i ∈ [n], we have that
∑n
i=1

∥∥λ2
i

∥∥2
2
≤
∑n
i=1

∥∥gi(θ1i )∥∥22 ≤ nB2 ≤ nB2

γ2
1

. Assume that∑n
i=1 ‖λ

t
i‖22 ≤ nB2

γ2
t−1

. Since {γt}t∈[T ] is a non-incerasing sequence,
∑n
i=1 ‖λ

t
i‖22 ≤ nB2

γ2
t−1
≤ nB2

γ2
t

and thus
∑n
i=1

∥∥λt+1
i

∥∥2
2
≤ (1 − γ2t )nB

2

γ2
t

+ nB2 = nB2

γ2
t

. Therefore, for any t ∈ [T ], we have∑n
i=1 ‖λ

t+1
i ‖22 ≤ nB2

γ2
t
≤ nB2

γ2
t+1

, i.e.,
∑n
i=1 ‖γtλ

t
i‖22 ≤ nB2, which completes the proof.

E.2 Proof of Lemma E.2

From the update rule of the dual variables λi, for any λ ∈ Rm+ , we have that

n∑
i=1

∥∥λt+1
i − λ

∥∥2
2

=

n∑
i=1

∥∥∥∥∥∥
(1− γ2t ) ∑

j∈Ni

aijλ
t
j + γtgi

(
θti
)

+

− λ

∥∥∥∥∥∥
2

2

≤
n∑
i=1

∥∥∥∥∥∥(1− γ2t )
∑
j∈Ni

aij
(
λtj − λ

t
i

)
+
(
λti − λ

)
+ γt

(
gi
(
θti
)
− γtλti

)∥∥∥∥∥∥
2

2

≤
n∑
i=1

∑
j∈Ni

aij
∥∥λtj − λti∥∥22 +

∥∥λti − λ∥∥22 + γ2t
∥∥gi (θti)− γtλti∥∥22

+ 2
∑
j∈Ni

aij
〈
λtj − λ

t
i,λ

t
i − λ

〉
+ 2γt

〈
λti − λ, gi

(
θti
)
− γtλti

〉

+2γt
∑
j∈Ni

aij
∥∥λtj − λti∥∥2 ∥∥gi (θti)− γtλti∥∥2

 , (A30)

where we use the fact 1− γ2t ≤ 1 in (A30). Next, we simplify the terms in (A30). First, based on the
inequality (a− b)2 ≤ 2

(
a2 + b2

)
for any a, b ≥ 0, we have that

n∑
i=1

n∑
j=1

aij
∥∥λtj − λti∥∥22 =

n∑
i=1

n∑
j=1

aij

(∥∥∥(λtj − λt)− (λti − λt)∥∥∥2
2

)
≤ 4

n∑
i=1

∥∥∥λti − λt∥∥∥2
2
.
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In addition, with the result in Lemma E.1, we know that

n∑
i=1

∥∥gi (θti)− γtλti∥∥22 ≤ 2

n∑
i=1

∥∥gi (θti)∥∥22 + 2

n∑
i=1

∥∥γtλti∥∥22 ≤ 2nB2 + 2nB2 = 4nB2,∥∥gi (θti)− γtλti∥∥2 ≤ ∥∥gi (θti)∥∥2 +
∥∥γtλti∥∥2 ≤ B +

√
nB = (1 +

√
n)B.

Moreover, based on the fact that
∑n
i=1

∑n
j=1 aij

〈
λtj −λ

t
i, z
〉

= 0 for any z ∈ Rm, we have that

n∑
i=1

n∑
j=1

aij
〈
λtj − λ

t
i,λ

t
i − λ

〉
=

n∑
i=1

n∑
j=1

aij

〈
λtj − λ

t
i,λ

t
i − λ

t
〉

≤ 1

2

n∑
i=1

n∑
j=1

aij

(∥∥λtj − λti∥∥22 +
∥∥∥λti − λt∥∥∥2

2

)

≤ 5

2

n∑
i=1

∥∥∥λti − λt∥∥∥2
2
.

Furthermore, notice that〈
λti − λ, gi

(
θti
)
− γtλti

〉
=
〈
λti − λ, gi

(
θti
)〉
− γt‖λti‖22 + γtλ

>λti

≤
〈
λti − λ, gi

(
θti
)〉

+
γt
2

(
‖λ‖22 −

∥∥λti∥∥22) ,
where the last inequality follows that λ>λti = 1

2 (‖λ‖22 +
∥∥λti∥∥22). We also have

n∑
i=1

n∑
j=1

aij
∥∥λtj − λti∥∥2 ≤ 2

n∑
i=1

∥∥∥λti − λt∥∥∥
2
.

Plugging all the above results into (A30), we obtain

n∑
i=1

∥∥λt+1
i − λ

∥∥2
2
≤

n∑
i=1

(∥∥λti − λ∥∥22 + 9
∥∥∥λti − λt∥∥∥2

2

+ 2γt
〈
λti − λ, gi

(
θti
)〉

+ γ2t

(
‖λ‖22 −

∥∥λti∥∥22)
+4γt(1 +

√
n)B

∥∥∥λti − λt∥∥∥
2

)
+ 4nB2γ2t .

Rearranging the terms in the above inequality and summing over t ∈ [T ] gives

T∑
t=1

n∑
i=1

γt
〈
λti − λ, gi

(
θti
)〉

+

T∑
t=1

nγ2t
2
‖λ‖22

≥ 1

2

T∑
t=1

n∑
i=1

(∥∥λt+1
i − λ

∥∥2
2
−
∥∥λti − λ∥∥22)

− 9

2

T∑
t=1

n∑
i=1

∥∥∥λti − λt∥∥∥2
2
− 4nB2

T∑
t=1

γ2t

− 2(1 +
√
n)B

T∑
t=1

γt

n∑
i=1

∥∥∥λti − λt∥∥∥
2

+

T∑
t=1

n∑
i=1

γ2t
2

∥∥λti∥∥22 .
The last term on the right side of the above inequality is non-negative and can be omitted. Besides,
since λ1

i = 0 for all i ∈ [n], then
∑T
t=1

(∥∥λt+1
i − λ

∥∥2
2
−
∥∥λti − λ∥∥22) ≥ −‖λ‖22 for any λT+1

i ∈
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Rm+ . Thus, we have
T∑
t=1

n∑
i=1

γt

(
(λti)

>gi(θ
t
i)− λ

>gi(θ
t
i)
)

≥ −n
2

(
1 +

T∑
t=1

γ2t

)
‖λ‖22 −

9

2

T∑
t=1

n∑
i=1

∥∥∥λti − λt∥∥∥2
2

− 2(1 +
√
n)B

T∑
t=1

γt

n∑
i=1

∥∥∥λti − λt∥∥∥
2
− 4nB2

T∑
t=1

γ2t .

Rearranging the terms in the above inequality yields

−
T∑
t=1

n∑
i=1

γt(λ
t
i)
>gi(θ

t
i) ≤−

T∑
t=1

n∑
i=1

γtλ
>gi(θ

t
i) +

n

2

(
1 +

T∑
t=1

γ2t

)
‖λ‖22 +

9

2

T∑
t=1

n∑
i=1

∥∥∥λti − λt∥∥∥2
2

+ 2(1 +
√
n)B

T∑
t=1

γt

n∑
i=1

∥∥∥λti − λt∥∥∥
2

+ 4nB2
T∑
t=1

γ2t ,

which completes the proof.

E.3 Proof of Lemma E.4

Based on the update rule of θ̂
t

ih that θ̂
t+1

ih =
∑
k 6=h aikθ̂

t

kh + aihθ
t
h,∀h 6= i and i, h ∈ [n], we have

that

et+1
ih := θ̂

t+1

ih − θ
t+1
h =

∑
k 6=h

aikθ̂
t

kh + aihθ
t
h − θ

t+1
h + θth − θ

t
h

=
∑
k 6=h

aike
t
kh −

(
θt+1
h − θth

)
.

Recall that A−h is the weight matrix formed by removing the hth row and hth column of the weight

matrix A for any h ∈ [n], and eth := col
(
et1h, · · · , et(h−1)h, e

t
(h+1)h, · · · , e

t
nh

)
. Then,

et+1
h = (A−h ⊗ Id)e

t
h + 1n−1 ⊗

(
θt+1
h − θth

)
.

Since β is the maximium eigenvalue of A−h for all h ∈ [n], we have that

E‖et+1
h ‖2 ≤ E

∥∥(A−h ⊗ Id)e
t
h

∥∥
2

+ E
∥∥1n−1 ⊗ (θt+1

h − θth
)∥∥

2

≤ βE‖eth‖2 +
√
n− 1γtE

∥∥∥φth (ξth;θth, θ̂
t

h,λ
t
h

)∥∥∥
2

≤ βE‖eth‖2 +
√
n− 1γtE

∥∥∥∇θhJh (ξth;θth, θ̂
t

h

)∥∥∥
2

+
√
n− 1γ2t E

∥∥∇gh(θh)>λth
∥∥
2

≤ βE‖eth‖2 +
√
n− 1γt(G+GgE‖γtλth‖2)

≤ βtE‖e1h‖2 +
√
n− 1

t−1∑
k=0

βkγt−k(G+
√
nBGg). (A31)

Further, since θ1ih = 0 for any i, h ∈ [n], then, from Assumption 2.3, E‖e1ih‖2 = ‖θ1h‖2 ≤ C.
Summing the above inequality over t ∈ [T ] and h ∈ [n], we obtain

T∑
t=1

n∑
h=1

E‖eth‖2 ≤ nC
T∑
t=1

βt−1 + n
√
n− 1(G+

√
nBGg)

T∑
t=1

t−2∑
k=0

βkγt−k−1

≤ nC

1− β
+ n
√
n− 1(G+

√
nBGg)

T∑
k=1

T∑
t=k+1

βt−k−1γk

≤ nC

1− β
+
n
√
n− 1(G+

√
nBGg)

1− β

T∑
k=1

γk.
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On the other hand, taking square on both sides of (A31), we have

E‖eth‖22 ≤ 2βtE
∥∥e1h∥∥22 + 2(n− 1)(G+

√
nBGg)

2

(
t−2∑
k=0

βkγt−k−1

)2

. (A32)

Using the Cauchy-Schwarz inequality yields(
t−2∑
k=0

βkγt−k−1

)2

≤

(
t−2∑
k=0

βk

)(
t−2∑
k=0

βkγ2t−k−1

)
≤
∑t−2
k=0 β

kγt−k−1
1− β

. (A33)

Plugging (A33) into (A32) and summing over t ∈ [T ], we have that

T∑
t=1

n∑
h=1

E‖eth‖22 ≤ 2nC2
T∑
t=1

βt +
2n(n− 1)(G+

√
nBGg)

2

1− β

(
T∑
t=1

t−2∑
k=0

βkγt−k−1

)

≤ 2nC2

1− β
+

2n(n− 1)(G+
√
nBGg)

2

(1− β)2

T∑
k=1

γk.

E.4 Proof of Lemma E.5

Let ωti :=
[(

1− γ2t
)∑

j∈Ni aijλ
t
j + γtgi

(
θti
)]

+
−
∑
j∈Ni aijλ

t
j . Then, for any i ∈ [n], we have

that

∥∥ωti∥∥2 =

∥∥∥∥∥∥
(1− γ2t ) ∑

j∈Ni

aijλ
t
j + γtgi

(
θti
)

+

−
∑
j∈Ni

aijλ
t
j

∥∥∥∥∥∥
2

≤

∥∥∥∥∥∥−γt
∑
j∈Ni

aijγtλ
t
j + γtgi

(
θti
)∥∥∥∥∥∥

2

≤ γt
∑
j∈Ni

aij
∥∥γtλtj∥∥2 + γt

∥∥gi (θti)∥∥2
≤ γt(

√
n+ 1)B. (A34)

The first inequality in (A34) results from the nonexpansive property of projection, and the third
inequality holds by using Lemma E.1. By the update rule of λi for any i ∈ [n], we have that

λt+1
i =

∑
j∈Ni

aijλ
t
j + ωti.

Define concatenation vectors λto = col
(
λt1, · · · ,λ

t
n

)
and ωto = col (ωt1, · · · ,ωtn). Then, for any

t ∈ [T ], we have

λt+1
o = (A⊗ Im)λto + ωto. (A35)

Since λ
t

= 1
n

∑n
i=1 λ

t
i, we have that

∆t := λto − (1n ⊗ Im)λ
t

=

((
In −

1n1Tn
n

)
⊗ Im

)
λto,∀t ∈ [T ]. (A36)

Combining (A35) and (A36) yields

∆t+1 = (A⊗ Im) ∆t +

((
I− 11T

n

)
⊗ Im

)
ωto,∀t ∈ [T ].
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Figure 3: A networked Cournot game with five firms and three markets.

Since λ1
i = 0 for all i ∈ [n], then ∆1 = 0. Based on the fact that

∥∥∥I− 11T

n

∥∥∥
F
≤ 2, we have that

n∑
i=1

∥∥∥λt+1
i − λt+1

∥∥∥
2

=
∥∥∆t+1

∥∥
2

=

∥∥∥∥(A⊗ Im) ∆t +

((
I− 11T

n

)
⊗ Im

)
ωto

∥∥∥∥
2

≤
∥∥(A⊗ Im) ∆t

∥∥
2

+

∥∥∥∥((I− 11T

n

)
⊗ Im

)
ωto

∥∥∥∥
2

≤ σ2(A)
∥∥∆t

∥∥
2

+ 2
∥∥ωto∥∥2

≤ 2

t−1∑
k=0

σ2(A)k
∥∥ωt−ko

∥∥
2

≤ 2(n+
√
n)B

t−1∑
k=0

σ2(A)kγt−k,

where the last inequality is based on the result in (A34). Summing the above inequality over t ∈ [T ]
yields

T∑
t=1

n∑
i=1

∥∥∥λti − λt∥∥∥
2
≤ 2(n+

√
n)B

T∑
t=1

t−2∑
k=0

σ2(A)kγt−1−k

≤ 2(n+
√
n)B

1− σ2(A)

T∑
k=1

γk.

Similarly to the calculation of
∑T
t=1

∑n
h=1 ‖eth‖22 in Section E.3, we have that

T∑
t=1

n∑
i=1

∥∥∥λti − λt∥∥∥2
2
≤ 4(n+

√
n)2B2

(1− σ2(A))2

T∑
k=1

γk.

F Simulation Details

F.1 Networked Cournot Game

The Cournot game is a foundational model in economic theory (Allaz and Vila, 1993) for analyzing
oligopolistic competition, where a limited number of firms dominate a specific market. In Cournot
games, all firms sell a homogeneous commodity and aim to maximize their individual profits by
independently and simultaneously determining optimal production quantities. The total quantity
produced by all firms is constrained by factors such as market capacity, raw material availability, and
environmental considerations. The profit of each firm depends not only on its own production quantity
but also on the quantities chosen by its competitors, as they influence the demand price determined
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Figure 4: The demand prices of three markets.

Figure 5: The serving quantities of five firms to three markets.

by the market’s demand curve and the total production quantity. There are strategic interactions
between firms and markets in the Cournot game. According to the law of supply and demand, an
increased production quantity drives down the demand price, and vice versa. The Cournot game model
has diverse applications in various fields, including supply chain management, electricity market
competition, natural resource extraction, online advertising auctions, and the telecommunications
industry.

In this experiment, we consider a networked Cournot game comprising n firms selling a single
commodity across m markets, as illustrated in Fig. 3. Each firm i ∈ [n] determines its output quantity
θi = col (θi1, · · · , θim) subject to the constraint of its production capacity Qi that

∑m
j=1 θij ≤ Qi.

Here, θij denotes the quantity of player i sold to the jth market. The total quantity allocated to market
j is limited by its market capacity Bj , satisfying the condition that

∑n
i=1 θij ≤ Bj ∀j ∈ [m]. Thus,

the local constraint of player i associated with market j is

gij(θi) = θij −Bj/n,∀i ∈ [n], j ∈ [m].

Let gi(θi) := col (gi1(θi), · · · , gim(θi)), ∀i ∈ [n].
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The cost function of firm i is defined as

Ji = d>i θi −
m∑
j=1

pjθij ,

where di = col (di1, · · · , dim) and dij represents the cost that firm i sells a unit of its product to the
jth market, ∀i ∈ [n], j ∈ [m]. di includes the cost of raw material, transportation, maintenance, etc.
In Ji, the term pj denotes the unit demand price of market j determined by its market demand curve
and the total production quantity, given by

pj = ξj + Λj

(
cj +

1

dj

n∑
i=1

θij

)− 1
τj

,∀j ∈ [m], (A37)

where cj , dj Λj , and τj > 0 are constants, ξj is a random variable. Due to the interaction between
firms and markets, the demand price can fluctuate with production quantities, represented by ξj ∼
Dj(θ). Note that the quantity-dependent distributions Dj(θ) for all j ∈ [m] are unknown by players.
For any j ∈ [m], the variable ξj is defined as

ξj = ξoj + ε
αj∑m

j′=1 αj′

(
n∑
i=1

θij

)
,

where ξoj is the random base component, ε ≥ 0 represents the performative strength of markets, and
αj is the relative strength of market j for any j ∈ [m]. According to the law of supply and demand,
an increased production quantity generally decreases a market’s demand price, which corresponds to
the setup that αj ≤ 0 for all j ∈ [m]. Thus, the objective of each play i ∈ [n] in the network Cournot
game is formulated by

min
θi∈Ωi

Epj∼Dj(θij ,∀i∈[n]),j∈[m]

d>i θi − m∑
j=1

pjθij


subject to θij +

∑
i′ 6=i

θi′j ≤ Bj ,∀j ∈ [m].

In the simulation, we set n = 5 and m = 3. The network structure is as depicted in Fig. 3. Each
element of the communication weight matrix A = (aij)n×n is set to be aij = 1

|Ni| , and |Ni| is the
cardinality of Ni. The production capacity Qi is randomly and uniformly drawn from [10, 12] for all
i ∈ [5], and the market’s capacity Bj is randomly and uniformly drawn from [10, 15] for all j ∈ [m].
All entries in di, ∀i ∈ [n] are randomly and uniformly drawn from [1, 1.5]. The distribution of ξoj is
set to min(max(N (2.5, 1), 2.5), 7.5). The performative power αj is randomly and uniformly drawn
from (−1, 0], for all j ∈ [3]. Other settings are: Λj = 10, cj = 10, dj = 5 and τj = 2, ∀j ∈ [3].

Fig. 4 compares the demand prices of three markets at PSE and NE with performative strength
ε = 0.2, 0.4, and 0.6 and Fig. 5 compares the corresponding serving quantities of five firms to these
three markets. The results suggest that, although a larger performative strength leads to a wider gap,
the difference in these two indicators between the PSE and NE remains insignificant. This confirms
the effectiveness of PSE solutions and our distance analysis between the PSE and NE as stated in
Theorem 3.5.

F.2 Ride-Share Market

We further examine an example of a ride-share market, where multiple platforms compete to maximize
their individual revenue by offering shared rides in competitive areas, taking into account opera-
tional constraints and market demands. This experiment builds upon the semi-synthetic simulation
conducted in (Narang et al., 2023), adapting it to our constrained noncooperative game setting.

Consider a ride-share market with n platforms competing in m areas. Each platform i ∈ [n] aims to
maximize its revenue by determining the quantities it offers at the jth area, denoted as θij , for all
j ∈ [m]. Let θi = [θi1, · · · , θim]>. The total number of rides provided by each platform i cannot
exceed a predefined limit Qi, given by

∑m
j=1 θij ≤ Qi, ∀i ∈ [n]. Let pj denote the demand price
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Figure 6: Convergence of the time-average revenues of three platforms.

Figure 7: Convergence of the time-average constraint violations at eight areas.

at the jth location, which fluctuates with the total offered quantity at the area following the law of
supply and demand. We adopt the same model for {pj} as in the network Cournot game, given by
(A37). Additionally, the maintenance costs associated with platform operations may vary across
locations due to factors such as distance or labor costs. Let di ∈ Rm represent the cost vector of
platform i at all areas. Then, the inverse of the revenue function for each platform can be expressed as

Ji = −
m∑
j=1

pjθij + d>i θi,∀i ∈ [n].

Assume that each platform only offers one type of ride. Considering the diverse ride characteristics,
such as shape and speed, we use hi to denote the spatial occupancy of each ride offered by platform i.
The accommodated ride quantity at each location is constrained by Bj due to parking availability
and road conditions, such that

∑n
i=1 hiθij ≤ Bj . Then, the objective of each platform i ∈ [n] in the

ride-share market is formulated as

min
θi∈Ωi

Epj∼Dj(θij ,∀i∈[n]),∀j∈[m]

− m∑
j=1

pjθij + d>i θi


subject to hiθij +

∑
i′ 6=i

hi′θi′j ≤ Bj ,∀j ∈ [m].

(A38)

The simulation setup is based on dataset from a prior Kaggle competition.2 Our study focuses on
three ride-share platforms (Uber, Lyft, and Via) and eight competing areas within New York. We
randomly and uniformly assign the total number of rides, Qi, from the range [200, 400] for each
platform i ∈ [3]. Similarly, the accommodated capacity, Bj , is randomly and uniformly drawn from
[50, 150] for all j ∈ [8]. All entries in di, ∀i ∈ [n] are randomly and uniformly drawn from [0.2, 2.2].
The distribution of ξoj is set as min(max(N (1, 1), 1), 5). Additionally, we set the following values
for all areas j ∈ [8]: Λj = 5, cj = 5, dj = 5, and τj = 2.

Fig. 6 compares the convergence of the time-average revenues of these three platforms: Uber, Lyft,
and Via, denoted by − 1

t

∑t
t′=1 Ept∼D(θt)[Ji(p

t;θt
′
)]. We consider three performative strengths:

2The data is publicly available at https://www.kaggle.com/brllrb/uber-and-lyft-dataset-boston-ma
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Figure 8: The normalized distance between θt and θne.

ε = 0.1, 0.2, and 0.3. Similarly to Fig. 2 (b), we compare the performance of Algorithm 1, represented
by “pse”, and the performance of Algorithm 1with perfect knowledge of data distributions Dj(θ)
for all j ∈ [m]. It is observed that, with a mild performative strength ε, the revenues achieved by
the “pse” are close to those of the “ne” for all three platforms. However, as ε increases, the gap
between the two approaches widens, although it remains relatively small. This observation confirms
the analytical result presented in Theorem 3.5.

Fig. 7 shows the convergence of the time-average constraint violations at eight areas by Algorithm 1,
denoted by 1

t

∑t
t′=1

∑3
i=1 gij(θ

t′

i ), j = 1, · · · , 8, with performative strengths of ε = 0.1, 0.2, and
0.3. The constraints hold for all three performative strengths. However, as ε increases, the platform
tends to allocate fewer rides. This may be attributed to larger market fluctuations associated with a
higher ε, leading to a more conservative allocation.

Fig. 8 compares the normalized distance between θt and the NE point θne, denoted as ‖θt −
θne‖2/‖θt‖2, with performative strengths: ε = 0.1, 0.2, and 0.3. The result is quantitatively
analogous to the findings presented in Fig. 8. Firstly, θt gradually approaches θne with iterations.
Secondly, a higher performative strength leads to a wider normalized distance between the convergent
point of θt and θne.

Fig. 9 compares the demand prices of eight areas and the ride quantities offered to them by three
platforms at PSE and NE. We consider performative strengths ε = 0.1 and ε = 0.3. It is observed
that the values of these indicators at the PSE and NE are close to each other when ε = 0.1. However,
a noticeable discrepancy arises when ε = 0.3.

Additionally, we display the demand prices of eight areas in New York in Fig. 10, with different
performative strengths: ε = 0.1, 0.2, and 0.3. It can be observed that, while prices vary by location,
smaller values of ε generally correspond to higher prices. The offered quantities of these three
platforms to the eight locations are illustrated in Fig. 11. The results indicate a conservative allocation
as the performative strength increases. Furthermore, with the cost of these three platforms at different
locations in Fig. 12, we obtain the revenues of the platforms Uber, Lyft, and Via in different areas, as
illustrated in Fig. 13. Clearly, performativity has an inverse effect on revenues, and the stronger the
performative strength, the lower the revenues.
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Figure 9: The demand prices of eight areas and the ride quantities offered to them by three platforms.

Figure 10: The demand prices of different areas.
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Figure 11: The quantities of platforms offered to different areas.

Figure 12: The cost of platforms in different areas.
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Figure 13: The revenues of platforms in different areas.
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